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Abstract—Current reinforcement learning (RL) methods must
explicitly sample states to learn about their value. Redundantly
sampling these states creates dangerous situations when RL
agents are deployed in real-life environments. Furthermore, since
the agent only receives a reward when entering the environment,
the agent must sample the state multiple times to modify the
agent’s policy to avoid dangerous states. Humans, specifically
young children, primarily overcome this need for explicit and
redundant sampling using two key strategies: fear and vicarious
conditioning. Our method utilizes fear and vicarious conditioning
to create a pseudo-barrier function that discourages the agent
from sampling the dangerous state. Using memory augmented
neural network (MANN) similarity calculations, we can see how
similar the agent’s current state is to the “phobia” by creating a
dense reward field that serves as a pseudo-barrier function. The
MANN was trained in the MiniGrid Simple environment, while
the agent was tested in the LAVAGAP and Dynamic Obstacle
environments. Our results show that the MANN can produce
a dense reward gradient that transfers to different Minigrid
environments. Our method also shows that this “phobia” can
discourage the agent from visiting certain states.

Index Terms—Intrinsic Rewards, Low Shot Learning, Rein-
forcement Learning

I. INTRODUCTION

Reinforcement Learning is a growing subsection of ma-
chine learning that has shown the capacity to solve long-
term optimization problems across various domains [1], [2].
Although reinforcement learning (RL) has shown the capacity
to optimize complex image state spaces and handle continuous
action spaces, the deployment of RL methods to robotic system
of systems has been limited. This limitation has been largely
driven by the possibility of the RL algorithm taking actions
that could hurt the agent or other agents around them [3]. This
possibility is a subset of the commonly considered sim-to-real
paradigm. Another aspect of the sim to real problem space is
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the need for reinforcement learning agents to explicitly sample
a state and its actions for the agent to learn its value. For a
robotic system, this produces a scenario where the agent needs
to directly experience a dangerous state to update its policy,
which can be dangerous to the robot and the people around
it. Furthermore, any variation to the state space must also be
sampled by the agent, creating another condition where the
agent puts itself or others in danger.

When considering dangerous states that the agent needs
to avoid, we consider a few conditions. First, we find that
when deploying an RL agent to a real-world scenario can
create a condition where an agent could repeatedly sample
a dangerous state before it could learn the state value ,
potentially due to sample inefficiency issues [3]. Typical Out
Of Distribution (OOD) resilient RL methods focus on training
the agent [4] to be resilient to possible OOD representations
using external datasets or modifications to the environment’s
state representation. These methods attempt to produce a
sufficient variety of OOD representations that allow the agent
to handle visual differences from simulation to deployment.
Other methods focus create disturbances in the state space and
using semi-supervised learning methods to create a pseudo-
discretized state space [5]. Other OOD methods have shown
successful, safe transfer learning through the use of Control
barrier transfer functions, but these methods work on explicitly
defined state definitions. This limits the agent’s capacity to
deploy in an environment where the dangerous condition is
abstract and cannot be explicitly defined [3].

In this work, we seek to take the success demonstrated
in barrier functions and extend it to abstract dangerous state
representations. We introduced fear intrinsic rewards, a low-
shot learning method that calculates the similarity of a known
dangerous state to the agent’s current behavior and provides
the agent a negative intrinsic reward to avoid dangerous
behaviors. Specifically, our contribution is two-fold

1) We provide a few-shot method to create avoidance
behavior that transfers across a few simple domains
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using intrinsic rewards.

2) We show that this method allows for faster learning of
the negative reward.

II. BACKGROUND

Deep Reinforcement learning describes how neural net-
works use environmental reward signals to optimize a policy
in a given environment [6]. Two paradigms exist: on-policy
and off-policy. On-policy methods sample the agent’s policy
directly and optimize the state and actions that the agent
has sampled, while off-policy methods seek to optimize the
maximum action [6]. This leads to a trade-off where on-
policy learning converges faster and has greater stability but
does reach as optimal of a policy as off-policy methods [6].
Although both methods have been extended to use deep neural
networks, we largely see that the same paradigm holds for
non-deep reinforcement learning approaches [1], [7].

