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Abstract
Despite the enormous technical and financial advantages of cloud computing, secu-
rity and privacy have always been the primary concerns for adopting cloud computing 
facilities, especially for government agencies and commercial sectors with high-security 
requirements. Homomorphic encryption (HE) has recently emerged as an effective tool 
in ensuring privacy and security for sensitive applications by allowing computing on 
encrypted data. One major obstacle to employing HE-based computation, however, is its 
excessive computational cost, which can be orders of magnitude higher than its counter-
part based on the plaintext. In this paper, we study the problem of how to reduce the HE-
based computational cost for general matrix multiplication, i.e., a fundamental building 
block for numerous practical applications, by taking advantage of the single instruction 
multiple data operations supported by HE schemes. Specifically, we develop a novel ele-
ment-wise algorithm for general matrix multiplication, based on which we propose two 
HE-based general matrix multiplication algorithms to reduce the HE computation cost. 
Our experimental results show that our algorithms significantly outperform the state-of-
the-art approaches of HE-based matrix multiplication.

Keywords  Homomorphic encryption · Privacy protection · Matrix multiplication · 
Cloud computing

1  Introduction

Cloud computing has become an attractive solution for industry and individuals due to 
its flexibility, scalability, reliability, sustainability, and affordability [1, 2]. Despite the 
tremendous technical and business advantages of cloud computing, security has been 
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one of the primary concerns for cloud users, especially for those with high-security 
requirements [3, 4]. Even though cloud platforms allow their users to have full control 
over security settings and policies, public cloud infrastructures are commonly shared 
among different users and applications, making the applications vulnerable to mali-
cious attacks.

Homomorphic encryption (HE) [5–7] has emerged as an effective tool to address 
the security and privacy concerns while outsourcing data and computation to untrusted 
third parties, such as public cloud service providers. HE ensures data confidentiality 
during transit and processing by guaranteeing that the decrypted results are identical 
to the outcome when the same operations are applied to the data in plaintext. HE has 
raised increasing interest from many researchers and practitioners of security- and pri-
vacy-sensitive cloud applications in various domains such as health care, finance, and 
government agencies. One of the grand challenges, however, is how to deal with the 
tremendous computational cost for HE computations, which can be orders of magni-
tude higher than that in the plaintext space [8]. Unless HE computation cost can be 
effectively reduced, it would be infeasible to apply HE schemes in practical cloud 
applications.

In this paper, we study the problem of how to reduce HE computation cost for gen-
eral matrix multiplications (MM) by taking advantage of the single instruction multiple 
data (SIMD) scheme for HE operations [9]. Note that different from classical SIMD 
technique in hardware, the SIMD scheme in the HE framework enables multiple data 
values to be packed into one ciphertext, and one single HE operation can be performed 
on all data elements in the ciphertext simultaneously. Accordingly, we develop a novel 
approach for HE-based MM operations, focusing on matrices in arbitrary shapes. Spe-
cifically, we make the following contributions. 

1.	 We present a novel element-wise method for MM. This method is general and 
can be applied to source matrices of any shape with a significant performance 
improvement;

2.	 We develop two HE MM algorithms, with the second significantly improving 
upon the first. Our HE MM algorithms pack matrix elements judiciously in 
encrypted message “slots” and perform pertinent operations by taking advan-
tage of the SIMD structure in HE schemes to reduce the number of primitive HE 
operations, such as HE multiplications, rotations, and additions, which are com-
putationally expensive, and therefore can significantly reduce the computational 
cost;

3.	 We perform a rigorous analysis for the logical correctness of the algorithms and 
their complexities;

4.	 We implement our algorithms using a Python HE library, Pyfhel [10]. Extensive 
experimental results show that our proposed algorithms can significantly outper-
form the state-of-the-art approaches. Our code is available at https://​github.​com/​
Echiz​enG/​HEGMM

https://github.com/EchizenG/HEGMM
https://github.com/EchizenG/HEGMM
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2 � Background and related work

In this section, we briefly introduce the relevant background of HE and discuss the 
related work.

2.1 � Homomorphic encryption (HE)

Homomorphic encryption (e.g., BGV [7], BFV [11, 12], and CKKS [13]) ena-
bles computations to be performed based on encrypted data, with results still in 
encrypted form. As such, HE represents a promising tool to greatly enhance data 
privacy and security, especially when outsourcing computations to the public cloud. 
In the meantime, HE can be extremely computationally intensive [14], and improv-
ing its computation efficiency is key to making this technology practical for real 
applications.

When performing HE matrix multiplication on the cloud, source matrices are first 
encrypted by clients and transferred to the cloud, and the results are transferred back 
to clients for decryption. Encrypting each individual element of a matrix into one 
cyphertext can lead to excessive encryption, decryption, and communication costs, 
in addition to a large number of HE operations. Table 1 shows our profiling results 
on encryption/decryption latency, message size, and computational costs with differ-
ent HE operations (More detailed experimental settings are discussed in Sec. 4.1).

To this end, Gentry and Halevi [9] proposed an efficient key generation technique 
that enables SIMD operations in HE. By encrypting multiple data items into one 
ciphertext, one single operation can be applied to all encrypted elements in the same 
ciphertext simultaneously, and thus, space and computing resources can be used 
more efficiently.

As an example, BFV [11, 12] can support a number of primitive HE opera-
tions such as HE-Add (addition), HE-Mult (multiplication), HE-CMult (constant 
multiplication), and HE-Rot (rotation). Given ciphertexts ctx = Enc(x0, x1,… , xn) , 
cty = Enc(y0, y1,… , yn) and a plaintext pt = (p0, p1,… , pn) , we have

•	 HE-Add: ctx + cty = Enc(x0 + y0, x1 + y1,… , xn + yn)
•	 HE-Mult: ctx × cty = Enc(x0 × y0, x1 × y1,… , xn × yn)
•	 HE-CMult: ctx × pt = Enc(x0 × p0, x1 × p1,… , xn × pn)

Table 1   Comparison of 
computational cost for HE 
v.s. Plaintext Operations. CC 
is the multiplication between 
two ciphertexts while CP is 
the multiplication between 
ciphertext and plaintext

Operations HE Plaintext Ratio

Encryption (ms) 5.5 – –
Decryption (ms) 2.57 – –
Message size (MB) 0.5 – –
Addition (ms) 0.550 0.009 61.1
Multiplication (ms) 20.874 (CC) 0.035 596.4

4.138 (CP) 0.035 118.23
Rotation (ms) 5.35 0.13 41.15
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•	 HE-Rot: Rot(ctx, i) = Enc(xi, xi+1, .., xn, x0, .., xi−1)

The HE operations are computationally intensive and can consume excessive com-
putational time. In addition, HE operations also introduce noises when performed on 
encrypted data [15], which must be well under control for the results to be decrypted 
successfully. Several HE operations, especially HE-Mult, can be extremely time-
consuming (approximately 600× higher than its counterpart as shown in Table 1) 
and introduce much larger noise [16]. Therefore, reducing the number of HE opera-
tions (especially the HE-Mult operations) becomes critical in designing practical 
applications, such as matrix multiplication, under the HE framework.

2.2 � Related work

There are numerous research efforts on improving the computational efficiency of 
MM (e.g., [17, 18, 18–22]). However, none of them can be readily adapted to opti-
mize the computation efficiency of MM in the context of HE computation.

A naive method for HE MM is to encrypt each row/column in each matrix and 
then compute it using the traditional MM method. For the HE MM of Am×l × Bl×n , 
this would result in excessive storage requirements and computation times: m × n 
encrypted messages and totally m × l × n HE-Mult operations. Another simple and 
intuitive approach (e.g., [23]) is to transform the MM problem into the matrix–vec-
tor multiplication problem and then adopt the SIMD scheme [9, 24] to perform the 
calculation. However, this requires m + n ciphertexts and m × n homomorphic mul-
tiplication operations, which are still very costly.

Duong et  al. [25] and Mishra et  al. [26] presented approaches to packing the 
source matrix into a single polynomial and performing HE MM based on secure 
computation of the inner product of encrypted vectors. Their method works well 
for a single HE MM of squared matrices with well-defined dimensions. However, 
it is not clear how this solution can be applied to general MM. Additionally, the 
encrypted message packing methods used in this approach are closely related to the 
matrix dimensions. While HE MM of three or more matrices is shown to be pos-
sible [26], it is unclear how to perform HE matrix operations involving both multi-
plications and additions/subtractions without decrypting/recrypting the intermediate 
results, especially for matrices with arbitrary shapes.

Jiang et al. [27] proposed an intriguing HE MM approach for square matrix with 
O(d) computational complexity. They expanded their HE MM algorithm to han-
dle rectangle MM ( Al×d × Bd×d ) with l ≤ d and d mod l = 0 . However, to suit the 
shape requirements for matrix multiplication with variable shapes, source matrices 
may need to be enlarged, which can lead to increased processing time and higher 
resource utilization. This trade-off is important to consider when applying the algo-
rithm to matrices that do not naturally conform to the original square or rectangular 
constraints.

Huang et  al. [28] advocated for the use of blocking to more effectively handle 
matrix multiplication (MM) by treating source matrices as block matrices composed 
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of smaller square matrices. This approach is particularly appealing for large matri-
ces that cannot fit into a single ciphertext, as it allows for more manageable and 
efficient computation. By breaking down large matrices into smaller, square blocks, 
the method ensures that operations remain feasible even when dealing with exten-
sive data. However, this technique is limited in its application to large matrices that 
are square matrices or pairs of rectangular matrices where the number of columns 
and rows are integer multiples of each other. These restrictions means that while the 
blocking method could be highly efficient for certain configurations, it may not be 
as versatile when working with matrices that do not meet these specific dimensional 
criteria.

Rathee et  al. [29] proposed to encrypt source matrices into the two-dimen-
sional hypercube structure [24] and then transform the MM problem to a series of 
matrix–vector multiplication problems. Huang et al. [30] extended this approach to 
make it applicable to general MM. In this paper, we develop a novel element-wise 
MM approach. As demonstrated in Sect. 3.3, our approach can lead to a higher com-
putational efficiency and memory usage compared to that by Huang et al. [30].

