The Journal of Supercomputing (2024) 80:26394-26434
https://doi.org/10.1007/s11227-024-06428-8

®

Check for
updates

Secure and efficient general matrix multiplication on cloud
using homomorphic encryption

Yang Gao' - Gang Quan? - Soamar Homsi® - Wujie Wen* - Ligiang Wang'

Accepted: 2 August 2024 / Published online: 26 August 2024
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract

Despite the enormous technical and financial advantages of cloud computing, secu-
rity and privacy have always been the primary concerns for adopting cloud computing
facilities, especially for government agencies and commercial sectors with high-security
requirements. Homomorphic encryption (HE) has recently emerged as an effective tool
in ensuring privacy and security for sensitive applications by allowing computing on
encrypted data. One major obstacle to employing HE-based computation, however, is its
excessive computational cost, which can be orders of magnitude higher than its counter-
part based on the plaintext. In this paper, we study the problem of how to reduce the HE-
based computational cost for general matrix multiplication, i.e., a fundamental building
block for numerous practical applications, by taking advantage of the single instruction
multiple data operations supported by HE schemes. Specifically, we develop a novel ele-
ment-wise algorithm for general matrix multiplication, based on which we propose two
HE-based general matrix multiplication algorithms to reduce the HE computation cost.
Our experimental results show that our algorithms significantly outperform the state-of-
the-art approaches of HE-based matrix multiplication.

Keywords Homomorphic encryption - Privacy protection - Matrix multiplication -
Cloud computing

1 Introduction

Cloud computing has become an attractive solution for industry and individuals due to

its flexibility, scalability, reliability, sustainability, and affordability [1, 2]. Despite the
tremendous technical and business advantages of cloud computing, security has been

Y. Gang and L. Wang were supported in part by NSF grant 1952792 and 2321572. W. Wen was
supported in part by NSF grant CNS-2348733.

Soamar Homsi: Approved for Public Release on March 06, 2024. Distribution is unlimited. Case
Number: 2024-0184 (original case number(s): AFRL-2024-0944).

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06428-8&domain=pdf

Secure and efficient general matrix multiplication on cloud... 26395

one of the primary concerns for cloud users, especially for those with high-security
requirements [3, 4]. Even though cloud platforms allow their users to have full control
over security settings and policies, public cloud infrastructures are commonly shared
among different users and applications, making the applications vulnerable to mali-
cious attacks.

Homomorphic encryption (HE) [5-7] has emerged as an effective tool to address
the security and privacy concerns while outsourcing data and computation to untrusted
third parties, such as public cloud service providers. HE ensures data confidentiality
during transit and processing by guaranteeing that the decrypted results are identical
to the outcome when the same operations are applied to the data in plaintext. HE has
raised increasing interest from many researchers and practitioners of security- and pri-
vacy-sensitive cloud applications in various domains such as health care, finance, and
government agencies. One of the grand challenges, however, is how to deal with the
tremendous computational cost for HE computations, which can be orders of magni-
tude higher than that in the plaintext space [8]. Unless HE computation cost can be
effectively reduced, it would be infeasible to apply HE schemes in practical cloud
applications.

In this paper, we study the problem of how to reduce HE computation cost for gen-
eral matrix multiplications (MM) by taking advantage of the single instruction multiple
data (SIMD) scheme for HE operations [9]. Note that different from classical SIMD
technique in hardware, the SIMD scheme in the HE framework enables multiple data
values to be packed into one ciphertext, and one single HE operation can be performed
on all data elements in the ciphertext simultaneously. Accordingly, we develop a novel
approach for HE-based MM operations, focusing on matrices in arbitrary shapes. Spe-
cifically, we make the following contributions.

1. We present a novel element-wise method for MM. This method is general and
can be applied to source matrices of any shape with a significant performance
improvement;

2. We develop two HE MM algorithms, with the second significantly improving
upon the first. Our HE MM algorithms pack matrix elements judiciously in
encrypted message “slots” and perform pertinent operations by taking advan-
tage of the SIMD structure in HE schemes to reduce the number of primitive HE
operations, such as HE multiplications, rotations, and additions, which are com-
putationally expensive, and therefore can significantly reduce the computational
cost;

3. We perform a rigorous analysis for the logical correctness of the algorithms and
their complexities;

4. We implement our algorithms using a Python HE library, Pythel [10]. Extensive
experimental results show that our proposed algorithms can significantly outper-
form the state-of-the-art approaches. Our code is available at https://github.com/
EchizenG/HEGMM

@ Springer

https://github.com/EchizenG/HEGMM
https://github.com/EchizenG/HEGMM

26396 Y.Gao et al.

2 Background and related work

In this section, we briefly introduce the relevant background of HE and discuss the
related work.

2.1 Homomorphic encryption (HE)

Homomorphic encryption (e.g., BGV [7], BFV [11, 12], and CKKS [13]) ena-
bles computations to be performed based on encrypted data, with results still in
encrypted form. As such, HE represents a promising tool to greatly enhance data
privacy and security, especially when outsourcing computations to the public cloud.
In the meantime, HE can be extremely computationally intensive [14], and improv-
ing its computation efficiency is key to making this technology practical for real
applications.

When performing HE matrix multiplication on the cloud, source matrices are first
encrypted by clients and transferred to the cloud, and the results are transferred back
to clients for decryption. Encrypting each individual element of a matrix into one
cyphertext can lead to excessive encryption, decryption, and communication costs,
in addition to a large number of HE operations. Table 1 shows our profiling results
on encryption/decryption latency, message size, and computational costs with differ-
ent HE operations (More detailed experimental settings are discussed in Sec. 4.1).

To this end, Gentry and Halevi [9] proposed an efficient key generation technique
that enables SIMD operations in HE. By encrypting multiple data items into one
ciphertext, one single operation can be applied to all encrypted elements in the same
ciphertext simultaneously, and thus, space and computing resources can be used
more efficiently.

As an example, BFV [11, 12] can support a number of primitive HE opera-
tions such as HE-Add (addition), HE-Mult (multiplication), HE-CMult (constant
multiplication), and HE-Rot (rotation). Given ciphertexts ct, = Enc(xy, Xy, ... ,X,),
ct, = Enc(yo, yy, .- ,¥,) and a plaintext pt = (py, py., ..., p,), we have

e HE-Add: ct, + ct, = Enc(xy + Yo, X1 + Y150 X, +Y,)
e HE-Mult: ¢z, X ct, = Enc(xy X yg, X; X Yy -0 s X, X Y,)
e HE-CMult: ct, X pt = Enc(xg X pg. X; X Py, ..., X, X Py,)

Table 1 Comparison of

- Operations HE Plaintext Ratio

computational cost for HE

v.S. Plamte.xt Qpe?ratlons. CC Encryption (ms) 55 _ _

is the multiplication between .)

two ciphertexts while CP is Dectyption (ms) 257 - -

the multiplication between Message size (MB) 0.5 - -

ciphertext and plaintext Addition (ms) 0.550 0.009 61.1
Multiplication (ms) 20.874 (CC) 0.035 596.4

4.138 (CP) 0.035 118.23

Rotation (ms) 5.35 0.13 41.15

@ Springer

Secure and efficient general matrix multiplication on cloud... 26397

e HE-Rot: Rot(ct,, i) = Enc(X;, X 1, .., Xy, Xo» -s Xi_1)

The HE operations are computationally intensive and can consume excessive com-
putational time. In addition, HE operations also introduce noises when performed on
encrypted data [15], which must be well under control for the results to be decrypted
successfully. Several HE operations, especially HE-Mult, can be extremely time-
consuming (approximately 600x higher than its counterpart as shown in Table 1)
and introduce much larger noise [16]. Therefore, reducing the number of HE opera-
tions (especially the HE-Mult operations) becomes critical in designing practical
applications, such as matrix multiplication, under the HE framework.

2.2 Related work

There are numerous research efforts on improving the computational efficiency of
MM (e.g., [17, 18, 18-22]). However, none of them can be readily adapted to opti-
mize the computation efficiency of MM in the context of HE computation.

A naive method for HE MM is to encrypt each row/column in each matrix and
then compute it using the traditional MM method. For the HE MM of A,,.; X Bj,,,
this would result in excessive storage requirements and computation times: m X n
encrypted messages and totally m X [X n HE-Mult operations. Another simple and
intuitive approach (e.g., [23]) is to transform the MM problem into the matrix—vec-
tor multiplication problem and then adopt the SIMD scheme [9, 24] to perform the
calculation. However, this requires m + n ciphertexts and m X n homomorphic mul-
tiplication operations, which are still very costly.

Duong et al. [25] and Mishra et al. [26] presented approaches to packing the
source matrix into a single polynomial and performing HE MM based on secure
computation of the inner product of encrypted vectors. Their method works well
for a single HE MM of squared matrices with well-defined dimensions. However,
it is not clear how this solution can be applied to general MM. Additionally, the
encrypted message packing methods used in this approach are closely related to the
matrix dimensions. While HE MM of three or more matrices is shown to be pos-
sible [26], it is unclear how to perform HE matrix operations involving both multi-
plications and additions/subtractions without decrypting/recrypting the intermediate
results, especially for matrices with arbitrary shapes.

Jiang et al. [27] proposed an intriguing HE MM approach for square matrix with
O(d) computational complexity. They expanded their HE MM algorithm to han-
dle rectangle MM (A, X Byy,) with [< d and d mod [= 0. However, to suit the
shape requirements for matrix multiplication with variable shapes, source matrices
may need to be enlarged, which can lead to increased processing time and higher
resource utilization. This trade-off is important to consider when applying the algo-
rithm to matrices that do not naturally conform to the original square or rectangular
constraints.

Huang et al. [28] advocated for the use of blocking to more effectively handle
matrix multiplication (MM) by treating source matrices as block matrices composed

@ Springer

26398 Y.Gao et al.

of smaller square matrices. This approach is particularly appealing for large matri-
ces that cannot fit into a single ciphertext, as it allows for more manageable and
efficient computation. By breaking down large matrices into smaller, square blocks,
the method ensures that operations remain feasible even when dealing with exten-
sive data. However, this technique is limited in its application to large matrices that
are square matrices or pairs of rectangular matrices where the number of columns
and rows are integer multiples of each other. These restrictions means that while the
blocking method could be highly efficient for certain configurations, it may not be
as versatile when working with matrices that do not meet these specific dimensional
criteria.

Rathee et al. [29] proposed to encrypt source matrices into the two-dimen-
sional hypercube structure [24] and then transform the MM problem to a series of
matrix—vector multiplication problems. Huang et al. [30] extended this approach to
make it applicable to general MM. In this paper, we develop a novel element-wise
MM approach. As demonstrated in Sect. 3.3, our approach can lead to a higher com-
putational efficiency and memory usage compared to that by Huang et al. [30].

3 Our approaches

When performing HE matrix multiplication in the SIMD manner, we need to make
sure that two operands are aligned and located at the same location, i.e., the same
slot in the two encoded ciphertexts. Rearranging individual slots in an encrypted
message can be costly. Therefore, a key to the success of reducing the computational
complexity of the HE MM is how to perform the MM using element-by-element
additions and multiplication operations. In what follows, we first introduce a novel
algorithm to calculate MM with arbitrary dimensions using element-wise additions
and multiplications. We then discuss in more detail how we implement the HE MM
algorithm on packed ciphertexts in the SIMD manner and its enhanced version.