A. Reward Shaping

A key aspect of all RL frameworks is the reward function.
The reward function allows the agent to optimize its behavior
to maximize the cumulative rewards over an episode. [6] The
explicit creation and modification of an environment reward
function are defined as reward shaping [8]. Some environments
like minigrid [9] only reward the agent upon reaching the goal
state. This type of environment reward function is defined as
a sparse reward problem, since the agent gets a limited reward
signal throughout an episode. Another important reward shap-
ing method is handcrafted reward functions [10]; handcrafted
reward functions often balance multiple goals or abstract
conditions that the designer believes will lead to an optimal
behavior. These functions can often be expressed as one of
the following representations: positive, negative, and balanced
skews; a positive skew shows faster convergence while a
negative skew has shown a decrease in the agent’s episodic
variance [11]. As environments become more complex and
must balance multiple goals, the simple way to ensure that
the agent does not develop unintended behaviors is to create
a positive reward gradient to the overall environment goal [8].

B. Intrinsic Reward

Intrinsic reward functions describe a reward function that
satisfies some desire that is derived from the agent and is not
explicitly reinforced by the environment. [12]. These intrinsic
reward functions can largely be divided into two discrete
paradigms: skill training methods and novelty optimization
[13]. Skill-based methods allow the agent to decompose the
main goal into a subset of goals that can be optimized while
working in a rewards-sparse or reward-noisy environment [14],
[15]. Novelty-based intrinsic reward functions are focused on
optimizing the exploration vs exploitation paradigm. These
intrinsic reward functions differ from previous exploration
methods like e-greedy [6] by using randomness to increase
the number of states the agent has seen. ϵ-greedy methods

increased randomness but do not assure that the agent’s
exploration had provided any new information to the agent [6],
[13]. Two major developments in the novelty intrinsic reward
have been pseudo-counter [16] and methods and entropy [17].
A PsuedoCounter keeps track of state visitation, minimizing
a loss function for a random network where a decrease
in the loss designated an increase in that state’s visitation.
other novelty intrinsic reward optimize the entropy from state
transitions, pushing the agent to increase the distribution of
states it has previously seen [17].

C. Biological Fear

Fear is an emotional response that serves as a methodology
to avoid or get out of a dangerous/potentially dangerous situ-
ation. Largely, fear leads to what is commonly understood as
the freeze, fight, or flight response. Human fear can be largely
explained with two distinct types of fear expression a learned
fear response or evolutionary fear response [18]. Learned fear
responses are learned through two distinct behavioral patterns:
direct exposure to stimuli or vicariously observing someone
else experience the stimuli [19]. Children best optimize this
vicarious fear, allowing them to watch their guardian’s ex-
pression of state to understand its value without the need for
explicit sampling. [19] This vicarious learning helps children
emulate safe behavior strictly through social interaction. This
behavior of learning through societal interaction is referred to
as societal learning. Within the social learning theory exists a
framework that describes the method a person uses to learn
from others [20]. From this paradigm, we can break down
the vicarious learning of fear into distinct steps: observation,
remembering, reproduction, and motivation. One key aspect
we focus on is remembering and reproduction, where the
agent can recall the stimuli and understand their meaning or
value. To better understand this behavior, we can understand
the surgical pathways of recalling fear as a process that takes
in a stimuli process. The stimuli reference the behavior with
memories and then use the amygdala to encode the value of the
stimuli [18]. This expression of fear demonstrates that fear is
a methodology that requires the capacity to encode the stimuli
and reference the encoding to prior information.

D. Memory Methods

Memory-based machine learning methods focus on the
capacity to retain, write, and retrieve information that the
method has been exposed to. This capacity to take stimuli and
understand what memory aligns with the methods is called
content-based memory addressing [21]. This form of memory
addressing is decomposed into three distinct operations: read,
write, and erase. where reading uses attention to address the
external memory, writing modifies the external memory and
erase function that mimics the LSTM’s forget gate [22]. These
memory-based methods can process an input and relate it
to the stored value in memory, and this recall methodology
allows for a simple low-shot learning paradigm [21]. Other
methods that perform Memory-based content Addressing use
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correlation and Hebbian learning to track and strengthen the
association of representations [23].

