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Abstract

Soft materials play an integral part in many aspects of modern life including autonomy, sustainability, and human health,
and their accurate modeling is critical to understand their unique properties and functions. Today’s finite element analy-
sis packages come with a set of pre-programmed material models, which may exhibit restricted validity in capturing the
intricate mechanical behavior of these materials. Regrettably, incorporating a modified or novel material model in a finite
element analysis package requires non-trivial in-depth knowledge of tensor algebra, continuum mechanics, and computer
programming, making it a complex task that is prone to human error. Here we design a universal material subroutine, which
automates the integration of novel constitutive models of varying complexity in non-linear finite element packages, with
no additional analytical derivations and algorithmic implementations. We demonstrate the versatility of our approach to
seamlessly integrate innovative constitutive models from the material point to the structural level through a variety of soft
matter case studies: a frontal impact to the brain; reconstructive surgery of the scalp; diastolic loading of arteries and the
human heart; and the dynamic closing of the tricuspid valve. Our universal material subroutine empowers all users, not solely
experts, to conduct reliable engineering analysis of soft matter systems. We envision that this framework will become an

indispensable instrument for continued innovation and discovery within the soft matter community at large.

Keywords Constitutive modeling - Finite element method - Soft matter - Material modeling - Tissue mechanics

1 Motivation

Understanding the mechanical behavior of soft matter is
pivotal across various scientific and engineering domains,
ranging from biophysics, over soft robotics, to biomedical
and material science engineering. Biological materials,
composites, polymers, foams, and gels all exhibit complex
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non-linear mechanical behaviors and functions, which result
from the intrinsic architecture and interactions of their con-
stituent molecules or particles. To characterize this behavior,
a multitude of constitutive material models have been pro-
posed in the literature [1].

Finite element analysis provides a versatile and pow-
erful framework to evaluate these highly nonlinear mate-
rial models and predict their mechanical response within
complex geometries and under various loading conditions.
Most contemporary finite element software packages offer
an extensive number of standard isotropic and anisotropic
hyperelastic material models, including neo-Hooke [2],
Mooney Rivlin [3, 4], Ogden [5], or Yeoh [6]. However,
the implementation of newly discovered constitutive models
requires the definition of novel material model subroutines
or plugins, which map the computational domain’s second-
order kinematic deformation gradient tensor to a second-
order Cauchy stress tensor [7]. These material subroutines
are evaluated within every finite element, at each integration
point, within every time step, at each Newton iteration.

Unfortunately, the efficient integration of novel constitu-
tive models into non-linear finite element software packages
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is a complex task [8, 9]. The user needs to derive and imple-
ment explicit forms of the second-order Cauchy stress ten-
sor and the fourth-order spatial elasticity tensor [10]. The
derivation and coding of these complicated tensorial expres-
sions can be an extremely hard task [11], and requires a
non-trivial deep understanding of tensor algebra, continuum
mechanics, computational algorithms, data structures, and
software architecture [12]. Non-surprisingly, such endeavors
are highly subject to human errors [13]. This high degree of
effort and risk of human error when integrating novel con-
stitutive models in finite element packages limits its use to
expert specialists, and, as such, hampers research progress,
dissemination, and sharing of models and results amongst a
broad and inclusive community.

In this work, we streamline the implementation of novel
constitutive models into existing finite element analysis
software, and mitigate the risk for human error. We provide
a common language and framework for the computational
mechanics community at large. We design a modular and
universal material subroutine, which automates the incor-
poration of constitutive models of varying complexity in
non-linear finite element analysis packages and requires
no additional analytical derivations and algorithmic imple-
mentations by the user. First, we introduce the concept of
constitutive neural networks, which form the architectural
backbone for our universal material model. Next, we illus-
trate the universal material model itself, describe its internal
structure through pseudocodes, and showcase how this sub-
routine can be effortlessly integrated and activated within
finite element simulations. We provide specific examples
on how existing constitutive models fit in our overarching
framework, and how we can incorporate special constitutive
cases that feature mixed invariant features. Finally, we show-
case the flexibility of our approach to naturally integrate
novel constitutive models from the material point level to
the structural level through various soft matter modeling
case studies: the mechanical simulation of a frontal impact
to the brain, reconstructive surgery of the scalp, the diastolic
loading of arteries and the human heart, and the dynamic
closing of the tricuspid valve.

2 Constitutive modeling
2.1 Kinematics

We introduce the deformation map ¢ as the mapping of
material points X in the undeformed configuration to points
x = @(X) in the deformed configuration [14, 15]. The gradi-
ent of the deformation map ¢ with respect to the undeformed
coordinates X defines the deformation gradient F with its
determinant J,
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F=Vxe with J=det(F)>0, (1)

We multiplicatively decompose the deformation gradient F¥
into its volumetric F; and isochoric F parts [16],

F=F,-F with F,=J1 and F=J73F, ()

vol —

where - denotes the tensor product between two second order
tensors. As deformation measures, we introduce the left and
right Cauchy-Green deformation tensors, b and C, and their
isochoric counterparts, bandC,

Ny

—F
g o=£-F 3
an ¢ =F.F )

S

b =F - F
C =F-F

We further assume directionally-dependent behavior, with

three preferred directions, n%, nd, ng, associated with the

material’s internal fiber direc;ioné in the reference configu-
ration, where all three vectors are unit vectors, ||n? [l =1,
[|n3 || =1, ||nd|| = 1. Based on the volumetric and iso-
choric decomposition, and the underlying fiber orientations
in the material, we characterize the deformation in terms
of 15 invariants [17, 18]. More specifically, we define one

isotropic volumetric invariant,
I, = det(F' - F) = J?, “4)

two isotropic deviatoric invariants,

IL,=[F-F1:1

e s 5)
L= [}~ [F-F] . [F' - FI),

six anisotropic deviatoric invariants,

Loy =[F -F1: n0®@n’1  Isyy, = [F -FP : (00 ®@n’]

. S . o

Loy =[F -F1: [n)@®n)] Iy =[F -F)* : [n) @n)]

Ly =[F -F1: (n{@n)] Iy = [F -FP : [0 ®n] 6)
and six deviatoric coupling invariants,

Ly =[F -F1: (00 @nd Iy = [F - FP : (09 @n)

Ly =[F -F1: n0@ndl Iy = (F -FP : (00 ®nl

oy =F-F1: ) @nd]  Tipy =[F -FP : [nd®nS] (7

where [F' - F1?> = C - C. Note that these coupling invariants
reverse their sign if one of the fiber directions changes its
sign, and can therefore not be considered strictly invariant.
Nevertheless, these pseudo-invariants were found to be con-
venient for the definition of anisotropic constitutive models
[19].
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2.2 Free energy function

To ensure thermodynamic consistency, we introduce the
Helmholtz free energy y as a function of the deformation
gradient w = w(F). Assuming no dissipative energy losses
within the material, and rewriting the Clausius-Duhem
entropy inequality [20] following the Coleman and Noll
principle [21, 22], we derive

= lM . Ft 8)
J OF

as the constitutive relation between Cauchy stress o and
deformation gradient F. To guarantee that our free energy
function y satisfies material objectivity and material sym-
metry, we further constrain our stress responses to be func-
tions of the invariants of the left and right Cauchy Green
deformation tensors b and C [17, 23]. This results in the
general definition of the free energy function y as a function
of the 15 invariants,

l//(Fv) = l//(j] ajz ’13 ,j4(aﬂ) ’jj(aﬂ))a (9)

with a,f € {1,2,3} and f > a. To account for the quasi-
incompressible behavior of soft materials, we make the
constitutive choice to additively decompose our free energy
function y into volumetric vy, and isochoric ¥ parts,

"4 = Wyol + II_/ (10)
Here, we define the volumetric free energy contribution,
Voo = W3(13), (11

in terms of the isotropic volumetric invariant /5 (Eq. (4)), and
the deviatoric free energy contribution,

v = u7(71 ’72»74@:/3) »75<aﬁ>)’ (12)

as functions of the isotropic and anisotropic deviatoric
invariants from Egs. (5), (6) and (7), with a, g € {1,2,3}
and § > a.

