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Eating less meat is associated with a healthier body and planet. Yet, we remain reluctant to switch to a
plant-based diet, largely due to the sensory experience of plant-based meat. Food scientists
characterize meat using a double compression test, which only probes one-dimensional behavior.
Here we use tension, compression, and shear tests—combined with constitutive neural networks-to
automatically discover the behavior of eight plant-based and animal meats across the entire three-
dimensional spectrum. We find that plant-based sausage and hotdog, with stiffnesses of 95.9 +
14.1 kPa and 38.7 + 3.0 kPa, successfully mimic their animal counterparts, with 63.5 + 45.7 kPa and
44.3 + 13.2 kPa, while tofurky is twice as stiff, and tofu is twice as soft. Strikingly, a complementary
food tasting survey produces in nearly identical stiffness rankings for all eight products (o = 0.833,
p =0.015). Probing the fully three-dimensional signature of meats is critical to understand subtle
differences in texture that may result in a different perception of taste. Our data and code are freely

available at https://github.com/LivingMatterLab/CANN

Current meat production is inefficient and unsustainable'. It is a key driver
for climate change, environmental degradation, and antibiotic resistance’. A
common strategy to quantify the efficiency of animal meat is to compare
energy out versus energy in, and protein out versus protein in’. On a global
average, energy conversion efficiencies range from 11% for poultry to 10%
for pork, and 1% for beef and sheep; while protein conversion efficiencies
range from 20% for poultry to 15% for pork, 4% for beef, and 3% for sheep".
In other words, cattle are a particularly inefficient conversion system: They
convert only one percent of the gross energy and four percent of the protein
in their feed to energy and protein in edible beef”.

At the same time, the consumption of a kilogram of beef is estimated to
have the same greenhouse gas emission impact as driving 1.172 km in a gas-
fueled passenger car®. On a global average, the estimated greenhouse gas
emission in kg carbon dioxide equivalents per kg food varies from 100 for
beef'to 40 for sheep, 12 for pork, and 10 for poultry, while it is only 3 for tofu’.
These alarming numbers underscore that the global food system is a major
source of greenhouse gas emissions’. In fact, experts estimate that it will be
critical to change the global food system to meet the Paris Agreement of
limiting the increase in global temperature to 1.5-2.0 °C above its pre-
industrial levels’.

Equally concerning is the increasing use of antimicrobials in food
animals to promote growth, increase health, and maintain food safety'’. On
a global average, the estimated annual consumption of antimicrobials per

kilogram of animal meat ranges from 172 mg for pigs, to 148 mg for chicken,
and 45 mg for cattle'". These practices contribute to the spread of drug-
resistant pathogens in both livestock and humans. Based on current trends,
medical experts expect 10 million annual deaths from antimicrobial resis-
tance in 2050, a 14-fold increase over current deaths'”. Beyond these global
concerns, eating red and processed meat is associated with an increased
individual risks of colorectal cancer, chronic kidney disease, type-2 diabetes,
and cardiovascular disease”’. Taken together, it is becoming increasingly
clear that a shift towards consuming less meat is needed for the health of the
planet and people'

Plant-based meat products are alternatives to animal meat that are
produced directly from plants™. The fundamental idea is to avoid using
animals to convert vegetation into meat. Recent studies suggest that plant-
based meat products have a 50% lower environmental impact than animal
meat"; yet, their adoption into our diets remains low'. Out of all global
greenhouse emissions related to the production of food, animal food con-
tributes 57%, while plant-based food contributes only 29%". In fact, the
livestock industry alone is estimated to contribute 12-18% to the total
greenhouse gas emissions; it decreases water quality, and increases water
scarcity"’. Although more and more people are intrigued by a flexitarian diet
and intentionally reduce their animal meat intake, most of us do not
eliminate meat entirely'’. A recent consumer survey revealed that in the
United States, only one third of participants were very or extremely likely to
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buy plant-based meat products”. This reluctancy supports the emerging
view that the key to a more sustainable food system is not to convince
consumers to give up the foods they like'; instead, scientists should focus on
creating plant-based products that taste the same or better than animal
meat™. In fact, our sensory experience-including taste and texture-is one of
the most important reasons for choosing which product we eat". But how
can we reliably and reproducibly quantify and compare the texture of dif-
ferent meat products?

According to its widely-accepted definition, texture is the sensory and
functional manifestation of the structural, mechanical, and surface prop-
erties of food™. Sensory manifestation has been the focus of numerous food
texture surveys™, but their results vary greatly by personal preference,
subjective interpretation, cultural background, sensory ability, lack of
standardization, and various external factors'®. Functional manifestation has
traditionally been quantified by texture profile analysis”, using a double
mechanical compression test™. This method is quantitative, objective, and
semi-standardized”, but only provides insights into the one-dimensional
compressive behavior of the product™. If plant-based meat products are to
mimic the true textural properties of animal meat, how can we compre-
hensively characterize the fully three-dimensional mechanics of plant-based
and animal meat? And, ultimately, how can we use this knowledge to inform
the design of more animal-like meat alternatives?

The objective of this study is to understand the mechanical signatures of
plant-based and animal meat. Animal meat consists of muscle, connective
tissue, fat, and water, and is dominated by its anisotropic microstructure”’.
In contrast, most plant-based meats are made of soy-, wheat-, or pea-based
proteins, they have no pronounced fibers, and are generally isotropic'.
Here, to unify the comparison, we focus on processed meat products—plant-
based and animal sausage and hotdog—and assume that these products no
longer have fibers, but are all homogeneous and isotropic. For comparison,
we also characterize processed plant-based and animal turkey, and two plain
soy-protein products, extrafirm and firm tofu. We systematically compare
all eight products through standardized mechanical tension, compression,
and shear tests*®, combined with automated model discovery, to discover the
best models and parameters for each product™, and conduct a food texture
survey’' with n = 16 participants to explore whether the results align with
our sensory perception. To accelerate discovery and innovation in plant-
based food technologies', we share all raw data, methods, algorithms, and
results on a public open source discovery platform.

Results

Mechanical testing

We mechanically test eight products, five plant-based, tofurky, plant-based
sausage, plant-based hotdog, extrafirm tofu, and firm tofu, and three ani-
mal-based, spam turkey, animal sausage, and animal hotdog. Table I
summarizes the brand name, manufacturer, and list of ingredients of all
eight products. For each product, we perform tension, compression, and
shear tests on at least n = 5 samples per testing mode. Table 2 summarizes
the means + standard error of the means for all eight products and all
three tests.

Figure 1 shows the resulting stress-stretch and shear stress-strain
curves with the plant-based products in blue and the animal products in red.
The small standard error, highlighted as the shaded region around the mean,
reveals that there is little sample-to-sample variation and that our
mechanical tests are solidly reproducible. Notably, tofurky displays by far
the stiffest response, followed by plant-based sausage, the three animal
products, spam turkey, animal sausage, and animal hotdog, and then plant-
based hotdog, extrafirm tofu, and firm tofu. Interestingly, the plant-based
products, plant-based sausage and hotdog, display similar mechanical
properties as their animal counterparts, animal sausage and hotdog, whereas
the two tofu products are notably softer.