3 � Our approaches

When performing HE matrix multiplication in the SIMD manner, we need to make 
sure that two operands are aligned and located at the same location, i.e., the same 
slot in the two encoded ciphertexts. Rearranging individual slots in an encrypted 
message can be costly. Therefore, a key to the success of reducing the computational 
complexity of the HE MM is how to perform the MM using element-by-element 
additions and multiplication operations. In what follows, we first introduce a novel 
algorithm to calculate MM with arbitrary dimensions using element-wise additions 
and multiplications. We then discuss in more detail how we implement the HE MM 
algorithm on packed ciphertexts in the SIMD manner and its enhanced version.

3.1 � The matrix multiplication method using element‑wise computations

Consider an MM problem, Cm×n = Am×l × Bl×n , where m, l,  and n ∈ ℤ
+ . Our goal is 

to develop an algorithm such that Cm×n =
∑

i Ai ⊙ Bi , where Ai , Bi are certain trans-
formations of Am×l , Bl×n , respectively, and ⊙ represents the element-wise multiplica-
tion. For ease of our presentation, we define four matrix transformation operators as 
follows:

(1)𝜎(A)i,j =Ai,[i+j]l
, 0 ≤ i < m, 0 ≤ j < l

(2)𝜏(B)i,j =B[i+j]l,j
, 0 ≤ i < l, 0 ≤ j < n

(3)𝜖k
m×n

(A)i,j =Ai,[j+k]l
, 0 ≤ i < m, 0 ≤ j < n
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where [x]y denotes x mod y.
The two transformation operators, � and � , are similar to those introduced in 

[27], but more general and applicable to an arbitrary shape matrix instead of a 
square matrix alone. Essentially, a � transformation rotates each row of a matrix 
horizontally by its corresponding row index (for example, each element in the 2nd 
row is cyclically rotated 2 positions to the left), and a � transformation rotates a 
column by its corresponding column index. Figure 1a, b illustrate examples of � 
and � transformations.

We define two new transformation operators, �k
m×n

 and �k
m×n

 , with respect to a 
matrix of arbitrary shape. Given Cm×n = Am×l × Bl×n , operator �k

m×n
(A) generates 

a matrix with size of m × n from Am×l (duplicating or cropping columns when 
necessary), by shifting matrix Am×l to the left for k columns. Similarly, �k

m×n
(B) 

generates a matrix with size of m × n from Bl×n (duplicating or cropping rows 
when necessary), by shifting matrix Bl×n upward for k rows. Figure 1c, d illustrate 
the transformation operators �0

3×5
(A) , �1

3×5
(A) , �0

3×5
(B) , and �1

3×5
(B) , respectively.

With the operators defined above, we can perform a general MM using the 
element-wise operations as follows:

(4)𝜔k
m×n

(B)i,j =B[i+k]l,j
, 0 ≤ i < m, 0 ≤ j < n

(a) σ operator: rotating ith row left by i slots.

(b) τ operator: rotating jth column upward by j
slots.

(c) ε03×5(A3×2) and ε13×5(A3×2) with C3×5 = A3×2 × B2×5.

(d) ω0
3×5(B2×5) and ω1

3×5(B2×5) with C3×5 = A3×2 × B2×5.

Fig. 1   The illustration of � , � , � , and � transformation operators
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where ◦ represents the composition operation. Note that the multiplication (i.e., ⊙ ) 
in Eq.  (5) is element-wise and applied to the entire operands. Figure  2 shows an 
example of how an MM can be conducted based on Eq. (5). Given two source matri-
ces, i.e., A5×3 × B3×4 , with m = 5, l = 3 , and n = 4 , � and � transformations are con-
ducted on A and B , respectively. Then, three iterations of � and � transformations 
are performed to obtain three partial products, which are accumulated to get the final 
product. We have the following proof sketch to show that the above method indeed 
produces the correct MM results for arbitrary matrices.

(5)Am×l × Bl×n =

l−1∑
k=0

(𝜖k
m×n

◦𝜎(A))⊙ (𝜔k
m×n

◦𝜏(B)),

(6)

l−1∑
k=0

(�k
m×n

◦�(A))i,j ⋅ (�
k
m×n

◦�(B))i,j

=

l−1∑
k=0

�(A)i,[j+k]l ⋅ �(B)[i+k]l,j

=

l−1∑
k=0

Ai,[i+j+k]l
⋅ B[i+j+k]l,j

=

l−1∑
k=0

Ai,k ⋅ Bk,j = (A ⋅ B)i,j

Fig. 2   An illustration example of the element-wise MM for A5×3 × B3×4 with m = 5, l = 3 , and n = 4 , 
� and � transformations are first conducted on A and B , respectively. Then, three iterations of � and � 
transformations are performed to obtain three partial products, which are accumulated to get the final 
product
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3.2 � The HE‑based General Matrix Multiplication (HEGMM)

With the element-wise matrix multiplication method introduced above, we are now 
ready to present our approach for HE matrix multiplication in the SIMD manner. 
As mentioned before, it is critical to minimize the number of HE operations (such 
as those, especially the HE-Mult, as shown in Table 1) and thus reduce the com-
putational cost. In this subsection, we first introduce how transformations, such as 
�, �, �k

m×n
 , and �k

m×n
 , are performed using the primitive HE operations. We then pre-

sent our first algorithm for HE MM based on the element-wise matrix multiplication 
strategy presented above.

3.2.1 � Linear transformation

To perform MM under the HE framework, two-dimensional matrices need to be flat-
tened (either with column-major or row-major order) into one-dimensional cipher-
texts, and all operations are performed on the ciphertexts. Therefore, a critical 
challenge to implement the computational strategy in Eq.  (5) is how to efficiently 
conduct �, �, �k

m×n
 , and �k

m×n
 , k = {0,… , (l − 1)} transformation operations. Note 

that an arbitrary linear transformation over a vector m, i.e., L ∶ Rx → Ry , can be 
expressed as L ∶ m → U ⋅m , where U ∈ Ry×x is the transformation matrix. As 
shown by Halevi and Shoup [24], matrix–vector multiplications can be calculated 
using the combination of rotation and element-wise multiplication operations. Spe-
cifically, for 0 ≤ z < x , let the z-th diagonal vector of U be

where x and y are the matrix dimensions and z is the index of diagonal vector.
Then, we have

where ⊙ denotes the component-wise multiplication.
According to Eq. (7), we can construct the transformations defined in Eqs. (1)–(4) 

with flattened matrix Ã and B̃ such that

uz =

⎧
⎪⎪⎨⎪⎪⎩

(U0,z,U1,z+1,… ,Ux−z−1,x−1, 0,… , 0

���������������������������������������������������
)

�x�

if z ≥ 0

(0,… , 0,Uz,0,Uz+1,1,… ,Uy−1,y−z−1
���������������������������������������������������

)

�x�

if z < 0

(7)U ⋅m =
∑

−y≤z<x

(uz ⊙ HE-Rot(m;z)),

(8)𝜎(Ã) =U
𝜎
⋅ Ã,

(9)𝜏(B̃) =U
𝜏
⋅ B̃,



26402	 Y. Gao et al.

 Let Ã and B̃ be source matrices flattened in the column-major order. By general-
izing the location change patterns for the operators, we can define U� , U� , U�k

m×n and 
U

�k
m×n as follows:

For the sake of clarity, scopes of i, j and h in Eqs. (12)–(15) are listed below.

i j h

U
� [0, m) [0, l) [0, ml)

U
� [0, l) [0, n) [0, nl)

U
�k
m×n [0, mn) [0, ml) N/A

U
�k
m×n [0, mn) [0, nl) N/A

When Ã and B̃ are matrices flattened in the row-major order, similar transforma-
tion matrices can be constructed. We omit it due to page limit.

Note that, from Eq. (7), the �, �, �k
m×n

 , and �k
m×n

 operations can be realized using 
a sequence of HE-Rot, HE-CMult, and HE-Add operations. Figure 3 shows exam-
ples of transformations �1

5×3
(A) and �1

3×5
(B) as well as the associated matrices U�1

5×3 
and U�1

3×5 for matrix A5×3 and B3×5 , respectively. In the meantime, Eq.  (7) clearly 
shows that the computational cost depends heavily on how many diagonal vectors 
(i.e., uz in Eq. (7)) in the corresponding transformation matrices, i.e., U� , U� , U�k

m×n , 
and U�k

m×n , are nonzeros. The more the nonzero diagonal vectors are, the higher the 
computation costs become. To this end, we have the following theorems that reveal 
important properties related to nonzero diagonal vectors in these transformation 
matrices.

(10)𝜖k
m×n

(Ã) =U
𝜖k
m×n ⋅ Ã,

(11)𝜔k
m×n

(B̃) =U
𝜔k
m×n ⋅ B̃.

(12)U
�
i+j⋅m,h

=

{
1 if h = i + [i + j]l ⋅ m,

0 otherwise;

(13)U
�
i+j⋅l,h

=

{
1 if h = [i + j]l + j ⋅ l,

0 otherwise;

(14)U
�k
m×n

i,j
=

{
1 if j = [k ⋅ m + i]m⋅l
0 otherwise;

(15)U
�k
m×n

i,j
=

�
1 if j = [k + [i]m]l + ⌊i∕m⌋ ⋅ l
0 otherwise;
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Theorem 3.1  Let �(A) = U
�
A for A with a dimension of m × l . There are at most 

2 ⋅min(m, l) − 1 nonzero diagonals in U� no matter whether the matrix is flattened 
with a column-major or row-major order.

Fig. 3   The permutation matrices U�1
5×3 and U�1

3×5 and linear transformations of �1
5×3

(A5×3) and �1

3×5
(B5×3)
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Theorem  3.2  Let �(B) = U
�
B for B with a dimension of l × n . There are at most 

2 ⋅min(n, l) − 1 nonzero diagonals in U� no matter if the matrix is flattened with a 
column-major or row-major order.

