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Abstract
Personalized computational simulations have emerged as a vital tool to understand the biomechanical factors of a disease,
predict disease progression, and design personalized intervention. Material modeling is critical for realistic biomedical sim-
ulations, and poor model selection can have life-threatening consequences for the patient. However, selecting the best model
requires a profound domain knowledge and is limited to a few highly specialized experts in the field. Here we explore the
feasibility of eliminating user involvement and automate the process of material modeling in finite element analyses. We
leverage recent developments in constitutive neural networks, machine learning, and artificial intelligence to discover the best
constitutive model from thousands of possible combinations of a few functional building blocks. We integrate all discoverable
models into the finite element workflow by creating a universal material subroutine that contains more than 60,000 models,
made up of 16 individual terms.We prototype this workflow using biaxial extension tests from healthy human arteries as input
and stress and stretch profiles across the human aortic arch as output. Our results suggest that constitutive neural networks
can robustly discover various flavors of arterial models from data, feed these models directly into a finite element simulation,
and predict stress and strain profiles that compare favorably to the classical Holzapfel model. Replacing dozens of individual
material subroutines by a single universal material subroutine—populated directly via automated model discovery—will
make finite element simulations more user-friendly, more robust, and less vulnerable to human error. Democratizing finite
element simulation by automating model selection could induce a paradigm shift in physics-based modeling, broaden access
to simulation technologies, and empower individuals with varying levels of expertise and diverse backgrounds to actively
participate in scientific discovery and push the boundaries of biomedical simulation.
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1 Motivation

Computational simulations play a pivotal role in understand-
ing and predicting the biomechanical factors of awide variety
of cardiovascular diseases [7, 63, 64]. In vascular medicine,
knowing the precise stress and strain fields across the vascu-
lar wall is critical for understanding the formation, growth,
and rupture of aneurysms [27]; for identifying high-risk
regions of plaque formation, rupture, and thrombosis [49];
and for optimizing stent materials, structure, and deployment
in aortic stenosis [30]. The accurate simulation of cardiovas-
cular disease is a complex challenge that requires collective
efforts across a multitude of disciplines including cardio-
vascular medicine, applied mathematics, biomechanics, and
computer science [44]. Clearly, it is impossible that everyone
has a specialized training in material modeling and an in-
depth knowledge in finite element simulation [9]. However,
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selecting a poor material model does not only jeopardize the
success of the entire simulation, but can have life-threatening
consequences for the patient.The objective of thismanuscript
is to explore whether and how we can automate the process
of material modeling and its integration into a finite element
analysis.

Constitutive neural networks autonomously discover
material models from data Throughout the past couple
of years, two alternative strategies have emerged to dis-
cover models directly from data: non-interpretable and inter-
pretable approaches. Non-interpretable approaches closely
follow traditional neural networks and typically discover
functions of rectified linear unit, softplus, or hyperbolic tan-
gent type [17]. Representatives of this category are tensor
basis Gaussian process regression [13, 14], plain constitu-
tive artificial neural networks [25, 33], and neural ordinary
differential equations [57, 59]. These approaches are straight-
forward to implement, provide an excellent approximation of
the data, and can be integratedmanuallywithin finite element
software packages [17, 58]. However, themodels and param-
eters that these methods learn are non-interpretable, meaning
they provide little insight into the underlying material behav-
ior [47]. Interpretable approaches discover models that are
made up of a library of functional building blocks that resem-
ble traditional constitutive models. Representatives of this
category are sparse regression [10, 11], symbolic regression
[2], and custom-designed constitutive neural networks [34,
54], themethodwe adopt here. These approaches a priori sat-
isfy material objectivity, material symmetry, thermodynamic
consistency, and polyconvexity [29], and autonomously dis-
cover free energy functions that feature popular constitutive
terms and parameters with a clear physical interpretation. By
design, all three translate smoothly into usermaterial subrou-
tines for a finite element analysis [1], and we could adopt any
of these interpretable approaches. Here, for illustrative pur-
poses, we use a custom-designed constitutive neural network
to discover the best constitutive model for aortic tissue from
thousands of possible combinations of a few functional build-
ing blocks [31].We integrate all discoverablemodels into the
finite element workflow by creating a universal material sub-
routine that contains 216 = 65,536 constitutive models, made
up of 16 individual terms [35]. We train and test our network
with biaxial extension tests of the medial and adventitial lay-
ers of a human aorta, and discover various flavors of arterial
models from the experimental data [24, 40].