Mechanical signatures
We extract the mechanical signatures of all eight products from Table 2 and
directly compare the tensile, compressive, and shear stiffnesses, the peak

tensile stresses and stretches, and the tension-compression asymmetry of
the eight products in Fig. 2 and in Table 1. Plant-based products are colored
in blue, animal products in red, with darker colors indicating a stiffer
response across all testing modes. Figure 2a shows the tensile stress-stretch
curves for stretches up to +10%. In addition, we test all tensile samples to
failure, where we define failure as a notable drop in the stress response, and
plot the tensile stress-stretch curves before failure occurs in Fig. 2b. Both
tofurky and extrafirm tofu exhibit failure slightly above 10% stretch, while all
other products stretch up to 15-20% without failing. Animal hotdog
stretches the furthest, up to 35%, and reaches the largest peak stress. Figure
2c and d show the compressive stress-stretches curves for stretches up to
—10%, and the shear stress-strain curves for shear strains up to 10%. Clearly,
across the entire top row, in all three modes, tofurky is the stiffest, and the
two tofu products are the softest. From the tension, compression, and shear
curves in Fig. 2b-d, we extract the linear elastic modulus using linear
regression and report it as the tensile, compressive, and shear stiffnesses Ei,
Ecom» Esnr in Fig. 2e-g, and as the mean stiffness E, ., + standard deviation
across all three modes in Fig. 2h. Across all three modes, tofurky with a
stiffness of 205.1 + 32.2 kPa is by far the stiffest product. In fact, it is more
than twice as stiff as the second and third products, plant-based sausage with
95.9 + 14.1 kPa and spam turkey with 80.8 + 16.9 kPa. The two tofu products
are consistently the softest products across all three loading modes, where
extrafirm tofu with a stiffness of 27.5 + 5.6 kPa is slightly stiffer than firm
tofu with 26.4 + 4.0 kPa. From the tension-to-failure curves in Fig. 2b, we
extract the peak tensile stress in Fig. 2i and the peak tensile stretch in Fig. 2j.
Interestingly, animal hotdog displays the largest peak stress and stretch.
Tofurky and animal sausage both have high peak stresses, but much lower
peak stretches. extrafirm and firm tofu have by far the lowest peak stresses.
Figure 2k shows the tension-compression asymmetry at £10% stretch. The
black line indicates tension-compression symmetry; a value larger than one
means that the product is stiffer in tension than in compression, and a value
smaller than one means the opposite. Strikingly, all three animal products
display a larger stiffness in tension than in compression. Animal sausage
shows the largest asymmetry with 2.41, followed by animal hotdog with 1.41
and spam turkey with 1.39. The only plant-based product with a comparable
tension-compression asymmetry is extrafirm tofu with 1.29. Plant-based
hotdog with 1.03, firm tofu with 0.95, plant-based sausage with 0.79 and
tofurky with 0.70, all display either close to no asymmetry or alarger stiffness
in compression than in tension.

Model discovery

The mechanical signatures in Fig. 2 provide valuable first insight into the
material behavior of plant-based and animal meats. However, these sig-
natures are only one-dimensional, and cannot predict the complex material
behavior of the eight products in real three-dimensional chewing. We now
discover the fully three-dimensional best-in-class one- and two-term
models for all eight products using the constitutive neural network in Fig. 8.

Figure 3 summarizes the results for the eight different meat products in
terms of the best one- and two-term models made up of eight functional
building blocks: linear, exponential linear, quadratic, and exponential
quadratic in the first and second strain invariants I; and I,. The color code
indicates the quality of fit to the tension, compression, and shear data from
Table 2, with dark blue indicating the best fit and dark red the worst.
Motivated by the notable differences in the discovered models for tensile
stretches up to 10% versus 35% in Fig. 9, we decide to use the full tension
data, not just the 10% stretch. We observe that, with the entire tension
regime, the error plot becomes more non-uniform, and the best-in-class
models become easier to delineate.

For the best-in-class one-term models that correspond to the bluest
most term on the diagonals of Fig. 3, we discover three prominent soft
matter models: the linear second invariant Blatz Ko model®, ws[ I, — 3 ], for
tofurky and plant-based sausage, the exponential linear first invariant
Demiray model’, w,[exp(wi[I; — 3]) — 1], for spam turkey, animal
sausage, animal hotdog, and plant-based hotdog, and the linear first
invariant neo Hooke model®™, w;[ I; — 3 ], for extrafirm tofu and firm tofu,
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Table 1 | Plant-based and animal meat products

TF tofurky PS plant sausage ST spam turkey AS animal sausage
brand Ham-Style Roast Vegan Frankfurter Sausage Spam Oven Roasted Turkey Turkey Polska Kielbasa
Tofurky Field Roast Spam, Hormel Foods Co Hallshire Farm
Hood River, OR Seattle, WA Austin, MN New London, WI
ingredients  water, vital wheat gluten, filtered water, vital wheat  white turkey, turkey broth, turkey, mechanically sepa-
tofu (water, soybeans, mag-  gluten, expeller pressed saf-  salt, modified potato starch, rated turkey, water, corn
nesium chloride, calcium flower oil, organic expeller sugar, dextrose, sodium syrup; contains 2% or less:
chloride), expeller pressed pressed palm fruit oil, bar- nitrite natural flavors, salt, dex-
canola oil; contains 2% or ley malt, naturally flavored trose, oat fiber, modified corn
less: sea salt, spices, gran- yeast extract, tomato paste, starch, monosodium gluta-
ulated garlic, cane sugar, apple cider vinegar, paprika, mate, sodium erythorbate,
natural flavors, natural sea salt, onions, spices, whole yeast extract, sodium nitrite
smoke flavor, color, oat fiber wheat flour
stiffness Fien = 167.9 £ 34.8 kPa Eien = 79.9 £ 33.0 kPa Fien = 100.3 £ 4.9 kPa Eten = 1155 + 13.2 kPa
Ecom = 222.8 4 33.6 kPa Ecom = 106.3 4+ 15.2 kPa Ecom = 722 £ 8.9 kPa Ecom = 449 £ 4.5 kPa
FEg = 2245 £ 38.6 kPa Eg,, = 101.5 + 20.5 kPa Eg = 69.9 £ 7.9 kPa Ey = 30.0 + 1.7 kPa
FEmean = 205.1 £+ 32.2kPa FEmean = 95.9 £+ 14.1kPa FEmean = 80.8 £ 16.9kPa FEmean = 63.5 £+ 45.7kPa
peak e = 10%, o = 15.4kPa e = 15%, 0 = 10.5kPa e = 15%, 0 = 13.8kPa e = 15%, o0 = 17.6kPa
one-term ws = 33.08 kPa ws = 16.01 kPa wy = 3.21kPa, w3 = 3.92 wy = 0.42kPa, w3 = 16.01
model R? = 0.9810 R? = 0.9588 R? = 0.8366 R? = 0.5310
two-term wy = 12.27 kPa w1 = 6.56 kPa wq = 11.33 kPa w1 = 3.63 kPa
model ws = 20.94 kPa ws = 9.34 kPa w3 = 51.77 kPa w4 = 11.85 kPa, w) =11.83
R? = 0.9799 R? = 0.9624 R? = 0.8464 R? = 0.5311
texture soft 1.74+0.9 hard 4.0+0.8 soft 3.1£1.0 hard 2.24+0.9  soft 4.3+0.6 hard 1.3+0.5 soft 3.4+1.1 hard 2.3£1.0
chewy3.9+1.0 moist1.6+0.8 chewy3.740.9 moist2.3+1.0 chewy2.5+1.3 moist3.7+£0.9 chewy3.341.0 moist4.1+0.9
fatty 1.7+0.8 meat2.5+0.9  fatty 2.44+0.9 meat2.84+1.4 fatty 3.6+1.1 meat3.7+1.4 fatty 4.44+1.1 meat4.9+0.3
AH animal hotdog PH plant hotdog ET extrafirm tofu FT firm tofu
brand Classic Uncured Wiener Signature Stadium Hot Dog Organic Tofu extrafirm Organic Firm Tofu
Oscar Mayer, Kraft Heinz Co Field Roast House Foods 365 by Whole Foods Market
Chicago, IL Seattle, WA Garden Grove, CA Austin, TX
ingredients mechanically separated water, soybean oil, pea pro- water, organic soybeans, cal- water, organic soybeans,
chicken, mechanically sep-  tein, potato starch, contains  cium sulfate, calcium chloride  calcium sulfate, magnesium
arated turkey, pork, water, 2% or less: methylcellulose, chloride
corn syrup; contains 2% or carrageenan, sea salt, brown
less: salt, sodium phosphate, rice protein, faba beam pro-
potassium chloride, sodium  tein, garlic powder, beet pow-
diacetate, sodium benzoate,  der, cane sugar, natural fla-
sodium ascorbate, flavor, vor, wheat gluten, soy pro-
sodium nitrate tein, konjac flour, potas-
sium chloride, xanthan gum,
spices, paprika, red rice flour
stiffness Fien = 58.8 & 3.4 kPa Eien = 39.6 + 4.3kPa Fien = 34.0+ 6.6 kPa Eien = 26.5+ 3.7 kPa
FEcom = 41.0 £ 5.2 kPa FEcom = 41.14 9.2 kPa Ecom = 24.4+ 9.5 kPa Ecom = 30.34+ 3.2 kPa
FEg = 33.0 & 4.5 kPa Eg,, =353+ 7.9 kPa Eg, =241+ 5.7 kPa Eg =223+ 10.1 kPa
Frmean = 44.3 + 13.2kPa FEmean = 38.7 4+ 3.0kPa Fmean = 27.5 + 5.6 kPa FEmean = 26.4 + 4.0kPa
peak e = 35%, 0 = 20.8kPa e = 20%, o = 7.5kPa e = 10%, o = 3.2kPa e = 15%, 0 = 3.5kPa
one-term wy = 2.55kPa, w3 = 2.59 wy = 2.61kPa, wl = 2.35 wy, = 4.42kPa wi = 4.51kPa
model R? = 0.9308 R? = 0.9743 R? = 0.8318 R? = 0.9494
two-term w1 = b5.80kPa wy = 6.22kPa w1 = 4.42kPa wy, = 4.51kPa
model wr = 22.83kPa w3z = 7.25kPa - -
R? = 0.9471 R? = 0.9747 R? =0.8318 R? = 0.9494
texture soft 3.7+1.0 hard 1.84+0.8  soft 3.4£0.9 hard 2.24+0.9 soft 4.54+0.6 hard 1.3+0.6  soft 4.8+0.4 hard 1.0£0.3