3.1 The matrix multiplication method using element-wise computations

Consider an MM problem, C,..,, = A, X By, Where m, I, and n € Z*. Our goal is
to develop an algorithm such that C,,,,, =), A; © B;, where A,, B, are certain trans-
formations of A,,.;, By, respectively, and © represents the element-wise multiplica-
tion. For ease of our presentation, we define four matrix transformation operators as

follows:

o(A),; =~’4i,[i+j],’ 0<i<m0<Lj<l (1)
T(B)‘:/ = BU"‘]][J’ 0 < i< ls 0 S] <n (2)
elr;)(n('A)iJ =Ai,[j+k]1, 0<i<m0<j<n 3)

@ Springer

Secure and efficient general matrix multiplication on cloud... 26399

an(B) B[i+k],,j’ 0<i<m0<j<n 4)
where [x] denotes x mod y.

The two transformation operators, ¢ and 7, are similar to those introduced in
[27], but more general and applicable to an arbitrary shape matrix instead of a
square matrix alone. Essentially, a o transformation rotates each row of a matrix
horizontally by its corresponding row index (for example, each element in the 2,
row is cyclically rotated 2 positions to the left), and a = transformation rotates a
column by its corresponding column index. Figure 1a, b illustrate examples of ¢
and 7 transformations.

We define two new transformation operators, €, and wk with respect to a
matrix of arbitrary shape. Given C,, = A, X len’ operator ek (A generates
a matrix with size of m X n from A, ., (duplicating or cropping columns when
necessary), by shifting matrix A, to the left for k columns. Similarly, o* (B)
generates a matrix with size of m X n from B, (duplicating or cropping rows
when necessary), by shifting matrix B, upward for k rows. Figure lc, d illustrate
the transformation operators € (A), €} ((A), @, (B), and w}_(B), respectively.

With the operators defined above, we can perform a general MM using the
element-wise operations as follows:

SR

(a) o operator: rotating i, row left by ¢ slots.

[b]
| by | b]
| by [b]

(b) T operator: rotating j;» column upward by j
slots.

k

Esxs(A) E3><5(-A)

a1 (4o a1 00| A
» as| az » as| az| a;
Qs | Qg Qs | 04| A5

(c) €9 5(Asx2) and 63><5(.A3><2) with Csx5 = A3><2 X Baxs.

W3xs(B) w3xs(B)

EERER= BRI
Lbo| by| by | bs| b bs| be | by | bg| bo

(d) wly5(Baxs) and wi, 5(Baxs) with Caxs = Asxa X Baxs.

Fig. 1 The illustration of ¢, 7, €, and w transformation operators

@ Springer

26400 Y. Gao et al.

-1

Ayt X By = D (€b 00(A)) © (aof,,07(B),)
k=0

where o represents the composition operation. Note that the multiplication (i.e., ®)
in Eq. (5) is element-wise and applied to the entire operands. Figure 2 shows an
example of how an MM can be conducted based on Eq. (5). Given two source matri-
ces, i.e., Asy3 X Bsyy, withm = 5,1 =3, and n = 4, o and 7 transformations are con-
ducted on A and B, respectively. Then, three iterations of ¢ and w transformations
are performed to obtain three partial products, which are accumulated to get the final
product. We have the following proof sketch to show that the above method indeed
produces the correct MM results for arbitrary matrices.

-1

D Ehen 0T (A - (@h, 07(B));
k=0

~
|
—

(A jsx, - TBjisn,

k=0
-1 (6)
= Z ‘Al i+, B[l+j+k]
k=0
-1
= Aige - Bk,;' =A- B)i,j
k=0
€9x4 ° 0(A) Wexs © T(B)

Wiy ° T(B) +

+ Csxa
e - W

Fig.2 An illustration example of the element-wise MM for Ay, 3 X Bj,, with m =5,1=3, and n =4,
o and 7 transformations are first conducted on .4 and B, respectively. Then, three iterations of € and w
transformations are performed to obtain three partial products, which are accumulated to get the final
product

65x4 0o (A)

11
15

wéle- °7(B)

] —
92712

[1]6]11]4]

€244 ° (A
2|3

6|4
7|8
11]12
15/13

@ Springer

Secure and efficient general matrix multiplication on cloud... 26401

3.2 The HE-based General Matrix Multiplication (HEGMM)

With the element-wise matrix multiplication method introduced above, we are now
ready to present our approach for HE matrix multiplication in the SIMD manner.
As mentioned before, it is critical to minimize the number of HE operations (such
as those, especially the HE-Mult, as shown in Table 1) and thus reduce the com-
putational cost. In this subsection, we first introduce how transformations, such as
0,7, e”; o and a)’;1 «» are performed using the primitive HE operations. We then pre-

sent our first algorithm for HE MM based on the element-wise matrix multiplication
strategy presented above.

3.2.1 Linear transformation

To perform MM under the HE framework, two-dimensional matrices need to be flat-
tened (either with column-major or row-major order) into one-dimensional cipher-
texts, and all operations are performed on the ciphertexts. Therefore, a critical
challenge to implement the computational strategy in Eq. (5) is how to efficiently
conduct o, 7, e”;xn, and C"ﬁzxm k=1{0,...,(I— 1)} transformation operations. Note
that an arbitrary linear transformation over a vector m, i.e., L : R, - R,, can be
expressed as L :m — U-m, where U € R, is the transformation matrix. As
shown by Halevi and Shoup [24], matrix—vector multiplications can be calculated
using the combination of rotation and element-wise multiplication operations. Spe-

cifically, for O < z < x, let the z-th diagonal vector of U be

(UO,Z’ UI,Z+1’ ooy UX—Z—I,X—]’ 0, “en ,O) le Z O

~
Ix|

$T) 0 0, U Uy e Uy yy) if2<0

o

~-
x|

where x and y are the matrix dimensions and z is the index of diagonal vector.
Then, we have

U-m=) (u,©HE-Rot(m:y)),

—y<z<x

)

where © denotes the component-wise multiplication.
According to Eq. (7), we can construct the transformations defined in Eqgs. (1)—(4)
with flattened matrix A and B such that

o(A)=U°- A, 8)

(B)=U" - B,)

@ Springer

26402 Y. Gao et al.

e (A = Ulier - A, (10)
o (B)=U% - B, (1)

Let A and B be source matrices flattened in the column-major order. By general-
izing the location change patterns for the operators, we can define U?, U”, U and
U as follows:

- _Jvith=i+[i+jl,-m,
i+jmh) O otherwise; (12)
. v ith=[+jl,+j-1,
Ui+j~l»h - { 0 otherwise; (13)
¢ J 1 ifj=lk-m+i],,
Ui:/‘ - { 0 otherwise; (14)
ot | 1 ifj=[k+1[il,],+ li/m] -1
UiJ - { 0 otherwise; (15)
For the sake of clarity, scopes of i, j and & in Eqs. (12)—(15) are listed below.
i j h
U’ [0, m) [0, 1) [0, ml)
U’ [0, 1) [0, n) [0, nl)
Ul [0, mn) [0, ml) N/A
U [0, mn) [0, nl) N/A

When A and B are matrices flattened in the row-major order, similar transforma-
tion matrices can be constructed. We omit it due to page limit.
Note that, from Eq. (7), the o, 7, el’; o and a)fn o operations can be realized using

a sequence of HE-Rot, HE-CMult, and HE-Add operations. Figure 3 shows exam-
. . . 1
ples of transformations €51X3(.A) and a)éxs(B) as well as the associated matrices U5
1 . . .
and U”»s for matrix As,; and Bs,s, respectively. In the meantime, Eq. (7) clearly
shows that the computational cost depends heavily on how many diagonal vectors
(i.e., u, in Eq. (7)) in the corresponding transformation matrices, i.e., U?, U?, U,
and U“’lfﬂx't, are nonzeros. The more the nonzero diagonal vectors are, the higher the
computation costs become. To this end, we have the following theorems that reveal

important properties related to nonzero diagonal vectors in these transformation
matrices.

@ Springer

Secure and efficient general matrix multiplication on cloud... 26403

Theorem 3.1 Let 6(A) = U° A for A with a dimension of m X 1. There are at most
2 - min(m, [) — 1 nonzero diagonals in U’ no matter whether the matrix is flattened

with a column-major or row-major order.
| | | |

(a) The process of linear transformation for €é><3 transformation on matrix Agsx3. us is the vector with 10

1’s and 5 0’s while u.19 with 10 0’s and 5 1’s. Therefore, according to Equation 7, it rotates flattened A

5 slots and times us. Then it rotates flattened A 10 slots reversely and times u.1o. Finally, add all above

partial products together.

0]
t 3 = * + *® =
10|
10|
10|
0]

(b) The process of linear transformation for w§x5 transformation on matrix Bsxs. w1 is the vector with ten
1’s and five 0’s while w2 with 10 0’s and 5 1’s. Therefore, according to Equation 7, it rotates flattened B1
slots and times u;. Then it rotates flattened A 2 slots reversely and times u.». Finally, add all above partial
products together.

o|o[o]e]o[o[o]o]o]o|

. . 1 1 . .
Fig.3 The permutation matrices U and U”s and linear transformations of €1 ,(Asy;) and @}, (Bsys)

@ Springer

26404 Y.Gao et al.

Theorem 3.2 Let ©(B) = U’ B for B with a dimension of [X n. There are at most
2 - min(n, [) — 1 nonzero diagonals in U* no matter if the matrix is flattened with a
column-major or row-major order.

Theorem 3.3 Let GII; (A = U A be the linear transformation

Emxn - Rt = Ropxn With matrix A having a dimension of m X 1. There are at most

. . k . . .
% + 1 nonzero diagonal vectors in U when the matrix is flattened with the col-

. R . k
umn-major order. There are at most (HJ + 2) - m nonzero diagonal vectors in Ucmn

when matrix A is flattened with the row-major order. Specifically, when n = , there

. ek . o
are no more than two nonzero diagonals in Uma, no matter if the matrix is flattened
in column-major or row-major order.

Theorem 3.4 Let wﬁq o B) = U%sB be the linear transformation

O - Riscn = Ryusen With matrix B having a dimension of | X n. There are at most

. . k . . .
(% +2) - n nonzero diagonal vectors in U”nwe when the matrix is flattened with

. . . k
column-major order. There are at most [?J + 1 nonzero diagonal vectors in U®m

when matrix B is flattened with row-major order. Specifically, when m = 1, there are

. . ’ . o .
no more than two nonzero diagonals in U”m, no matter if the matrix is flattened in
column-major or row-major order.

The proofs for Theorems 3.1-3.4 can be found in Appendix 1.

According to Theorems 3.1 and 3.2, the numbers of nonzero diagonal vec-
tors in U” and U* depend solely on the dimensions of corresponding matrices and
are independent of how the matrices are flattened. However, as shown in Theo-

rems 3.3 and 3.4, the numbers of nonzero diagonal vectors in Ue'knxn and U“’fnxn
depend on not only the dimensions of matrices but also the way they are flattened.

3.2.2 The HEGMM algorithm

HEGMM is a straightforward implementation of Eq. (5). We first conduct ¢ and
7 transformations (lines 2-3) on the source matrices of A and B. We then go
through a loop (lines 5-9) that apply efn o, and T”; «, transformations and element-
wise multiplication and addition to calculate and accumulate the partial product.
The final result can be obtained by decrypting the sum of the product (line 11).
Table 2 summarizes the time complexity of HEGMM for each step. The
computational complexity of Algorithm 1 mainly comes from the required HE
operations associated with the o, 7, e}’; o and a)f‘n “n operations. Assuming A and
B are encrypted, from Theorem 3.1 and Theorem 3.2, we know that there are
2 min(m,) — 1 (resp. 2min(n,[) — 1) non-diagonals for the o (resp.) operation.
Therefore, according to Eq. (7), the ¢ (resp. 7) operation requires 2 min(m,) — 1
(resp. 2min(n,) — 1) HE-CMult, HR-Rot, and HR-Add operations. These com-
putational costs have nothing to do with how the matrices are flattened (e.g., in

@ Springer

Secure and efficient general matrix multiplication on cloud... 26405

column-major or in row-major order), and they also become trivial if they are
performed on .4 and B in plaintext.
According to theorem 3.3 and theorem 3.4, one € and o transformation needs

HJ + 1 and l?J + 2 - n HE-Add, HE-CMult, and HE-Rot operations, respectively.