Model discovery is a non-convex optimization problem
with multiple local minima Unfortunately, in practice,
the sixteen terms of the network tend to span a parameter
space with multiple local minima, the network often discov-
ers non-sparse solutions, and model discovery can become
non-unique [38]. A successful strategy to address these limi-
tations is L p regularization [10], a powerful method to shrink

the parameter space by penalizing the loss function with a
penalty term that consists of the L p norm of the parameter
vector, weighted by a penalty parameter [6]. To illustrate the
potential of L p regularization, we first use L0 regularization,
or discrete combinatorics [12], to discover the best-in-class
one- and two-term models [32], and then use L1 regulariza-
tion, or lasso [61], to systematically reduce the number of
terms. This allows us to discover a suite of different models
for the media and for the adventitia, and learn about their
structural and mechanical differences [22].

Mechanical differences inmedia and adventitiamodulate
the pathogenesis of cardiovascular disease Understanding
the subtle structural and mechanical distinctions between the
media and adventitia layers of the aorta is crucial for com-
prehending vascular health and disease [27]. The media is
rich in smooth muscle cells and elastin fibers to provide
elasticity and contractility, and facilitate hemodynamic func-
tion, while the adventitia is made up primarily of fibroblasts
and collagen fibers to provide structural support [23]. Dis-
ruptions in the delicate structural and mechanical balance
between the media and the adventitia contribute to patho-
logical conditions such as aortic aneurysms, thrombosis,
or stenosis [21]. Mechanical heterogeneity plays a pivotal
role in the pathogenesis of these conditions: Alterations in
the isotropic extracellular matrix can lead to vessel dila-
tion, while changes in the anisotropic collagen content can
affect overall integrity. Finite elementmodels that account for
layer-specific structural and mechanical properties are criti-
cal to accurately simulate disease progression, assess rupture
risk, and develop targeted interventions [15]. A comprehen-
sive understanding of the interplay between the layers of the
aorta can inform strategies for early detection, risk stratifi-
cation, and tailored therapeutic approaches in the benefit of
cardiovascular health.

Automated model discovery does democratize finite ele-
ment simulations For more than half a century, scientists
have developed constitutive models for biological tissues
[20] and today’s finite element packages offer large libraries
of material models to choose from [1, 3, 36, 60, 63]. How-
ever, the scientific criteria for appropriate model selection
remain highly subjective and prone to user bias. Importantly,
the objective of our study is not to discover yet another
marginally better constitutive model. Instead, our goal is
to prototype an intelligent and automated workflow-from
experiment to simulation- to robustly discover constitutive
models from data [31], feed these models directly into a
finite element simulation [46], and reliably predict physi-
cally meaningful stress and strain profiles. If successful, this
new technology could make physics-based simulation more
user-friendly, more accessible, and less vulnerable to human
error.
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2 Experiment

We begin by briefly describing our experimental data from
the healthy human aorta of a 56-year-old male [40], col-
lected as an intact tube within 24h of death, and stored in
saline solution [24]. The sample was cleared, dehydrated in
ethanol, and stored in benzyl alcohol-benzyl benzoate, all at
room temperature. For the structural characterization, sec-
ond harmonic generation imaging was used to quantify two
microstructural parameters: the collagen fiber angle α with
respect to the circumferential direction, and the fiber disper-
sion κ [50]. In the circumferential-axial plane, the median
collagen fiber angle was α = ±7.00◦ with a fiber dispersion
of κ = 0.0737 for the media and α = ±66.78◦ with a fiber
dispersion of κ = 0.0909 for the adventitia [24, 41].