chewy3.3+0.9 moist3.8£1.0
fatty 3.84+1.0 meat 3.9+1.3

chewy3.34+1.2 moist3.6+0.8
fatty 3.0+£1.4 meat 3.2+1.3

chewy2.9+1.3 moist4.1+£1.0
fatty 1.94+1.1 meat 1.3+0.6

chewy?2.6+1.3 moist4.0+1.4
fatty 1.54-0.8 meat 1.2+0.4

Products; brands; ingredients; stiffnesses in tension, compression, shear, and mean stiffness; peak strain and stress; discovered best-in-class one- and two-term models, parameters, and goodness of fit; and
texture features soft, hard, chewy, moist, fatty, and meat-like.

with the following best-fit parameters,

TF
PS
ST
AS
AH
PH
ET
FT

¥ = 22.08[I, — 3]
v =16.01[I, — 3]

¥ = 3.21 [exp(3.92[I, — 3]) — 1]
v = 0.42 [exp(16.01[I, — 3]) — 1]
v = 2.55 [exp(2.59[I;, — 3]) — 1]
v = 2.61 [exp(2.35[I, — 3]) — 1]

y= 442 [I, - 3]
v =451 [I, - 3].

Notably, none of the quadratic terms, I f, exp(] %), I exp(I ), describe the
material behavior well, as we conclude from the red squares on the eight
diagonals in Fig. 3.

For the best-in-class two-term models that correspond to the bluest
most term overall, we discover the linear first and second invariant
Mooney Rivlin model™*, wi[I; — 3] + ws[ I, — 3], for tofurky and
plant-based sausage, the linear and quadratic first invariant model,
w[I, — 3]+ w;[I, — 3] for spam turkey and plant-based hotdog, the
linear and exponential quadratic first  invariant  model,
wi[I, — 3]+ wy[exp(wi [I, — 3]*) — 1], for animal sausage, the linear
first and quadratic second invariant model, w,[I, — 3]+ w,[I, — 3]%,
for animal hotdog, and the linear first invariant neo Hooke model”,
wi[I; — 3], for extrafirm tofu and firm tofu, with the following best-fit
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Table 2 | Plant-based and animal meats tested in tension, compression, and shear

TF tofurky PS plant ST spam turkey AS animal sausag

tension compression shear tension compression shear tension compression shear tension compression shear

n=>5 n=38 n=_8 n=>5 n=_8 n=_8 n=2>5 n=_8 n=_8 n =06 n="7 n="7
A Py A Py ol Py A Py A Py ol Py A Py A Py ol Py A Py A Py Y Py
[l [(kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] ([kPa] [] [kPa] [] [kPa] [] [kPa]
1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000
1.005 1320 0.995 -1.512 0.005 0.596 1.008 1.513 0.995 -0.744 0.005 0.250 1.008 1.243 0.995 -0.461 0.005 0.176 1.008 0.980 0.995 -0.216 0.005 0.075
1.010 2532 0.990 -2.633 0.010 1.079 1.015 2648 0.990 -1.370 0.010 0.473 1.015 2.247 0.990 -0.764 0.010 0.325 1.015 1.838 0.990 -0.459 0.010 0.138
1.015 3.599 0.985 -3.765 0.015 1.519 1.023 3.465 0.985 -1.943 0.015 0.670 1.023 3.152 0.985 -1.148 0.015 0.463 1.023 2.659 0.985 -0.618 0.015 0.197
1.020 4550 0.980 -4.836 0.020 1.930 1.030 4.105 0.980 -2.448 0.020 0.851 1.030 3.988 0.980 -1.466 0.020 0.592 1.030 3.452 0.980 -0.827 0.020 0.251
1.025 5429 0.975 -5885 0.025 2.302 1.038 4.653 0.975 -3.003 0.025 1.033 1.038 4.759 0.975 -1.816 0.025 0.714 1.038 4.252 0.975 -1.015 0.025 0.300
1.030 6.257 0970 -6.981 0.030 2.680 1.045 5.164 0.970 -3.481 0.030 1.204 1.045 5.501 0.970 -2.173 0.030 0.831 1.045 5.055 0.970 -1.289 0.030 0.352
1.035 7.048 0.965 -8.031 0.035 3.037 1.053 5613 0.965 -3.959 0.035 1.367 1.053 6.205 0.965 -2.491 0.035 0.949 1.053 5.879 0.965 -1.444 0.035 0.401
1.040 7.787 0.960 -9.023 0.040 3.388 1.060 6.053 0.960 -4.488 0.040 1.526 1.060 6.897 0.960 -2.866 0.040 1.059 1.060 6.706 0.960 -1.699 0.040 0.449
1.045 8.505 0.955 -10.227 0.045 3.740 1.068 6.479 0.955 -5.000 0.045 1.681 1.068 7.577 0.955 -3.118 0.045 1.165 1.068 7.565 0.955 -1.876 0.045 0.495
1.050 9.222 0.950 -11.214 0.050 4.068 1.075 6.893 0.950 -5.454 0.050 1.831 1.075 8.236 0.950 -3.550 0.050 1.267 1.075 8.431 0.950 -2.114 0.050 0.537
1.055 9.910 0.945 -12.339 0.055 4.387 1.083 7.278 0.945 -5.991 0.055 1.977 1.083 8.870 0.945 -3.853 0.055 1.371 1.083 9.308 0.945 -2.288 0.055 0.583
1.060 10.585 0.940 -13.382 0.060 4.698 1.090 7.675 0.940 -6.386 0.060 2.119 1.090 9.489 0.940 -4.267 0.060 1.469 1.090 10.203 0.940 -2.575 0.060 0.625
1.065 11.256 0.935 -14.478 0.065 5.002 1.098 8.064 0.935 -6.945 0.065 2.258 1.098 10.101 0.935 -4.618 0.065 1.565 1.098 11.125 0.935 -2.797 0.065 0.666
1.070 11.904 0.930 -15.581 0.070 5.296 1.105 8.450 0.930 -7.347 0.070 2.394 1.105 10.688 0.930 -4.983 0.070 1.657 1.105 12.056 0.930 -3.038 0.070 0.706
1.075 12.529 0.925 -16.627 0.075 5.595 1.113 8.810 0.925 -7.947 0.075 2.528 1.113 11.233 0.925 -5.367 0.075 1.748 1.113 12.985 0.925 -3.336 0.075 0.747
1.080 13.149 0.920 -17.801 0.080 5.877 1.120 9.168 0.920 -8.405 0.080 2.659 1.120 11.794 0.920 -5.807 0.080 1.834 1.120 13.919 0.920 -3.590 0.080 0.787
1.085 13.757 0.915 -18.819 0.085 6.149 1.128 9517 0.915 -8.872 0.085 2.786 1.128 12.326 0.915 -6.118 0.085 1.919 1.128 14.843 0.915 -3.895 0.085 0.826
1.090 14.329 0.910 -19.956 0.090 6.431 1.135 9.862 0.910 -9.470 0.090 2.912 1.135 12.861 0.910 -6.573 0.090 2.001 1.135 15.784 0.910 -4.154 0.090 0.864
1.095 14.875 0.905 -20.970 0.095 6.703 1.143 10.194 0.905 -9.909 0.095 3.034 1.143 13.376 0.905 -6.932 0.095 2.078 1.143 16.648 0.905 -4.476 0.095 0.902
1.100 15.366 0.900 -22.081 0.100 6.966 1.150 10.479 0.900 -10.433 0.100 3.156 1.150 13.836 0.900 -7.389 0.100 2.152 1.150 17.584 0.900 -4.745 0.100 0.939