It is not difficult to see from the algorithm that HEGMM has a HE multiplication
depth of 1 M+2C with one HE multiplication (e.g., 1 M) and two constant multi-
plication (e.g., 2C).

Note that the € and o transformation, which must be performed multiple times
in the cloud, require HE operations depending on not only the dimensions of
matrices but also the way they are flattened. As a result, the computational com-
plexities can be dramatically different under different scenarios, as shown in
Theorems 3.3 and 3.4. In the next subsection, we show how we can take advan-
tage of this fact and reduce the computation cost.

Algorithm 1 HEGMM: HE-based General Matrix Multiplication

Input: matrix A,,«; and matrix Bjx,
Output: Cpxn
[Stepl]
ct. A« g(A)
ct.BO) «— 7(B)
[Step2]
for k=0tol—1do
ct. AR — ek (et A©)
ct.BF) Wk (ct.BO)
ct.C + ct.C+ ct. A®) © ct.BK)
end
[Step3]
Coxn < ct.C
return C,,«n

© N O Gk W N -

[
N = O

Table2 Time complexity of Line HE-Add HE-Mult He-CMult HE-Rot Depth
HEGMM where y = min(m, [),

v =min(n, 1), £ : HJ+1, 2 2u—1 0 2u—1 2u—1 1C
W:(l%J_'_Z_)n 3 2v—1 0 2v—1 2v—1 -
6 &l 0 &l &l 1C
7 WI 0 WL WI -
8 1 I 0 0 M
Total &I+ WI l El+WI El+WI IM +2C
+2u+v)+1 F2u+v) +F2u+v)

@ Springer

26406 Y.Gao et al.

3.3 The enhanced HEGMM algorithm

In this section, we introduce a more elaborated approach for HEGMM that can be
more computationally efficient. The fundamental principle we rely on to develop
this algorithm is presented in Theorem 3.3 and 3.4. For the HE matrix multipli-
cation of A, ; X B, the proposed new algorithm can significantly improve the
computation efficiency when m = min{m, [,n} and/or n = min{m, [, n}. If not, we
can always resort to Algorithm 1 to find the solution. Therefore, in what follows,
we first discuss the new approach based on two cases: (i) m = min{m, [,n}; and (ii)
n = min{m, [,n}. We then present the algorithm and related discussions in detail.

3.3.1 Case 1:m = min{m, I, n}

For the HE MM of A, ., X B,,, Algorithm 1 needs to perform [iterations, with each
iteration including one e transformation, one w transformation, one HE-Add, and
one HE-Mult operation. Assuming the matrix is flattened with the column-major
order, according to Theorem 3.3 and 3.4, one ¢ transformation and one w transfor-

mation would result in no more than ((HJ + 1> + Zn) nonzero diagonals in corre-

sponding transformation matrices, with each nonzero diagonal requiring one HE-
Add, one HE-Rot, and one HE-CMult operations. However, if we can expand matrix
A, to Ag,, then the number of nonzero diagonals becomes no more than

((HJ + 1) + 2) instead. Since n > 1 and

(([5]+1)+20) = (([5]+1)+2).
the number of nonzero diagonals and, thus, the computational cost can be dramati-
cally reduced.

Note that, if we assume the matrix is flattened with the row-major order, one €
transformation and one @ transformation would result in no more than

((HJ + 2>m + 1) nonzero diagonals in corresponding transformation matrices.
When expanding matrix A, to A, the total number of nonzero diagonals in the
corresponding transformation matrices becomes <(HJ + 2)1 + 1), according to

Theorems 3.3 and 3.4. It becomes obvious that using the column-major order is a
better choice than using the row-major order in this case, since when m > 1, we have

(([5]+2)mer)2 (([5]+1)+2).

The question now becomes how to expand A, to .A;,, and maintain the logical cor-
rectness of the MM result. One intuitive approach is to expand A, by filling zeroes
to the newly added elements, i.e., the elements in rows from row m to (I —m — 1).
The final product, as a sub-matrix, can be extracted from the product of A, X By,
easily. Note that expanding the matrix dimension does not increase the computa-
tional complexity in the SIMD scheme as long as the result matrix can fit in one
message.

@ Springer

Secure and efficient general matrix multiplication on cloud... 26407

Rather than simply filling zeroes, we can expand A, by duplicating the rows of
A, repeatedly. This helps to reduce the number of iterations (lines 5-9) in Algo-
rithm 1, thanks to our observations that are formulated in the following theorem.

Theorem 3.5 Let A, and By, with m <1, and let A be matrix expanded with
t= [i—| copies of A vertically, ie., A={AyA;... ;A(,_])}T with
14_0 = 14_1 = e = A([—l) = A NE Then,

m.

o ¢ (6(A) 0o

mxn tmxn

pE {[k]l’ [k +m], ..., [k+ (- 1m]}
e & (6(A)0O a)men(T(B)), k=0,1,...,m—1) contains all items of

tmxXn

& (6(A) O, (t(B)), with p € {0,1,....(I— 1)}.

(z(B)) contains 7 items of € (6(A) © o)

mxn

(r(B)), with

According to Theorem 3.5, after expanding A,,; with ¢ copies of A, verti-
cally to form A,,,,, each iteration of Algorithm 1 can now produce ¢ partial prod-
ucts €/, (A) ©) ,(B). As a result, the required HE computations can be greatly
reduced, which can be better illustrated using the example in Fig. 4.

Figure 4 shows two source matrices A, s and Bs,,, withm =2,/=5,andn ="7.
A is the matrix by duplicating A three times, i.e., t = [5/2] = 3. Note that, each
€6X7(0'(.;l)) O wgy7(7(B)) contains three copies of €,,,(0(A)) O Wy, (7(B)), as
shown in the figure: €2x7(6(./_4)) O] wg .7(7(B)) contains eg ><7(6(.,4)) 0] wg 7 (7(B)),
€3.,(6(A) © 3 (z(B)), and €] (6(A) © »},_,(z(13)). We then need to add all the
partial products together to get the final result.

As such, by duplicating A, into A,,,, we can reduce not only the HE opera-
tions associated with the e and w operations but also the HE-Mult operations (i.e., at
most m HE-Mult operations according to Theorem 3.5) for partial production calcu-
lations, which is highly costly. Even though extra HE rotations are needed to extract
the partial results, the computation cost is much smaller than that of HE-Mult as
shown in Table 1. It is worth mentioning that, while one ¥ (A4) ® wf_ (B) helps
to produce multiple copies of €/ (A) ® o, (B), as shown in Fig. 4, some of them
may be produced repeatedly. These redundant copies should be identified, which can
be easily identified according to Theorem 3.5, and excluded from the final results.

3.3.2 Case2:n = min{m, I, n}

We can employ the same analysis flow as above. There are two major differences
compared with the case of m = min{m, [, n}. (i) We duplicate matrix 5 horizontally
to expand B instead of A; (ii) The row-major order is a better option than the col-
umn-major order in this case.

When n = min{m, [, n}, if the matrix is flattened with the row-major order,
according to Theorem 3.3 and 3.4, one e transformation and one w transformation

would result in no more than (2m + l%J + 1) nonzero diagonals in corresponding

transformation matrices. When expanding B, to By, the total number of nonzero

@ Springer

26408 Y. Gao et al.

A

EERER »

€¢x7 ° 9 (1)

0 0
€2x7 O Wik

i) 1332421158 26 61168 267

[)
= €3x7 O Wix7

4 4
€2x7 O W2,

€6x7 ° (A1) Wex7 ° T(B)

1 1
€2x7 O W37

— 3 3
= €2x7 O w3x|

0 0
€2x7 O Wax|

Fig.4 An illustration example of the Enhanced HEGMM Algorithm for multiplying two matrices A, s
and Bs,,, with m =2, 1=35, and n =7. A is the matrix by duplicating A 3 times, i.e., t = [5/2] =3
and Bs,, remains unchanged. The partial products are accumulated to obtain the final product. Note
egx7(o(A)) [0} a)gx7(r(6)) is generated twice, and the duplicated partial products should be excluded from
the final results

diagonals in corresponding transformation matrices is reduced to (2 + l%J +1
instead. However, if the column-major order is used, the total number of nonzero
diagonals after expanding is (1 + (2 + HJ) - n), which makes the row-major order a

better option to flatten the matrices.
Similarly, when we expand B by duplicating 3,,,, we can generate multiple par-
tial products, i.e., €/, (A) © &, (B), using one HE-Mult operation, as supported

by the following theorem. The proof is quite similar to that for Theorem 3.5 and thus
omitted due to page limit.

Theorem 3.6 Let A, and By, with n <1, and let B be matrix expanded with
t= [ﬂ copies of B horizontally, i.e., B ={B:;B;...;B). Then,

o & (6(A) ot (z(B)) contains ¢ items of €., (c(A) © @, (z(B)), with
pP= [k]l’ [k + n]l, ceey [k_+ (t - l)n]l;
o & (c(A)ow* (t(B), k=0,1,....,(n—1) contains all items of

mxXin mxXitn

& (0(A) @ (x(B), with p=0,1,...,(— 1).

Figure 5 shows an illustrative example of HE MM with two source matri-
ces Asy, and By, with m=5, =4, and n=2. B is the matrix by dupli-
cating B horizontally for two times, i.e., = [4/2] =2. Note that, each
€54 (0(A)) © ws,4(r(B)) using one HE-Mult operation can produce two copies of
€52 (6(A)) © s, ((B)), as shown in the figure: € ,(6(A)) © 0l ,((B)) contains
& (0(A) 0wl ,(x(B) and €2,(0(A) O wl,(w(B). €. (6(A) 0wl ((B)
contains €. ,(6(A)) © 0l ,(z(B)) and € ,(6(A)) © » ,(z(B)). We then need to

@ Springer

Secure and efficient general matrix multiplication on cloud... 26409

add all the partial products together to get the final result. As such, we only need
to perform at most n HE-Mult operations according to Theorem 3.6 to obtain all
the partial products. Redundant copies may also be generated during this process,
which should be identified according to Theorem 3.6 and excluded from the final
results.