III. METHODOLOGY

We introduce fear-based intrinsic reward (FIR), a novel
negative intrinsic reward that uses content memory-based
addressing methods to modify an agent’s reward function
to create avoidance behaviors similar to those in humans.
The method replicates humans’ response when exposed to a
phobia, where the closer our observation is to the phobia, the
greater our need to move away from it. Specifically, FIR seeks
to replicate humans’ capacity to scale danger appropriately by
calculating the similarity of the current stimuli to a known
memory. This similarity allows the agent solve a rewards-
dense environment in a sample efficient manner.

Fig. 1. An overview of the FIR methodology.

Our method (see Figure 1) demonstrates how the agent
takes the environment’s state representation and produces an
intrinsic reward signal based on the similarity of the state
to the example learned by MANN. Therefore, all training
to the MANN will occur before the agent’s training in its
environment. We decompose this training into two distinct
paradigms that mimic the theory of societal learning. First,
the attention and retention phase is the explicit training of the
MANN.This mimics “society” and provides examples that the
agent will use to learn about a negative reward.

Fig. 2. The trained MANN that produces reinforcement and motivation.

Since the proposed method aims to test the ability to create
avoidance behaviors across two domains, states that share
some similarity to the other domains are incorporated, but

these states are not one-to-one representations. Once the agent
learns these representations within the MANN, the agent is
deployed to an unseen environment. This training phase repli-
cates the reproduction and motivation phase of societal training
where the agent replicates the behavior that it has observed and
uses intrinsic motivation to reinforce those actions, as outlined
in Fig. 2. This replication is created through a negative intrinsic
reward. This intrinsic reward scales up similarly as the agent
approaches the described behavior, producing a dense reward
function that dissuades the agent from exploring that specific
state. This follows the reward-shaping paradigm that produces
a negative reward gradient around undesired states.

For example, the agent is shown state representations (Fig.
3) that have a high negative societal/intrinsic reward. Next,
a barrier function creates an intrinsic reward space (Fig. 4),
even if the environment’s extrinsic reward (Fig. 5) states oth-
erwise. The paper examines an environment with an extrinsic
reward signal that is equal or greater than the maximum
value of intrinsic reward. This will simulate a situation where
the extrinsic rewards might be significantly high while the
intrinsic reward is negative. This mimics a biological example
where a human walks past a snake, where prior experience
with snakes is through external information sources (such as
others handling a snake). This minimal sampling of previous
experience creates a similar representation to the snake in the
path. Thus, the human avoids the snake with minimal state
representations. Thus, our proposed method may have domain
transference properties with low-shot representations.

Fig. 3. Bad examples that emulate some subsection of a policy

Fig. 4. The intrinsic negative barrier field.

IV. EXPERIMENT SETUP

A well-known sparse reward environment that tests transfer
learning methods is the MiniGrid Environments, such as the
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Fig. 5. Demonstrates a reward sparse environment with an extrinsic reward.

visual partially observable representations. Minigrid’s sparse
reward permits evaluating the FIR’s ability to create a region
of deterrence without interfering with other reward functions.
Two wrappers were used in the experiment: Imgobswrapper,
which removes the text data that the environment provides in
its state representation, and partialobservable wrapper, which
reduces the agent’s vision to its field of view. Although
MiniGrid is a commonly used framework, our environment
restrictions produce a distinct testing condition that has not
been previously documented. Thus, a baseline for proximal
policy optimization (PPO) is provided. We also limit the
Minigrid environments to those explicitly solved visually (e.g.,
LAVAGAP, DISTSHIFT, LAVACROSSING, and DYNAMIC
OBSTACLE). We also chose these specific environments be-
cause they provide different terminal conditions and another
negative reward that incentivizes variations in the agent’s
behavior. We expect the agent to learn to avoid conditional
negative rewards and balance the negative reward with the
intrinsic reward. We also used environments with terminal
conditions to see if the agent would avoid the terminal condi-
tions with negative rewards. The Negative behavior examples
are collected from the EMPTYROOM environment and are
separated into two classes: avoid and other (Fig. 6).