AH animal hotdog PH plant hotdog ET extrafirm tofu FT firm tofu

tension compression shear tension compression shear tension compression shear tension compression shear

n=2_8 n="7 =1 n==6 n==06 n==06 n=>5 n=>5 n=>5 n=>5 n="7 n="7
A Py A Py 7 Py A Py A Py 0 Py A Py A Py v Py A Py A Py Y Pry
[l [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa] [] [kPa]
1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000
1.018 1.374 0.995 -0.271 0.005 0.085 1.010 0.679 0.995 -0.256 0.005 0.094 1.005 0.230 0.995 -0.214 0.005 0.063 1.008 0.389 0.995 -0.224 0.005 0.056
1.035 2.352 0.990 -0.456 0.010 0.158 1.020 1.162 0.990 -0.567 0.010 0.166 1.010 0.448 0.990 -0.335 0.010 0.115 1.015 0.685 0.990 -0.422 0.010 0.105
1.053 3.280 0.985 -0.724 0.015 0.221 1.030 1591 0.985 -0.739 0.015 0.240 1.015 0.643 0.985 -0.419 0.015 0.164 1.023 0.927 0.985 -0.582 0.015 0.148
1.070 4.202 0.980 -0.910 0.020 0.282 1.040 2.030 0.980 -0.997 0.020 0.306 1.020 0.839 0.980 -0.593 0.020 0.208 1.030 1.146 0.980 -0.774 0.020 0.186
1.088 5.156 0.975 -1.055 0.025 0.341 1.050 2425 0.975 -1.099 0.025 0.365 1.025 1.021 0.975 -0.649 0.025 0.251 1.038 1.345 0.975 -0.934 0.025 0.226
1105 6.118 0.970 -1.249 0.030 0.397 1.060 2797 0.970 -1.368 0.030 0.427 1.030 1.195 0.970 -0.808 0.030 0.290 1.045 1.536 0.970 -1.039 0.030 0.263
1123 7.035 0.965 -1.431 0.035 0.449 1.070 3.157 0.965 -1.492 0.035 0.484 1.035 1.368 0.965 -0.856 0.035 0.329 1.053 1.720 0.965 -1.219 0.035 0.299
1.140 7.972 00960 -1.627 0.040 0.501 1.080 3.508 0.960 -1.694 0.040 0.538 1.040 1.530 0.960 -1.059 0.040 0.366 1.060 1.892 0.960 -1.320 0.040 0.336
1.158 9.043 0.955 -1.839 0.045 0.550 1.090 3.872 0.955 -1.899 0.045 0.591 1.045 1.690 0.955 -1.122 0.045 0.403 1.068 2.061 0.955 -1.463 0.045 0.367
1.175 10.095 0.950 -1.980 0.050 0.596 1.100 4.225 0.950 -2.088 0.050 0.644 1.050 1.841 0.950 -1.307 0.050 0.435 1.075 2.234 0.950 -1.609 0.050 0.403
1.193 11.161 0.945 -2.239 0.055 0.644 1.110 4.538 0.945 -2.266 0.055 0.691 1.055 1.991 0.945 -1.344 0.055 0.471 1.083 2395 0.945 -1.721 0.055 0.434
1.210 12.233 0.940 -2.404 0.060 0.690 1.120 4.888 0.940 -2.444 0.060 0.741 1.060 2.133 0.940 -1.460 0.060 0.504 1.090 2.546 0.940 -1.840 0.060 0.464
1.228 13.304 0.935 -2.595 0.065 0.735 1.130 5209 0.935 -2.596 0.065 0.789 1.065 2.272 0.935 -1.563 0.065 0.537 1.098 2.692 0.935 -1.992 0.065 0.495
1.245 14378 0.930 -2.817 0.070 0.779 1.140 5571 0.930 -2.854 0.070 0.835 1.070 2.407 0.930 -1.646 0.070 0.568 1.105 2.829 0.930 -2.095 0.070 0.526
1.263 15.378 0.925 -3.064 0.075 0.822 1.150 5.857 0.925 -2.999 0.075 0.880 1.075 2543 0.925 -1.796 0.075 0.599 1.113 2967 0.925 -2.279 0.075 0.556
1.280 16.501 0.920 -3.225 0.080 0.864 1.160 6.219 0.920 -3.306 0.080 0.924 1.080 2.678 0.920 -1.930 0.080 0.629 1.120 3.102 0.920 -2.365 0.080 0.583
1298 17.584 0.915 -3.522 0.085 0.905 1.170 6.556 0.915 -3.394 0.085 0.968 1.085 2.799 0.915 -2.073 0.085 0.659 1.128 3.228 0.915 -2.553 0.085 0.611
1.315 18.661 0.910 -3.696 0.090 0.947 1.180 6.912 0.910 -3.703 0.090 1.009 1.090 2930 0.910 -2.144 0.090 0.688 1.135 3.339 0.910 -2.627 0.090 0.639
1.333 19.718 0.905 -3.946 0.095 0.988 1.190 7.254 0.905 -3.886 0.095 1.051 1.095 3.043 0.905 -2.279 0.095 0.717 1.143 3.449 0.905 -2.797 0.095 0.666
1.350 20.771 0.900 -4.159 0.100 1.027 1.200 7.500 0.900 -4.098 0.100 1.090 1.100 3.167 0.900 -2.469 0.100 0.745 1.150 3.545 0.900 -2.876 0.100 0.693

Stresses are reported as means from the loading and unloading curves of n samples tested intheranges 1.0 < A < A, fortension, 1.0> 1> 0.9 forcompression 0.0 <y < 0.1 for shear. The maximum tensile stretch
Amax is product dependent and denotes the stretch before failure occurs, so before the stress-stretch curve displays a significant drop.

parameters,

TF = 12.27[I, — 3]+20.94[I, — 3]

PS y=6.56[I, — 3]+ 9.34[I, — 3]

ST y=11.33[I, — 3]+ 51.77[[, — 3]

AS  y = 3.63 [I, — 3]+ 11.85[exp(11.83[], — 3]*)—1]
AH v = 5.80 [I, — 3]422.83[I, — 3]

PH y=622][, —3]+ 7.25[, — 3]

ET y= 442 [, —3]

FT y= 451 [I, —3]

Notably, all eight models contain the classical linear first invariant neo
Hooke term™, [I; — 3]. All eight products, except for animal sausage,
show the same four dark red corners patterns, which indicate that the I 2
exp(I?), I3, exp(I3) terms provide the worst fit to the data. From the
nearly identical error maps, we conclude that tofurky and plant-based
sausage have a similar mechanical behavior, and so do plant-based
hotdog, extrafirm tofu, and firm tofu. In contrast, the three animal
products, spam turkey, animal sausage, and animal hotdog, have the
most distinct error maps, suggesting that their mechanical behavior is
notably different. Interestingly, for both tofu products, the model fit does
not improve by adding a second term, and their best-in-class two-term
model is identical to their best-in-class one-term model: the classical neo

Hooke model”. To visualize how well these discovered models
approximate to our mechanical tests, we color-code the stress
contributions of the individual terms and illustrate them together with
the raw data in Fig. 4. The eight columns correspond to each of the eight
products, and the rows represent the tension, compression, and shear
experiments. The dark red term that consistently appears in all eight
models is the classical linear first invariant neo Hooke term™, wy [ I; —
3 ]. In addition, both tofurky and plant-based sausage have a turqouise
linear second invariant Blatz Ko term”, ws [ I, — 3 ], spam turkey and
plant-based hotdog have an orange quadratic first invariant term,
w, [I, — 3%, animal sausage has a yellow exponential quadratic first
invariant term, w, exp(wi[I; — 3]*) — 1, animal hotdog has a blue
quadratic second invariant term, w,, [I, — 3]?, and extrafirm tofu and
firm tofu have no additional second term.