2.3 Constitutive neural network

With the aim to universally model a hyperelastic history-inde-
pendent soft matter material behavior, we design the modular
constitutive neural network architecture depicted in Fig. 1.
Leveraging our prior work on automated constitutive model
discovery for isotropic [24—-26], transversely isotropic [27, 28],
and orthotropic [29] soft materials, we create a universal func-
tion approximator, which maps the 15 invariants I, I, I, I .
L5, ) Of the deformation gradient F onto the free energy func-
tion y (F). The constitutive relation between the Cauchy stress
o and the deformation gradient F follows naturally from the
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Fig.1 Constitutive neural network architecture. Anisotropic,

compressible, feed forward constitutive neural network with three
hidden layers to approximate the single scalar-valued free energy
w(71,72,13,74aﬁ,75aﬂ), as a function of 15 invariants of the left
Cauchy-Green deformation tensor b. The zeroth layer generates iden-
tity (o), the rectified linear unit (o), and the absolute value (o) of the
15 invariants. The first layer generates powers (o), (0)?, (o), etc. and
the second layer applies the identity (o), the exponential (exp(e) — 1),
and the logarithm (—In(1 — (0))) to these powers. The network is not
fully connected by design to satisfy the condition of polyconvexity a
priori.

second law of thermodynamics as the derivative of the free
energy function y with respect to the deformation gradient ¥
according to Eq. (8). We ensure a vanishing free energy
v (F) = 0 in the reference configuration, i.e., when F = I, by
using the invariants’ deviation from the energy-free reference

state, [j1 - 3], [72 =3[ -1}, [74(aﬁ) - Caﬂ]’ [75(0,/;) - Caﬁ]’ as
constitutive neural network input. Here, £, 5= ng . ng corrects

invariants I, and I5,, for their values in the undeformed
configuration. This correction a priori ensures a stress-free
reference configuration. To ensure polyconvexity, we design
the constitutive neural network architecture as a locally con-
nected, rather than a fully connected, feed forward neural net-
work. Specifically, we design the free energy function as a sum
of individual polyconvex subfunctions with respect to each of
the individual contributing invariants. As a result, our free
energy function from Eqgs. (9)—(12) can be additively decom-
posed into

Y= lI_/1(71) + 1172(72) +y;3(13)

N N _
+ 20 D Waiapy (Liapy)

a=1 f=a (13)

N N
+ Z Fsiap) (Lsap))
a=1 f=a
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witha, f € {1,2,3}and § > «a. Following Eq. (8), we derive
the Cauchy stress

oy -2 oy,
Jo —2—b+2—lb—b +2—LI
o7 Y [ ] oL

1 2 3
N
6W4(aﬂ)
+ Qg +n; QN
; ga 014(aﬁ> p ] (14)
N
allfs(aﬂ)
+ZZ ®bnﬂ+bn ®n,

a=1 f=a IS(aﬁ)
+ iy @b, + by @ i),

where ii, = F - n) and fi; = F - n) represent the deviatoric
fiber vectors in the current configuration.

Our constitutive network consists of three hidden layers
with activation functions that are custom-designed to sat-
isfy physically reasonable constitutive restrictions [14, 24].
Specifically, we select from the identity (o), the rectified
linear unit function (o), and the modulus function |o| for the
zeroth layer of the network, from linear (o), quadratic (o)?,
cubic (o), and higher order powers for the first layer, and
from linear (o), exponential exp(o), and logarithmic In(o)
for the second layer.

3 A universal material model

To predict the quasi-static response of a system undergo-
ing mechanical loading, a non-linear finite element analysis
solver iteratively evaluates whether a proposed update to the
nodal displacement field satisfies the equilibrium equations
that describe the force and momentum balance within the
computational domain. This evaluation requires the compu-
tation of the stress tensor and the tangent stiffness tensor as
functions of the proposed update to the body’s total defor-
mation. At each time step, at each Newton—Raphson itera-
tion, within each element, and for each integration point, the
solver evaluates the constitutive response that characterizes
the functional mapping between the deformation gradient F
and the Cauchy stress tensor o.

Here, we outline the algorithmic framework we devel-
oped to incorporate our universal material model within a
finite element analysis framework. Specifically, we set up
a user-defined material model subroutine which function-
ally maps the local deformation gradient F onto the free
energy function y and computes its derivative with respect
to the deformation gradient F and the Cauchy stress ten-
sor ¢ using Eq. (8). Additionally, we compute the tangent
stiffness tensor C to improve the accuracy, stability, and
efficiency of the iterative solution technique required for
an accurate prediction of the non-linear material behav-
ior under various loading conditions. The concept of our

@ Springer

universal material subroutine is inherently modular and
generally compatible with any finite element analysis pack-
age [7, 30-33]. For illustrative purposes we implement our
universal material model architecture in the Abaqus finite
element analysis software suite [7] as detailed in Appen-
dix A. We make all our code and simulation files pub-
licly available on GitHub to support the translation of our
approach to other non-linear finite element analysis solvers.

3.1 Algorithm architecture

Figure 2 showcases the internal code structure of our
universal material model subroutine. Our subroutine
computes the free energy function y, the Cauchy stress
tensor o, and the tangent stiffness tensor C with respect
to the scalar invariants I, derived from the deformation
gradient F. Following our modular constitutive neural
network structure, we construct the subroutine as a triple
set of nested activation functions f, (= uCANN hO), f; (=
uCANN h1l), and f, (= uCANN_h2). Each unique path in
our constitutive neural network forms an additive constitu-
tive neuron contribution to the total free energy function,
the Cauchy stress tensor, and the tangent stiffness tensor,
which is assembled in the overarching uCANN subroutine.
Illustrative pseudocodes for each of our subroutines can
be found in Appendix E. The following paragraphs sum-
marize our adopted invariant numbering schemes and the
mathematical derivations of the additive constitutive con-
tributions to the free energy function, the Cauchy stress
tensor, and the tangent stiffness tensor. We provide solver-
specific integration details in Appendix A.

Invariant numbering

To discriminate the different scalar invariants that can be
derived from the deformation gradient F (Eqgs. (4)—(7)),
we adopt the invariant numbering

I, = Ly NINV =1

I, = Ly NINV=2

L = Lyyy; NINV =3 (15)
Lywpy = Ly NINV=4+2(-D+pF-1)

Lswpy = Ly NINV=5+2(-D+p(F-1)

Dependent on the number of fiber families, this scheme
automatically adapts itself to account for multiple fiber
orientations. For example, when our material displays
an anisotropic behavior with three families of fibers
(NDIR = 3), there are a total of 15 invariants: I], 12, L, six
invariants of type 14(0, 5> and six invariants of type IS(a 5> With
a,pe{l,2,3}and f > a.
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Fig.2 Universal material model subroutine schematic. Our universal material model user subroutine computes the free energy function y, its
first derivatives dy /dI;, and its second derivatives 0%y /0I;01; with respect to the scalar invariants I;, derived from the deformation gradient F.
These functions and derivatives are computed based on a triple set of nested activation functions f, (= UCANN_hO0), f; (= UCANN_h1l), and f,
(= UCANN_h2), where each unique constitutive path forms an additive constitutive neuron towards the total free energy and its derivatives.

Free energy function update
Without loss of generality, we reformulate the free energy
function y from Eq. (13) in the following form,

v =fof ofy (71' - 7io)

< - (16)
= 2 WarSox Frx Gox Ui = LiosWou) w1 0))s
=1

where f;, f}, f, are the nested activation functions associated
with the zeroth, first, and second layers of our modular con-
stitutive neural network; k = 1, ..., n defines each unique
additive constitutive neuron that stems from the expanding
nested constitutive neural network in Fig. 2; and I,, imposes
the free energy y and Cauchy stress o to be zero in the refer-
ence configuration. As discussed above and shown in Fig. 1,
these corrections amount to I, = 3fori = 1,2, to I, = 1 for
i =3,and to [,y = {,5 = n) - nj) fori > 4 with respect to the
invariant numbering scheme in Eq. (15). Our nested activa-
tion functions in Eq. (16) read

(o)
(0) (o)? Wi (0)
I RORPRE ISR 8 (R OB
fO - |o| fl - ( :)3 f2 - —1[1(1 —w, (o))' (17)
(o) :

The activation function f returns the identity, Macauley
bracketed, or absolute values, (o), (o), |o| of the zero-stress

reference configuration corrected invariants; f, raises these
invariants to the first, second, third, or any higher order
powers, (0)!,(0)?,(0)?, ... (0)"; and f, applies the iden-
tity, exponential, or natural logarithm, (o), (exp(o) — 1),
(—In(1 — (0))), or any other thermodynamically admissible
function to these powers.