For themechanical characterization, a squared 20×20mm
sample of the media and a cruciform-shaped 35 × 35mm
sample with a squared 5 × 5mm center testing region of
the adventitia were manually separated from the remaining
tissue and tested in biaxial extension while submerged in
saline solution at 37 ◦C. To ensure a homogeneous defor-
mation state, both samples were mounted with the collagen
fibers oriented symmetrically with respect to the two load-
ing directions, and loaded at five different stretch ratios,
λcir : λaxl = {1.20 : 1.10, 1.20 : 1.15, 1.20 : 1.20, 1.15 :
1.20, 1.10 : 1.20}. Tables 1 and 2 summarize the result-
ing five pairs of datasets, {λcir, σcir} and {λaxl, σaxl}, for the
media and for the adventitia [40]. Figure1 illustrates the cir-
cumferential and axial stress-stretch relations of the media,
left, and of the adventitia, right, of the 56-year-old healthy
human aorta.

3 Model

Kinematics During testing, particles X of the undeformed
sample map to particles x = ϕ(X) of the deformed sam-
ple via the deformation map ϕ. Its gradient with respect
to the undeformed coordinates X is the deformation gra-
dient, F = ∇Xϕ. Its spectral representation introduces the
principal stretches λi and the principal directions N i and
ni in the undeformed and deformed configurations, where
F · N i = λi ni , and

F = ∇Xϕ =
3∑

i=1

λi ni ⊗ N i . (1)

We assume that the vascular tissue has two pronounced fiber
directions [22], n01 and n02, with unit length, ||n01|| = 1 and
||n02|| = 1, in the undeformed configuration, and assume
that these directions map affinely onto the pronounced direc-
tions [56], n1 = F ·n01 and n2 = F ·n02, with fiber stretches,

Fig. 1 Biaxial testing of human aortic media and adventitia. Sam-
ples are stretched biaxially in the circumferential and axial directions
at λcir and λaxl at five different stretch ratios, from dark red to dark
blue. The mean fiber angles of the media and adventitia are±7.00◦ and
±66.78◦ against the circumferential direction. Stresses are reported as
σcir and σaxl, see Tables 1 and 2 [24, 40]. (Color figure online)

||n1|| = λn1 and ||n2|| = λn2, in the deformed configura-
tion. We characterize its deformation state through the three
principal invariants I1, I2, I3, and six additional invariants
I4, I5, I6, I7, I8, I9 [52],

I1 = [ Ft · F ] : I = λ21 + λ22 + λ23
I2 = 1

2 [I 21 − [ Ft · F ] : [ Ft · F ]]= λ21λ
2
2 + λ22λ

2
3 + λ21λ

2
3

I3 = det ( Ft · F ) = λ21 λ22 λ23 = J 2

I4 = n01 · [ Ft · F ] · n01 = λ2n1
I5 = n01 · [ Ft · F ]2 · n01
I6 = n02 · [ Ft · F ] · n02 = λ2n2
I7 = n02 · [ Ft · F ]2 · n02
I8 = n01 · [ Ft · F ] · n02 [ n01 ·n02 ]
I9 = [n01 · n02 ]2 = cos2(2α) .

(2)

A perfectly incompressible material has a constant Jacobian
equal to one, I3 = J 2 = 1, the ninth invariant is constant by
definition, I9 = const., and the set of independent invariants
reduces to seven, I1, I2, I4, I5, I6, I7, I8.