Algorithm 2 HEGMM-Enhanced

Input: matrix A, «i, Bixn

Output: matrix Cpixn = Amxi X Bixn
1 p < min(m,l,n)
2t [1/p]

// Determine M and N by shape
3 if p=m then

4 A]\,fxl — [.A .A;.A;...;.A]T
t

5 leN «— B

6 M=txm,N=n

7 else if p=n then

8 AMxl — A

9

Bixn < [B; B; B; ...; B]
— ——

t
10 M=m,N=txn

11 else

12 .{iMxl +— A

13 Bixny < B

14 M=m,N=n

15 end

16 ct.sA e%jxrnax(l,N)(o-(A))

17 ct.tB + wﬁlaxd’MMN(T(B))
// Multiplication on Cloud
18 ct.Copxn ct.sA G ct.tB
19 for k=0,1,....,(p—1) do
20 | ct. AW ek (ct.sA)
21 | ct.B®) ok, (ct.tB)
22 ct.Ceemp ct. A®) © ct.BK*)
// ct.Ciemp contains of t items of Efntf;lp(a(A)) o} wfntf;lp(T(B))(O <i<t).
23 fori=0,1,...,(t—1) do
2 | | j=loti-ph
25 if ¢ (0(A) © Wl o (7(B)) € ct.Cremp has not been accumulated in

mxXn

ct.Couxpn then

26 ‘ ct.Comxn < ct.Comxn + einX,L(U(A)) ® winX,L(T(B))
27 end
28 end

// Return encrypted result to client
29 return ct.Cp,xn

@ Springer

26410 Y. Gao et al.

=

| O R~IN

Esxz O wsxz €2x2 O wix,

€552 O Waxy 55x2 O] (05x2

Fig.5 This is an illustrative example of the enhanced HE MM algorithm for multiplying two matrices
Asyq and By, with m = 5,1 = 4, and n = 2. B is the matrix by duplicating B horizontally for two times,
ie., t = [4/2] =2 and As,, remains unchanged. The partial products are accumulated to obtain the final
product

The overall algorithm for the enhanced HE-based General MM, named
HEGMM-En, is presented in Algorithm 2. Note that, when m </ and n < [, we
can choose to duplicate either A or 5. In Algorithm 2, we choose the smaller of m
and n and expand either A or 5 accordingly (lines 3—10). When [= min{m, [, n},
we make no change of A and B (lines 11-15). After initializing several relevant
variables (lines 16—18), Algorithm 2 goes through a loop to compute and accumu-
late the partial products (lines 19-28). To be more specific, we first conduct e and
 transformations based on the expanded matrix (A or B) (lines 20-21), which
are combined together into C,,,, using the element-wise HE multiplication (line
22). The algorithm then extracts the possible ¢ copies of ¢€,,,,(6(A)) © ®,,,,(T(B))
from C,,,,, and accumulates them to C,,,, according to Theorems 3.5 and 3.6,

temp

and the redundant copies are excluded from the C,,,.

@ Springer

Secure and efficient general matrix multiplication on cloud... 26411

Note that, compared with Algorithm 1, Algorithm 2 only needs to per-
form p = min{m,[,n} loops (line 19) instead of /. We assume that the proper
order is adopted when flattening the matrix: When p = min{m,l,n} =m, A
is expanded and the column-major order is adopted to flatten matrices. When
p =min{m,[l,n} =n, B is expanded and the row-major order is adopted to flat-
ten matrices. When p = min{m, [,n} = [, neither A and B is expanded, and either
major order can be adopted to flatten matrices.

Table 3 lists more details about the time complexity of Algorithm 2 (assuming
o and 7 operations are performed on ciphertext). For line 16, from Theorems 3.1,
there are 2y = 2min(m,l) — 1 nonzero diagonals in a permutation matrix, and
each diagonal calls for one HE-add, one HE-CMult, and one HE-Rot operations
during the linear transformation (see Sect. 3.2.1). The same reasoning can be

applied for line 17 based on Theorem 3.2. For el(l)/lxmax(l » and a)gmx(l MYXN transfor-

mation, it needs lMJ +1 and <lMJ +2‘>N, as explained in Theo-

rem 3.3 and 3.4. Note that o and 7 transformations in Lines 16 and 17 only need
to be performed once, which can be done on the client side on the plaintext with-
out compromising the security/privacy of some applications. In that case, the
time complexity of Lines 16 and 17 can be further reduced to 0.

For Line 20 and 21, Theorems 3.3 and 3.4, the € and w transformation require

HJ + 1 and (l%J + 2-)n HE-Add, HE-CMult and HE-Rot operations, respectively.

There are / loops. Lines 22-26 are a loop to compute the partial products and accu-
mulate them together, with each iteration requiring one HE-Mult and one HE-Add
operation.

Similar to Algorithm 1, Algorithm 2 has a HE multiplication depth of 1 M+2C
with one HE multiplication (e.g., 1 M) and two constant multiplication (e.g., 2C) as
illustrated in Table 3.

Table 3 Time Complexity of HEGMM-En

Line HE-Add HE-Mult He-CMult HE-Rot Depth

16 o:2u—1 0 2u—1 2u—1 1C
& & &

17 T:2v—1 0 2v—1 2v—1 -
o W oW oW

20 2p 0 2p 2p 1C

21 2p 0 2p 2p -

22 p p 0 0 M

Total Sp+E+W p dp+E+W dp+E+W IM+2C
+2(u +v) +2(u +v) +2(u +v)

p = min(m, 1, n), 4 = min(m, 1), v = min(n, 1), € : [MJ +landW: ([MJ +2)N

@ Springer

26412 Y.Gao et al.

4 Experiments

In this section, we evaluate the performance of the two algorithms developed in this
paper, i.e., HEGMM and HEGMM-Enhanced, and compare them with the state-of-
the-art schemes for HE-based matrix multiplication.

4.1 Experimental platform

We implemented HEGMM and HEGMM-Enhanced using a Python HE library,
named Pyfhel [10] with BFV scheme [11, 12]. We set the HE scheme based on
the RLWE (Ring Learning With Errors) [31] assumption over the cyclotomic ring
R, =Z,X]/(X" + 1) with N = 2'2. Thus, each ciphertext can hold up to N = 2!
slots for plaintext values; the largest square matrix that can be accommodated in one
ciphertext is thus 64 X 64.

In our experiments, we studied the following approaches.

e E2DM-S, which is presented in [27] on square matrix multiplication. For a gen-
eral MM A, ., X By, we can transform A, ; and B, to two square matrices,
A=~y and B~ , with d = max{m, [, n} and use this algorithm to calculate the
result;

e E2DM-R, which is presented in [27] on rectangular matrix multiplication

Aq X Byyy- For a general MM A, ., X By, ,,, we can expand A, ; and/or B,

accordingly and use this algorithm to calculate the result;

Huang et al., which is introduced in [30] and implemented with Pythel [10].

uSCORE, which is introduced in [28] and implemented with Pythel [10].

HEGMM, which is shown in Algorithm 1.

HEGMM-En, which is shown in Algorithm 2.

In what follows, we first discuss and compare the computation complexities of dif-
ferent approaches in Sect. 4.2. We then use experimental results to compare their
computational performance in Sect. 4.3 and 4.4. Finally, we compare the memory
usage for different approaches in Sect. 4.5.

4.2 Time complexity analysis

Table 4 summarizes the symbolic computation complexities of different approaches.
1. As shown in the table, the computation cost for HE-Mult is the most computation
costly operations, and therefore, reducing its operation numbers can help to signifi-
cantly reduce the computational cost. 2. Our approach can take advantage the matrix
shapes to improve performance. The further away the matrix share deviate from the
square format, the better. For example, for a MM of As, 39 X Bsgy 9. HEGMM-
En only needs to perform 10 HE-Mult while it is 30 for E2DM and Huang et al.
3. Table 4 also shows that all different approaches with the similar multiplication

@ Springer

Secure and efficient general matrix multiplication on cloud... 26413

depth, with Huang et al. slightly better. In what follows, we use experimental results
to further compare their performance.

4.3 Computational time evaluation

In this section, we use four different groups of experimental results to compare the
computation efficiency of our approach with the state of the art. We first use experi-
mental results, based on randomly generated metrics to evaluate the computational
performance of E2DM-S, E2DM-R, Huang et al., HEGMM, and HEGMM-En, with
the preprocessing work (i.e., o and 7 transformations transformations in E2DM,
HEGMM, and HEGMM-En) done on the cloud (Sect. 4.3.1) or on the client side
(Sect. 4.3.2). Note that since uSCORE requires dividing the source matrices into
different blocks and determining the blocking method is nontrivial and may have
profound impacts on its efficiencies. We therefore excluded it in our performance
comparisons based on randomly generated test cases. Instead, we conducted a num-
ber of experiments on predefined matrix dimensions and compared its performance
with others (Sect. 4.3.3). We further study the computing performance of different
approaches for large matrices, which cannot be accommodated using one ciphertext
(Sect. 4.4).

For our randomly generated test cases, we randomly generated 2000 pairs of
matrices, with column and row numbers evenly distributed with [1, 64]. Note that,
even though Huang et al. [30], HEGMM, and HEGMM-Enhanced can handle MM
with column or row numbers exceeding 64, as long as the total element is no more
than 2!2, we limited the largest dimension size to 64 so that E2DM-S and E2DM-R
can always apply. All experiments were conducted on a server with Intel Xeon Sil-
ver 4114 at 2.2GHz.

Table4 Comparison of time complexity among different algorithms where d = max(m,[, n),

p = min(m, [, n), s = max(l, n), y = min(m,), v = min(l, n), £ : HJ +land W : (l?J +29n

Algorithms HE-Add HE-Mult He-CMult HE-Rot Depth

E2DM-S 6d d 4d 3d+5 \/3 1 M+2C

E2DM-R 3d+2p p 3d+2p 3p+ 5\/3 1 M+2C
+log(d/p) +log(d/p)

Huang et al. l-logs+1 l l [-logs+1 1 M+1C
+log(d/1l) +log(d/1)

HEGMM El+WI l El+WI El+WI 1 M+2C
F2(u+v)+1 +2(u+v) +2(u+v)

HEGMM-En Sp+E+W P dp+E+W dp+E+W 1 M+2C
+2(u +v) +2(u +v) +2(u +v)

Time (ms) 0.55 20.87 4.14 5.35

@ Springer

26414 Y.Gao et al.

4.3.1 HE MM with preprocessing on the cloud

In this group of tests, we assume that clients encrypt the source matrices and send
them to the cloud. All matrix operations are performed on the cloud. To better
understand the performance of different approaches, we categorize the test cases
into five groups: (1) m = min{m, [, n}; (2) [= min{m, [,n}; (3) n = min{m, [,n}; (4)
(mx1)x (x1)and ! mod m = 0; (5) m = [= n (the square matrix). Note that cases
in (4) and (5) are the most favorable ones for E2DM-R and E2DM-S, respectively.
For test cases in each group, execution times were collected for the five different
approaches. We use the better ones by E2DM-S and E2DM-R as the performance
that can achieved by E2DM. We then calculate the speedups that can be achieved
using HEGMM, HEGMM-En over E2DM, and Huang et al. The average, median,
and maximum speedup for each group, as well as the overall results, are listed in
Table 5.

As in Table 5, HEGMM-En outperforms Huang et al. in all groups, with a
speedup of 3.96 on average and the maximum of over 11.60. Compared with E2DM,
HEGMM-En can achieve better performance in all cases other than if the matri-
ces are square or when (m X [) X (Ix[) and / mod m = 0. As shown in Table 5,
HEGMM-En can achieve a speedup of 8.63 on average with a maximum of over
184.76 over the best of E2DM. This is because HEGMM-En can reduce HE-Mult
operations significantly by properly duplicating the source matrices. When source
matrices are square, HEGMM-En is equivalent to E2DM-S with slight overhead for
taking care of the generality of matrices. When (m x) X (I x /) and / mod m = 0,
the time complexity of E2DM-R is O(m) while HEGMM-En is O(m) as well. There-
fore, the speedup of them is nearly 1.00.

We also use Fig. 7 to compare the performance of these approaches from a differ-
ent perspective. Specifically, Fig. 7 shows the number of test cases that can achieve
speedups between (0, 1], [1, 2], and (2, +c0) by HEGMM, HEGMM-En, and Huang
et al. over the best results by E2DM-S and E2DM-R. In a total of 2000 test cases,
there are 1074 cases that HEGMM outperforms both E2DM-S and E2DM-R, while
itis 1994 for HEGMM-En, which indicates that HEGMM-En performs significantly
better than HEGMM. For Huang et al., 1964 samples outperform E2DM which is
also better than HEGMM but not as good as HEGMM-En. Overall, the experimental
findings indicate that the algorithm HEGMM-En exhibits a significant performance
superiority compared to current methodologies in 99.7% of the samples.