Cauchy stress tensor update
To update the Cauchy stress tensor o, we reformulate Eq. (8)
in the following form,
F “ al,
6=1M.Ft=216__w_’k.pt
J OoF Jol,, oF

k=1
(18)

G oy \ 9l oy 9l
:Zl y ¥ _t.ptzzl_‘{’_z.pt

~ J\ 4 oI, ) OF =~ J oI, oF
which allows us to separate the individual NINV stress ten-

sor contributions from the 0I,/dF terms. We compute all the
invariant-specific scalar oy /dI; contributions

W ow Yo i )
oI, 4ol 4 (o) a(o) ol

in terms of the first derivatives of our activation functions
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( 1(0)? functions; and three floats w0, w1, and w2 that define the
1 (o) .
lol 1 weights of the zeroth, first, and second layers:
of, | = o 2(0)
3o ) B oo 3(c)? *PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
? Em_l kflnvl, kfo’l, kfl,l’ kfz,l, wO,l’ wl,l’le
m(o) (20)  kfinvy, Kfg o, kK5, KEy g, Wog, Wyg, Wy g
( Wy kfinvg, kfo s, k3, kE55,Wo3, Wi Wo3
9, _ J wiexp(w,(0))
=) wi/(-wy (o))
d(0) wi/( 'Wl The first index of each row selects between the invariants,

Tangent stiffness tensor update

Given that the tangent stiffness tensor C expresses the change
of the Cauchy stress tensor ¢ with respect to a change in
deformation, its computation requires the second derivatives
of the free energy function with respect to the invariants
%y / 0l;,0I;, Here, given the nested structure of our univer-
sal material model subroutine, we have 9%y /dI, 0, = 0,
when i # j. As such, we only have non-zero values

az_w _ S w 0%fy i [aka]z N 0frs 0°f11
o, &\ 9 [a)

(o) 9(0)?
@ ? Ofa Of 1 i 0*fou
ol

9(0) (o) o2,
in terms of the second derivatives of our activation functions,

@

0

N 0

w,2exp(w; (o))
w2/(1 = wl(0))?

’f
do)

)
(o)

(mZ _ W.l)(O)m_z

(22)

where the second derivative of the zeroth layer functions,
0°f,/9(0)?, vanishes identically for all three terms.

3.2 Constitutive parameter table

Providing a user interface to employ our developed uni-
versal material model subroutine, we design a constitutive
parameter table that defines the to-be-evaluated constitu-
tive model and parameters during the simulation. Each
row of this table represents a neuron of the final layer in
our modular constitutive neural network and consists of
seven terms: an integer kfinv that defines the index of the
invariant I according to the invariant numbering scheme
in Eq. (15); three integers k£0, kf1, and kf2 that define
the indices of the zeroth, first, and second layer activation
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the second index applies the identity, Macauley brackets,
or absolute values to the invariants, (o), (o), |o|, the third
index raises them to the first, second, third, or any higher
order powers, (0)!,(0)2, (o), ... ()" and the fourth index
applies the identity, exponential, or natural logarithm, (o),
(exp(o) — 1), (—In(1 — (0))), or any other thermodynamically
admissible function to these powers. For brevity, we can
simply exclude terms with zero weights from the list. We
provide further details on the integration and interface of
these constitutive parameter tables with an exemplary non-
linear FEA solver in Appendix A and B.

3.3 Special cases

To showcase the flexibility and modularity of our univer-
sal material model subroutine, we demonstrate how our
approach naturally integrates the popular neo Hooke [2],
Mooney Rivlin [3, 4], Yeoh [6], polynomial [34], Holzap-
fel [35], Kaliske [36], and dispersed Holzapfel [37] models
into an FEA solver. For each model, we provide the free
energy function and its translation into the UNIVERSAL _
TAB parameter table for the FEA input file.

Neo Hooke model. The free energy function of the com-
pressible linear first invariant neo Hooke model [2]

- 1
W=C10(11_3)+51<[3_1)2 (23)

translates into the following two-line parameter table

«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1,1,1, 1.0, 1.0, Cy,
3,1,2, 1, 1.0, 1.0, 1/D,

Mooney Rivlin model. The free energy function of the com-
pressible linear first and second invariant Mooney Rivlin
model [3, 4]

1

W=C10(71—3)+C01(72—3)+171(13_1)2 (24)

translates into the following three-line parameter table
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«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1, 1,1, 1.0, 1.0, Cy
2,1, 1,1, 1.0, 1.0, C,,
3,1,2,1, 1.0, 1.0, 1/D,

Yeoh model. The free energy function of the compressible
first invariant Yeoh model [6]

(25)

translates into the following six-line parameter table

*PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"

1,1, 1,1, 10, 1.0, Cy
1, 1,2, 1,10, 1.0, Cy
1,1,3, 1, 1.0, 1.0, Cy
3,1,2,1, 1.0, 1.0, 1/D,
3,1,4,1, 10,10, 1/D,
3,1,6, 1, 1.0, 1.0, 1/D;

Polynomial model. The free energy function of the com-
pressible first invariant polynomial model [34]

N N
= i 1
w:;CiO([1_3) +;E(]3—

translates into the following parameter table

(26)

«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1, 1, 1,10,10, Cy
11, 2, 1,10,10, Cy
1,1, 3, 1,10,10, Cy

. N, 1,10,1.0, Cy

1, 1 1

3,1, 2, 1,10, 10, 1/D,
3,1, 4, 1,10, 10, 1/D,
3,1, 6, 1,10, 10, 1/D,

3, L, Nx2,1, 1.0, 1.0, 1/Dy,

Holzapfel model. The free energy function of the compress-
ible two-fiber family Holzapfel model [35]

] 151
w=Cpo(l, -3) + B( 3 — - ln13>
Lk
2% 7 (exp oy, = 1)) - 1) 7
k,
+ —(eXp [ka (L) = 1)’] = 1)

2k,

translates into the following six-line parameter table

+PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1,1,1, 1.0, 1.0, Cy
1.0, ky, k/2k,
1.0, ky, ki /2K,
,1.0, 1.0, 1/D
,1.0, 05, 1/D
10, -10, 1/D

)

— =

i

W = = NN

s ’

UJUJ}»JOO%

2
2
1
1
1

) ) [l

We provide more details on the modified Ogden volu-
metric free energy contribution [5] and its derivation into
the constitutive parameter table in Eqgs. (43) and (44) in
Appendix C.

Kaliske model. The free energy function of the compressible
two-fiber family Kaliske model [36]

3 3
Y= Zai(jl - 3)l + ij(jz
j=1

6
S+ Z (L) =
i=1 k=2
6

6

+ 2 dy(Tsq) - g 2 en(Liaay = 1)"
=2
6

o)
—In(I;)

1 (1)

- n 3) =

+ Y (T — 1)+ = ——

; (Ise = 1) D( >
(28)

translates into the following parameter table

+«PARAMETER TABLE, TYPE =
1, i, 1,10, 1.0, a
1, 1.0, 1.0, b
1.0, 1.0, ¢
, 1.0, 1.0, d,
, 1.0, 1.0, e
10, 1.0, f,
. 1.0, 1.0, 1/D
, 1.0, 0.5, 1/D
, 1.0, -1.0, 1/D

"UNIVERSAL_TAB"

S ~F %
L = = = = =

[ T T N Gy Sy
—_N = 3

Holzapfel dispersion model. The free energy function of the
Holzapfel dispersion model [37]

—ln13>

2

_ 1 13—1
W=C10(11—3)+B 5

ky 2
+ i(exp [Ty = 1] = 1) (29)
+ k—l<ex [k - 1)2] - 1)
2, P (K280 /420
uses the two mixed invariants
7;“/4(”) = r<(7l -3+ - 31()(74(11) -1 0
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where x describes the dispersion of the collagen fibers rang-
ing from x = 0.0 for ideally aligned fibers to k¥ = 1/3 for
isotropically distributed fibers. Using an additional con-
stitutive parameter table definition "MIXED INV" (see
Appendix D), we generalize our universal material model
subroutine to include mixed invariants and translate this free
energy in the following parameter tables

+PARAMETER TABLE, TYPE = "MIXED_INV"

1,x,0.0,0.0,(1 = 3x),0.0,0.0,0.0,0.0, 0.0,

0.0,0.0,0.0,0.0,0.0,0.0

2,x,0.0,0.0,0.0,0.0,0.0,0.0, (1 — 3x), 0.0,

0.0,0.0,0.0,0.0,0.0,0.0

+PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1, 1,1, 1,10, 1.0, Cy

101, 2, 2,2, 1.0, ky, k,/2k,

102, 2, 2,2, 1.0, ky, k,/2k,

3, ,1,10, 1.0, 1/D

3, 1,

3 3,

l

k]

1.0, 0.5, 1/D
1.0, -1.0, 1/D

k] ]

—_
—_ N =

) s

4 Illustrative applications

In the following sections, we showcase examples of soft
matter systems where our universal material model subrou-
tine naturally integrates both existing and newly discovered
constitutive models from the material point level to the
structural level.