Theorem  3.3  Let �k
m×n

(A) = U
�k
m×nA be the linear transformation 

�m×n ∶ Rm×l → Rm×n with matrix A having a dimension of m × l . There are at most ⌊
n

l

⌋
+ 1 nonzero diagonal vectors in U�k

m×n when the matrix is flattened with the col-

umn-major order. There are at most (
⌊
n

l

⌋
+ 2) ⋅ m nonzero diagonal vectors in U�k

m×n 
when matrix A is flattened with the row-major order. Specifically, when n = l , there 
are no more than two nonzero diagonals in U�k

m×n , no matter if the matrix is flattened 
in column-major or row-major order.

Theorem  3.4  Let �k
m×n

(B) = U
�k
m×nB be the linear transformation 

�m×n ∶ Rl×n → Rm×n with matrix B having a dimension of l × n . There are at most 
(
⌊
m

l

⌋
+ 2) ⋅ n nonzero diagonal vectors in U�k

m×n when the matrix is flattened with 

column-major order. There are at most 
⌊
m

l

⌋
+ 1 nonzero diagonal vectors in U�k

m×n 
when matrix B is flattened with row-major order. Specifically, when m = l , there are 
no more than two nonzero diagonals in U�k

m×n , no matter if the matrix is flattened in 
column-major or row-major order.

The proofs for Theorems 3.1–3.4 can be found in Appendix 1.
According to Theorems  3.1 and   3.2, the numbers of nonzero diagonal vec-

tors in U� and U� depend solely on the dimensions of corresponding matrices and 
are independent of how the matrices are flattened. However, as shown in Theo-
rems  3.3 and   3.4, the numbers of nonzero diagonal vectors in U�k

m×n and U�k
m×n 

depend on not only the dimensions of matrices but also the way they are flattened.

3.2.2 � The HEGMM algorithm

HEGMM is a straightforward implementation of Eq. (5). We first conduct � and 
� transformations (lines 2–3) on the source matrices of A and B . We then go 
through a loop (lines 5–9) that apply �k

m×n
 and �k

m×n
 transformations and element-

wise multiplication and addition to calculate and accumulate the partial product. 
The final result can be obtained by decrypting the sum of the product (line 11).

Table  2 summarizes the time complexity of HEGMM for each step. The 
computational complexity of Algorithm  1 mainly comes from the required HE 
operations associated with the �, �, �k

m×n
 , and �k

m×n
 operations. Assuming A and 

B are encrypted, from Theorem  3.1 and Theorem  3.2, we know that there are 
2min(m, l) − 1 (resp. 2min(n, l) − 1 ) non-diagonals for the � (resp. � ) operation. 
Therefore, according to Eq. (7), the � (resp. � ) operation requires 2min(m, l) − 1 
(resp. 2min(n, l) − 1 ) HE-CMult, HR-Rot, and HR-Add operations. These com-
putational costs have nothing to do with how the matrices are flattened (e.g., in 
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column-major or in row-major order), and they also become trivial if they are 
performed on A and B in plaintext.

According to theorem 3.3 and theorem 3.4, one � and � transformation needs ⌊
n

l

⌋
+ 1 and 

⌊
m

l

⌋
+ 2 ⋅ n HE-Add, HE-CMult, and HE-Rot operations, respectively. 

It is not difficult to see from the algorithm that HEGMM has a HE multiplication 
depth of 1 M+2C with one HE multiplication (e.g., 1 M) and two constant multi-
plication (e.g., 2C).

Note that the � and � transformation, which must be performed multiple times 
in the cloud, require HE operations depending on not only the dimensions of 
matrices but also the way they are flattened. As a result, the computational com-
plexities can be dramatically different under different scenarios, as shown in 
Theorems 3.3 and  3.4. In the next subsection, we show how we can take advan-
tage of this fact and reduce the computation cost.

Algorithm 1   HEGMM: HE-based General Matrix Multiplication

Table 2   Time complexity of 
HEGMM where � = min(m, l) , 
� = min(n, l) , E ∶

⌊
n

l

⌋
+ 1 , 

W ∶ (
⌊
m

l

⌋
+ 2⋅)n

Line HE-Add HE-Mult He-CMult HE-Rot Depth

2 2� − 1 0 2� − 1 2� − 1 1C
3 2� − 1 0 2� − 1 2� − 1 –
6 El 0 El El 1C
7 Wl 0 Wl Wl –
8 l l 0 0 1M
Total El +Wl l El +Wl El +Wl 1M + 2C

+2(� + �) + l +2(� + �) +2(� + �)
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3.3 � The enhanced HEGMM algorithm

In this section, we introduce a more elaborated approach for HEGMM that can be 
more computationally efficient. The fundamental principle we rely on to develop 
this algorithm is presented in Theorem 3.3 and   3.4. For the HE matrix multipli-
cation of Am×l × Bl×n , the proposed new algorithm can significantly improve the 
computation efficiency when m = min{m, l, n} and/or n = min{m, l, n} . If not, we 
can always resort to Algorithm 1 to find the solution. Therefore, in what follows, 
we first discuss the new approach based on two cases: (i) m = min{m, l, n} ; and (ii) 
n = min{m, l, n} . We then present the algorithm and related discussions in detail.

3.3.1 � Case 1: m = min{m, l, n}

For the HE MM of Am×l × Bl×n , Algorithm 1 needs to perform l iterations, with each 
iteration including one � transformation, one � transformation, one HE-Add, and 
one HE-Mult operation. Assuming the matrix is flattened with the column-major 
order, according to Theorem 3.3 and  3.4, one � transformation and one � transfor-
mation would result in no more than 

((⌊
n

l

⌋
+ 1

)
+ 2n

)
 nonzero diagonals in corre-

sponding transformation matrices, with each nonzero diagonal requiring one HE-
Add, one HE-Rot, and one HE-CMult operations. However, if we can expand matrix 
Am×l to Āl×l , then the number of nonzero diagonals becomes no more than ((⌊

n

l

⌋
+ 1

)
+ 2

)
 instead. Since n ≥ 1 and

the number of nonzero diagonals and, thus, the computational cost can be dramati-
cally reduced.

Note that, if we assume the matrix is flattened with the row-major order, one � 
transformation and one � transformation would result in no more than ((⌊

n

l

⌋
+ 2

)
m + 1

)
 nonzero diagonals in corresponding transformation matrices. 

When expanding matrix Am×l to Āl×l , the total number of nonzero diagonals in the 
corresponding transformation matrices becomes 

((⌊
n

l

⌋
+ 2

)
l + 1

)
 , according to 

Theorems 3.3 and  3.4. It becomes obvious that using the column-major order is a 
better choice than using the row-major order in this case, since when m > 1 , we have

The question now becomes how to expand Am×l to Āl×l and maintain the logical cor-
rectness of the MM result. One intuitive approach is to expand Am×l by filling zeroes 
to the newly added elements, i.e., the elements in rows from row m to (l − m − 1) . 
The final product, as a sub-matrix, can be extracted from the product of Āl×l × Bl×n 
easily. Note that expanding the matrix dimension does not increase the computa-
tional complexity in the SIMD scheme as long as the result matrix can fit in one 
message.

((⌊
n

l

⌋
+ 1

)
+ 2n

)
≥

((⌊
n

l

⌋
+ 1

)
+ 2

)
,

((⌊
n

l

⌋
+ 2

)
m + 1

)
≥

((⌊
n

l

⌋
+ 1

)
+ 2

)
.
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Rather than simply filling zeroes, we can expand Am×l by duplicating the rows of 
Am×l repeatedly. This helps to reduce the number of iterations (lines 5–9) in Algo-
rithm 1, thanks to our observations that are formulated in the following theorem.

Theorem  3.5  Let Am×l and Bl×n with m < l , and let Ā be matrix expanded with 
t =

⌈
l

m

⌉
 copies of A vertically, i.e., Ā = {Ā0;Ā1;… ;Ā(t−1)}

T with 
Ā0 = Ā1 = ⋯ = Ā(t−1) = Am×l . Then, 

•	 𝜖k
tm×n

(𝜎(Ā))⊙ 𝜔k
tm×n

(𝜏(B)) contains t items of 𝜖pm×n(𝜎(A))⊙ 𝜔
p
m×n(𝜏(B)) , with 

p ∈ {[k]l, [k + m]l,… , [k + (t − 1)m]l}.
•	 𝜖k

tm×n
(𝜎(Ā))⊙ 𝜔k

tm×n
(𝜏(B)) , k = 0, 1,… , (m − 1) contains all items of 

𝜖
p
m×n(𝜎(A))⊙ 𝜔

p
m×n(𝜏(B)) , with p ∈ {0, 1,… , (l − 1)}.

According to Theorem  3.5, after expanding Am×l with t copies of Am×l verti-
cally to form Ātm×l , each iteration of Algorithm 1 can now produce t partial prod-
ucts 𝜖pm×n(A)⊙ 𝜔

p
m×n(B) . As a result, the required HE computations can be greatly 

reduced, which can be better illustrated using the example in Fig. 4.
Figure 4 shows two source matrices A2×5 and B5×7 , with m = 2 , l = 5 , and n = 7 . 

Ā is the matrix by duplicating A three times, i.e., t = ⌈5∕2⌉ = 3 . Note that, each 
𝜖6×7(𝜎(Ā))⊙ 𝜔6×7(𝜏(B)) contains three copies of 𝜖2×7(𝜎(A))⊙ 𝜔2×7(𝜏(B)) , as 
shown in the figure: 𝜖0

6×7
(𝜎(Ā))⊙ 𝜔0

6×7
(𝜏(B)) contains 𝜖0

2×7
(𝜎(A))⊙ 𝜔0

2×7
(𝜏(B)) , 

𝜖2
2×7

(𝜎(A))⊙ 𝜔2

2×7
(𝜏(B)) , and 𝜖4

2×7
(𝜎(A)⊙ 𝜔4

2×7
(𝜏(B)) . We then need to add all the 

partial products together to get the final result.
As such, by duplicating Am×l into Ātm×l , we can reduce not only the HE opera-

tions associated with the � and � operations but also the HE-Mult operations (i.e., at 
most m HE-Mult operations according to Theorem 3.5) for partial production calcu-
lations, which is highly costly. Even though extra HE rotations are needed to extract 
the partial results, the computation cost is much smaller than that of HE-Mult as 
shown in Table 1. It is worth mentioning that, while one 𝜖k

m×n
(Ā)⊙ 𝜔k

m×n
(B) helps 

to produce multiple copies of 𝜖pm×n(A)⊙ 𝜔
p
m×n(B) , as shown in Fig. 4, some of them 

may be produced repeatedly. These redundant copies should be identified, which can 
be easily identified according to Theorem 3.5, and excluded from the final results.