Biaxial extension For the special homogeneous deformation
of biaxial extension, we apply stretches λ1 ≥ 1 and λ2 ≥ 1 in
the circumferential and longitudinal directions, and adopt the
incompressibility condition, I3 = λ21 λ22 λ23 = 1, to express
the stretch in the radial direction, λ3 = (λ1 λ2)

−1 ≤ 1. We
assume that the fiber pairs, initially oriented at an angle ±α

to the circumferential direction, n0 = [cos(α),± sin(α), 0]t ,
remain symmetric with respect to the stretch directions, such
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Table 1 Biaxial testing of human aortic media. Samples are stretched biaxially in the circumferential and axial directions at λcir and λaxl at five
different stretch ratios. The mean fiber angle is ±7.00◦ against the circumferential direction. Stresses are reported as σcir and σaxl, see Fig. 1
[24, 40]

Table 2 Biaxial testing of human aortic adventitia. Samples are stretched biaxially in the circumferential and axial directions at λcir and λaxl at
five different stretch ratios. The mean fiber angle is ±66.78◦ against the circumferential direction. Stresses are reported as σcir and σaxl, see Fig. 1
[24, 40]

that the deformation remains homogeneous and shear free,
and the deformation gradient,

F = diag {λ1, λ2, (λ1λ2)−1} (3)

remains diagonal at all times. We now use the the principal
stretches λ1 and λ2 to express the invariants (2),

I1 = λ+2
1 + λ+2

2 + (λ1λ2)
−2

I2 = λ−2
1 + λ−2

2 + (λ1λ2)
+2

I4 = λ21 cos
2α + λ22 sin

2α = I6

I5 = λ41 cos
2α + λ42 sin

2α = I7

I8 = (λ21 cos
2α − λ22 sin

2α) cos(2α) (4)

and their derivatives,

∂F I1 = 2 diag {λ1, λ2, (λ1λ2)−1}
∂F I2 = 2 diag {(λ1λ22 + λ−1

1 λ−2
2 ),
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(λ21λ2 + λ−2
1 λ−1

2 ), (λ1λ
−1
2 + λ−1

1 λ2)}
∂F I4 = 2 diag {λ1 cos2 α, λ2sin2α, 0} = ∂F I6

∂F I5 = 2 diag {2λ31 cos2 α, 2λ32 sin
2 α, 0} = ∂F I7

∂F I8 = 2 diag {λ1 cos2 α,−λ2 sin2 α, 0} cos(2α). (5)

We conclude that the case of biaxial extension probes both
fiber directions equally, I4 = I6 and I5 = I7.

Constitutive equations A hyperelasticmaterial satisfies the
second law of thermodynamics, and its Piola stress P =
∂ψ(F)/∂F is the derivative of the free energy ψ(F) with
respect to the deformation gradient F. A perfectly incom-
pressible hyperelastic material uses this stress definition
modified by a pressure term, −p F-t [37],

P = ∂ψ

∂F
− p F−t, (6)

where the hydrostatic pressure, p = − 1
3 P : F, acts as a

Lagrange multiplier that we determine from the boundary
conditions. We express the free energy function in terms of
the seven invariants, ψ(I1, I2, I4, I5, I6, I7, I8), and obtain
the following explicit expression for the Piola stress,

P = ∂ψ

∂ I1

∂ I1
∂F

+ ∂ψ

∂ I2

∂ I2
∂F

+ ∂ψ

∂ I4

∂ I4
∂F

+ ∂ψ

∂ I5

∂ I5
∂F

+ ∂ψ

∂ I6

∂ I6
∂F

+ ∂ψ

∂ I7

∂ I7
∂F

+ ∂ψ

∂ I8

∂ I8
∂F

− p F−t. (7)

Biaxial extension For homogeneous and shear free biaxial
extension, the Piola stress P remains diagonal at all times,

P = diag {P11, P22, 0}, (8)

and we can use the zero-normal-stress condition, P33 = 0,
to determine the pressure p,

p = 2

λ21λ
2
2

∂ψ

∂ I1
+

[
2

λ21
+ 2

λ22

]
∂ψ

∂ I2
. (9)