Table 1 summarizes the discovered best-in-class one- and two-term
models and parameters. For the Mooney Rivlin type models, we can
directly translate the network weights into the shear modulus y using =
2wy + 2 ws. So, the shear moduli of the two stiffest products, tofurky and
plant-based sausage, are 66.42 kPa and 31.80 kPa, and the shear moduli
of the two softest products, extrafirm and firm tofu, are 8.84 kPa and 9.04
kPa. Interestingly, the shear modulus for firm tofu is slightly larger than
for extrafirm tofu. We can translate these shear moduli ¢ into Young’s
moduli, E = 2 [1 + v] y, by assuming a Poisson’s ratio of v = 0.5 for
perfect incompressibility, and we find Young’s moduli of 199.25 kPa,
95.40 kPa, 26.53 kPa, and 27.08 kPa for tofurky, plant-based sausage,
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Fig. 1 | Mechanical testing. Tofurky, plant-based
sausage, spam turkey, animal sausage, animal hot-
dog, plant-based hotdog, extrafirm tofu, and firm
tofu tested in tension, compression, and shear.
Stresses are reported as means * standard error of
the means of n samples tested in the ranges
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extrafirm tofu, and firm tofu. These values are in excellent agreement
with the mean stiffnesses from our linear regression in Fig. 2h, 205.09
kPa, 95.89 kPa, 27.48 kPa, and 26.35 kPa for tofurky, plant-based sau-
sage, extrafirm tofu, and firm tofu. For the other four products, spam
turkey, animal sausage, animal hotdog, and plant-based hotdog, we

discover novel constitutive models with quadratic or exponential terms
that do not directly translate into Young’s moduli. Interestingly, all three
animal products are in this group, indicating that animal meat, even
when highly processed, has a more complex mechanical behavior than
plant-based meat.
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Fig. 3 | Model discovery. Discovered one-term
models, on the diagonal, and two-term models, off-
diagonal, for tofurky, plant sausage, spam turkey,
animal sausage, animal hotdog, plant hotdog,
extrafirm tofu, and firm tofu. All models are made
up of eight functional building blocks: linear,
exponential linear, quadratic, and exponential
quadratic terms of the first and second strain
invariants I; and L. The color code indicates the
quality of fit to the tension, compression, and shear
data from Table 2, ranging from dark blue, best fit, to
dark red, worst fit.
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Fig. 4 | Stress as a function of stretch or shear
strain for the best-in-class two-term model. We
train the constitutive neural network in Fig. 8
simultaneously with the tension, compression, and
shear data from Table 2, and apply L,-regularization
to reduce the number of terms to two according to
Table 1 and Fig. 3. The color-coded regions desig-
nate the contributions of the eight model terms to
the stress function according to Fig. 8. The coeffi-

cients of determination R’ indicate the goodness
of fit.
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Food texture survey

To explore to which extent our perception of taste aligns with our dis-
covered mechanical signatures, we survey n = 16 participants to char-
acterize the textural properties of our eight products after eating a small
sample. Before the texture survey, all participants perform two baseline

surveys: the Food Neophobia Survey, which probes how open partici-
pantsare to trying new foods™, and the Meat Attachment Questionnaire,
which probes how attached participants are to eating meat™. From the
results in Fig. 10, we conclude that our participants are very open to
trying new food and are ambivalent to having meat in their diet. All
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Fig. 5| Food texture survey. Tofurky, plant sausage, soft

hard brittle

spam turkey, animal sausage, animal hotdog, plant
hotdog, extrafirm tofu, and firm tofu profiled for
twelve texture features. Participants eat cooked
samples of all eight products, and rank their texture
feature on a 5-point Likert scale ranging from 5 for
strongly agree to 1 for strongly disagree. Each survey
question asks “this food is [texture feature]” with
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texture features soft, hard, brittle, chewy, gummy,
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participants then rank each meat product on a 5-point Likert scale,
ranging from 5 for strongly agree to 1 for strongly disagree, based on how
well each sample agrees with twelve traditional texture features®”.
Figure 5 summarizes the results for all twelve features, with the eight
products ordered by the level that participants agreed to most. Blue
colors indicate plant-based products and red colors indicate animal
products. Interestingly, six of the twelve texture features, brittle, gummy,
viscous, springy,sticky, and fibrous, display variations that are all well
below 1.3, and not statistically significant across the eight products. This
suggests that there is no perceived difference between plant-based and
animal products in these six texture features. The other six texture fea-
tures, soft, hard, chewy, moist, fatty, and meat-like, display significant
variations, all but chewy well above 2.5 across the eight products. In
agreement with our intuition, soft and hard are perceived as inversely
correlated, with a Spearman rank correlation coefficient of p = — 0.9286
and p = 0.0022, with the first, second, third, fourth, and eighth products
on the softness scale, firm tofu at 4.8 + 0.4, extrafirm tofu at 4.5 + 0.6,
spam turkey at 4.3 + 0.6, animal hotdog at 3.7 £ 1.0, and tofurky at 1.7 +
0.9, scoring inversely on the hardness scale and the fifth, sixth, and
sevenths products, animal sausage at 3.4 + 1.1, plant-based hotdog at
3.4+ 0.9, and plant-based sausage at 3.1 * 1.0, scoring almost identically
for both, soft and hard. Strikingly, fatty and meat-like are perceived as
correlated, with a Spearman rank correlation coefficient of p = 0.9762
and p = 0.0003, with the three animal products, animal sausage at 4.4 +
1.1 and 4.9 + 0.3, animal hotdog at 3.8 + 1.0 and 3.9 + 1.3, and spam
turkey at 3.6 + 1.1 and 3.7 + 0.4, scoring first, second, and third in both
categories. The dominance of animal sausage is interesting, as it is the
least complex of the animal products. The three plant-based products,
plant-based hotdog, plant-based sausage, and tofurky, score fourth,
fifths, and sixth. Naturally, the two tofu products, extrafirm tofuat 1.9 +
1.1and 1.3 £ 0.6 and firm tofu at 1.5 + 0.8 and 1.2 * 0.4, score by far the
lowest in the plant-based category. The animal meats are the three
highest ranked for fattiness with plant-based sausage and plant-based
hotdog next. Both tofu products and tofurky rank much lower. All

products rank fairly highly for moistness, except for plant-based sausage
and tofurky. Most notably, the food tasting survey produces nearly
identical stiffness rankings as the mechanical testing, with a Spearman
rank correlation coefficient of p = 0.8333 and p = 0.0154.