3.3.2 � Case 2: n = min{m, l, n}

We can employ the same analysis flow as above. There are two major differences 
compared with the case of m = min{m, l, n} . (i) We duplicate matrix B horizontally 
to expand B instead of A ; (ii) The row-major order is a better option than the col-
umn-major order in this case.

When n = min{m, l, n} , if the matrix is flattened with the row-major order, 
according to Theorem 3.3 and  3.4, one � transformation and one � transformation 
would result in no more than (2m +

⌊
m

l

⌋
+ 1) nonzero diagonals in corresponding 

transformation matrices. When expanding Bl×n to B̄l×l , the total number of nonzero 
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diagonals in corresponding transformation matrices is reduced to (2 +
⌊
m

l

⌋
+ 1) 

instead. However, if the column-major order is used, the total number of nonzero 
diagonals after expanding is (1 + (2 +

⌊
m

l

⌋
) ⋅ n) , which makes the row-major order a 

better option to flatten the matrices.
Similarly, when we expand B by duplicating Bl×n , we can generate multiple par-

tial products, i.e., 𝜖pm×n(A)⊙ 𝜔
p
m×n(B) , using one HE-Mult operation, as supported 

by the following theorem. The proof is quite similar to that for Theorem 3.5 and thus 
omitted due to page limit.

Theorem  3.6  Let Am×l and Bl×n with n < l , and let B̄ be matrix expanded with 
t =

⌈
l

n

⌉
 copies of B horizontally, i.e., B̄ = {B;B;… ;B} . Then, 

•	 𝜖k
m×tn

(𝜎(A))⊙ 𝜔k
m×tn

(𝜏(B̄)) contains t items of 𝜖pm×n(𝜎(A))⊙ 𝜔
p
m×n(𝜏(B)) , with 

p = [k]l, [k + n]l,… , [k + (t − 1)n]l;
•	 𝜖k

m×tn
(𝜎(A))⊙ 𝜔k

m×tn
(𝜏(B̄) , k = 0, 1,… , (n − 1) contains all items of 

𝜖
p
m×n(𝜎(A))⊙ 𝜔

p
m×n(𝜏(B)) , with p = 0, 1,… , (l − 1).

Figure  5 shows an illustrative example of HE MM with two source matri-
ces A5×4 and B4×2 , with m = 5 , l = 4 , and n = 2 . B̄ is the matrix by dupli-
cating B horizontally for two times, i.e., t = ⌈4∕2⌉ = 2 . Note that, each 
𝜖5×4(𝜎(A))⊙ 𝜔5×4(𝜏(B̄)) using one HE-Mult operation can produce two copies of 
𝜖5×2(𝜎(A))⊙ 𝜔5×2(𝜏(B)) , as shown in the figure: 𝜖0

5×4
(𝜎(A))⊙ 𝜔0

5×4
(𝜏(B̄)) contains 

𝜖0
5×2

(𝜎(A))⊙ 𝜔0

5×2
(𝜏(B)) and 𝜖2

5×2
(𝜎(A))⊙ 𝜔2

5×2
(𝜏(B)) . 𝜖1

5×4
(𝜎(A))⊙ 𝜔1

5×4
(𝜎(B̄)) 

contains 𝜖1
5×2

(𝜎(A))⊙ 𝜔1

5×2
(𝜏(B)) and 𝜖3

5×2
(𝜎(A))⊙ 𝜔3

5×2
(𝜏(B)) . We then need to 

Fig. 4   An illustration example of the Enhanced HEGMM Algorithm for multiplying two matrices A2×5 
and B5×7 , with m = 2 , l = 5 , and n = 7 . Ā is the matrix by duplicating A 3 times, i.e., t = ⌈5∕2⌉ = 3 
and B5×7 remains unchanged. The partial products are accumulated to obtain the final product. Note 
𝜖0
2×7

(𝜎(A))⊙ 𝜔0

2×7
(𝜏(B)) is generated twice, and the duplicated partial products should be excluded from 

the final results
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add all the partial products together to get the final result. As such, we only need 
to perform at most n HE-Mult operations according to Theorem 3.6 to obtain all 
the partial products. Redundant copies may also be generated during this process, 
which should be identified according to Theorem 3.6 and excluded from the final 
results.

Algorithm 2   HEGMM-Enhanced
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The overall algorithm for the enhanced HE-based General MM, named 
HEGMM-En, is presented in Algorithm 2. Note that, when m < l and n < l , we 
can choose to duplicate either A or B . In Algorithm 2, we choose the smaller of m 
and n and expand either A or B accordingly (lines 3–10). When l = min{m, l, n} , 
we make no change of A and B (lines 11–15). After initializing several relevant 
variables (lines 16–18), Algorithm 2 goes through a loop to compute and accumu-
late the partial products (lines 19–28). To be more specific, we first conduct � and 
� transformations based on the expanded matrix ( A or B ) (lines 20–21), which 
are combined together into Ctemp using the element-wise HE multiplication (line 
22). The algorithm then extracts the possible t copies of 𝜖m×n(𝜎(A))⊙ 𝜔m×n(𝜏(B)) 
from Ctemp and accumulates them to Cm×n , according to Theorems  3.5 and   3.6, 
and the redundant copies are excluded from the Cm×n.

Fig. 5   This is an illustrative example of the enhanced HE MM algorithm for multiplying two matrices 
A5×4 and B4×2 , with m = 5 , l = 4 , and n = 2 . B̄ is the matrix by duplicating B horizontally for two times, 
i.e., t = ⌈4∕2⌉ = 2 and A5×4 remains unchanged. The partial products are accumulated to obtain the final 
product
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Note that, compared with Algorithm  1, Algorithm  2 only needs to per-
form p = min{m, l, n} loops (line 19) instead of l. We assume that the proper 
order is adopted when flattening the matrix: When p = min{m, l, n} = m , A 
is expanded and the column-major order is adopted to flatten matrices. When 
p = min{m, l, n} = n , B is expanded and the row-major order is adopted to flat-
ten matrices. When p = min{m, l, n} = l , neither A and B is expanded, and either 
major order can be adopted to flatten matrices.

Table 3 lists more details about the time complexity of Algorithm 2 (assuming 
� and � operations are performed on ciphertext). For line 16, from Theorems 3.1, 
there are 2� = 2min(m, l) − 1 nonzero diagonals in a permutation matrix, and 
each diagonal calls for one HE-add, one HE-CMult, and one HE-Rot operations 
during the linear transformation (see Sect.  3.2.1). The same reasoning can be 
applied for line 17 based on Theorem 3.2. For �0

M×max(l,N)
 and �0

max(l,M)×N
 transfor-

mation, it needs 
⌊
max(l,N)

l

⌋
+ 1 and 

(⌊
max(l,M)

l

⌋
+ 2⋅

)
N  , as explained in Theo-

rem 3.3 and 3.4. Note that � and � transformations in Lines 16 and 17 only need 
to be performed once, which can be done on the client side on the plaintext with-
out compromising the security/privacy of some applications. In that case, the 
time complexity of Lines 16 and 17 can be further reduced to 0.

For Line 20 and 21, Theorems 3.3 and 3.4, the � and � transformation require ⌊
n

l

⌋
+ 1 and (

⌊
m

l

⌋
+ 2⋅)n HE-Add, HE-CMult and HE-Rot operations, respectively. 

There are l loops. Lines 22–26 are a loop to compute the partial products and accu-
mulate them together, with each iteration requiring one HE-Mult and one HE-Add 
operation.

Similar to Algorithm 1, Algorithm 2 has a HE multiplication depth of 1 M+2C 
with one HE multiplication (e.g., 1 M) and two constant multiplication (e.g., 2C) as 
illustrated in Table 3.

Table 3   Time Complexity of HEGMM-En

p = min(m, l, n) , � = min(m, l) , � = min(n, l) , E ∶
⌊
max(l,N)

l

⌋
+ 1 and W ∶ (

⌊
max(l,M)

l

⌋
+ 2⋅)N

Line HE-Add HE-Mult He-CMult HE-Rot Depth

16 � ∶ 2� − 1 0 2� − 1 2� − 1 1C
�0 ∶ E �0 ∶ E �0 ∶ E

17 � ∶ 2� − 1 0 2� − 1 2� − 1 –
�0 ∶ W �0 ∶ W �0 ∶ W

20 2p 0 2p 2p 1C
21 2p 0 2p 2p –
22 p p 0 0 1M
Total 5p + E +W p 4p + E +W 4p + E +W 1M + 2C

+2(� + �) +2(� + �) +2(� + �)
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4 � Experiments

In this section, we evaluate the performance of the two algorithms developed in this 
paper, i.e., HEGMM and HEGMM-Enhanced, and compare them with the state-of-
the-art schemes for HE-based matrix multiplication.

4.1 � Experimental platform

We implemented HEGMM and HEGMM-Enhanced using a Python HE library, 
named Pyfhel [10] with BFV scheme [11, 12]. We set the HE scheme based on 
the RLWE (Ring Learning With Errors) [31] assumption over the cyclotomic ring 
Rq = ℤq[X]∕(X

N + 1) with N = 212 . Thus, each ciphertext can hold up to N = 212 
slots for plaintext values; the largest square matrix that can be accommodated in one 
ciphertext is thus 64 × 64.

In our experiments, we studied the following approaches.

•	 E2DM-S, which is presented in [27] on square matrix multiplication. For a gen-
eral MM Am×l × Bl×n , we can transform Am×l and Bl×n to two square matrices, 
A≃d×d and B≃d×d with d = max{m, l, n} and use this algorithm to calculate the 
result;

•	 E2DM-R, which is presented in [27] on rectangular matrix multiplication 
Ar×d × Bd×d . For a general MM Am×l × Bl×n , we can expand Am×l and/or Bl×n 
accordingly and use this algorithm to calculate the result;

•	 Huang et al., which is introduced in [30] and implemented with Pyfhel [10].
•	 uSCORE, which is introduced in [28] and implemented with Pyfhel [10].
•	 HEGMM, which is shown in Algorithm 1.
•	 HEGMM-En, which is shown in Algorithm 2.