Fig. 6. PPO baseline for the DistShift using Partially Observable Enviroment

We separate the environments across the types of changes
as shown in Table I. Here, we distinguish the visual and
environmental differences that each environment provides,
such as terminal conditions. These terminal conditions allow
the agent to end the episode without reaching the GOAL. Other

environments have non-terminal negative rewards, where the
agent suffers punishment from collisions. This creates a sec-
ondary reward signal that the agent has to optimize. Finally, we
distinguish between the LAVAGAP, and DYNAMIC Obstacles
environments from the rest, as the environments’ size and
general representation are distinct from EMPTYROOM.

Across all environments, each game terminates after 400
steps, and 20,000 training steps are used to ensure that the
observed cumulative reward for each agent can accurately be
compared to its baseline. The MANN is trained during each
run, and the accuracy achieved creates the intrinsic reward.
This accuracy demonstrates how learning features specific
to EMPTY ROOM will restrict domain transfer to unseen
environments. Test environments similar to EMPTYROOM
(i.e., LAVAGAP and DYNAMIC OBSTACLE) will result in
higher MANN accuracy, while the remaining environments
will result in lower accuracy. Three distinct types of intrinsic
rewards will be evaluated: Dominant intrinsic reward where
the agent is pushed away from a terminal state, balanced
intrinsic reward, and dominant extrinsic reward where the
agent is not sufficiently deterred.

TABLE I
MINIGRID TESTING ENVIROMENTS

Table Environmental Changes
Environment Terminal Condition Conditional Negative Representation

LAVACROSSING X X X
LAVACGAP X X

DYNAMIC OBS X
DIST SHIFT X X X

V. RESULTS AND ANALYSIS

This section seeks to establish a baseline for the Minigrid
environments. From the Dishift environment in Fig. 7, we see
large disparities between runs. This is a byproduct of PPO,
since PPO is an on-policy method. This means that if the
PPO agent did not directly sample a behavior where the agent
can achieve a faster policy to the goal, it will not modify its
behavior to find that potential policy.

Fig. 7. Baseline runs on DISTSHIFT environment shows that on average, the
agent achieves an average of .4

From fig 8 and fig 9, we see that the agent can solve these
simple environments. In Dynamic Obstavcles specifically, we
see that the agent’s negative conditional reward helps reduce
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Fig. 8. Baseline runs on LAVAGAP environment shows that on average, the
agent will plateau at the cumulative intrinsic reward of .6

Fig. 9. Baseline runs on the DYNAMIC OBSTACLE environment show that,
on average, the agent can solve the game, achieving an average of near 1.

the explicit sampling required by PPO, while LavaGAP, with
its conditional terminal state, added more episodic variance.
An important distinction we would like to make is that no
matter the variation in performance across these states, the
agent always manages to learn to reach the goal state.

Fig. 10. Baseline runs on LAVACROSSING environment showing that the
agent achieved an average of .04.

From Fig. 10, we can see a continuation of previous trends
where LAVACROSSING shows a direct increase in score
variance with the presence of a terminal condition.

This section will discuss the behavior achieved across
multiple runs in a dynamic obstacle environment. We will ob-
serve how the different achieved accuracy produced different
possible policies for the agent. The first case from fig11 is

the MANN failing to generalize to the transfer environment,
which occurs when the MANN has an accuracy of 100 percent.
When the MANN achieves 100 percent accuracy, it has learned
features too specific to the training set, limiting MANN from
generalizing to the state representation in the DYNAMIC
OBSTACLE ENVIRONMENT. From fig11, we also observe
that an accuracy of 68 percent produced a balanced intrinsic
reward where the agent could optimize the conditional reward
and the FIR intrinsic reward. We believe this was caused by
the MANN being less accurate but still producing sufficient
similarity that it was more optimal to balance the environ-
ment’s reward and the intrinsic reward. The results show that
MANN accuracies from 68 percent to 95 percent produced
a successful avoidant behavior in the RL algorithm. There is
a range of accuracies whose learned features can create an
avoidance for the agent.