Discussion

We tested five plant-based products, tofurky, plant-based sausage, plant-
based hotdog, extrafirm and firm tofu, and three animal products, spam
turkey, animal sausage, and animal hotdog, in tension, compression, and
shear. We focused on highly processed plant-based and animal meats,
assuming that all products are nearly isotropic and homogeneous, and, as
our study confirms, easy and reproducibly to test. We performed a total of
157 mechanical tests and 288 neural network simulations. Our goal was to
probe: To which extent do plant-based meat products mimic the mechanical
signature of animal meat?, not just in a double-compression texture pro-
filing analysis, but across the entire three-dimensional spectrum. While our
study is limited by our assumption of isotropy and by probing raw products
at room temperature, it uncovers several interesting and unexpected results:

Plant-based sausage and hotdog succeed in mimicking the
mechanical signature of their animal counterparts

Our results confirm that our mechanical tension, compression, and shear
tests are well reproducible with narrow errors and standard deviations, as we
conclude from Fig. 1 and Table 1. From the mean tension, compression, and
shear curves in Fig. 2a—d, we conclude that plant-based sausage and hotdog
consistently lie in the middle range of all eight products, and place closer to
the three animal meats than the two tofu products. When comparing at the
stiffnesses in Fig. 2e-h, plant-based sausage and hotdog range from E = 35.3
kPato E=106.3 kPa and fall in a comparable category as animal sausage and
hotdog ranging from E = 26.8 kPa to E = 115.5 kPa. In contrast, tofurky
ranges from E = 167.9 kPa to E = 224.5 kPa and is consistently more than
twice as stiff, while the two tofu products range from E =22.3 kPa to E = 34.0
kPa and are about half as stiff. Our discovered stiffness values lie well within
the range of the reported compression stiffnesses for sausage of E = 120 kPa,
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turkey of E = 90 kPa, and chicken of E = 40 kPa™ using traditional texture
profiling analysis”’; the reported tensile stiffnesses for chicken of E = 360 kPa
and soy protein of E = 100 kPa using tensile testing’’; and our previous study
of tofurky of E = 282 kPa, plant-based chicken of E = 108 kPa, and real
chicken of E = 87 kPa using tension, compression, and shear testing™. Our
results suggests that, when looking for vegetarian options, we no longer have
to rely on tofu alone. Tofu, a protein- and vitamin-rich product of curdled
soy milk, was first produced nearly 2000 years ago in China, and has since
then become a popular substitute for meat worldwide™. Today, tofu comes
in various stiffnesses: soft, silken, regular, firm, and extrafirm. Its stiffness is
tunable by its water content that ranges from 85-90% for soft to 40%-50%
for extrafirm. In our study, in Table 1 and Figs. 1 and 2, even firm and
extrafirm tofu consistently display the lowest stiffness across all products
and tests, and perform poorly in reproducing the mechanical properties of
animal meat. In contrast, plant-based sausage and hotdog successfully
mimic the mechanical signature of their animal counterparts. Interestingly,
market analyses predict that, of all different plant-based meat products,
burgers, patties, ground, nuggets, and sausages, the sausage market will
experience the highest growth rate within the next decade™. As one of the
most common protein-based breakfast foods, plant-based sausage comes in
a variety of flavors and is in high demand worldwide. Yet, as we can see in
Table 1, the growing success of plant-based sausage and hotdog comes at a
price: a high sodium content, added sugars, and long list of additives and
ingredients™.

The more complex the product, the more complex its mechanics
In this study, we perform the first fully three-dimensional characterization
of eight different plant-based and animal meat products. We analyze the
data using a constitutive neural network with Ly-regularization™ to discover
the best one- and two-term models that simultaneously fit the tension,
compression, and shear data for each product. Using the error plots in Fig. 3
and the discovered weights in Table 1, we can easily write out the free energy
functions that best fit each meat. Strikingly, the oldest and simplest of all
models, the classical widely used neo Hooke model* in terms of only I is the
best model for firm and extrafirm tofu, the two softest, oldest, and simplest
products with the shortest list of ingredients: water, soybeans, calcium
sulfate, and calcium or magnesium chloride. The popular Mooney Rivlin
model”* in terms of I} and I is the best model for tofurky and plant-based
sausage, the two stiffest products. Interestingly, we discover three novel,
nonlinear material models for the three highly processed animal meats:
animal sausage in terms of I, and exp(I3), animal hotdog in terms of I; and
I3, and spam turkey in terms of I, and I?. This suggests that processed
animal meat has a complex mechanical behavior that is not appropriately
acknowledged by common existing constitutive models. Surprisingly, the
degree of complexity of our discovered material models, from one-term to
two-term and from linear to quadratic to exponential, mimics the com-
plexity of the ingredient list, from a few pure ingredients for tofu to a wide of
variety additives and ingredients for sausage and hotdog. Discovering
product-specific best-fit models from data would have been unthinkable
one or two decades ago, and is only now made possible by recent devel-
opments in constitutive neural networks, machine learning, and artificial
intelligence™. This suggests that, instead of using a trial-and-error approach
to improve the texture of plant-based meat, we could envision using gen-
erative artificial intelligence to scientifically generate recipes for plant-based
meat products with precisely desired properties.

Animal products are stiffer in tension than in compression, while
plant-based products are not

An insightful mechanical property that is impossible to quantify by a
double-compression texture profiling analysis alone™ is the tension-
compression asymmetry. Our combined tension, compression, and shear
tests in Figs. 1 and 2k reveal that the three animal meats display the highest
tension-compression asymmetry, with 2.41 for animal sausage, 1.41 for
animal hotdog, and 1.39 for spam turkey. Interestingly, all plant-based
products, except for extrafirm tofu, are either close to symmetric or stiffer in

compression than in tension with values smaller than one, with 1.03 for
plant-based hotdog, 0.95 for firm tofu, 0.79 for plant-based sausage, and 0.70
for tofurky. Similarly, all three animal meats rank amongst the four products
with the highest failure stress of 26.0 kPa for animal hotdog, 21.4 kPa for
animal sausage, and 16.3 kPa for spam turkey, in 2i, while all plant-based
products, except for tofurky, have significantly lower failure stresses.
Understanding the mechanical properties of plant-based protein products is
a rapidly growing field of research®. Naturally, the tensile, compressive, and
shear stiffnesses in Fig. 2 are highly sensitive to plant source and
processing”, and successful formulations often benefit from protein
synergies, such as soy and wheat or pea and potato™. In addition, the
complex ingredient lists in Table 1 suggest that tunability may require other
non-protein components such as oil or starch. One known short-coming of
plant-based meats is that they lack adipose tissue, which contributes to the
mouthfeel, appearance, and texture of meat’, and these additives could
address this limitation. The quest for finding the best ingredients raises an
interesting question: Instead of applying our technology only to a forward
analysis, where we test an existing product and characterize its mechanical
features, can we perform an inverse analysis, where we prescribe desired
mechanical features and determine the required ingredient list? Our study
demonstrates that constitutive neural networks provide a powerful tool to
learn functional mappings between products and texture”. What if we could
expand this technology to learn inverse mappings between texture and
ingredients to fine-tune the mechanical signature of plant-based meat?

Our perception of stiffness matches mechanical testing

As we conclude from the food texture survey in Fig. 5, the rankings for
softness and hardness closely match the ranking for stiffness in Fig. 2h:
Tofurky ranks the least soft, the hardest, and the stiffest, while firm and
extrafirm tofu rank the softest, the least hard, and the least stiff. The results of
our survey suggest that some textural features are easier for the participants
to delineate than others. For example, the participants perceived significant
differences in soft, hard, chewy, fatty, moist, and meat-like across all eight
products, but were unable to delineate products by brittle, gummy, viscous,
springy, sticky, and fibrous. The lack of variation in these six features can be
explained, atleast in part, by a similar perception across all eight products, or
by a lack of clarity of their interpretation.

In summary, our results confirm that in seeking to design plant-based
alternatives that truly mimic the sensory experience of animal meat, it is not
sufficient to solely rely on traditional one-dimensional double compression
tests. Instead, we suggest to consider fully three-dimensional testing to
discover the true material behavior across a broad loading range, and
understand the subtle mechanical differences that may trigger differences in
our perception of taste. Our study shows that the one-dimensional stiffness
of plant-based and animal sausage and hotdog is nearly identical, but their
three-dimensional characteristics are not. Our approach to automatically
discover the mechanics of plant-based and animal meat with constitutive
neural networks could be a starting point towards using generative artificial
intelligence to reverse-engineer formulas for plant-based meat products
with customer-friendly tunable properties. We hope that the present study
encourages others, especially in academia or nonprofit organizations who
can freely share their results, to undertake complementary studies and
contribute to an open source data base to accelerate discovery and inno-
vation towards a more efficient and sustainable global food system.