Equation (7) then provides explicit analytical expressions for
the Piola stresses P1 and P2 in terms of the stretches λ1 and
λ2, In what follows, we assume that the mechanical behavior
of the two fiber families is identical and combine their effects
in the fourth and fifth invariants, I4 and I5. In addition, we
assume that the two fiber families do not interact and drop
the eighth invariant I8 [39]. This results in the following
expressions,

P1 = 2

[

λ1 − 1

λ31λ
2
2

]
∂ψ

∂ I1
+ 2

[

λ1λ
2
2 − 1

λ31

]
∂ψ

∂ I2

Fig. 2 Constitutive neural network.Perfectly incompressible hypere-
lastic constitutive neural networkwith two hidden layers to approximate
the free-energy function ψ(I1, I2, I4, I5) as a function of the invariants
of the deformation gradient F using sixteen terms. The first layer gen-
erates powers (◦) and (◦)2 of the network input and the second layer
applies the identity (◦) and exponential function (exp(◦)) to these pow-
ers. (Color figure online)

+ 4 λ1 cos2 α
∂ψ

∂ I4
+ 8 λ31 cos

2 α
∂ψ

∂ I5

P2 = 2

[

λ2 − 1

λ21λ
2
2

]
∂ψ

∂ I1
+ 2

[

λ21λ2 − 1

λ32

]
∂ψ

∂ I2

+ 4 λ2 sin2 α
∂ψ

∂ I4
+ 8 λ32 sin

2 α
∂ψ

∂ I5
(10)

Finally, we translate these nominal stresses P1 and P2 into
the true stress σ1 and σ2,

σ1 = 2

[

λ21 − 1

λ21λ
2
2

]
∂ψ

∂ I1
+ 2

[

λ21λ
2
2 +

1

λ21

]
∂ψ

∂ I2

+ 4 λ21 cos
2 α

∂ψ

∂ I4
+ 8 λ41 cos

2 α
∂ψ

∂ I5

σ2 = 2

[

λ22 − 1

λ21λ
2
2

]
∂ψ

∂ I1
+ 2

[

λ21λ
2
2 +

1

λ22

]
∂ψ

∂ I2

+ 4 λ22 sin
2 α

∂ψ

∂ I4
+ 8 λ42 sin

2 α
∂ψ

∂ I5
, (11)

that are reported in the experiment [40].

Constitutive neural network To discover the best model
and parameters to explain the biaxial testing data, we adopt
the concept of constitutive neural networks, a special class of
neural networks that satisfy the conditions of thermodynamic
consistency, material objectivity, material symmetry, perfect
incompressibility, polyconvexity, and physical constraints by
design [31].

Figure 2 illustrates our neural network with two hidden
layers and eight and sixteen nodes [35]. The first layer gen-
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erates powers (◦) and (◦)2 of the network input, the four
invariants I1, I2, I4, I5, and the second layer applies the
identity, (◦) and the exponential function (exp(◦)) to these
powers. The free energy function of this networks takes the
following explicit form,

ψ = w2,1 w1,1 [I1 − 3] + w2,2 [exp(w1,2 [I1 − 3]) − 1]
+ w2,3 w1,3 [I1 − 3]2 + w2,4 [exp(w1,4 [I1 − 3]2) − 1]
+ w2,5 w1,5 [I2 − 3] + w2,6 [exp(w1,6 [I2 − 3]) − 1]
+ w2,7 w1,7 [I2 − 3]2 + w2,8 [exp(w1,8 [I2 − 3]2) − 1]
+ w2,9 w1,9 [I4 − 1] + w2,10 [exp(w1,10 [I4 − 1]) − 1]
+ w2,11 w1,11 [I4 − 1]2 + w2,12 [exp(w1,12 [I4 − 1]2) − 1]
+ w2,13 w1,13 [I5 − 1] + w2,14 [exp(w1,14 [I5 − 1]) − 1]
+ w2,15 w1,15 [I5 − 1]2 + w2,16 [exp(w1,16 [I5 − 1]2) − 1],