4.1 The human brain

Brain tissue is among the softest and most vulnerable tis-
sues in the human body [38]. The tissue’s delicate packing
of neurons, glial cells, and extracellular matrix functionally
regulates most vital processes in the human body and gov-
erns human cognition, learning, and consciousness [39]. As
mechanics play a crucial role in neuronal function and dys-
function [40], understanding the mechanical behavior of brain
tissue is essential for anticipating how the brain will respond
to injury, how it evolves during its development, or how it
remodels as disease advances. Computational models play
a crucial role in this endeavor, allowing researchers to simu-
late the multi-faceted behavior of brain tissue and explore the
biomechanical role of mechanical forces in health and disease
[41-44]. These models require adequate constitutive models
that capture the complex and unique characteristics of this
ultrasoft, highly adaptive, and heterogeneous tissue.

@ Springer

Constitutive modeling

Over the past decade, various research groups around the
world have made significant process in the experimental and
constitutive characterization of human brain tissue [45]. This
has led to multiple competing constitutive models to char-
acterize the behavior of gray and white matter tissue. Most
notably, neo Hooke [2], Blatz Ko [46], Mooney Rivlin [3,
4], Demiray [47], Gent [48], and Holzapfel [35] models were
proposed as successful candidates to characterize the stress-
stretch response of these tissues. Given brain tissue’s intricate
behavior, fitting a constitutive model to one single loading
mode, tension, compression, or shear, does not generalize well
to the other modes [25, 49]. Therefore, we consider a widely-
used benchmark dataset where 5 X 5 X 5 mm? human brain
samples were tested in tension, compression, and shear [38,
45, 50]. We concomitantly discover and fit the best possible
constitutive models considering these loading modes together
and find the following three best models and parameters [25].

The Mooney Rivlin model [3, 4]

1 - 1 -
v=sm(l=3)+Jm(L-3) 31

with parameters y; = 0.0021 kPa, u, = 1.8817 kPa for the
gray matter cortex, and y; = 0.0168 kPa, u, = 0.9697 kPa
for the white matter corona radiata. This translates into

«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1, 1,1, 1.0, 1.0, u,/2
2, 1,1, 1, 1.0, 1.0, 11,/2

The Blatz Ko model [46]

v = %u(72—3) (32)

with parameters y = 1.9043 kPa for the gray matter cortex,
and u = 0.9556 kPa for the white matter corona radiata. This
translates into

*PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
2,1,1,1,1.0,1.0, u/2

Our newly discovered six-term model [25, 26]

w=wm[L-3]+ za—bll[exp(bl 1,-3]) - 1]
- ;—ﬁllln(l ~B L -3]) + L -3
+ 2“—;2 [exp (ba[-3]%) - 1]

_ ;_ljzm(l - sl -3]")

(33)
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Fig.3 Universal material modeling of the human brain. Deformation and stress profiles for frontal impact to the human brain. The finite
element models simulate the deformation and internal tissue loading corresponding to best-fit Mooney Rivlin, Blatz Ko, and newly discovered
constitutive models from left to right. All simulations leverage our universal material model subroutine and only differ in the definition of the
UNIVERSAL TAB constitutive parameter table in the finite element analysis input file.

with non-zero terms a; = 1.2520 kPa, g, =0.9875,
Hy = 3.8007kPa, a, = 6.2285kPa, b, = 1.6495,a, = 4.6743
kPa, and f, = 1.6663 for the gray matter cortex and
uy = 0.2215kPa, a; = 0.2350kPa, b, = 0.2398,a, = 6.3703
kPa, b, = 1.8893, a, = 4.5065 kPa, and g, = 1.1789 for the
white matter corona radiata. We translate this model into the
following six-line parameter table of our universal material
model:

*PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
JL L1 10, 10, g

, 1.0, by, a,/2b,

, 1.0, By, a1/2B,

10, 1.0,  u,

, 1.0, by, ay/2b,

» 1.0, B, /2P,

>

)

2
2
2
2
2
2

e N )
NN ==
LN = W

The Mooney Rivlin, the Blatz Ko, and the newly discovered
six-term material models have a gray and white matter good-
ness of fit of R? = 0.8784 and R? = 0.7414, R? = 0.8809 and
R? = 0.7355, and R? = 0.9306 and R? = 0.8361 respectively
to the combined tension, compression, and shear testing data
[25].

Simulation

Utilizing our universal material model subroutine, we incor-
porate these brain models into a realistic vertical head impact
finite element simulation [26]. Based on magnetic resonance
images [51], we create the two-dimensional sagittal finite ele-
ment model in Fig. 3. In this model, gray and white matter

are spatially discretized using 6,182 gray and 5,701 white lin-
ear triangular elements, resulting in 6,441 nodes, and 12,882
degrees of freedom in total. We embed our model into the skull
using spring support at the free boundaries and apply a fron-
tal impact to the brain that we represent with all three models,
the Mooney Rivlin, Blatz Ko, and new discovered models, as
shown in Fig. 3. While our results showcase equal spatial stress
magnitudes across the brain for all three, the Mooney Rivlin,
Blatz Ko, and constitutive neural network models, the simula-
tion underestimates the maximum deformation for the Mooney
Rivlin and Blatz Ko models compared to the constitutive neural
network model.

4.2 Skin

Skin is the largest organ of the human body [52]. It serves vital
functions for our survival such as being the first line of defense
against mechanical injury while at the same time allowing us
to move and interact with the world [53]. Surgery of any kind
entails skin rupture and manipulation [54]. Especially dur-
ing reconstructive procedures, skin tissues are subjected to
extreme deformations [55]. The complex stress field generated
by skin tissue manipulation has a direct effect on the subse-
quent wound healing response, with excessive stress causing
increased inflammatory response that can lead to fibrosis [56].
In some cases, excessive stress can even result in tissue necro-
sis [57]. Thus, accurate computational models of skin are key
to design safe reconstructive surgical procedures.
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Fig.4 Universal material modeling of skin. Deformation and stress profiles in the human scalp following a melanoma resection reconstruction
procedure. The finite element models simulate the deformation and internal tissue loading corresponding a two-stage flap rotation and suturing
procedure, with the first stage shown in the top row and the second stage shown in the bottom row. The remaining wound is closed with a skin
graft to avoid excessive tissue stresses and damage. Both tissue manipulations are modeled using the best-fit constitutive neural network model
in the three left columns. For comparison, we also showcase the resulting stress profiles for the best-fit neo Hooke Holzapfel model in the right
column. All simulations leverage our universal material model subroutine and only differ in the definition of the UNIVERSAL TAB constitutive

parameter table in the finite element analysis input file

Constitutive modeling

Skin modeling has received significant attention for more
than half a century [58, 59]. Isotropic models such as the
neo Hooke [2] or Mooney Rivlin [3, 4] models have been
used, but show significant limitations. Not only do they fail
to describe the anisotropy of skin, they also lack the ability
to capture this tissue’s rapid strain-stiffening behavior [58].
To overcome these issues, we examine combined uniaxial
and biaxial tensile testing data of porcine skin tissue sam-
ples [60, 61] to discover more accurate material models that
depict the anisotropic stress-stretch behavior. First, we fit the
microstructure-inspired Holzapfel model [35],

1 - la -
y = 5/‘[11 - 3] + zb_j [CXP (b4<14(11) - 1>2) - 1]- (34)

This model was originally developed for arterial tissues and
combines the isotropic linear first invariant neo Hooke term,
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[71 - 3], with an anisotropic quadratic exponential fourth
invariant term, (I,;;, — 1), along the collagen fiber direction.
Here, our best possible fit to the combined uniaxial and biax-
ial testing data results in y = 0.2492 MPa, a, = 0.1054 MPa,
and b, = 10.7914. We naturally incorporate this constitutive
model and parameters in our universal material model sub-
routine using the following two-line parameter table

«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1,1,1,10, 1.0, u
4,2,2,2, 10, b,, a,/2b,

To address the poor goodness of fit R?> = 0.6857 of the neo
Hooke Holzapfel model, we adopt a tranversely isotropic
constitutitive neural network to discover a more accurate
model [27]. From a library of 2'® = 65, 536 possible com-
binations of terms, we discover a model in two exponential
quadratic terms,
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_ 3 2
v = E(exp by, =3)1-1
1
0 ) i (35)
+ E(CXP [D4{Lsq1y — 1)1 = 1)
4

with parameters a; = 1.3291MPa, b; = 0.8207, a, = 0.2656
MPa, and b, = 0.3921[27]. To integrate this new model into
a finite element simulation, we incorporate the following two
parameter lines in our universal material subroutine

«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1,2,2, 10, by, a,/2b,
4,2,2,2, 10, by, a,/2b,

In contrast to the neo Hooke Holzapfel model with a good-
ness of R? = 0.6857, our newly discovered model has a mean
good of fit R* = 0.8629 for the biaxial skin testing data [27].