Methods

Mechanical testing

We test five plant-based meat products: ham style roast tofurky (Tofurky,
Hood River, OR), artesian vegan frankfurter plant sausage (Field Roast,
Seattle, WA), signature stadium plant hotdog (Field Roast, Seattle, WA),
organic firm tofu (365 by Whole Foods Market, Austin TX), organic
extrafirm tofu (House Foods, Garden Grove, CA). For comparison, we also
tested three animal meat products: wieners classic animal hotdog (Oscar
Meyer, Kraft Heinz Co, Chicago, IL), oven roasted spam turkey (Spam,
Hormel Foods Co, Austin, MN), and turkey polska kielbasa animal sausage
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Fig. 6 | Sample preparation and mechanical test-
ing. a Samples are cut using a 3D printed guideand a
brain sectioning knife to obtain uniform dimensions
of 1 x 1 x 2 cm’ for tensile testing. b Samples are
super glued to glass microscope slides. ¢ Samples are
left to set for 30-45 minutes for the glue to adhere.
d Cylindrical samples of 8 mm diameter and 1 cm
height are cored using a biopsy punch and loaded
into a rheometer for compression and shear testing
using parallel plates with sandpaper on both sur-
faces. e Tension samples are loaded into 3D printed
grips, which are compatible with an Instron testing
device. f Tension test is run until the sample fails.
a, b, d show animal sausage and c, e, f show animal
hotdog.
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Fig. 7 | Design of mechanical device for tensile
testing. Front, right, and isometric views of our
customized 3D printed device to hold glass slides
during tensile testing. Two holders need to be
printed to complete the set-up. A standard micro-
scope glass slide fits into the 3 mm slot; it mounts
and unmounts easily for high throughout testing. All
dimensions are in mm.
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(Hillshire Farm, New London, WI). Table 1 summarizes the ingredients of
all eight products. For each meat type, we test at least n = 5 samples in
tension, compression, and shear. Figure 6 documents our sample pre-
paration and our mechanical testing.

Sample preparation

We prepare the samples following our established protocols™. Figure 6b,
¢, e, fillustrate our tension tests, for which we use a custom 3D printed
cutting guide and brain sectioning knife to prepare samples of 1 x 1 x 2
cm®. We super glue the samples to glass microscope slides and wait for
30 min until the glue is fully cured. During curing, we drape a damp
paper towel over the samples to keep them hydrated. For the com-
pression and shear tests, we prepare cylindrical samples of 8 mm dia-
meter and 1 cm height using a biopsy punch to extract full-thickness
cores from the center of each material, and store the samples in a damp
paper tower until testing.

Sample testing

For all three modes, tension, compression, and shear, we test the samples
raw and at room temperature at 25 °C*. We perform all uniaxial tension
tests using an Instron 5848 (Instron, Canton, MA) with a 100N load cell, see

Fig. 6e. We use 3D printed custom grips to rapidly mount and unmount the
microscope slides for high throughput testing. Figure 7 shows the part
dimensions to create these grips. We mount each sample in the grips, apply a
small pre-load, and calibrate the initial gauge length L. We determine the
pre-load magnitude for each sample individually. We define pre-load as the
minimum load needed to remove any slack, based on visual inspection of a
force-displacement curve starting with a fully unloaded specimen, generally
on the order of 0.5 N. We then increase the tensile stretch quasi-statically at a
rateof A\ = 0.2%/s for ¢ = 50 s, until the sample fails. We perform all uniaxial
compression and shear tests using an AR-2000ex torsional rheometer (TA
Instruments, New Castle, DE), see Fig. 6d. For the compression tests, we
mount the sample, apply a small pre-load, and calibrate the initial gage
length L. We determine the pre-load for each sample based on its loading
curve, with values on the order of 0.5 N. We then increase the compressive
stretch quasi-statically ata rate of A = 0.2%/s for t="50s, up to a total stretch
of A = 0.9. For the shear tests, we apply a 10% compressive pre-load and
calibrate the initial gage length L. We then rotate the upper plate quasi-
statically at a shear rate of y = 0.2%/s for t = 50 s, up to a total shear of y =
0.1. To prevent slippage of the samples during the shear tests, we use a
sandpaper-covered base plate of 20 mm diameter and a sandpaper-covered
top plate of 8 mm diameter.
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Analytical methods and data processing

For each sample and each test mode, we use MATLAB (Mathworks, Natick,
MA, USA) to smooth the curves using smoothingspline and
SmoothingParam = 1. We interpolate each smooth curve over 21
equidistant points in the ranges 1.0<A <A . for tension, 1.0 =1 > 0.9 for
compression, and 0.0 < y < 1.0 for shear. For each meat product, we select
Amax In tension as the maximum stretch in the hyperelastic regime, the
loading range within which we observe no visible failure for any of the
samples. Finally, we average the interpolated curves to obtain the mean and
standard error of the mean for each product and report the data in Table 2.

Stiffness

For each testing mode, we extract the stiffness of each product from the data
in Table 2 using linear regression. We convert that the tension and com-
pression data {A; Py} into strain-stress pairs {&; o}, where e = A — 1 is the
strain and 0= Py is the stress. We postulate a linear stress-strain relation, o=
E - & and use linear regression to determine the tensile and compressive
stiffnesses E,,, E.om = (€ - 6)/(€ - €). Similarly, we rewrite the shear data,
{y; P12}, as shear strain-stress pairs {y; 7}, where y is the shear strain and 7=
Py, is the shear stress. We postulate a linear shear stress-strain relation, 7=y
- 9, convert the shear modulus g into the shear stiffness, Eg,, =2 [1+v] yu=
3u, and wuse linear regression, to determine the shear stiff-

ness Eg. =3(y-7)/(y - y).

Kinematics

We analyze all three testing modes combined using finite deformation
continuum mechanics***’. During testing, particles X of the undeformed
sample map to particles, x = ¢(X), of the deformed sample via the defor-
mation map ¢. Similarly, line elements of the dX of the undeformed sample
map to line elements, dx = F - dX, of the deformed sample via the defor-
mation gradient, F = Vy¢ = ZLI A;n; ® N,. Its spectral representation
introduces the principal stretches A; and the principal directions N; and n; in
the undeformed and deformed configurations, where F - N; = An;. We
assume that all meat samples are isotropic and have three principal invar-
fants, I, =A7+A+1; and L, =AM +AA+A]A;  and
I; = A} A3 A2 = J2, which are linear, quadratic, and cubic in terms of the
principal stretches squared. We also assume that all samples are perfectly
incompressible, and their third invariant always remains equal to one, I; = 1.
The remaining two invariants, I; and I,, depend on the type of experiment.

Constitutive equations

Constitutive equations relate a stress like the Piola or nominal stress P, the
force per undeformed area that we measure during our experiments, to a
deformation measure like the deformation gradient F**. For a hyperelastic
material that satisfies the second law of thermodynamics, we can express the
Piola stress, P = dy(F)/0F — p F ', as the derivative of the Helmholtz free
energy function y(F) with respect to the deformation gradient F, modified
by a pressure term, — p F ', to ensure perfect incompressibility. Here, the
hydrostatic pressure, p = —1 P : F, acts as a Lagrange muiltiplier that that
we determine from the boundary conditions of our experiments. Instead of
formulating the free energy function directly in terms of the deformation
gradient y(F), we can express it in terms of the invariants, y(I;, I,), and
obtain the following expression, P = dy/ol, - dI;/0F + oy/ol, - dl,/0F
—pF.