4.3.2 HE MM with preprocessing on the client

In this section, we assume that preprocessing transformations (i.e., ¢ and 7 trans-
formations) can be performed by the client on plaintext. Since this can be done as
long as the dimensions of the matrices are known to the clients, the preprocessing
work can be done by the clients without compromising the privacy/security of the
matrices themselves. This option can further improve the computation efficiency for
E2DM, HEGMM, and HEGMM-En significantly.

@ Springer

Secure and efficient general matrix multiplication on cloud... 26415

Table 5 The performance comparison of HEGMM-En, E2DM [27], and Huang et al. [30] in different
scenarios with o and 7 are performed on ciphertext

Speedup Average Median Max
m = min(m, 1, n) HEGMM v.s. E2DM 1.06 0.63 14.93
HEGMM v.s. Huang et al. 0.54 0.46 3.16
HEGMM-En v.s. E2DM 6.70 4.56 98.45
HEGMM-En v.s. Huang et al. 3.60 3.49 10.25
[= min(m, [, n) HEGMM v.s. E2DM 1.80 1.15 23.72
HEGMM v.s. Huang et al. 0.82 0.85 1.69
HEGMM-En v.s. E2DM 9.51 7.89 50.06
HEGMM-En v.s. Huang et al. 5.04 4.80 11.60
n = min(m, [, n) HEGMM v.s. E2DM 2.79 1.69 66.37
HEGMM v.s. Huang et al. 0.93 0.84 4.21
HEGMM-En v.s. E2DM 9.82 7.16 184.76
HEGMM-En v.s. Huang et al. 3.36 3.07 9.78
mxDx(IxID) HEGMM v.s. E2DM 0.74 0.46 1.00
HEGMM v.s. Huang et al. 0.84 1.47 2.06
[modm=0 HEGMM-En v.s. E2DM 0.99 0.99 1.08
HEGMM-En v.s. Huang et al. 1.17 3.31 6.19
square HEGMM v.s. E2DM 1.00 1.00 1.02
HEGMM v.s. Huang et al. 0.92 0.95 1.21
HEGMM-En v.s. E2DM 0.98 0.99 1.00
HEGMM-En v.s. Huang et al. 0.90 0.95 1.21
overall HEGMM v.s. E2DM 1.88 1.07 66.37
HEGMM v.s. Huang et al. 0.76 0.70 421
HEGMM-En v.s. E2DM 8.63 6.10 184.76
HEGMM-En v.s. Huang et al. 3.96 3.54 11.60

The test cases for this group of experiments were generated as before, and the
average, median, and maximum speedup for each group, as well as the overall
results, are listed in Table 6.

As in Table 6, HEGMM outperforms Huang el al. in all groups, with a
speedup of 1.93 on average and the maximum of over 4.96. Compared with
E2DM, HEGMM can achieve better performance in all cases other than if the
matrices are square or when m = min(m,[,n). As shown in Table 6, HEGMM
can achieve a speedup of 3.3 on average with a maximum of over 154.12 over
the best of E2DM. When source matrices are square, HEGMM is equivalent to
E2DM with slight overhead for taking care of the generality of matrices. When
m = min(m, [, n), the time complexity of E2DM-R is O(m) while HEGMM is O(l).
Therefore, E2DM-R can potentially achieve better performance, especially when
m <<

The enhanced algorithm, i.e., HEGMM-En, can still significantly outperform
the rest of the approaches for arbitrary HE MM, as shown in Table 6. This is

@ Springer

26416

Y.Gaoetal.

Number of Cases

2000

1800

1600

1400

1200

1000

800

600

400

200

HEGMM v.s. E2DM

m HUANG et al. v.s. E2DM
mHEGMM-En v.s. E2DM

926

568

36 ¢

(0,1]

Speedup

50

6||

17541816

(2,+x)

Fig. 6 The statistics of the speedups for the algorithms HEGMM, HEGMM-En, E2DM [27], and Huang
et al. [30] when o and 7 are performed on ciphertext

Table6 The performance comparison of HEGMM-En, E2DM [27], and Huang et al. [30] in different
scenarios with ¢ and 7 are performed on plaintext

Speedup Average Median Max
m = min(m, [, n) HEGMM v.s. E2DM 0.90 0.58 39.50
HEGMM v.s. Huang et al. 221 221 3.25
HEGMM-En v.s. E2DM 1.69 1.13 33.28
HEGMM-En v.s. Huang et al. 6.60 4.88 23.29
[= min(m, [, n) HEGMM v.s. E2DM 10.74 3.61 154.12
HEGMM v.s. Huang et al. 1.99 1.95 4.96
HEGMM-En v.s. E2DM 10.32 3.70 132.42
HEGMM-En v.s. Huang et al. 2.01 1.97 4.26
n = min(m, 1, n) HEGMM v.s. E2DM 1.83 1.20 136.82
HEGMM v.s. Huang et al. 2.29 2.35 3.28
HEGMM-En v.s. E2DM 4.06 2.56 113.31
HEGMM-En v.s. Huang et al. 6.55 4.83 23.68
(mxx(Ix1) HEGMM v.s. E2DM 1.51 1.47 2.06
HEGMM v.s. Huang et al. 0.53 0.46 1.00
[modm=0 HEGMM-En v.s. E2DM 0.99 0.99 1.08
HEGMM-En v.s. Huang et al. 3.45 6.23 21.75
square HEGMM v.s. E2DM 1.00 1.00 1.02
HEGMM v.s. Huang et al. 1.67 1.72 2.36
HEGMM-En v.s. E2DM 0.99 1.00 1.01
HEGMM-En v.s. Huang et al. 1.66 1.72 2.36
overall HEGMM v.s. E2DM 3.30 1.04 154.12
HEGMM v.s. Huang et al. 1.93 2.04 4.96
HEGMM-En v.s. E2DM 4.13 1.38 132.42
HEGMM-En v.s. Huang et al. 4.50 2.48 23.68

@ Springer

Secure and efficient general matrix multiplication on cloud... 26417

1600

1390 HUANG et al. v.s. E2DM
1400 mHEGMM v.s. E2DM
mHEGMM-En v.s. E2DM

1200

962
843
717
676
607
400 331
279
195
200
0 I

(0,1] (1,2] (2,+)
Speedup

=
o
o
o

Number of Cases
o]
o
o

o
o
o

Fig. 7 The statistics of the speedups for the algorithms HEGMM, HEGMM-En, E2DM [27], and Huang
et al. [30] when o and 7 are performed on plaintext

because HEGMM-En can reduce HE-Mult operations significantly by properly
duplicating the source matrices. Specifically, HEGMM-En can achieve an average
speedup of 4.13 with a maximum of 132.42 over the best of E2DM and an aver-
age speedup of 4.50 with a maximum of 23.68 over the Huang et al. For square
matrices, HEGMM-En is equivalent to E2DM and requires slightly more time
than due to the overhead for taking care of the generality of matrices.

We also use Fig. 6 to compare the performance of these approaches from a
different perspective. Specifically, Fig. 6 shows the number of test cases that can
achieve speedups between (0, 1], [1, 2], and (2, +o0) by HEGMM, HEGMM-En,
and Huang et al. over the best results by E2DM-S and E2DM-R. In a total of 2000
test cases, there were 1324 cases in which HEGMM outperformed both E2DM-S
and E2DM-R, while it is 1805 for HEGMM-En, which indicates that HEGMM-
En performs significantly better than HEGMM. For Huang et al., only 610 sam-
ples outperform E2DM. More results of HE MM with some specific dimensions
are shown in Table 10 in Appendix 3.

Overall, the experimental results clearly show that HEGMM and HEGMM-En
exhibit a significant performance superiority compared to current methodologies in
66.2% and 90.2% of the samples, respectively.

4.3.3 HE MM with predefined dimensions
As mentioned before, uSCORE [28] relies on matrix blocking for MM, and design-

ing the appropriate blocking methods for a given matrix dimension is nontrivial and
has great potential to affect its computing performance. We, therefore, chose a set

@ Springer

26418 Y. Gao et al.

of matrices that can fit in one ciphertext, with predefined dimensions (as shown in
Table 7) and block size to compare its performance with others. For each test case,
we repeated the experiments 10 times and the average results were collected and
shown in Table 7.

As shown in Table 7, HEGMM-En achieves or comes very close to the best per-
formance. This is because HEGMM-En’s time complexity (dominate part which
is HE-Mult) is O(16) while E2DM-S is O(64) or O(128). For E2DM-R, its perfor-
mance boosts only when matrix size is 16-64-64 and 16-128—128. This is because
its time complexity is O(16) which is consistent with our analysis in Sect. 4.2.
HEGMM and Huang et al. are similar because their time complexity is O(J) (I is the
middle number in matrix size).

For uSCORE [28], which is similar to E2DM but includes a blocking algorithm,
the processing time increases when blocking is unnecessary. In all six groups of
matrices, each matrix fits into a single ciphertext, which negates the advantages
of uSCORE. When matrices are small enough to fit into one ciphertext, uSCORE
requires more operations (as shown in Fig. 4 of uSCORE), resulting in longer pro-
cessing times compared to both E2DM and our proposed algorithm. Conversely, for
matrices too large to fit into one ciphertext, uSCORE outperforms E2DM. This is
because E2DM’s blocking method, which involves dividing the matrix into smaller
square matrices, becomes inefficient. On the other hand, for HEGMM, there are
numerous ways to block the matrix, presenting a separate research challenge.

In summary, when the matrix size is small enough to fit into a single cipher-
text, our approach significantly outperforms uSCORE [28]. However, for larger
matrices where blocking is necessary, uSCORE [28] proves to be very efficient.
Nonetheless, designing optimal blocking methods for the source matrices remains
a critical challenge.

4.4 HE MM for large matrices

Our test cases above are limited to the maximum matrix dimension of 64x64,
the largest one that can fit into one ciphertext in our setting. When matrix sizes

Table 7 Performance comparison

time(s) 64-64-16 16-64-64 64-16-64 128-128-16 16-128-128 128-16-128
E2DM-S 6.07 6.12 6.08 273.57 275.00 277.20
E2DM-R 6.06 3.10 N/A 273.73 52.18 N/A
uSCORE 5.94 5.96 5.93 363.16 364.98 370.66
Huang et al. 5.81 5.87 3.56 432.14 433.21 49.75
HEGMM 5.88 6.08 3.07 267.43 274.41 49.62
HEGMM-En 3.12 3.13 3.08 54.14 52.09 49.58

Size 64 is with N = 2'3 which means ciphertext has 4096 slots; size 128 is with N = 2!> which means
ciphertext has 16,384 slots

Bolded numbers represent the best performance

@ Springer

Secure and efficient general matrix multiplication on cloud... 26419

exceed this limit, we can resort to the traditional blocking algorithm, i.e., by
dividing a large matrix into a series of smaller blocks, to perform the MM cal-
culation. We want to study the performance of our proposed approaches when
incorporated into MM blocking algorithms for A, yx100 X Bioox100-

Partitioning large source matrices properly based on different MM algorithms
is an interesting problem but beyond the scope of this paper. In our experiments,
we hire two intuitive partition methods: P1: partitioning the matrix 100 X 100 to
four equal-size square matrices of 50 X 50; P2: partitioning the matrix 100 x 100
to four sub-matrices of 64 X 64, 64 x 36, 36 X 64, and 36 X 36.