Fig. 11. Runs of FIR in DYNAMIC OBSTACLE environment showing
different balanced extrinsic dominant and intrinsic dominant rewards.

In this section, we discuss the results of using negative in-
trinsic with variable accuracy, as seen in fig 12. One interesting
result we see is that high accuracy does not fundamentally
mean failed intrinsic reward. We see this with the run that
scored 100 percent and produced a successful intrinsic reward.
Similarly, extremely low and high accuracy can produce a
negative intrinsic reward if the controller learns features that
can successfully transfer to the new domain. From the results
in LAVAGAP and Dynamic Obstacle, we see the possible
accuracy range for MANN to produce a negative intrinsic
reward skews higher. We believe that MANN can operate in
these accuracies due to the many similarities EMPTYROOM
has with these environments.

In this section we will discuss the results of the runs on
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Fig. 12. Runs of FIR in LAVAGAP environment showing that MANN can
achieve high accuracy and create a negative intrinsic reward.

the LAVACROSSING as seen in fig 13.LAVACROSSING is
our first environment that has a larger number of observable
differences from the EMPTYROOM environment on which
MANN was trained. From the results, we see that only an
accuracy of 72 percent produced the avoidance behavior seen
in the previous environments. We see that an accuracy of 80
percent, which worked on prior environments like DYNAMIC
OBSTACLES and LAVAGAP, could not produce a negative
intrinsic reward. We see that the 80 percent run was as
unsuccessful as the 100 percent run. Here, we observe that
the accuracy for successful generalization skews toward lower
accuracies in environments that have greater differences from
the environment it was trained on.

Finally, the runs performed in DISTSHIFT can be seen in
fig 14 and continue the trend that environments with a greater
difference in representation have a lower range of effective
accuracy that will produce an accurate intrinsic reward func-
tion. From the results, we see that 77 and 54 percent accuracy
do successfully produce an avoidance behavior, but accuracy,
like 90 percent, fails to generalize successfully. We also see
from the 54 percent accuracy run that the agent is still actively
optimizing the intrinsic reward and that if it were to reach the
goal state, it could find a path of least similarity that allows
it to receive the extrinsic reward.

The results across multiple Minigrid environments demon-
strate that we can use memory methods like MANN to modify
an agent’s policy without modifying the environment. This
allows for the creation of complex reward functions that are
based on avoiding specific states. This method also shows
that memory, specifically recall of saved states, can work as

Fig. 13. Runs of FIR in a LAVACROSING environment showing that range
in effective accuracy decreased for LAVACROSSING

Fig. 14. Runs of FIR in a DISTSHIFT demonstrating that MANN can work
with accuracy as low as 54 percent.

a sample efficiency method since it provides a negative dense
reward for similar representations.
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VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced FIR, a novel nega-
tive intrinsic reward for behavior avoidance. We demon-
strate how FIR methodology mimics vicarious condition-
ing by using external examples and recreating the be-
havior. We show in environments like Minigrid’s LAVA-
GAP,DISTSHIFT,LAVACROSSING, and DYNAMIC OB-
STACLE that the FIR can produce a negative reward that
promotes avoidance. When transferring to other domains, we
also demonstrate how the two critical parameters that affect the
FIR’s ability to generalize are the shared features or represen-
tations and the accuracy achieved by the MANN. We show that
the agent can optimize both reward functions across multiple
domains and that in environments with conditional negative
rewards, the agent can learn to avoid those. In the Future,
we want to expand this method to work on human-robot
simulated environments (e.g., Copealla Sim) [24] to see if this
fear paradigm can be used as a successful collision avoidance
method in human-robot teams. With this simulation, we want
to see if we can transfer to different human representations and
how the agent changes its policy with different representations.
We are also interested to see if other environmental changes,
like the general setting, will have a larger effect on the policy
than changing the person’s representation Finally, we want to
test if other memory methods like Hopfield networks or neural
attention memory are more resilient to representation changes.
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