In what follows, we first discuss and compare the computation complexities of dif-
ferent approaches in Sect.  4.2. We then use experimental results to compare their 
computational performance in Sect. 4.3 and 4.4. Finally, we compare the memory 
usage for different approaches in Sect. 4.5.

4.2 � Time complexity analysis

Table 4 summarizes the symbolic computation complexities of different approaches. 
1. As shown in the table, the computation cost for HE-Mult is the most computation 
costly operations, and therefore, reducing its operation numbers can help to signifi-
cantly reduce the computational cost. 2. Our approach can take advantage the matrix 
shapes to improve performance. The further away the matrix share deviate from the 
square format, the better. For example, for a MM of A50×30 × B30×10 , HEGMM-
En only needs to perform 10 HE-Mult while it is 30 for E2DM and Huang et  al. 
3. Table 4 also shows that all different approaches with the similar multiplication 
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depth, with Huang et al. slightly better. In what follows, we use experimental results 
to further compare their performance.

4.3 � Computational time evaluation

In this section, we use four different groups of experimental results to compare the 
computation efficiency of our approach with the state of the art. We first use experi-
mental results, based on randomly generated metrics to evaluate the computational 
performance of E2DM-S, E2DM-R, Huang et al., HEGMM, and HEGMM-En, with 
the preprocessing work (i.e., � and � transformations transformations in E2DM, 
HEGMM, and HEGMM-En) done on the cloud (Sect. 4.3.1) or on the client side 
(Sect.  4.3.2). Note that since uSCORE requires dividing the source matrices into 
different blocks and determining the blocking method is nontrivial and may have 
profound impacts on its efficiencies. We therefore excluded it in our performance 
comparisons based on randomly generated test cases. Instead, we conducted a num-
ber of experiments on predefined matrix dimensions and compared its performance 
with others (Sect. 4.3.3). We further study the computing performance of different 
approaches for large matrices, which cannot be accommodated using one ciphertext 
(Sect. 4.4).

For our randomly generated test cases, we randomly generated 2000 pairs of 
matrices, with column and row numbers evenly distributed with [1, 64]. Note that, 
even though Huang et al. [30], HEGMM, and HEGMM-Enhanced can handle MM 
with column or row numbers exceeding 64, as long as the total element is no more 
than 212 , we limited the largest dimension size to 64 so that E2DM-S and E2DM-R 
can always apply. All experiments were conducted on a server with Intel Xeon Sil-
ver 4114 at 2.2GHz.

Table 4   Comparison of time complexity among different algorithms where d = max(m, l, n) , 
p = min(m, l, n) , s = max(l, n) , � = min(m, l) , � = min(l, n) , E ∶

⌊
n

l

⌋
+ 1 and W ∶ (

⌊
m

l

⌋
+ 2⋅)n

Algorithms HE-Add HE-Mult He-CMult HE-Rot Depth

E2DM-S 6d d 4d 3d + 5
√
d 1 M+2C

E2DM-R 3d + 2p p 3d + 2p 3p + 5
√
d 1 M+2C

+log(d∕p) +log(d∕p)

Huang et al. l ⋅ logs + l l l l ⋅ logs + l 1 M+1C
+log(d∕l) +log(d∕l)

HEGMM El +Wl l El +Wl El +Wl 1 M+2C
+2(� + �) + l +2(� + �) +2(� + �)

HEGMM-En 5p + E +W p 4p + E +W 4p + E +W 1 M+2C
+2(� + �) +2(� + �) +2(� + �)

Time (ms) 0.55 20.87 4.14 5.35
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4.3.1 � HE MM with preprocessing on the cloud

In this group of tests, we assume that clients encrypt the source matrices and send 
them to the cloud. All matrix operations are performed on the cloud. To better 
understand the performance of different approaches, we categorize the test cases 
into five groups: (1) m = min{m, l, n} ; (2) l = min{m, l, n} ; (3) n = min{m, l, n} ; (4) 
(m × l) × (l × l) and l mod m = 0 ; (5) m = l = n (the square matrix). Note that cases 
in (4) and (5) are the most favorable ones for E2DM-R and E2DM-S, respectively. 
For test cases in each group, execution times were collected for the five different 
approaches. We use the better ones by E2DM-S and E2DM-R as the performance 
that can achieved by E2DM. We then calculate the speedups that can be achieved 
using HEGMM, HEGMM-En over E2DM, and Huang et al. The average, median, 
and maximum speedup for each group, as well as the overall results, are listed in 
Table 5.

As in Table  5, HEGMM-En outperforms Huang et  al. in all groups, with a 
speedup of 3.96 on average and the maximum of over 11.60. Compared with E2DM, 
HEGMM-En can achieve better performance in all cases other than if the matri-
ces are square or when (m × l) × (l × l) and l mod m = 0 . As shown in Table  5, 
HEGMM-En can achieve a speedup of 8.63 on average with a maximum of over 
184.76 over the best of E2DM. This is because HEGMM-En can reduce HE-Mult 
operations significantly by properly duplicating the source matrices. When source 
matrices are square, HEGMM-En is equivalent to E2DM-S with slight overhead for 
taking care of the generality of matrices. When (m × l) × (l × l) and l mod m = 0 , 
the time complexity of E2DM-R is O(m) while HEGMM-En is O(m) as well. There-
fore, the speedup of them is nearly 1.00.

We also use Fig. 7 to compare the performance of these approaches from a differ-
ent perspective. Specifically, Fig. 7 shows the number of test cases that can achieve 
speedups between (0, 1], [1, 2], and (2,+∞) by HEGMM, HEGMM-En, and Huang 
et al. over the best results by E2DM-S and E2DM-R. In a total of 2000 test cases, 
there are 1074 cases that HEGMM outperforms both E2DM-S and E2DM-R, while 
it is 1994 for HEGMM-En, which indicates that HEGMM-En performs significantly 
better than HEGMM. For Huang et al., 1964 samples outperform E2DM which is 
also better than HEGMM but not as good as HEGMM-En. Overall, the experimental 
findings indicate that the algorithm HEGMM-En exhibits a significant performance 
superiority compared to current methodologies in 99.7% of the samples.

4.3.2 � HE MM with preprocessing on the client

In this section, we assume that preprocessing transformations (i.e., � and � trans-
formations) can be performed by the client on plaintext. Since this can be done as 
long as the dimensions of the matrices are known to the clients, the preprocessing 
work can be done by the clients without compromising the privacy/security of the 
matrices themselves. This option can further improve the computation efficiency for 
E2DM, HEGMM, and HEGMM-En significantly.
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The test cases for this group of experiments were generated as before, and the 
average, median, and maximum speedup for each group, as well as the overall 
results, are listed in Table 6.

As in Table  6, HEGMM outperforms Huang el al. in all groups, with a 
speedup of 1.93 on average and the maximum of over 4.96. Compared with 
E2DM, HEGMM can achieve better performance in all cases other than if the 
matrices are square or when m = min(m, l, n) . As shown in Table  6, HEGMM 
can achieve a speedup of 3.3 on average with a maximum of over 154.12 over 
the best of E2DM. When source matrices are square, HEGMM is equivalent to 
E2DM with slight overhead for taking care of the generality of matrices. When 
m = min(m, l, n) , the time complexity of E2DM-R is O(m) while HEGMM is O(l) . 
Therefore, E2DM-R can potentially achieve better performance, especially when 
m << l.

The enhanced algorithm, i.e., HEGMM-En, can still significantly outperform 
the rest of the approaches for arbitrary HE MM, as shown in Table  6. This is 

Table 5   The performance comparison of HEGMM-En, E2DM [27], and Huang et  al. [30] in different 
scenarios with � and � are performed on ciphertext

Speedup Average Median Max

m = min(m, l, n) HEGMM v.s. E2DM 1.06 0.63 14.93
HEGMM v.s. Huang et al. 0.54 0.46 3.16
HEGMM-En v.s. E2DM 6.70 4.56 98.45
HEGMM-En v.s. Huang et al. 3.60 3.49 10.25

l = min(m, l, n) HEGMM v.s. E2DM 1.80 1.15 23.72
HEGMM v.s. Huang et al. 0.82 0.85 1.69
HEGMM-En v.s. E2DM 9.51 7.89 50.06
HEGMM-En v.s. Huang et al. 5.04 4.80 11.60

n = min(m, l, n) HEGMM v.s. E2DM 2.79 1.69 66.37
HEGMM v.s. Huang et al. 0.93 0.84 4.21
HEGMM-En v.s. E2DM 9.82 7.16 184.76
HEGMM-En v.s. Huang et al. 3.36 3.07 9.78

(m × l) × (l × l) HEGMM v.s. E2DM 0.74 0.46 1.00
HEGMM v.s. Huang et al. 0.84 1.47 2.06

l mod m = 0 HEGMM-En v.s. E2DM 0.99 0.99 1.08
HEGMM-En v.s. Huang et al. 1.17 3.31 6.19

square HEGMM v.s. E2DM 1.00 1.00 1.02
HEGMM v.s. Huang et al. 0.92 0.95 1.21
HEGMM-En v.s. E2DM 0.98 0.99 1.00
HEGMM-En v.s. Huang et al. 0.90 0.95 1.21

overall HEGMM v.s. E2DM 1.88 1.07 66.37
HEGMM v.s. Huang et al. 0.76 0.70 4.21
HEGMM-En v.s. E2DM 8.63 6.10 184.76
HEGMM-En v.s. Huang et al. 3.96 3.54 11.60
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Fig. 6   The statistics of the speedups for the algorithms HEGMM, HEGMM-En, E2DM [27], and Huang 
et al. [30] when � and � are performed on ciphertext

Table 6   The performance comparison of HEGMM-En, E2DM [27], and Huang et  al. [30] in different 
scenarios with � and � are performed on plaintext