Different HE MM algorithms were employed for blocking MMs. We ran
the experiments 10 times, and the average results were collected and shown in
Table 8. As expected, for P1 when all matrices are square, E2DM-S, E2DM-
R, HEGMM, and HEGMM-En perform quite similarly, while HEGMM and
HEGMM-En take a little longer due to overhead in dealing with the generality
of the matrices. Huang et al. showed a much slower performance than the oth-
ers. We believe this is because that Huang et al. approach requires duplicating
diagonals of a source matrix with the complexity of O(logN), with N the size of
the matrix. The duplication operation involves expensive HE-CMult and HE-Rot
operations. This is particularly computationally expensive when N is not a power
of two. In contrast, the time complexity of same step in E2DM and HEGMM is
0(2) for P1.

For P2, HEGMM, HEGMM-En, and Huang et al. can perform better because
they can take advantage of the irregular shapes of the matrices. In particular,
HEGMM-En (resp. HEGMM) has a complexity of O(min(m, [, n)) (resp. O(l)). In
contrast, E2DM-S runs much longer because it needs to expand matrices 64 X 36
and 36 X 64 to form 64 X 64 matrix. E2DM-R is incapable of processing matrices
with such irregular shapes, as it has a tendency to enlarge matrix of 36 X 64 to
72 x 72, which is larger than the ciphertext size.

4.5 Memory evaluations

HE computations may demand not only excessive computation time but also
memory usage as well. We are therefore interested in studying the memory usage
of these approaches. We collected the memory usage for each algorithm during
its runtime for our test cases with results normalized against the memory usage
by E2DM and presented in Fig. 8, where a total of 2000 experimental sets were
conducted. In comparison with E2DM, both HEGMM and HEGMM-En tend to
consume less memory. As shown in Fig. 8, less than 17 (resp. 30) out of the total

Table 8 Time evaluation of the blocking algorithm

Partition E2DM-S E2DM-R Huang et al. HEGMM HEGMM-En
P1 39.06s 39.01s 74.34s 39.12s 39.15s
P2 29.76s N/A 37.51s 26.17s 26.23s

Bolded numbers represent the best performance

@ Springer

26420 Y.Gaoetal.

2000 test results show that E2DM consumes less memory than HEGMM (resp.
HEGMM-En). In contrast, 630 test cases using Huang et al. have higher memory
usage compared to E2DM. Overall, the experimental results clearly demonstrate
the advantage of memory usage efficiency of HEGMM and HEGMM-En over the
existing approaches.

5 Conclusions

HE has great potential for security and privacy protection when outsourcing data
processing to the cloud. However, the excessive computational overhead associ-
ated with the HE operations makes it prohibitive for many practical cloud applica-
tions. We study how to reduce the HE computational cost for general MM opera-
tion, an essential building block in many computational fields. We present two
HE MM algorithms, with one improving another, to reduce the computational
complexity of MM by taking advantage of the SIMD structure in the HE scheme.
We also conduct rigorous analytical studies on the correctness and computational
complexity of these two algorithms. Experiment results show that our proposed
approach can significantly outperform the existing methods. We want to mention
that our approach show excellent performance for matrix size that can fit into one
ciphertext. However, how to do blocking is another interesting problem to study.
In addition, to incorporate our approach with the blocking method in USCORE
seems an interesting problem to pursue. Moreover, in our future research, we
plan to investigate how to reduce the HE computational cost for sparse matrix
multiplication.

1400 1280
E2DM v.s. HUANG et al. 1265

1200 m E2DM v.s. HEGMM
mE2DM v.s. HEGMM-En
1000
822
800 703 705
630
600 548
400
200
17 30
O e ___|
(

(0,11] (1,2] 2,4+ ®)
Memory Usage Ratio

Number of cases

Fig. 8 The statistics of memory usage ratio for the algorithms HEGMM, HEGMM-En, E2DM [27], and
Huang et al. [30]

@ Springer

Secure and efficient general matrix multiplication on cloud... 26421

Appendix 1: The proof for Theorem 3.1 to Theorem 3.4

Theorem 3.1 Let 6(A) = U° A for A with a dimension of m X 1. There are at most
2 - min(m, [) — 1 nonzero diagonals in U° no matter if the matrix is flattened with a
column-major or row-major order.

Proof When applying o transformation on matrix A, in column-major order, U°
is formulated in Eq. (12). Note that U;’H.m , = lwhen h=i+[i+j],- mand, for all

elements of U? that belong to the same diagonal, we have h — (i +j-m) as a

i+j-m,h
constant.
Considering all the nonzero elements in Ufﬂ.m! ,» We have
h—(G+j-my=i+[i+jl,- m—(+j -m)
i+j
S [T]J D om—(Gi+j-m)
Py
=(i- [%J)-m.

Since “J + lJ-J < [ﬂJ < UJ + lJlJ +1 and 0<j<l, we have

Now consider two different scenarios: 1) m < [; 2) m > [. When m < [, for each

i={1,2,...,m—1}, h—(i+j-m) can at most take two constant values since
;J =0 and 0 < [% <1. When i =0, h—(i+j-m) can only be zero since
i+

I

J = 0. Therefore, U;.’+j.m , has at most 2m — 1 nonzero diagonals under this case.

When m > [, we have

h—(i+j-m)=<if {#J l>m
=<UJ dtp— l;J ,)m

with 0 < p < [. Since —1 < (l;J - l%J) <0, Uf;j.m’h has at most 2/ — 1 nonzero

diagonals under this case.

Therefore, in summary, there are at most 2 - min(m, [) — 1 nonzero diagonals in
U’ when the matrix is flattened with a column-major. Similar proof can be obtained
when the matrix is flattened with the row-major order. O

Theorem 3.2 Let ©(B) = U’ B for B with a dimension of | X n. There are at most

2 - min(n, [) — 1 nonzero diagonals in U* no matter if the matrix is flattened with a
column-major or row-major order.

@ Springer

26422 Y. Gao et al.

Proof When applying 7 transformation on matrix B, in column-major order, U is

formulated in Eq. (13). Note that U;j._lh = 1when h =[i+j],+j - [and, for all ele-
ments of U?, ., that belong to the same diagonal, we have i — (i + - [) as a constant.

i+j-Lh

Considering all the nonzero elements in U’

ijolne We have
h=(i+j-D=[i+jl,+j - G+j-m)
L
=itj— l%J A4jl=(i+j-m)

. |itJ
=j— =] .1
-

Since [fJ + [jiJ < [ﬁJ < llJ + [’J +1 and 0<i<l, we have
i i+ i
i <[] <[]+

Now consider two different scenarios: 1) n < [; 2) n > 1. When n < [, for each
j=1{1,2,...,n—1}, h— (i +j -]) can at most take two constant values since M =0
and 0 < l#J <1 When i=0, h—(i+j-I) can only be zero since l%J =0.
Therefore, U? has at most 2n — 1 nonzero diagonals under this case.

i+j-Lh
When n > [, we have

h=(G+j-0)=j— lﬂJ .l

l
_ [ﬂJ 0
[
with 0 < p < [. Since —1 < (l’[J — l#J) <0, Ul.Tﬂ,,h has at most 2/ — 1 nonzero
diagonals under this case.
Therefore, in summary, there are at most 2 - min(#n, /) — 1 nonzero diagonals in

U® when the matrix is flattened with a column-major. Similar proof can be obtained
when the matrix is flattened with the row-major order. O

k . .
Theorem 3.3 Let ell; (A =Uma A be the linear transformation
€

s - Rt = Romsen With matrix A having a dimension of m X 1. There are at most

. . k . . .
H + 1 nonzero diagonal vectors in Umn when the matrix is flattened with the col-

. R . k
umn-major order. There are at most (HJ + 2) - m nonzero diagonal vectors in Ucmn

when matrix A is flattened with the row-major order. Specifically, when n = 1, there
. ek) o

are no more than two nonzero diagonals in Uma, no matter if the matrix is flattened

in column-major or row-major order.

Proof When applying ¢ transformation on matrix A, in column-major order, U¢ is
gk
formulated in Eq. (14). Note that Ul,jx" =1 when j=[k-m+i],, and, for all ele-

k
ments of U:;’X" that belong to the same diagonal, we have j — i as a constant.

@ Springer

Secure and efficient general matrix multiplication on cloud... 26423

k
. . . €
Considering all the nonzero elements in UJ*”, we have

joi=lk-m+il,, —i

:k-m+i—[khm+iJ-m-l—i
m-1
=k~m—lk‘m+lJ‘m-l

m-1

Since max(k) = [— 1 and max(i) = m - n — 1, we have

max(k~m+i)<l—1+n
m-1 l

Therefore, we get [k’"”J e {0,1,. [';J }. Then, j—i=k-m— [kr’n";”J em- 1k,
m and [are all constant number for one transformation. The set {0, 1, ..., %J }is of

size l J + 1. In summary, U o has at most l J + 1 constant values when A, in

column-major.
Special circumstances are when n = [, l J = 1. Therefore, UJ + 1 =2 and this

means U has only 2 nonzero diagonals when n = [..
When applying e transformation on matrix A, in row-major order, we can for-
mulate permutation matrix according to formula (15), but apply on 4,,,, instead of

A,Xn Note that Uef”x” =1 when j=[k+[i],],+ [i/n] - and, for all elements of

U i that belong to the same diagonal, we have Jj —ias aconstant.

Cons1der1ng all the nonzero elements in U e , we have
" .
j=k+[i]n—[m”J-HFJ-l
/ n
i k+i
=k+[i]n+<lLJ_[U],,J).l
n l

Since i € [0,mn), we split i to m circumstances that i € [pn,(p + 1)n) where
p=1{0,1,2,...,m— 1}. For each circumstance thati € [pn, (p + 1)n), we have

j:k+i—pn+<p— lk+l[i]"J>.l

and

@ Springer

26424 Y. Gao et al.

. k+1[i,
j—i=k—pn+|(p-— 7 -1
Note that we have

[pnl, k + (i, pnl, | [n
el] <[sl e

which has 2 + [fJ constant values. And this means j — i, which represents the num-

. . k . . .
ber of nonzero diagonals in U, has (2 + HJ) - m in total when A,,; in row-major

because there are m circumstances.
Special circumstances are whenn = [, j — i € {0, 1}. The reason is that, since

o212« 5 2]

and we also have k < [and [i],, < /, thus

0< [k+l[i]nJ <1

joi=k- [“l[i]"J 'l

for eachi € [pn, (p + D)n). j — i has the same constant value in each i € [pn, (p + 1)n)

On the other hand, we have

and this means U has only 2 nonzero diagonals when n = /. O
k

Theorem 3.4 Let an(B) U“nB be the linear transformation

Opsen - Riscn = Ropsn With matrix B having a dimension of | X n. There are at most

. ; K L ;
(lmJ +2) - n nonzero diagonal vectors in U”n when the matrix is flattened with

column-major order. There are at most [J + 1 nonzero diagonal vectors in U o
when matrix B is flattened with row-major order. Specifically, when m = 1, there are

. . k
no more than two nonzero diagonals in U”m, no matter if the matrix is flattened in
column-major or row-major order.

Proof When applying w transformation on matrix 5, in column-major order, U” is
k
formulated in Eq. (15) Note that mex" = 1lwhen j = [k + [{],,]; + |i/m] - [and, for

all elements of U i that belong to the same dlagonal we have j — i as a constant.

Considering all the nonzero elements in U e , we have

@ Springer

Secure and efficient general matrix multiplication on cloud... 26425

j=k+1il, - lkﬂi]’”J | L]

l m

=k+[il, + QiJ - [k+l[i]mJ> 5

Since i € [0,mn), we split i to n circumstances that i € [pm,(p + 1)m) where
p=1{0,1,2,...,n— 1}. For each circumstance thati € [pm, (p + 1)m), we have

. . k+[il,,
j=k+i-pm+|(p—|——|)-!

and

. k + [il,,
j—i=k-pm+|(p—|——|)-!