Simulation

Leveraging our universal material subroutine, we integrate both
material models in a finite element simulation of a 62-year-old
adult male patient undergoing reconstructive surgery following
surgical melanoma resection [55]. A three-dimensional patient
specific geometry was obtained via multi-view stereo recon-
struction of a sequence of photos taken in the operating room
before and after surgery. The scalp was approximated based on
the skin surface and spatially discretized using 75,282 linear
tetrahedral elements and 25,394 nodes, leading to a total 76,182
degrees of freedom. Our simulation recapitulates the closure
of the resected tissue defect by imposing nodal constraints
to nodes on either edge of the defect to mimic sutures used
to close the wound. Figure 4 showcases the deformation and
internal tissue tension profiles following the two-step surgical
skin reconstruction procedure. We clearly observe the limited
tissue deformation and loading profiles during the first stage in
the top row. In contrast, during the second stage surgery in the
bottom row, substantial deformations develop across the skin.
Specifically, we appreciate the regional differences between
the isotropic I, and anisotropic 74(11) deformation invariants.
Figure 4 also showcases noticeable stress profile differences
between the newly discovered material model and the neo
Hooke Holzapfel model in the third and fourth columns. In
the lower stretch regimes shown in the first stage reconstruc-
tion, the neo Hooke Holzapfel model clearly overestimates the
stresses in the skin. In the higher stretch regimes, shown during
the second stage reconstruction in the bottom, the neo Hooke
Holzapfel fit underestimates the stresses in the tissue. While a
modeling-based overestimation of the stress state holds limited
risks from a medical point of view, an underestimation could
have harmful consequences as clinical decisions co-informed
by such models could cause excessive tissue damage and scar-
ring. Figure 4 showcases the crucial aspect that proper constitu-
tive modeling and calibration plays in this regard, in which the
neo Hooke Holzapfel model, which does not properly capture

skin tissue’s strain-stiffening, underestimates the tissue stress
in comparison to the more accurate newly discovered model.

4.3 Human arteries

Computational simulations play a pivotal role in understanding
and predicting the biomechanical factors of a wide variety of
arterial diseases [32, 62—-64]. In vascular medicine, knowing
the precise stress and strain fields across the vascular wall is
critical for understanding the formation, growth, and rupture
of aneurysms and dissections [65—-67]; for identifying high-risk
regions of plaque formation, rupture, and thrombosis [68, 69];
and for optimizing stent design and surgery [70, 71].

Constitutive modeling

Over the past four decades, various phenomenological poly-
nomial [72, 73], exponential [74], logarithmic [75], and expo-
nential-polynomial [28, 76, 77] models have been proposed to
describe the non-linear elastic, anisotropic, quasi-incompress-
ible behavior of arterial tissue. Recently, microstructurally-
informed models were brought forward, including symmetric
two- and four-fiber family models [35, 37, 78], either sym-
metric or unsymmetric [79]. All these material models can
fit uniaxial and biaxial arterial tissue testing data, but do not
always generalize well to off-axis testing regimes [80].

We consider biaxial tensile testing of thoracic aortic tis-
sue samples at five differing circumferential-axial stretch
ratios [81, 82]. Using data-driven constitutive neural net-
works, we discover the most appropriate arterial material
model. From a library of 2!® = 65, 536 possible combina-
tions of terms, we discover

v = %[il ~3]+ ;—b(eXP (b0, =31 - 1)

1 -
+ _;2 5:‘45(15(1'1') —1)?

(36)

with an isotropic linear and exponential linear first invari-
ant term and an anisotropic quadratic fifth invariant term.
Our best-fit parameters read u; = 33.45 kPa, a =3.74
kPa, b = 6.66, us = 2.17 kPa for the media at an angle
a = +7.00°, with a goodness of fit of R? =0.9682, and
u; =830 kPa, a = 1.42 kPa, b = 6.34, u5; = 0.49 kPa for
the adventitia at an angle « = +66.78°, with a goodness of fit
of R? = 0.9650. This translates into the following four-line
parameter table of our universal material model,

+«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1, 1,1, 1.0, 1.0, u /2
b, a/2b
2,1, 1.0, 1.0, ps/2
2,1, 1.0, 1.0, pus/2
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Fig.5 Universal material modeling of human arteries. Diastolic deformation and stress profiles in the media and adventitia layer of the
human ascending aortic arch. The finite element models simulate the deformation and internal tissue loading corresponding to the best-fit
Holzapfel dispersion model in the top row and newly discovered model in the bottom row. Both simulations leverage our universal material
model subroutine and only differ in the definition of the UNIVERSAL TAB constitutive parameter table in the finite element analysis input file

Alternatively, in the classical microstructure-inspired disper-
sion type Holzapfel model [68]

1 - a T
v = Eﬂ[ll -3+ ';2 2—b(exp [6XT 4y = 1= 1) (37)

our best-fit parameters are y = 48.68 kPa, a = 6.67 kPa,
b =23.17, k = 0.074 for the media at « = +7.00°, with a
goodness of fit of R? = 0.9228, and 4 = 13.22 kPa, a = 0.93
kPa, b = 12.06, k = 0.091 for the adventitia at a« = +66.78°,
with a goodness of fit of R? = 0.9525. We translate this
model into the following parameter table of our universal
material model

«PARAMETER TABLE, TYPE = "MIXED_INV"

1,x,0.0,0.0,(1 - 3x),0.0,0.0,0.0,0.0, 0.0,

0.0,0.0,0.0,0.0,0.0,0.0

2,x,0.0,0.0,0.0,0.0,0.0,0.0, (1 — 3x), 0.0,

0.0,0.0,0.0,0.0,0.0,0.0

+*PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1, 1,1,1, 1.0, 1.0, u/2

101, 2, 2, 2, 1.0, b, a/2b

102, 2, 2, 2, 1.0, b, a/2b
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Simulation

Using our universal material subroutine, we integrate both
models in a finite element simulation of the human aortic
arch under hemodynamic loading conditions [83]. Our aortic
arch geometry is extracted from high-resolution magnetic
resonance images of a healthy, 50th percentile U.S. male
[84]. We assume an average aortic wall thickness of 3.0 mm,
where the inner 75% of the wall make up the media and the
outer 25% make up the adventitia. We discretize our geome-
try using 60,684 linear tetrahedral elements for the media and
30,342 linear tetrahedral elements for the adventitia, leading
to a total 61,692 degrees of freedom. The local collagen fiber
angles against the circumferential direction are + 7.00° in the
media and + 66.78° in the adventitia and are locally defined
as a vector field variable for each element. We use continuum
distributed coupling boundary conditions at the aortic outlets
to constrain the arch in space [85], and leverage Neumann
boundary conditions to simulate the hemodynamic loading
conditions the aortic arch undergoes during a single cardiac
cycle. Figure 5 showcases the computed diastolic stresses
in the media and the adventitia for both our newly discov-
ered model and the microstructure-informed dispersion-type
Holzapfel model [28]. Comparing the best-fit Holzapfel dis-
persion material model with a goodness of fit of R? = 0.9228
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for the media and R? = 0.9525 for the adventitia to the newly
discovered model with a goodness of fit of R> = 0.9682 for
the media and R? = 0.9650 for the adventitia, we observe
substantial differences in both the isotropic and anisotropic
spatial deformation components as well as the overall aortic
arch deformation under the same loading and boundary con-
ditions. Figure 5 also highlights higher stress magnitudes for
the best-fit neural network model.

4.4 Heartvalves

The tricuspid valve is our right atrioventricular valve which
ensures unidirectional blood flow through the right side of the
heart. Often as a result of other primary diseases [86, 87], a dis-
eased tricuspid valve can fail to close and regurgitate. Tricuspid
valve disease affects over one million Americans and is associ-
ated with increased patient mortality and morbidity [88, 89].
Computational models of the tricuspid valve provide valuable
insights into the workings of the valve, and have been used to
increase our understanding of the progression of valve disease
[90] and to work towards improved repair outcomes [91].