Constitutive neural networks

Motivated by these kinematic and constitutive considerations, we reverse-
engineer our own constitutive neural network that satisfies the conditions of
thermodynamic consistency, material objectivity, material symmetry,
incompressibility, constitutive restrictions, and polyconvexity by design®*.
Yet, instead of building these constraints into the loss function, we hardwire
them directly into our network input, output, architecture, and activation
functions** to satisfy the fundamental laws of physics. Special members of
this family represent well-known constitutive models, including the neo
Hooke”, Blatz Ko™, Mooney Rivlin™*, and Demiray” models, for which

the network weights gain a clear physical interpretation**"’. Specifically, our
constitutive neural network learns a free energy function that is para-
meterized in terms of the first and second invariants. It takes the defor-
mation gradient F as input, computes the two invariants, I; and L, raises
them to the first and second powers, (<) and (o)’, applies either the identity or
exponential function, (o) and exp(e), and summarizes all eight terms in the
strain energy function v as the network output. Figure 8 illustrates our
network with n = 8 nodes, with the following eight-term free energy func-
tion,

vy, L) =w [, —3] +w,
+ws [l =3P +w,
+wsll, —3] +ws
+w; [, = 3P +wy

exp(wi[l; —3]) — 1]
exp(wi[l, — 31%) — 1]
exp(wg[l, — 3]) — 1]
exp(wi[l, — 3F) — 1],

—_— — — —

where w = [ wy, Wy, W3, Wy, Ws, We, W, wg | and w* = [w}, wi, w§, wi] are
the network weights. From the derivative of the free energy, we calculate the
stress,

P= [w, + w, exp(w;[I, — 3])
+ 2 [I; — 3][w; + w, exp(wi[I; — 3])]19L, /OF
+ [ws + we exp(wWi[l, — 3])

+ 2 [I, — 3][w, + wy exp(wi[I, — 3191191, /9F,

where the derivatives of the invariants, dI;/0F and 0L/dF, depend on the
type or experiment. During training, our network autonomously discovers
the best subset of activation functions from 2° — 1 = 255 possible combi-
nations of terms. At the same time, it naturally trains the weights of the less
important terms to zero.

Uniaxial tension and compression

In the tension and compression experiments, we apply a stretch A = I/L, that
we calculate as the ratio between the current and initial sample lengths / and
L. We can write the deformation gradient F in matrix representation as

A0 0
F=|0 1/¥/A 0 with A =1I/L.
0 0 1/VA

In tension and compression, the first and second invariants and their
derivatives are I; =A* 4 2/A and I, = 21 + 1/A*with 9,J; =2 A — 2/Aand 9,1,
=2 — 2/)’. Using the zero normal stress condition, P,, = P33 = 0, we obtain
the explicit expression for the uniaxial stress, P;; = 2 [A — 1/A*] dy/0I; +
2 [1 — 1/A’] 9y/dL,, which we can write explicitly in terms of the network
weights w and w,

Py=2 [/\ - 1//\2} [W1 + w, exp(wj[l; — 3])
+2 [ =3] [ws+wyexpwill, = 31)]]
+2 [1 - 1//\3} [ws + we exp(wg[l, — 3])
+2 [ =3] [w, +wyexp(wi[l, — 3P)]]-

Simple shear

In the shear experiment, we apply a torsion angle ¢, that translates into the
shear stress, y = r/L ¢, by multiplying it with the sample radius rand dividing
by the initial sample length L. We can write the deformation gradient F in

npj Science of Food | (2024)8:94

10


www.nature.com/npjscifood

https://doi.org/10.1038/s41538-024-00330-6

Article

wi

(=)

Fig. 8 | Constitutive neural network. Isotropic, perfectly incompressible con-
stitutive artificial neural network with two hidden layers and eight terms. The net-
work takes the deformation gradient F as input and calculates its first and second
invariant terms, [I; — 3] and [I, — 3]. The first layer generates powers of these
invariants, ()" and (¢)*, and the second layer applies the identity and the exponential
function to these powers, (o) and exp(e). The strain energy function y(F) is a sum of
the resulting eight terms. Its derivative defines the Piola stress, dy(F)/0F, whose
components, Py, or Py, enter the loss function to minimize the error with respect to
the tension, compression, and shear data. By minimizing the loss function, the
network trains its weights w and w" and discovers the best model and parameters to
explain the experimental data.

animal hotdog, A,., = 1.1 animal hotdog, A, = 1.35
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Fig. 9 | Model discovery for animal hotdog. Discovered one-term models, on the
diagonal, and two-term models, off-diagonal, using tensile stretches up to 10%
versus up to the peak stress of 35%. All models are made up of eight functional
building blocks: linear, exponential linear, quadratic, and exponential quadratic
terms of the first and second strain invariants I; and I,. The color code indicates the
quality of fit to the tension, compression, and shear data from Table 2, ranging from
dark blue, best fit, to dark red, worst fit. The larger stretch range of 35% provides a
clearer distinction of the quality of fit for the individual models.

matrix representation as

with y=r/L¢.

eo |

Il
S O
o o~ =
— o O

In shear, the first and second invariants and their derivatives are I, = 3 + y
and I, = 3 4 y* with 0,I; = 2y and 9,I, = 2'y. We obtain the explicit
expression for the shear stress, Py, = 2 [oy/dl; + 81///812] y, which we can
write explicitly in terms of the network weights w and w’,

P,=2y [W1 + w, exp(w3[I; — 3])
+ 2 [I; = 3][w; + w, exp(wj[l; — 3]2)]}
+2y [Ws + we exp(wg[l, — 3])
+ 2 [I, = 3][w; + wy exp(wi[I, — 3]))]].

Loss function
Our constitutive neural network learns the network weights, w and w, by
minimizing the loss function L that penalizes the mean squared error, the
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Fig. 10 | Participant scores for the Food Neophobia Survey and Meat Attachment
Questionnaire. The Food Neophobia Survey uses a 7-point Likert scale with 10
questions so the light blue shaded range goes from 10 (neophilic, open to trying new
foods) to 70 (neophobic, not open to trying new foods)*. The Meat Attachment
Questionnaire uses a 5-point Likert scale with 16 questions so the light orange range
goes from 16 (unattached to eating meat) to 80 (very attached to eating meat)*. The
box-and-whisker plots of the minimum, first quartile, median, third quartile, and
maximum participant scores are plotted in dark blue and dark orange for the Food
Neophobia Survey and Meat Attachment Questionnaire, respectively. The black
dots show individual scores.

L,-norm of the difference between model and data, divided by the number
of data points in tension, compression, and shear,
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We train the network by minimizing the loss function with the ADAM
optimizer, a robust adaptive algorithm for gradient-based first-order
optimization using the tension, compression, and shear data for all eight
meat products from Table 2.

Best-in-class modeling

Instead of looking for the best possible fit of the models to the experimental
data, we seek to discover meaningful constitutive models that are inter-
pretable and generalizable*’, models that have a sparse parameter vector with
a limited number of terms®. From combinatorics, we know that our net-
work can discover 2® — 1 =255 possible models, 8 with a single term, 28 with
two, 56 with three, 70 with four, 56 with five, 28 with six, 8 with seven, and 1
with all eight terms. For practical purposes, we focus on the the 8 one-term
models and the 28 two-term models, set all other weights to zero, and
discover the non-zero weights that characterize the active terms. We sum-
marize the results in a color-coded 8 x 8 error plot, as the average of the
mean squared error across the tension, compression, and shear data, and
report the parameters of the best-in-class one- and two-term models in
Table 1. Motivated by the notable differences in the discovered models for
tensile stretches up to 10% versus 35% in Fig. 9, we decide to use the full
tension data, not just the 10% stretch.
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Food texture survey

We prepare bite-sized samples of the eight products, five plant-based,
tofurky, plant-based sausage, plant-based hotdog, extrafirm tofu, and firm
tofu, and three animal-based, spam turkey, animal sausage, and animal
hotdog. We bake all samples in an oven until the plant-based products sre
sufficiently warm, and the animal products reach a safe internal temperature
for eating. We do not add any sauces or condiments, except for a small bit of
oil to prevent excess sticking to the parchment paper. We keep the samples
warm until serving. We recruit n = 16 participants to participate in three
surveys: the ten-question Food Neophobia Survey” and the sixteen-
question Meat Attachment Questionnaire™, see Fig. 10, and our own Food
Texture Survey. We instruct each participant to eat a sample of each meat
product and rank its texture features according to our survey. The survey
uses a 5-point Likert scale with twelve questions. Each question starts with
“this food is ...”, followed by one of the following features***: soft, hard,
brittle, chewy, gummy, viscous, springy, sticky, fibrous, fatty, moist, and meat-
like. The scale ranges from 5 for strongly agree to 1 for strongly disagree. This
research was reviewed and approved by the Institutional Review Board at
Stanford University under the protocol IRB-75418.

Data availability
The data are available in Table 2 as well as at https://github.com/
LivingMatterLab/CANN.

Code availability
The constitutive network code is available at https:/github.com/
LivingMatterLab/CANN.
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