Note that we have

[pml,, k + (i, pml, | |m
i N s MR

which has 2 + HJ constant values. And this means j — i, which represents the num-

ber of nonzero diagonals in U‘”kmx", has (2 + l

?J) - nin total when B, in row-major

because there are n circumstances.
Special circumstances are when m = [, j — i € {0, 1}. The reason is that, since

11125 2]

and we also have k < [and [i]; < [, thus

0< lk+l[i]lJ <1

On the other hand, we have

j—i=k—[k+l[i]lJ-l

for each i€ [pm,(p+ 1)m). j—i has the same constant value in each

i € [pm, (p + 1)m) and this means U has only 2 nonzero diagonals when m = [.
When applying @ transformation on matrix B,,, in row-major order, we can for-
mulate permutation matrix according to formula (14), but apply on B, instead of

nx
k k
B,,x;- Note that UZ)]I”X” =1 when j=[k-n+i],, and, for all elements of UZ}’"*” that
belong to the same diagonal, we have j — i as a constant.

k
. . . 10}
Considering all the nonzero elements in U, I."'X", we have

@ Springer

26426 Y. Gao et al.

j—i=lk-n+il,, —i
k-n+iJ.
n-l

:k-n+i—[

=k-n—lk'n+iJ~n-l
n-l

n-l—i

Since max(k) = [— 1 and max(i) = m - n — 1, we have

max(k~n+i)<l—1+m
n-l l

o5 5]
SH

Therefore, we get lk:;”J € {O,l,...,l%J}. Then, j—i=k-n— lk'";“iJ .n-L

Here, k, n and [are all constant number for one transformation. The set

{0, 1, ey l%J } is of size l%J + 1. In summary, Uwfnxn has at most l%J + 1 constant
values when 5,,.; in row-major.
Special circumstances are when m = [, HJ = 1. Therefore, l%J + 1 =2 and this

means U”» has only 2 nonzero diagonals when m = [. O

Theorem 3.5 Let A, and By, with m <, and let A be matrix expanded with
r= [i] copies of A vertically, ie, A={AyA;.. A} with

m

Ay=A, = =4, = A, Then,

o ¢ (6(A) 0ot

mxn tmXn
pE {[k]l’ [k+m], ..., [k+ (- Dm]}.
o & (c(A))owt (t(B), k=0,1,...,(m—1) contains all items of

tmXn

e (o(A) e, (t(B), with p € {0.1,....(- D}.

(z(B)) contains ¢ items of €/, (c(A) © o,

mxn

(z(B)), with

Proof Consider a sub-matrix of (efmxnoo-(]l)) with dimension of m Xn, ie.,

(er oo-(.;l))hmﬂli, where 0 <i < m,0 <j < n.hisaconstant with 0 < & < ¢. Based

tmxn

on Eq. (1) and (3), we have

k - _ —
(etm><noo-(A))hm+iJ - O-(‘A)hm+i,[j+k],
= Ahm+i,[hm+i+j+k] , (16)
= ‘Ai,[hm+i+j+k],

On the other hand, let p = [k + hm];, for0 <i <m,0 <j < n, we have

@ Springer

Secure and efficient general matrix multiplication on cloud... 26427

(€S1xn°°' (A))iJ =0 (A)i,[j+p],

(17
= Ai,[i+j+k+hm],

Similarly, consider the sub-matrix of (wfmxnor(B)) with dimension of m X n, i.e.,

(wfmxnor(B))heriJ, with 0 < i <m,0 <j < n. Based on Eq. (2) and (4), we have

(@3 T Bt = TBpmsisa
(18)
= B[hm+i+j+k],,j
If we let p = [k + hm],;, for0 <i <m,0 <j <n,and 0 < h <t, we have
a)ﬁl noT(B)i' ZT(B)U 1,4
X J +pli (19)

= B[i+k+hm+j],J

Since 0 < h < t, there are total ¢ sub-matrices in efn 1)("(0'(.21)) and o* _ (z(B)), the

tmxn

conclusion for the first part of the theorem follows naturally from Egs. (16) to (19).
To prove the second part of the theorem, we only need to note that since t = [ﬂ,

we have tm > [. Therefore, for any p € {0, 1,...,(l — 1)}, we must be able to find at
least one set of k and h, with 0 <k <m, 0 <h <t, and p = [k + hm],. Together
with Egs. (16) to (19), we thus prove the theorem. O

Theorem 3.6 Let A, and By, with n <1, and let B be matrix expanded with
t= [ﬂ copies of B horizontally, i.e., B = {B;B; ... ;3}. Then,

o & (c(A) ot

mXtn mXin

p=Ikl,lk+n],..., [k_+ (= Dn]
o ¢ (c(A)owt (((B), k=0,1,...,(n—1) contains all items of

mXitn mXtn

e (0(A) @, (x(B), with p=0,1,...,(1—1).

(z(B)) contains ¢ items of €’ (c(A)) © o

mxn

(r(B)), with

Proof Consider a sub-matrix of (efn «n®0(A)) with dimension of mXn, ie.,
(er’;moa(A))Lth, where 0 <i <m,0 <j<n. hisaconstant with 0 < h < ¢. Based

on Egs. (1) and (3), we have

k —
(emxm OO-(A))i,lmﬂ - O-(A)i,[/m+j+k],

(20)
= Ai,[i+hn+j+k],
On the other hand, let p = [k + hn];, for 0 < i < m,0 < j < n, we have
(€h,n00(A));; =0 (A
X J U+rl; @1

= 'Ai,[i+j+k+hn],'

@ Springer

26428 Y. Gao et al.

Similarly, consider the sub-matrix of (w’r‘n « nor([’)’)) with dimension of m X n, i.e.,

1

(wim”(B))i,hnﬂ’ with 0 < i <m,0 <j < n.Based on Eq. (2) and (4), we have
(wantnOT(B))i,hnﬁ = T(B)[i+k],,hn+j
= Blnitjskl s (22)
= B[hn+i+j+k],,/’

If welet p =[k+ hn], for0 <i<m,0<j<n,and0 < h <t, we have

m

CUP XnOT(B)iJ = T(B)[H'ﬂ][,j (23)
= B[i+k+hn+j],J

Since 0 < h < 1, there are total 7 sub-matrices in € (c(A)) and o (z(B)), the

conclusion for the first part of the theorem follows naturally from Eqgs. (20) to (23).

To prove the second part of the theorem, we only need to note that since ¢ = [1]

we have tn > [. Therefore, for any p € {0, 1,...,(I — 1)}, we must be able to find at
least one set of k and &, withO <k <m,0 < h <t, and p = [k + hn],. Together with
Egs. (20) to (23), we thus prove the theorem. O

Appendix 2: Meaning of symbolize

See Table 9.

Table 9 Meaning of symbolize

Symbolize Meaning

A Left matrix for matrix multiplication
B Right matrix for matrix multiplication
m The number of row of matrix A

1 The number of column of matrix A

The number of row of matrix B

n The number of column of matrix B

c The transformation that permute each row

T The transformation that permute each column

€ The transformation that permute multiple columns
[0} The transformation that permute multiple rows

ct The prefix of ciphertext

U Permutation matrix

0] Elementwise multiplication

@ Springer

26429

Secure and efficient general matrix multiplication on cloud...

86'C 7199 €c¢ €T8L OLSET VIN LEOT0E €56 8Y'8¢ fxlg POfy
90T 967 L0T 600S €08ST VN LS'6TT9 SeSTl gyl g Ty
SeT 9L°0¢ 97T 656C 09€6T VN 86°8€8¢ 6LvTl TLetl g T
LS'T 8611 9Ll 8¢l SI'TZ8 VIN T8'51T9 PITS L899y 9% Py
16'1 1101 061 €001 80°SLIT VIN L9'9TT9 9L619 00179 g DTy
L8T S0'9 LST €r's 68809 VIN 09°L6vS 81606 8TEIol g Wy
61 9T'S w1 69t eyl VIN 98°TILY 69968 81'S00I g TG
Sl SLY 9¢'] LLY L9THEL VIN 16°0TLY 86'€66 0£686 g Wy
W S €T Py LSF90E€ VIN 1$°019S LS'99TT 6TTITI €lg P8y
08T 09°€ 9I°¢ 90t 08°€L6€ VN S0001S 608I%1 LI'96TI g POy (u ‘7 ‘unyurur =
L8T S9T1 6v'T 8001 9L'G9El VIN 61°1€SS oSy oTers g POy
68°C S0'9 65T €r's €T€T9T VIN 09°L6¥S 8I'606 8TcIol PXMg Ny
L8'8 ol LY'T P11 YTSL9TT VIN €6'L6ES SOCIEl LITIELy OFg Py
67T €T we 91T 172665 VIN LT 0S8S 66'8197 vrsoL Mg 198
9L9 SL'T €T 09°0 0L981€ TEHT8 €TL8YY YOILy wrTLer g Py
or'¢ 9¢'T 9L'T 690 86'T8ST 85079 0£'9S€T LoLSy €606 Mg POy
Teel el €5°T ST0 L6FL9TT €FTSTI 870695 YTIS6 8LT00S Mg Yy
LY'L LT1 00T €€°0 00T8SE 80°€6S EL'S061 L699F €8'88L1 Vg Wy
17€1 YTl 18T 970 1748921 80°0611 8T'0L9S LE096 Ive0sy g My
L0y Il 97T S9°0 000€€8 €V'SOVT €V°680F TCLYOT §9989¢ UUg Wy (u unyun = w
[eRSueny NQcd SA [0 Sueny NQed SA [eRSuenH ¥-Ndcd S-NACH UF-WINDAH IWINDHH g v
‘SAU-WINDEH UH-WINDAH SAWNDHIH — IWINDAH

uosLredwod douewIojIdg QL 3|qel

‘0T SI9BL 99§

s3jnsaJ sjuawiddxa awos :€ xipuaddy

pringer

As

Y. Gao et al.

26430

90'8 00T 90T 970 I18TSE0T TS06CT 978905 0678TI 168205 Vg 0l
671 660 v6°0 Lo 8LTSTE OL'SE6 T0°SSSI €8'8V6 65€061 Ceg Wy
SL1 001 48 790 01°0Y96 TI'€9ST 8€°L89¥ 67°9SST LE1L9y PETg Pl
L8O L60 ¥9°0 1L°0 €912 ISTIT €5861 YE6IT Leorc g Y
€0'1 001 69°0 L9°0 8S°GLY T9Y91 1L9LE LEYIT 8606 g
81'S 901 71 620 YOO¥ZT T9'8SY 6V H9SI €0TEY LOEgST 0UEg 0y
10T €0'1 L9°0 89°0 €LPTS L8PLT TL'999 Y6'EST SI'S99 og %y
690 860 0L0 001 11°00% YI'OVE 00EE orvre 8gvee g v
8Tl 660 €60 Lo 9F'TSTE L9996 S1'988I 11256 8TT061 ©g @iy
1+1 10'1 160 $9°0 €9°€06E €9°€L9 L9LI6] 6'SS9 ¥86Tel g Py o =wmo)(1X 1) X (1 X ui)
LS€l 66°€1 99T 89°C SL'6Y09 ¥6'10SS 66'1019 9z9cy TssLte Teg oLy
€8°01 61°L 99T 9L'1 8v'790S L1°00ST SI'8SEE LELOY TTE061 g o0y
LY'T 79 67’1 vLE P0'0S0T 9Y'6ISS 88°8ILT LOLEY 8g9zL POlg OIfy
€6'L eR4 9T 11 88°TITOI 98'1¥C €SEYSS 6V'L8TI 6v9pIy fP0g 09E5
€Le 06'¢ 91 oLl L6T96T ¥SE9Y 8S°0S0T W9Ts LI'e0Tl g Py
SLL 9p'¢ 16 0€'1 0£'866S1 OSPLS 86'1ST9 9081 €9°L08F OPSg KO
99°9 17°€ LST YTl 807088 THIES I1'S9Th 16TTEl socTye g Wiy
609 0LT $9°C 8I°1 7860901 9L°€8S €9'TILP L6TPLT 16100y SPg Xy
879 8T 68°C vl 107621 1T6IST 81°TE9S 80°6LTT TI'Isey [Pg 8y
69°1 0T W oL'1 SSSTEY ELLSET STLLIS S819ST 6T6V0E g EXOhy (u7 ‘wyunu = u
[ewSueny NQcd sA [ewSueng Qe sa [ewSueng Y-NAcd S-INACH UH-INWOHH IWIWOHH ol v
‘SAUF-INWOHH US-WNOHH SAWWOZH WINOFH

pringer

AQs

(ponunuoo) oL s|qey

26431

Secure and efficient general matrix multiplication on cloud...