Constitutive modeling

Numerous studies have investigated the mechanical behavior
of atrioventricular valve leaflets. Valvular leaflets exhibit a
pronounced anisotropy and a non-linear behavior, motivat-
ing an anisotropic exponential material model to capture
this complex material behavior [92]. Others have used
microstructurally-informed models [37, 93] or anisotropic
exponential Fung-type models [94] to capture the material
response of the tricuspid valve leaflets. However, the tricus-
pid valve leaflets specifically only exhibit slight anisotropy
[95]. To improve the ease of use in computational models,
recent studies have proposed a simplified isotropic Fung-
type exponential function [96]. Leveraging force-controlled
400 mN equibiaxial mechanical tests on 7 X 7 mm valve
leaflet tissue samples [97], we fit the following two-term
isotropic exponential Fung-Type model [98]

= %0[71 e %(exp [2 =3)°1-1) (38)

with an isotropic linear first invariant term describing the
response at small-strains and under compression and an
exponential first invariant term determining the strain-
stiffening response under large strains [96]. Our best-fit
parameters are ¢, = 1.0 kPa, ¢; = 0.124 kPa, ¢, = 4.57 for
the anterior, ¢, = 1.0kPa, ¢c; = 0.188kPa, ¢, = 14.86 for the
posterior, and ¢, = 1.0 kPa, ¢; = 0.191 kPa, ¢, = 17.75 for
the septal leaflets. To incorporate this constitutive model in
our universal material subroutine, we define the following
two parameter lines

+PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1,1, 1,1, 1.0, 1.0, ¢/2
1,1,2,2, 10, ¢, ¢,/2

Simulation

Using our universal material subroutine, we integrate the
constitutive behavior of all three leaflets into a personalized
finite element model of the tricuspid valve, the Texas 1.1
TriValve [98, 99]. Through personalized pressure and annu-
lar displacement recordings in the realistic hemodynamic
environment of an organ preservation system and image-
based planimetry meaurements on the excised valve, a three-
dimensional reconstruction of the tricuspid valve is build at
end-diastole. The valve and chordae geometries are spatially
discretized using 8,283 linear quadrilaterial shell elements
and 4,169 three-dimensional linear multi-segmented truss
elements, resulting in a total 25,761 degrees of freedom. By
imposing the recorded personalized annular displacements
and an end-systolic transvalvular pressure of 22.95 mmHg
on the ventricular surface of the valve, we simulate valvular
loading from end-diastole to end-systole. Figure 6 showcases
the resulting deformation and maximum principal stress con-
tours in the tricuspid valve. Notably, the varying stiffnesses
of the anterior, septal, and posterior leaflets result in notice-
able differences in the first invariant of the Cauchy-Green
deformation tensor, but in comparable maximum principal
stress profiles across the leaflets.

4.5 The human heart

Cardiac disorders are a leading cause of morbidity and death
worldwide [100]. Computational models of cardiac function
hold immense potential to contribute to our understanding of
health and disease, improve our diagnostic analyses, and opti-
mize personalized intervention [84, 101-105]. For example,
corrective surgeries in obstructive cardiomyopathy [106] and
congenital heart defects [107], the replacement of diseased
valves [108], or the implantation of a cardiac assist device
[109] all involve complex and delicate procedures that demand
careful planning and simulation to ensure their success. Cru-
cially, the accuracy and reliability of these computational mod-
els hinge on precise constitutive modeling of the underlying
mechanical behavior of myocardial tissue.

Constitutive modeling

Research on constitutive models that accurately describe
passive myocardial mechanics spans over five decades. One
of the earliest models described cardiac muscle tissue as an
isotropic hyperelastic material [110]. Later, with increas-
ing experimental insights, more sophisticated transversely
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Fig. 6 Universal material modeling of heart valves. Personalized tricuspid valve loading during the cardiac cycle. The finite element models
simulate the deformation, left, and internal tissue loading, right, in response to the inter-ventricular pressure changes from end-diastole to end-
systole. The tricuspid valve is shown from a side and top view. Each valvular leaflet leverages our universal material model subroutine and only
differs in the definition of the UNIVERSAL TAB constitutive parameter table in the finite element analysis input file.

isotropic [111, 112], and eventually orthotropic [19, 113]
constitutive models were introduced with three principal
directions, the fiber direction f as principal direction i = 1,
the sheet direction s as principal direction i = 2, and the
normal direction n as principal direction i = 3. This latter
orthotropic Holzapfel material model is currently one of the
most popular models for heart muscle tissue and fits simple
shear tests of myocardial tissue well [114]. Nevertheless,
it displays limitations when simultaneously fitted to differ-
ent loading modes [115]. Therefore, we consider triaxial
shear and biaxial extension tests on human myocardial tis-
sue [116], and use these data to discover the best possible
model and parameters to characterize both loading condi-
tions combined [29].

We begin with the four-term Guan model [115] that
features an exponential linear term in the first invariant 1 1>
exponential quadratic terms in the fiber and normal fourth
invariants 74(1 1y and 74(33), and an exponential quadratic term
in the fiber-sheet coupling invariant ),

_a

2b
a -
+ z—li][exp(bn(14(33) -1 -1]

v = 3rlexp®ll, = 3D1+ 2 lexp (bl = 1)7) = 1
f

—+

a
> ;f [exp(bg,[Ly12) %) — 1.

(39)

Calibrating this model simultaneously on biaxial tensile and
triaxial shear data for human myocardial tissue, we obtain a
mean goodness of fit R? = 0.867 for parameters a = 0.782
kPa, b = 7.248, a; = 4.488kPa, b; = 14.571,a, = 2.513kPa,
b, =10.929, a;, = 0.436 kPa, and by, = 4.959. To incorpo-
rate this constitutive model in our universal material subrou-
tine, we define the following four parameter lines,
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*PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
1, 1,1,2,1.0, b, a/2b

4, 2,2,2,1.0, by, a;/2b;
14,2, 2,2, 1.0, b,, a,/2b,
6, 1,2,2, 1.0, by, a,/2by

Next, we consider the seven-term generalized orthotropic
Holzapfel model [19] which features an exponential linear
term in the first invariant /,, exponential quadratic terms of
all fourth anisotropic invariants I, Iy, Iy33)» and an
exponential quadratic term in all fourth coupling invariants

14(12)’ 14(13)’ ]4(23)'

v = %[exp(b[il 3D+ Za—bff[exp(bf(i4(l L= 1A -1

a —

+ 2—bss[exp(bs<l4(22) - 1)) —1]
a, - 2

+ —lexp(b,(Iyz3) — 1)) — 1]
2b,

+ =85 fexp(by Ly 1) — 1]
2by, SR

aSI’l

2b,

sn

+

[exp(byyTy3)]%) = 11.

(40
A combined triaxial-biaxial training of this model cali-
brates the model parameters to a = 0.950 kPa, b = 5.457,
a; = 3.318 kPa, by = 23.701, a, = 1.405 kPa, b, = 20.067,
a, = 2.037 kPa, b, = 16.976, a;, = 0.586 kPa, b, = 1.08]1,
ay, = 0.047 kPa, and b, = 11.842. This model has a mean
goodness of fit R? = 0.876 [29]. We translate this constitu-
tive model into our universal material subroutine through
the definition of the following parameter lines in our finite
element analysis input file
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*PARAMETER TABLE, TYPE = "UNIVERSAL TAB" 7 2 ag 7 2

’ - = 1@, — 37 + — fexp(bp(Lyyy, — 1)) — 1
I, 1,1,2, 10, b, a/2b v =l =3+ g [exp(brlliay = 1)) = 1]
4, 2,2,2,10, by, a,/2b ay . 2

0 2,2,2, 1.0, by, a/2by + =2 fexp(by (Iyay — 1)2) — 1
8 22210 b a/b 2, lexp(by(lyz3) = 1)7) = 11 (41
14,2,2,2, 1.0, b,, a,/2b, ag, B
+ be [l —1].