Speedup Average Median Max

m = min(m, l, n) HEGMM v.s. E2DM 0.90 0.58 39.50
HEGMM v.s. Huang et al. 2.21 2.21 3.25
HEGMM-En v.s. E2DM 1.69 1.13 33.28
HEGMM-En v.s. Huang et al. 6.60 4.88 23.29

l = min(m, l, n) HEGMM v.s. E2DM 10.74 3.61 154.12
HEGMM v.s. Huang et al. 1.99 1.95 4.96
HEGMM-En v.s. E2DM 10.32 3.70 132.42
HEGMM-En v.s. Huang et al. 2.01 1.97 4.26

n = min(m, l, n) HEGMM v.s. E2DM 1.83 1.20 136.82
HEGMM v.s. Huang et al. 2.29 2.35 3.28
HEGMM-En v.s. E2DM 4.06 2.56 113.31
HEGMM-En v.s. Huang et al. 6.55 4.83 23.68

(m × l) × (l × l) HEGMM v.s. E2DM 1.51 1.47 2.06
HEGMM v.s. Huang et al. 0.53 0.46 1.00

l mod m = 0 HEGMM-En v.s. E2DM 0.99 0.99 1.08
HEGMM-En v.s. Huang et al. 3.45 6.23 21.75

square HEGMM v.s. E2DM 1.00 1.00 1.02
HEGMM v.s. Huang et al. 1.67 1.72 2.36
HEGMM-En v.s. E2DM 0.99 1.00 1.01
HEGMM-En v.s. Huang et al. 1.66 1.72 2.36

overall HEGMM v.s. E2DM 3.30 1.04 154.12
HEGMM v.s. Huang et al. 1.93 2.04 4.96
HEGMM-En v.s. E2DM 4.13 1.38 132.42
HEGMM-En v.s. Huang et al. 4.50 2.48 23.68
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because HEGMM-En can reduce HE-Mult operations significantly by properly 
duplicating the source matrices. Specifically, HEGMM-En can achieve an average 
speedup of 4.13 with a maximum of 132.42 over the best of E2DM and an aver-
age speedup of 4.50 with a maximum of 23.68 over the Huang et al. For square 
matrices, HEGMM-En is equivalent to E2DM and requires slightly more time 
than due to the overhead for taking care of the generality of matrices.

We also use Fig.  6 to compare the performance of these approaches from a 
different perspective. Specifically, Fig. 6 shows the number of test cases that can 
achieve speedups between (0, 1], [1, 2], and (2,+∞) by HEGMM, HEGMM-En, 
and Huang et al. over the best results by E2DM-S and E2DM-R. In a total of 2000 
test cases, there were 1324 cases in which HEGMM outperformed both E2DM-S 
and E2DM-R, while it is 1805 for HEGMM-En, which indicates that HEGMM-
En performs significantly better than HEGMM. For Huang et al., only 610 sam-
ples outperform E2DM. More results of HE MM with some specific dimensions 
are shown in Table 10 in Appendix 3.

Overall, the experimental results clearly show that HEGMM and HEGMM-En 
exhibit a significant performance superiority compared to current methodologies in 
66.2% and 90.2% of the samples, respectively.

4.3.3 � HE MM with predefined dimensions

As mentioned before, uSCORE [28] relies on matrix blocking for MM, and design-
ing the appropriate blocking methods for a given matrix dimension is nontrivial and 
has great potential to affect its computing performance. We, therefore, chose a set 

Fig. 7   The statistics of the speedups for the algorithms HEGMM, HEGMM-En, E2DM [27], and Huang 
et al. [30] when � and � are performed on plaintext
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of matrices that can fit in one ciphertext, with predefined dimensions (as shown in 
Table 7) and block size to compare its performance with others. For each test case, 
we repeated the experiments 10 times and the average results were collected and 
shown in Table 7.

As shown in Table 7, HEGMM-En achieves or comes very close to the best per-
formance. This is because HEGMM-En’s time complexity (dominate part which 
is HE-Mult) is O(16) while E2DM-S is O(64) or O(128) . For E2DM-R, its perfor-
mance boosts only when matrix size is 16–64–64 and 16–128–128. This is because 
its time complexity is O(16) which is consistent with our analysis in Sect.  4.2. 
HEGMM and Huang et al. are similar because their time complexity is O(l) (l is the 
middle number in matrix size).

For uSCORE [28], which is similar to E2DM but includes a blocking algorithm, 
the processing time increases when blocking is unnecessary. In all six groups of 
matrices, each matrix fits into a single ciphertext, which negates the advantages 
of uSCORE. When matrices are small enough to fit into one ciphertext, uSCORE 
requires more operations (as shown in Fig. 4 of uSCORE), resulting in longer pro-
cessing times compared to both E2DM and our proposed algorithm. Conversely, for 
matrices too large to fit into one ciphertext, uSCORE outperforms E2DM. This is 
because E2DM’s blocking method, which involves dividing the matrix into smaller 
square matrices, becomes inefficient. On the other hand, for HEGMM, there are 
numerous ways to block the matrix, presenting a separate research challenge.

In summary, when the matrix size is small enough to fit into a single cipher-
text, our approach significantly outperforms uSCORE [28]. However, for larger 
matrices where blocking is necessary, uSCORE [28] proves to be very efficient. 
Nonetheless, designing optimal blocking methods for the source matrices remains 
a critical challenge.

4.4 � HE MM for large matrices

Our test cases above are limited to the maximum matrix dimension of 64x64, 
the largest one that can fit into one ciphertext in our setting. When matrix sizes 

Table 7   Performance comparison

 Size 64 is with N = 213 which means ciphertext has 4096 slots; size 128 is with N = 215 which means 
ciphertext has 16,384 slots
Bolded numbers represent the best performance

time(s) 64–64–16 16–64–64 64–16–64 128–128–16 16–128–128 128–16–128

E2DM-S 6.07 6.12 6.08 273.57 275.00 277.20
E2DM-R 6.06 3.10 N/A 273.73 52.18 N/A
uSCORE 5.94 5.96 5.93 363.16 364.98 370.66
Huang et al. 5.81 5.87 3.56 432.14 433.21 49.75
HEGMM 5.88 6.08 3.07 267.43 274.41 49.62
HEGMM-En 3.12 3.13 3.08 54.14 52.09 49.58
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exceed this limit, we can resort to the traditional blocking algorithm, i.e., by 
dividing a large matrix into a series of smaller blocks, to perform the MM cal-
culation. We want to study the performance of our proposed approaches when 
incorporated into MM blocking algorithms for A100×100 × B100×100.

Partitioning large source matrices properly based on different MM algorithms 
is an interesting problem but beyond the scope of this paper. In our experiments, 
we hire two intuitive partition methods: P1: partitioning the matrix 100 × 100 to 
four equal-size square matrices of 50 × 50 ; P2: partitioning the matrix 100 × 100 
to four sub-matrices of 64 × 64 , 64 × 36 , 36 × 64 , and 36 × 36.

Different HE MM algorithms were employed for blocking MMs. We ran 
the experiments 10 times, and the average results were collected and shown in 
Table  8. As expected, for P1 when all matrices are square, E2DM-S, E2DM-
R, HEGMM, and HEGMM-En perform quite similarly, while HEGMM and 
HEGMM-En take a little longer due to overhead in dealing with the generality 
of the matrices. Huang et al. showed a much slower performance than the oth-
ers. We believe this is because that Huang et  al. approach requires duplicating 
diagonals of a source matrix with the complexity of O(logN), with N the size of 
the matrix. The duplication operation involves expensive HE-CMult and HE-Rot 
operations. This is particularly computationally expensive when N is not a power 
of two. In contrast, the time complexity of same step in E2DM and HEGMM is 
O(2) for P1.

For P2, HEGMM, HEGMM-En, and Huang et al. can perform better because 
they can take advantage of the irregular shapes of the matrices. In particular, 
HEGMM-En (resp. HEGMM) has a complexity of O(min(m, l, n)) (resp. O(l)). In 
contrast, E2DM-S runs much longer because it needs to expand matrices 64 × 36 
and 36 × 64 to form 64 × 64 matrix. E2DM-R is incapable of processing matrices 
with such irregular shapes, as it has a tendency to enlarge matrix of 36 × 64 to 
72 × 72 , which is larger than the ciphertext size.

4.5 � Memory evaluations

HE computations may demand not only excessive computation time but also 
memory usage as well. We are therefore interested in studying the memory usage 
of these approaches. We collected the memory usage for each algorithm during 
its runtime for our test cases with results normalized against the memory usage 
by E2DM and presented in Fig.  8, where a total of 2000 experimental sets were 
conducted. In comparison with E2DM, both HEGMM and HEGMM-En tend to 
consume less memory. As shown in Fig. 8, less than 17 (resp. 30) out of the total 

Table 8   Time evaluation of the blocking algorithm

Bolded numbers represent the best performance

Partition E2DM-S E2DM-R Huang et al. HEGMM HEGMM-En

P1 39.06s 39.01s 74.34s 39.12s 39.15s
P2 29.76s N/A 37.51s 26.17s 26.23s
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2000 test results show that E2DM consumes less memory than HEGMM (resp. 
HEGMM-En). In contrast, 630 test cases using Huang et al. have higher memory 
usage compared to E2DM. Overall, the experimental results clearly demonstrate 
the advantage of memory usage efficiency of HEGMM and HEGMM-En over the 
existing approaches.

5 � Conclusions

HE has great potential for security and privacy protection when outsourcing data 
processing to the cloud. However, the excessive computational overhead associ-
ated with the HE operations makes it prohibitive for many practical cloud applica-
tions. We study how to reduce the HE computational cost for general MM opera-
tion, an essential building block in many computational fields. We present two 
HE MM algorithms, with one improving another, to reduce the computational 
complexity of MM by taking advantage of the SIMD structure in the HE scheme. 
We also conduct rigorous analytical studies on the correctness and computational 
complexity of these two algorithms. Experiment results show that our proposed 
approach can significantly outperform the existing methods. We want to mention 
that our approach show excellent performance for matrix size that can fit into one 
ciphertext. However, how to do blocking is another interesting problem to study. 
In addition, to incorporate our approach with the blocking method in USCORE 
seems an interesting problem to pursue. Moreover, in our future research, we 
plan to investigate how to reduce the HE computational cost for sparse matrix 
multiplication.