T 001 w$T 001 YT66LET VIN €E9ILYS STOLYS 0S'LLYS g Oy
651 00’1 8S'T 00'1 vTY8Sy VIN 81'068C 1$'888C TLE06T TR TRy
v0'C 00'T €0T 660 L6°S665 VIN Y0TE6T 8SEE6T L9IS6T Ug U6
61'C 001 12T 10T 08+0¥0T VN 06'0vLY 0EShLY ¥90ILY Vg Tty
w81 001 €8’ 001 €6'STTC LI'6ECT #6¥1TT T90TCl LI9ITT SPClg fPEly
6L'1 660 8L’ 660 8EV6TE 6L'LY8L LY6T8I 89°0¥81 +8°0581 PGlg o6l
oL 660 VA 00T TEVYILS TTIEEE 86'€SEE €g'ssee ogTree g Oy
0¢'T 660 0’1 660 96'799T LT9TOT 88'8E0T 9LEHOT 9EErOT g Wy
08’1 660 08'1 660 €9T8EY TSETVT YI'0IYT ov'iere 1gTere Og Uy
981 660 181 001 88'860S +E€'S89T 0TTOLT SK60LT 6£7169T g Uy arenbg
[l dueny WA sA [eloSueny NQZH SA [ERSuend Y-INACH S-NACH UH-WNDHH IWINDHH q v
SAUF-NNDHH UH-WNDHH A WNDHH ~ IWINDHH

(panunuods) Q| a|qelL

pringer

As

26432 Y. Gao et al.

Acknowledgements This work was supported in part by the Air Force Office of Scientific Research
(AFOSR) and the Air Force Research Laboratory/Information Directorate (AFRL/RI), Rome, NY under
the 2021 Summer Faculty Fellowship Program, and Information Directorate Internship Program, respec-
tively. The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the Air
Force Research Laboratory or the US Government. Approved for Public Release on March 06, 2024. Dis-
tribution is Unlimited. Case Number: 2024-0184 (original case number(s): AFRL-2024-0944).

Author contributions YG and GQ wrote the main manuscript and YG prepared all figures and tables. LW
reviewed and rewrote multiple parts of the manuscript. All authors reviewed the manuscript.

Funding This research was supported by funding from the Air Force Office of Scientific Research
(AFOSR) and the Air Force Research Laboratory/Information Directorate (AFRL/RI), Rome, NY, under
the 2021 Summer Faculty Fellowship Program, Grant Number 2024-0184 (original case number: AFRL-
2024-0944). The funding body had no role in the design of the study, the collection, analysis, or inter-
pretation of data. Additional support was provided by NSF grant 1952792, 2321572 and CNS-2348733.

Data availability No datasets were generated or analyzed during the current study.

Declarations

Conflict of interest No, I declare that the authors have no conflict of interest as defined by Springer, or
other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical statements It is not applicable. This study did not involve human participants, personal data, or
any procedures requiring ethical approval.

References

1. Varghese B, Buyya R (2018) Next generation cloud computing: new trends and research directions.
Futur Gener Comput Syst 79:849-861
2. Vasiljeva T, Shaikhulina S, Kreslins K (2017) Cloud computing: business perspectives, benefits and
challenges for small and medium enterprises (case of Latvia). Procedia Eng 178:443-451
Scale R (2015) State of the cloud report. Technical report
Rajaraman V (2014) Cloud computing. Resonance 19(3):242-258
5. Rivest RL, Adleman L, Dertouzos ML et al (1978) On data banks and privacy homomorphisms.
Found Secure Comput 4(11):169-180
6. Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-
First Annual ACM Symposium on Theory of Computing, pp 169-178
7. Brakerski Z, Gentry C, Vaikuntanathan V (2014) (Leveled) fully homomorphic encryption without
bootstrapping. ACM Trans Comput Theory (TOCT) 6(3):1-36
8. RanR, Xu N, Wang W, Gang Q, Yin J, Wen W (2022) Cryptogen: fast and scalable homomorphi-
cally encrypted graph convolutional network inference. Preprint arXiv:2209.11904
9. Smart NP, Vercauteren F (2014) Fully homomorphic SIMD operations. Des Codes Crypt
71(1):57-81
10. Ibarrondo A, Viand A (2021) Pyfhel: Python for homomorphic encryption libraries. In: Proceed-
ings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, pp
11-16
11. FanJ, Vercauteren F (2012) Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive
12. Brakerski Z (2012) Fully homomorphic encryption without modulus switching from classical
GapSVP. In: Annual Cryptology Conference. Springer, pp 868—-886
13. Cheon JH, Kim A, Kim M, Song Y (2017) Homomorphic encryption for arithmetic of approximate
numbers. In: International Conference on the Theory and Application of Cryptology and Informa-
tion Security. Springer, pp 409-437

B

@ Springer

http://arxiv.org/abs/2209.11904

Secure and efficient general matrix multiplication on cloud... 26433

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Ames S, Venkitasubramaniam M, Page A, Kocabas O, Soyata T (2020) Secure health monitoring in
the cloud using homomorphic encryption: a branching-program formulation, pp 56-92. https://doi.
org/10.4018/978-1-5225-9863-3.ch004

Nocker M, Drexel D, Rader M, Montuoro A, Schottle P (2023) He-man—-homomorphically
encrypted machine learning with ONNX models. Preprint arXiv:2302.08260

Reagen B, Choi W-S, Ko Y, Lee VT, Lee H-HS, Wei G-Y, Brooks D (2021) Cheetah: optimizing
and accelerating homomorphic encryption for private inference. In: IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, pp 26-39

Masliah I, Abdelfattah A, Haidar A, Tomov S, Baboulin M, Falcou J, Dongarra J (2019) Algorithms
and optimization techniques for high-performance matrix-matrix multiplications of very small
matrices. Parallel Comput 81:1-21

Nagasaka Y, Matsuoka S, Azad A, Bulu¢ A (2018) High-performance sparse matrix-matrix prod-
ucts on intel KNL and multicore architectures. In: Proceedings of the 47th International Conference
on Parallel Processing Companion, pp 1-10

Jiang P, Hong C, Agrawal G (2020) A novel data transformation and execution strategy for acceler-
ating sparse matrix multiplication on GPUs. In: Proceedings of the 25th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp 376-388

Liu W, Vinter B (2014) An efficient GPU general sparse matrix-matrix multiplication for irregu-
lar data. In: IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, pp
370-381

Valero-Lara P, Martinez-Pérez I, Mateo S, Sirvent R, Beltran V, Martorell X, Labarta J (2018) Vari-
able batched DGEMM. In: 2018 26th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp 363-367. https://doi.org/10.1109/PDP2018.2018.00065
Zhang Z, Wang H, Han S, Dally WJ (2020) SpArch: efficient architecture for sparse matrix mul-
tiplication. In: 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, pp 261-274

Lu W-j, Kawasaki S, Sakuma J (2016) Using fully homomorphic encryption for statistical analysis
of categorical, ordinal and numerical data. Cryptology ePrint Archive

Halevi S, Shoup V (2014) Algorithms in HEIlib. In: Annual Cryptology Conference. Springer, pp
554-571

Duong DH, Mishra PK, Yasuda M (2017) Efficient secure matrix multiplication over LWE-
based homomorphic encryption. Tatra Mt Math Publ 67(1):69-83. https://doi.org/10.1515/
tmmp-2016-0031

Mishra PK, Duong DH, Yasuda M (2017) Enhancement for secure multiple matrix multiplications
over ring-LWE homomorphic encryption. In: Information Security Practice and Experience: 13th
International Conference, ISPEC 2017, Melbourne, Proceedings 13. Springer, pp 320-330

Jiang X, Kim M, Lauter K, Song Y (2018) Secure outsourced matrix computation and application
to neural networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pp 1209-1222

Huang Z, Hong C, Weng C, Lu W-J, Qu H (2023) More efficient secure matrix multiplication for
unbalanced recommender systems. IEEE Trans Dependable Secure Comput 20(1):551-562. https://
doi.org/10.1109/TDSC.2021.3139318

Rathee D, Mishra PK, Yasuda M (2018) Faster PCA and linear regression through hypercubes in
HEIib. In: Proceedings of the 2018 Workshop on Privacy in the Electronic Society, pp 42-53

Huang H, Zong H (2022) Secure matrix multiplication based on fully homomorphic encryption. J
Supercomput 1-22

Lyubashevsky V, Peikert C, Regev O (2010) On ideal lattices and learning with errors over rings.
In: 29th International Conference on the Theory and Applications of Cryptographic Techniques.
Springer, pp 1-23

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

https://doi.org/10.4018/978-1-5225-9863-3.ch004
https://doi.org/10.4018/978-1-5225-9863-3.ch004
http://arxiv.org/abs/2302.08260
https://doi.org/10.1109/PDP2018.2018.00065
https://doi.org/10.1515/tmmp-2016-0031
https://doi.org/10.1515/tmmp-2016-0031
https://doi.org/10.1109/TDSC.2021.3139318
https://doi.org/10.1109/TDSC.2021.3139318

26434 Y. Gao et al.

Authors and Affiliations
Yang Gao' - Gang Quan? - Soamar Homsi® - Wujie Wen* - Ligiang Wang'
P4 Ligiang Wang

ligiang.wang @ucf.edu

Yang Gao
yang.gao @ucf.edu

Gang Quan
gaquan @fiu.edu

Soamar Homsi
soamar.homsi@us.af.mil

Wujie Wen
wwen2@ncsu.edu
Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA

Electrical and Computer Engineering Department, Florida International University, Miami,
FL 33174, USA

3 Information Warfare Division, Air Force Research Laboratory, Rome, NY 610101, USA

Department of Computer Science, North Carolina State University, North Carolina, Raleigh,
United States

@ Springer

	Secure and efficient general matrix multiplication on cloud using homomorphic encryption
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Homomorphic encryption (HE)
	2.2 Related work

	3 Our approaches
	3.1 The matrix multiplication method using element-wise computations
	3.2 The HE-based General Matrix Multiplication (HEGMM)
	3.2.1 Linear transformation
	3.2.2 The HEGMM algorithm

	3.3 The enhanced HEGMM algorithm
	3.3.1 Case 1:
	3.3.2 Case 2:

	4 Experiments
	4.1 Experimental platform
	4.2 Time complexity analysis
	4.3 Computational time evaluation
	4.3.1 HE MM with preprocessing on the cloud
	4.3.2 HE MM with preprocessing on the client
	4.3.3 HE MM with predefined dimensions

	4.4 HE MM for large matrices
	4.5 Memory evaluations

	5 Conclusions
	Appendix 1: The proof for Theorem 3.1 to Theorem 3.4
	Appendix 2: Meaning of symbolize
	Appendix 3: Some experiments results
	Acknowledgements
	References