67 17 29 27 1'0 bfs’ afg/zbfs 2 fs [exp( fS[ 4(12)] ) ]
12,1,2,2, 1.0, by, a,,/2b,,

with a mean goodness of fit R? = 0.894 [29]. Here, our
Finally, we leverage an orthotropic constitutive neu-  discovered material parameters amount to y = 5.162 kPa,
ral network to discover the best model and param-  a; = 3.426 kPa, b; = 21.151, a, = 2.754 kPa, b, = 4.371,
eters to explain the experimental data. From a library of  a; = 0.494 kPa, and by, = 0.508. We integrate this newly
232 = 4,294,967, 296 possible combinations of terms anda  discovered model for myocardial tissue in our finite element
sparsity-promoting regularization with @ = 0.01, we discover ~ analysis through the following four-line parameter table

a four-term model,

Guan

C S >PC S >C $ >C & O
‘IZ‘B'(Z‘&)CIBCI)
OS> 5O <O @

3.0 I 3.2 0.9 M 1.25 -0.25 I 0.25 0.0 I 8.0

invariant I, [-] invariant ly(yy) [-] invariant Iy [-] stress [kPa]

generalized
Holzapfel

CWHC W H>C W >C W >
‘@ IR IR IT @ _

3.0 I 3.2 0.9 I 1.25 -0.25 I 0.25 0.0 I 8.0

invariant I, [-] invariant Iy, [-] invariant Iy, [-] stress [kPa]

constitutive
neural network

CS >C & >OC & >C &>
CL X >CX > >
CT©O CCT© CTO©O @&

3.0 I 3.2 0.9 I 1.25 -0.25 I 0.25 0.0 M 8.0

invariant I, [-] invariant Iy [-] invariant Iy, [-] stress [kPa]

Fig. 7 Universal material modeling of the human heart. Personalized isotropic and directional deformation invariant and maximum princi-
pal stresses stress profiles, in short-axis slices frontal views, resulting from a healthy left and right ventricular end-diastolic pressure loading of
8mmHg and 4mmHg. The finite element models simulate the deformation and internal tissue loading corresponding to the best-fit Guan model
in the top row, the generalized Holzapfel model in the middle row, and the newly discovered model in the bottom row. All three simulations lev-
erage our universal material model subroutine and only differ in the definition of the UNIVERSAL TAB constitutive parameter table in the finite
element analysis input file
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*PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
2, 1,2,1,1.0, 1.0, u/2

4, 2,2,2,10, by, as/2b;

14, 2,2,2, 1.0, b,, a,/2b,

6, 1, 2,2, 1.0, by, a/2b;
Simulation
We incorporate all three constitutive models for myocardial
tissue in the finite element analysis software solver Abaqus
[7] using our universal material subroutine, and predict the
stress state of the left and right ventricular wall during dias-
tolic filling. We create a finite element model of the left
and right ventricular myocardial wall from high-resolution
magnetic resonance images of a healthy 44-year-old Cauca-
sian male with a height of 178 cm and weight of 70 kg [83,
84]. We spatially discretize our computational domain using
99,286 quadratic tetrahedral elements and 154,166 nodes,
leading to a total 462,498 degrees of freedom. We com-
pute the helically wrapped myofibers by solving a Laplace-
Dirichlet problem across our computational domain, and
assume a transmural fiber variation from +60° to —60° from
the endocardial to the epicardial wall [117]. The resulting
microstructural organization covers 99,286 local element-
based fiber, sheet, and normal vectors, f, so, n,. We apply
homogeneous Dirichlet boundary conditions at the mitral,
aortic, tricupid, and pulmonary valve annuli to fix the heart
in space [85], and load it with hemodynamic Neumann
boundary conditions that correspond to the endocardial
blood pressure during diastolic filling. Figure 7 showcases
the resulting deformation and stress profiles in both ventri-
cles in response to left and right ventricular pressures of 8
and 4 mmHg. In a row-to-row comparison of the short-axis
views, we observe small differences between the deforma-
tion invariants and the maximum principal wall stresses of
all three models, with larger values for our newly discovered
model and the Guan model and smaller values for the gen-
eralized myocardial Holzapfel model. We can explain these
differences by the varying constitutive goodness of fit of
the three models. Moreover, we observe that our diastolic
hemodynamic loading conditions enforce deformation and
stress states that surpass the homogeneous tissue testing
protocols of the triaxial shear and biaxial extension training
data. This creates local regions of extrapolation beyond the
initial training regime [29].

5 Conclusion

In this work, we designed a universal constitutive mode-
ling framework to predict the mechanical behavior of soft
materials across a wide range of applications. We set up a
modular material subroutine architecture which seamlessly
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integrates with a commercial FEA framework and can eas-
ily be generalized towards other non-linear FEA solvers.
Doing so, our framework mitigates the risk for human error
and streamlines the integration of newly discovered mate-
rial models in their simulations, thus alleviating the users
to perform lengthy algebraic derivations and extensive pro-
gramming. Furthermore, our material subroutine serves as
an excellent verification tool for more expert finite element
software developers aiming to debug their own soft mate-
rial models and finite element analysis implementations.
We demonstrated the versatility of the universal material
subroutine through numerical simulations of various living
systems including the brain, skins, arteries, valves and the
human heart. Providing a common language and material
subroutine for the computational mechanics community at
large, we aspire to democratize the computational analysis of
soft materials amongst a broader cohort of researchers and
engineers. With one single subroutine, everyone - and not
just a small group of expert specialists - can now perform
reliable engineering analysis of artificial organs, stretchable
electronics, soft robotics, smart textiles, and even artificial
meat. Fostering this inclusivity, our framework can form an
invaluable tool towards continued innovation and discovery
in the field of soft matter overall.

Appendix A: FEA integration

The concept of our universal material subroutine is inher-
ently modular and generally compatible with any finite
element analysis package. For illustrative purposes we
implement our universal material model architecture in
the Abaqus finite element analysis software suite. More
specifically, we leverage the UANISOHYPER INV user-
defined subroutine architecture in Fig. 8 to seamlessly
integrate our universal constitutive neural network archi-
tecture within the Abaqus FEA solver. This subroutine pro-
vides three input arrays: the constitutive model properties
we provide through a constitutive parameter table in the
finite element analysis input file; the deformation gradient
invariants as defined in Eqgs. (4), (5), (6), and (7); and an
array of state-dependent field variables. Upon each evalu-
ation, our user-defined subroutine updates the free energy
function UA (1) = and UA (2) =y, the array of first
derivatives of the free energy with respect to the scalar
invariants UI1 (NINV) = aq//aii, and the array of second
derivatives of the free energy with respect to the scalar
invariants UI2 (NINV) * (NINV+1) /2)= 0*w /oIl
We detail these computations through the pseudocodes
provided in Appendix E. To enable our UANISOHYPER _
INV subroutine to read in a constitutive parameter table,
we declare the format of this input parameter table using
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equilibrium
onstepi

computational implementation

UNIVERSAL MATERIAL
SUBROUTINE

UANISOHYPER_INV
input data

strain energy function
computation ¥
invariant-specific
stress state 0¥/ d1;

[ deformation
1 | calculations

1
1

stress

tiffness | | |
;
1

invariant-specific
tangent stiffness
0*w/ a1;0l;

state variables
update

UANISOHYPER_INV
output data
stress
stiffness

state variables

Fig.8 Interaction between the finite element analysis solver and
the universal material subroutine. Flowchart of the interaction
between Abaqus and the UANISOHYPER INV subroutine architec-
ture which embeds our universal constitutive material model. Dur-
ing each Newton—Raphson iteration and at each Gauss integration
point, the UANISOHYPER INV subroutine computes the free energy
function y (= UB), its first derivatives with respect to the deforma-
tion invariants aw/aii (= UI1(NINV)), and its second derivatives
with respect to the deformation invariants 0%y / 67,-07/- (=UI2 (NINV*
(NINV+1) /2)) with respect to the scalar invariants /;, derived from
the deformation gradient F. These quantities are used by Abaqus to
compute the components of the Cauchy stress tensor and the mate-
rial tangent stiffness tensor, to construct the element force vector and
stiffness matrix, and to assemble the global righthand side vector and
stiffness matrix. Abaqus then performs a Newton—Raphson iteration
based on the residual between the internal and external forces, until it
achieves convergence

the parameter table type definition in the UNIVERSAL
PARAM TYPES. INC file. This file reads

*PARAMETER TABLE TYPE, name = "UNIVERSAL_TAB",
parameters =7
INTEGER, , "index invariant,kfinv, o"

INTEGER, , "indexOthactivfunction,kf0, 0"
INTEGER, , "index 1stactivfunction,kfl,o"
INTEGER, , "index2ndactivfunction,kf2,0"
FLOAT, , "weight Othhiddenlayer, w0, 0"
FLOAT, , "weight 1st hidden layer,wl,o"
FLOAT, , "weight 2ndhidden layer,w2,0"

and is introduced using the call
*INCLUDE, INPUT = UNIVERSAL_PARAM_TYPES.INC

at the start of our Abaqus FEA input files.

Appendix B: FEA interface

To activate the universal material subroutine within our finite
element analysis input file, we need to call our user-defined
material model. When we incorporate a fully incompressible

constitutive material model (i.e. including no /5 invariant con-
tributions), we call our user-defined material model through
the command

+*ANISOTROPIC HYPERELASTIC, USER, FORMULATION = INVARIANT,
TYPE = INCOMPRESSIBLE, LOCAL DIRECTIONS = NDIR

where integer NDIR defines the number of local fiber direc-
tions in our material. This input file command is followed up
with the constitutive parameter table definitions described
in Sect. 3.2. In contrast, when our free energy function con-
tains a volumetric free energy y., contribution, our uni-
versal material subroutine needs to additionally introduce
UA(2),UIl(3) and UI2 (6) (following the NINV=3
invariant numbering scheme in Eq. (15)) during its evalua-
tions. To incorporate compressible material behavior in our
FEA simulation, we change the TYPE keyword argument
line in our Abaqus input file to TYPE = COMPRESSIBLE,

+*ANISOTROPIC HYPERELASTIC, USER, FORMULATION = INVARIANT,
TYPE = COMPRESSIBLE, LOCAL DIRECTIONS = NDIR

where integer NDIR defines the number of local fiber direc-
tions of our material. Similar to above, this input file com-
mand is followed up with the constitutive parameter table
definitions described in Sect. 3.2.