Fig. 8   The statistics of memory usage ratio for the algorithms HEGMM, HEGMM-En, E2DM [27], and 
Huang et al. [30]
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Appendix 1: The proof for Theorem 3.1 to Theorem 3.4

Theorem   3.1 Let �(A) = U
�
A for A with a dimension of m × l . There are at most 

2 ⋅min(m, l) − 1 nonzero diagonals in U� no matter if the matrix is flattened with a 
column-major or row-major order.

Proof  When applying � transformation on matrix Am×l in column-major order, U� 
is formulated in Eq. (12). Note that U�

i+j⋅m,h
= 1 when h = i + [i + j]l ⋅ m and, for all 

elements of U�
i+j⋅m,h

 that belong to the same diagonal, we have h − (i + j ⋅ m) as a 
constant.

Considering all the nonzero elements in U�
i+j⋅m,h

 , we have

Since 
⌊
i

l

⌋
+
⌊
j

l

⌋
≤

⌊
i+j

l

⌋
≤

⌊
i

l

⌋
+
⌊
j

l

⌋
+ 1 and 0 ≤ j < l , we have ⌊

i

l

⌋
≤

⌊
i+j

l

⌋
≤

⌊
i

l

⌋
+ 1.

Now consider two different scenarios: 1) m < l ; 2) m ≥ l . When m < l , for each 
i = {1, 2,… ,m − 1} , h − (i + j ⋅ m) can at most take two constant values since ⌊
i

l

⌋
= 0 and 0 ≤

⌊
i+j

l

⌋
≤ 1 . When i = 0 , h − (i + j ⋅ m) can only be zero since ⌊

i+j

l

⌋
= 0 . Therefore, U�

i+j⋅m,h
 has at most 2m − 1 nonzero diagonals under this case.

When m ≥ l , we have

with 0 ≤ p < l . Since −1 ≤

(⌊
i

l

⌋
−
⌊
i+j

l

⌋)
≤ 0 , U�

i+j⋅m,h
 has at most 2l − 1 nonzero 

diagonals under this case.
Therefore, in summary, there are at most 2 ⋅min(m, l) − 1 nonzero diagonals in 

U
� when the matrix is flattened with a column-major. Similar proof can be obtained 

when the matrix is flattened with the row-major order. 	�  ◻

Theorem  3.2 Let �(B) = U
�
B for B with a dimension of l × n . There are at most 

2 ⋅min(n, l) − 1 nonzero diagonals in U� no matter if the matrix is flattened with a 
column-major or row-major order.

h − (i + j ⋅ m) = i + [i + j]l ⋅ m − (i + j ⋅ m)

= i + (i + j −

⌊
i + j

l

⌋
⋅ l) ⋅ m − (i + j ⋅ m)

= (i −

⌊
i + j

l

⌋
⋅ l) ⋅ m.

h − (i + j ⋅ m) =

(
i −

⌊
i + j

l

⌋
⋅ l

)
⋅ m

=

(⌊
i

l

⌋
⋅ l + p −

⌊
i + j

l

⌋
⋅ l

)
⋅ m,



26422	 Y. Gao et al.

Proof  When applying � transformation on matrix Bl×n in column-major order, U� is 
formulated in Eq. (13). Note that U�

i+j⋅l,h
= 1 when h = [i + j]l + j ⋅ l and, for all ele-

ments of U�
i+j⋅l,h

 that belong to the same diagonal, we have h − (i + j ⋅ l) as a constant.
Considering all the nonzero elements in U�

i+j⋅l,h
 , we have

Since 
⌊
i

l

⌋
+
⌊
j

l

⌋
≤

⌊
i+j

l

⌋
≤

⌊
i

l

⌋
+
⌊
j

l

⌋
+ 1 and 0 ≤ i < l , we have ⌊

j

l

⌋
≤

⌊
i+j

l

⌋
≤

⌊
j

l

⌋
+ 1.

Now consider two different scenarios: 1) n < l ; 2) n ≥ l . When n < l , for each 
j = {1, 2,… , n − 1} , h − (i + j ⋅ l) can at most take two constant values since 

⌊
j

l

⌋
= 0 

and 0 ≤

⌊
i+j

l

⌋
≤ 1 . When i = 0 , h − (i + j ⋅ l) can only be zero since 

⌊
i+j

l

⌋
= 0 . 

Therefore, U�
i+j⋅l,h

 has at most 2n − 1 nonzero diagonals under this case.
When n ≥ l , we have

with 0 ≤ p < l . Since −1 ≤ (
⌊
j

l

⌋
−
⌊
i+j

l

⌋
) ≤ 0 , U�

i+j⋅l,h
 has at most 2l − 1 nonzero 

diagonals under this case.
Therefore, in summary, there are at most 2 ⋅min(n, l) − 1 nonzero diagonals in 

U
� when the matrix is flattened with a column-major. Similar proof can be obtained 

when the matrix is flattened with the row-major order. 	�  ◻

Theorem  3.3 Let �k
m×n

(A) = U
�k
m×nA be the linear transformation 

�m×n ∶ Rm×l → Rm×n with matrix A having a dimension of m × l . There are at most ⌊
n

l

⌋
+ 1 nonzero diagonal vectors in U�k

m×n when the matrix is flattened with the col-

umn-major order. There are at most (
⌊
n

l

⌋
+ 2) ⋅ m nonzero diagonal vectors in U�k

m×n 
when matrix A is flattened with the row-major order. Specifically, when n = l , there 
are no more than two nonzero diagonals in U�k

m×n , no matter if the matrix is flattened 
in column-major or row-major order.

Proof  When applying � transformation on matrix Am×l in column-major order, U� is 
formulated in Eq.  (14). Note that U�k

m×n

i,j
= 1 when j = [k ⋅ m + i]m⋅l and, for all ele-

ments of U�k
m×n

i,j
 that belong to the same diagonal, we have j − i as a constant.

h − (i + j ⋅ l) = [i + j]l + j ⋅ l − (i + j ⋅ m)

= i + j −

⌊
i + j

l

⌋
⋅ l + j ⋅ l − (i + j ⋅ m)

= j −

⌊
i + j

l

⌋
⋅ l.

h − (i + j ⋅ l) = j −

⌊
i + j

l

⌋
⋅ l

=

⌊
j

l

⌋
⋅ l + p −

⌊
i + j

l

⌋
⋅ l,
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Considering all the nonzero elements in U�k
m×n

i,j
 , we have

Since max(k) = l − 1 and max(i) = m ⋅ n − 1 , we have

Therefore, we get 
⌊
k⋅m+i

m⋅l

⌋
∈ {0, 1,… ,

⌊
n

l

⌋
} . Then, j − i = k ⋅ m −

⌊
k⋅m+i

m⋅l

⌋
⋅ m ⋅ l . k, 

m and l are all constant number for one transformation. The set {0, 1,… ,

⌊
n

l

⌋
} is of 

size 
⌊
n

l

⌋
+ 1 . In summary, U�k

m×n has at most 
⌊
n

l

⌋
+ 1 constant values when Am×l in 

column-major.
Special circumstances are when n = l , 

⌊
n

l

⌋
= 1 . Therefore, 

⌊
n

l

⌋
+ 1 = 2 and this 

means U�k
m×n has only 2 nonzero diagonals when n = l..

When applying � transformation on matrix Am×l in row-major order, we can for-
mulate permutation matrix according to formula (15), but apply on Al×m instead of 
Al×n . Note that U�k

m×n

i,j
= 1 when j = [k + [i]n]l + ⌊i∕n⌋ ⋅ l and, for all elements of 

U
�k
m×n

i,j
 that belong to the same diagonal, we have j − i as a constant.

Considering all the nonzero elements in U�k
m×n

i,j
 , we have

Since i ∈ [0,mn) , we split i to m circumstances that i ∈ [pn, (p + 1)n) where 
p = {0, 1, 2,… ,m − 1} . For each circumstance that i ∈ [pn, (p + 1)n) , we have

and

j − i = [k ⋅ m + i]m⋅l − i
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⌊
k ⋅ m + i
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−
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p −
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⋅ l



26424	 Y. Gao et al.

Note that we have

which has 2 +
⌊
n

l

⌋
 constant values. And this means j − i , which represents the num-

ber of nonzero diagonals in U�k
m×n , has (2 +

⌊
n

l

⌋
) ⋅ m in total when Am×l in row-major 

because there are m circumstances.
Special circumstances are when n = l , j − i ∈ {0, 1} . The reason is that, since

and we also have k < l and [i]n < l , thus

On the other hand, we have

for each i ∈ [pn, (p + 1)n) . j − i has the same constant value in each i ∈ [pn, (p + 1)n) 
and this means U�k

m×n has only 2 nonzero diagonals when n = l . 	�  ◻

Theorem  3.4 Let �k
m×n

(B) = U
�k
m×nB be the linear transformation 

�m×n ∶ Rl×n → Rm×n with matrix B having a dimension of l × n . There are at most 
(
⌊
m

l

⌋
+ 2) ⋅ n nonzero diagonal vectors in U�k

m×n when the matrix is flattened with 

column-major order. There are at most 
⌊
m

l

⌋
+ 1 nonzero diagonal vectors in U�k

m×n 
when matrix B is flattened with row-major order. Specifically, when m = l , there are 
no more than two nonzero diagonals in U�k

m×n , no matter if the matrix is flattened in 
column-major or row-major order.

Proof  When applying � transformation on matrix Bl×n in column-major order, U� is 
formulated in Eq. (15). Note that U�k

m×n

i,j
= 1 when j = [k + [i]m]l + ⌊i∕m⌋ ⋅ l and, for 

all elements of U�k
m×n

i,j
 that belong to the same diagonal, we have j − i as a constant.