Importantly, our universal material subroutine com-
putes the instantaneous elastic stress and stiffness response
and allows a modular integration with other inelastic mate-
rial behaviors that are commonly supported in commercial
finite element analysis codes. For instance, in Abaqus the
user can leverage the universal material model in con-
junction with linear viscoelasticity to model the relaxa-
tion behavior of soft matter materials, and with damage
or Mullins effect to account for stress softening in soft
tissues. Additional combinations with plasticity, nonlinear
viscoelasticity or creep, and more general damage models
are also supported.

Appendix C: Volumetric free energy
functions

To model compressible material behavior using our modular
material subroutine, we add the volumetric contributions
to our constitutive parameter table along with all the other
deviatoric free energy contributions,

+«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
3,1, 1, 1
3, 1,2, 1, 1.0, wy,, wy,

For example, the volumetric free energy function [118]
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K
Vi = 5 (3= 1) 42)

translates into the following contribution to the input file

*PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
3,1,2,1, 1.0, 1.0, K/2

Alternatively, the volumetric free energy function

-1
Vit = §< - ln(13>> 43)

which is a special case of the modified Ogden formulation
[5], can be reformulated to

Vot = 5 (s = D+ 30 = D = In(1 = (=115 = 1)
(44)

which translates into the following lines in the input file

+«PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
3,1,1, 1, 1.0, 1.0, K/2
3,1,2, 1, 1.0, 0.5, K/2
3,1, 1,3, 1.0, -1.0, K/2

Appendix D: Mixed-invariant free energy
functions

It is straightforward to generalize our universal material
model architecture towards mixed-invariant models. Spe-
cifically, we create these mixed invariants as parameter-
weighted combinations of two or more individual invariants.
To incorporate mixed invariants in our material subroutine,
we create a second parameter table type,

*PARAMETER TABLE TYPE, name = "MIXED_INV",
parameters = 16

INTEGER, , "index nofmixed invariant, Kinv, o"
FLOAT, , "coefficient 1st mixed invariant, K1,0"
FLOAT, , "coefficient 2ndmixed invariant, K2,0"
FLOAT, , "coefficient 3rdmixed invariant, K3,0"
FLOAT, , "coefficient 15thmixed invariant, K15,0"

where each of the 15 k; , mixed invariant coefficients denotes
contributions to the mixed invariant Lo

15
I.,= z Kiol, (45)
=1

@ Springer

in which Tj follows the invariant numbering in Eq. (15).
To activate these mixed invariants in our FEA model, we
include the following lines in our FEA input file,

*PARAMETER TABLE, TYPE = "MIXED_INV"

L ki1, ko1 K3ps Kaps Ksis Keps K715 Kgps Ko
Ki0,1> K111 K12,1> 13,15 K141> K151

2, Kip, Kops K3ps Kans Ksos Keos K72s Kgos Koo
K102> K112> K122> K132> K142, K152

We activate any novel constitutive neuron associated with
these mixed invariants, using the following argument lines
in our FEA input file,

*PARAMETER TABLE, TYPE = "UNIVERSAL_TAB"
101, k£0444, k101, kL2401, W 1015 Wy 1015 Wi, 101
102, k1040, kT 1449, kL2440, Wo 1025 Wy 1025 W1, 102

To avoid any potential confusion between the standard invar-
iants and the mixed invariants, we number all derived mixed
invariants starting at NINV= 101.

Appendix E: Pseudocodes

In the following five algorithmic boxes, we summarize
our universal material subroutine as pseudocode. Algo-
rithm 1 illustrates the UANISOHYPER _INV pseudocode
to compute the arrays UA (1), UA(2), UI1l (NINV),
and UI2 (NINV *(NINV+1) /2) atthe integration point
level. First, we initialize all relevant arrays and read the
activation functions kfy ., kf, ; and kf,, and weights w,,
wy and w, ;. of the n constitutive neurons of our constitu-
tive neural network from our user-defined parameter table
UNIVERSAL TAB (see Appendix B). Then, for each
node, we evaluate its row in the parameter table UNIVER~-
SAL_ TAB and additively update the free energy density
function and its first and second derivatives, UA, UI1,
UI2. Algorithm 2 summarizes the additive update of the
free energy and its first and second derivatives, UA, UI1,
UI2, within the universal material subroutine uCANN.
Algorithms 3, 4 and 5 provide the pseudocode for the three
subroutines uCANN_hO, uCANN_ h1l and uCANN_ h2 that
evaluate the zeroth, first and second network layers for
each network node with its discovered activation functions
and weights.



Engineering with Computers (2025) 41:905-927

923

Algorithm 1 Pseudocode for universal material subroutine
UANISOHYPER INV

subroutine UANISOHYPER_INV (aInv,UA,UI1,UI2)

// initialize variables

set initial array values for UA, UI1, UI2;
set reference configuration UANISOHYPER_INV;
set discovered parameters UNIVERSAL_TAB;

// evaluate all n rows in parameter table
fork in ndo
// invariant, activationfunctions, weights
extract invariant kfinv(k);
extract activation functions
kf0 (k) kf1(k),kf2(k);
extract weights w0 (k), wi(k), w2(k);

// invariant in reference configuration
xInv = aInv(kfinv(k))-xInv0(kfinv(k));

// energyandderivatives UA, UI1, UI2

call uCANN (xInv,kf0(k) ,kf1(k) ,kf2(k)
w0 (k) ,w1(k),w2(k),UA,UI1,UI2);

end

// return updated arrays
return UA, UI1, UI2

Algorithm 2 Pseudocode to update energy and its deriva-
tives UA, UI1l, UI2

subroutine
uCANN (xInv,kfO,kf1,kf2,w0,wl,w2,UA,UI1,UI2)

// zeroth layer: calculate £0,df0,ddf0
call uCANN_hO(xInv,kf0,f0,df0,ddf0);

// first layer: calculate f1,dfl,ddfl
call uCANN_h1 (xInv,w0,kf1,f1,df1,ddf1);

// second layer: calculate £2,df2,ddf2
call uCANN_h2(f1,wl,kf2,f2,df2,ddf2);

// update energy and derivatives UA,UI1,UI2

UA =UA + w2 * £2;

UIl = UI1l + w2 * df2*df1xdf0;

UI2 = UI2 + w2 *((ddf2*df1**2+df2xddf1)
*df0**x2+df2*df1*%ddf0) ;

return UA, UI1, UI2

Algorithm 3 Pseudocode to evaluate output of zeroth net-
work layer £,df, ddf

subroutine uCANN_hO (x,kf ,f,df,ddf)
// calculate zero layer output f,df,ddf for
activation function kf

if kf = 1 then

f = x;
df = 1;
ddf = 0;

else if kf = 2 then
£ = (]x[+x)/2;
af = (Jx|/x+1)/2;
ddf = 0;

else if kf = 3 then
=[x
df = |x|/x;
ddf = 0;

return f,df ,ddf

Algorithm 4 Pseudocode to evaluate output of first net-
work layer £,df,ddf

subroutine uCANN_h1 (x,w,kf,f,df,ddf)
// calculate first layer output f,df,ddf
for activation function kf

if kf = 1then

f =w* x;
df = w *x 1;
ddf = w * 0;

else if kf = 2 then

f = wkk2 * x**x2;

df = wk*x2 * 2%x;

ddf = wx*2 x 2;

else if kf > 3 then

f = wkkkf * x*kxkf;

df = wxxkf * kfkxxx(kf-1);

ddf = wxxkf * kf*(kf-1)*x*x*x(kf-2);
return f ,df ,ddf

Algorithm 5 Pseudocode to evaluate output of second net-
work layer £,df, ddf

subroutine uCANN_h2 (x,kf,w,f,df,ddf)
// calculate second layer output f,df,ddf
for activation function kf

if kf = 1 then
f =w* x;
df = w * 1;
ddf = w * 0O;

else if kf = 2 then

f = exp(w*x)-1;

df = w * exp(w*x);

ddf = w¥*2 * exp(w*x);
elseif kf = 3then

f = -In(1-w*x);

df = w / (1-w*x);

ddf = wk*2 / (1-wkx)**2;
return f,df ,ddf
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