Considering all the nonzero elements in U�k
m×n

i,j
 , we have

j − i = k − pn +

(
p −

⌊
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⌋)
⋅ l

⌊
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⌋
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⌊
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⌊
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⌊
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⌊
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⌋
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⌊
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≤ 1

j − i = k −

⌊
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⌋
⋅ l
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Since i ∈ [0,mn) , we split i to n circumstances that i ∈ [pm, (p + 1)m) where 
p = {0, 1, 2,… , n − 1} . For each circumstance that i ∈ [pm, (p + 1)m) , we have

and

Note that we have

which has 2 +
⌊
m

l

⌋
 constant values. And this means j − i , which represents the num-

ber of nonzero diagonals in U�k
m×n , has (2 +

⌊
m

l

⌋
) ⋅ n in total when Bm×l in row-major 

because there are n circumstances.
Special circumstances are when m = l , j − i ∈ {0, 1} . The reason is that, since

and we also have k < l and [i]l < l , thus

On the other hand, we have

for each i ∈ [pm, (p + 1)m) . j − i has the same constant value in each 
i ∈ [pm, (p + 1)m) and this means U�k

m×n has only 2 nonzero diagonals when m = l.
When applying � transformation on matrix Bl×n in row-major order, we can for-

mulate permutation matrix according to formula (14), but apply on Bn×l instead of 
Bm×l . Note that U�k

m×n

i,j
= 1 when j = [k ⋅ n + i]n⋅l and, for all elements of U�k

m×n

i,j
 that 

belong to the same diagonal, we have j − i as a constant.
Considering all the nonzero elements in U�k

m×n

i,j
 , we have

j = k + [i]m −

⌊
k + [i]m

l

⌋
⋅ l +

⌊
i

m

⌋
⋅ l

= k + [i]m +

(⌊
i

m

⌋
−

⌊
k + [i]m

l

⌋)
⋅ l

j = k + i − pm +

(
p −

⌊
k + [i]m

l

⌋)
⋅ l

j − i = k − pm +

(
p −

⌊
k + [i]m

l

⌋)
⋅ l

⌊
[pm]m

l

⌋
≤

⌊
k + [i]m

l

⌋
<

⌊
[pm]m

l

⌋
+
⌊
m

l

⌋
+ 1 + 1

⌊
k

l

⌋
+

⌊
[i]l

l

⌋
≤

⌊
k + [i]l

l

⌋
≤

⌊
k

l

⌋
+

⌊
[i]l

l

⌋
+ 1

0 ≤

⌊
k + [i]l

l

⌋
≤ 1

j − i = k −

⌊
k + [i]l

l

⌋
⋅ l
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Since max(k) = l − 1 and max(i) = m ⋅ n − 1 , we have

Therefore, we get 
⌊
k⋅n+i

n⋅l

⌋
∈ {0, 1,… ,

⌊
m

l

⌋
} . Then, j − i = k ⋅ n −

⌊
k⋅n+i

n⋅l

⌋
⋅ n ⋅ l . 

Here, k, n and l are all constant number for one transformation. The set 
{0, 1,… ,

⌊
m

l

⌋
} is of size 

⌊
m

l

⌋
+ 1 . In summary, U�k

m×n has at most 
⌊
m

l

⌋
+ 1 constant 

values when Bm×l in row-major.
Special circumstances are when m = l , 

⌊
m

l

⌋
= 1 . Therefore, 

⌊
m

l

⌋
+ 1 = 2 and this 

means U�k
m×n has only 2 nonzero diagonals when m = l . 	�  ◻

Theorem  3.5 Let Am×l and Bl×n with m < l , and let Ā be matrix expanded with 
t =

⌈
l

m

⌉
 copies of A vertically, i.e., Ā = {Ā0;Ā1;… ;Ā(t−1)}

T with 
Ā0 = Ā1 = ⋯ = Ā(t−1) = Am×l . Then, 

•	 𝜖k
tm×n

(𝜎(Ā))⊙ 𝜔k
tm×n

(𝜏(B)) contains t items of 𝜖pm×n(𝜎(A))⊙ 𝜔
p
m×n(𝜏(B)) , with 

p ∈ {[k]l, [k + m]l,… , [k + (t − 1)m]l}.
•	 𝜖k

tm×n
(𝜎(Ā))⊙ 𝜔k

tm×n
(𝜏(B)) , k = 0, 1,… , (m − 1) contains all items of 

𝜖
p
m×n(𝜎(A))⊙ 𝜔

p
m×n(𝜏(B)) , with p ∈ {0, 1,… , (l − 1)}.

Proof  Consider a sub-matrix of (𝜖k
tm×n

◦𝜎(Ā)) with dimension of m × n , i.e., 
(𝜖k

tm×n
◦𝜎(Ā))hm+i,j , where 0 ≤ i < m, 0 ≤ j < n . h is a constant with 0 ≤ h < t . Based 

on Eq. (1) and (3), we have

On the other hand, let p = [k + hm]l , for 0 ≤ i < m, 0 ≤ j < n , we have

j − i = [k ⋅ n + i]n⋅l − i

= k ⋅ n + i −
⌊
k ⋅ n + i

n ⋅ l

⌋
⋅ n ⋅ l − i

= k ⋅ n −
⌊
k ⋅ n + i

n ⋅ l

⌋
⋅ n ⋅ l

max(
k ⋅ n + i

n ⋅ l
) <

l − 1 + m

l

≤

⌊
l − 1

l

⌋
+
⌊
m

l

⌋
+ 1

=
⌊
m

l

⌋
+ 1

(16)

(𝜖k
tm×n

◦𝜎(Ā))hm+i,j = 𝜎(Ā)hm+i,[j+k]l

= Āhm+i,[hm+i+j+k]l

=Ai,[hm+i+j+k]l
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Similarly, consider the sub-matrix of (�k
tm×n

◦�(B)) with dimension of m × n , i.e., 
(�k

tm×n
◦�(B))hm+i,j , with 0 ≤ i < m, 0 ≤ j < n . Based on Eq. (2) and (4), we have

If we let p = [k + hm]l , for 0 ≤ i < m, 0 ≤ j < n , and 0 ≤ h < t , we have

Since 0 ≤ h < t , there are total t sub-matrices in 𝜖k
tm×n

(𝜎(Ā)) and �k
tm×n

(�(B)) , the 
conclusion for the first part of the theorem follows naturally from Eqs. (16) to (19).

To prove the second part of the theorem, we only need to note that since t =
⌈

l

m

⌉
 , 

we have tm ≥ l . Therefore, for any p ∈ {0, 1,… , (l − 1)} , we must be able to find at 
least one set of k and h, with 0 ≤ k < m , 0 ≤ h < t , and p = [k + hm]l . Together 
with Eqs. (16) to (19), we thus prove the theorem. 	�  ◻

Theorem  3.6 Let Am×l and Bl×n with n < l , and let B̄ be matrix expanded with 
t =

⌈
l

n

⌉
 copies of B horizontally, i.e., B̄ = {B;B;… ;B} . Then, 

•	 𝜖k
m×tn

(𝜎(A))⊙ 𝜔k
m×tn

(𝜏(B̄)) contains t items of 𝜖pm×n(𝜎(A))⊙ 𝜔
p
m×n(𝜏(B)) , with 

p = [k]l, [k + n]l,… , [k + (t − 1)n]l;
•	 𝜖k

m×tn
(𝜎(A))⊙ 𝜔k

m×tn
(𝜏(B̄) , k = 0, 1,… , (n − 1) contains all items of 

𝜖
p
m×n(𝜎(A))⊙ 𝜔

p
m×n(𝜏(B)) , with p = 0, 1,… , (l − 1).

Proof  Consider a sub-matrix of (�k
m×tn

◦�(A)) with dimension of m × n , i.e., 
(�k

m×tn
◦�(A))i,hn+j , where 0 ≤ i < m, 0 ≤ j < n . h is a constant with 0 ≤ h < t . Based 

on Eqs. (1) and (3), we have

On the other hand, let p = [k + hn]l , for 0 ≤ i < m, 0 ≤ j < n , we have

(17)
(�

p
m×n◦�(A))i,j = �(A)i,[j+p]l

=Ai,[i+j+k+hm]l

(18)
(�k

tm×n
◦�(B))hm+i,j = �(B)[hm+i+k]l,j

=B[hm+i+j+k]l,j

(19)
�
p
m×n◦�(B)i,j = �(B)[i+p]l,j

=B[i+k+hm+j]l,j

(20)
(�k

m×tn
◦�(A))i,hn+j = �(A)i,[hn+j+k]l

=Ai,[i+hn+j+k]l

(21)
(�

p
m×n◦�(A))i,j = �(A)i,[j+p]l

=Ai,[i+j+k+hn]l
.
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Similarly, consider the sub-matrix of (𝜔k
m×tn

◦𝜏(B̄)) with dimension of m × n , i.e., 
(𝜔k

m×tn
◦𝜏(B̄))i,hn+j , with 0 ≤ i < m, 0 ≤ j < n . Based on Eq. (2) and (4), we have

If we let p = [k + hn]l , for 0 ≤ i < m, 0 ≤ j < n , and 0 ≤ h < t , we have

Since 0 ≤ h < t , there are total t sub-matrices in �k
m×tn

(�(A)) and �k
m×tn

(�(B)) , the 
conclusion for the first part of the theorem follows naturally from Eqs. (20) to (23).

To prove the second part of the theorem, we only need to note that since t =
⌈

l

n

⌉
 , 

we have tn ≥ l . Therefore, for any p ∈ {0, 1,… , (l − 1)} , we must be able to find at 
least one set of k and h, with 0 ≤ k < m , 0 ≤ h < t , and p = [k + hn]l . Together with 
Eqs. (20) to (23), we thus prove the theorem. 	�  ◻

Appendix 2: Meaning of symbolize

See Table 9.

(22)

(𝜔k
m×tn

◦𝜏(B̄))i,hn+j = 𝜏(B̄)[i+k]l,hn+j

= B̄[hn+i+j+k]l,hn+j

=B[hn+i+j+k]l,j

(23)
�
p
m×n◦�(B)i,j = �(B)[i+p]l,j

=B[i+k+hn+j]l,j

Table 9   Meaning of symbolize Symbolize Meaning

A Left matrix for matrix multiplication
B Right matrix for matrix multiplication
m The number of row of matrix A
l The number of column of matrix A

The number of row of matrix B
n The number of column of matrix B
� The transformation that permute each row
� The transformation that permute each column
� The transformation that permute multiple columns
� The transformation that permute multiple rows
ct The prefix of ciphertext
U Permutation matrix
⊙ Elementwise multiplication
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