(12)

corrected by the pressure termψ = ψ − p [J−1]. Its deriva-
tives with respect to the four invariants,

∂ψ

∂ I1
= w2,1 w1,1 +w2,2 w1,2 exp(w1,2 [ I1 − 3 ] )

+ 2 [ I1 − 3 ][w2,3 w1,3 +w2,4 w1,4 exp(w1,4 [ I1 − 3 ]2 )
∂ψ

∂ I2
= w2,5 w1,5 +w2,6 w1,6 exp(w1,6 [ I2 − 3 ] )

+ 2 [ I2 − 3 ][w2,7 w1,7 +w2,8 w1,8 exp(w1,8 [ I2 − 3 ]2 )
∂ψ

∂ I4
= w2,9 w1,9 +w2,10w1,10 exp(w1,10[ I4 − 1 ] )

+ 2 [ I4 − 1 ][w2,11w1,11+w2,12w1,12 exp(w1,12[ I4 − 1 ]2 )
∂ψ

∂ I5
= w2,13w1,13+w2,14w1,14 exp(w1,14[ I5 − 1 ] )

+ 2 [ I5 − 1 ][w2,15w1,15+w2,16w1,16 exp(w1,16[ I5 − 1 ]2 )
(13)

complete the definition of the principal Cauchy stresses
in equations (11). The network has two times sixteen
weights w, which we constraint to always remain non-
negative, w ≥ 0. We learn the network weights w by
minimizing a loss function L that penalizes the error between
model and data. We characterize this error as the mean
squared error, the L2-norm of the difference between the
stresses predicted by the network model, σ1, σ2, and the
experimentally measured stresses, σ̂1,i , σ̂2,i , divided by the
number of training points ntrn, and add a penalty term,
α || w||pp, to allow for L p regularization,

L = 1
ntrn

ntrn∑

i=1

||σ1(λ1,i , λ2,i ) − σ̂1,i ||2

+ 1
ntrn

ntrn∑

i=1

||σ2(λ1,i , λ2,i ) − σ̂2,i ||2 + α|| w||pp → min.

(14)

Hereα ≥ 0 is a non-negative penalty parameter and || w||pp =∑npar
i=1 |wi |p is the L p norm of the vector of the network

weights w. We train the network by minimizing the loss
function (14) using the ADAM optimizer, a robust adaptive
algorithm for gradient-based first-order optimization.

Universal material subroutine To seamlessly integrate our
discoveredmodel and parameters into a simulation,we create
a universalmaterial subroutine [46]. This subroutine operates
on the integration point level of thefinite element analysis and
translates the local deformation, for example in the form of
the deformation gradient F, into the current stress, for exam-
ple the Piola stress P [1]. We reformulate the free energy
function ψ from equation (12) as the sum of all k nodes of
the final hidden layer,

ψ = f2◦ f1◦ f0(F) =
n∑

k=1

w2,k f2,k( f1, j ( f0,i );w1,k), (15)

where f2, f1, f0 are the nested activation functions associated
with the second, first, and zeroth layers,

f2 =






w1(◦)
exp(w1(◦)) − 1
−ln(1 − w1(◦))

...

f1 =






(◦)1
(◦)2
(◦)3
...

f0 =






[I1 − 3]
[I2 − 3]
[I3 − 1]
[I4 − 1]
[I5 − 1]

.

(16)

Here f0 maps the deformation gradient F onto a set of invari-
ants, [I1 − 3], [I2 − 3], [I3 − 1], [I4 − 1], [I5 − 1], f1 raises
these invariants to the first, second, or any higher order pow-
ers, (◦)1, (◦)2, (◦)3, and f2 applies the identity, exponential,
or natural logarithm, (◦), (exp(◦) − 1), (−ln(1 − (◦))), or
any other thermodynamically admissible function to these
powers. The material subroutine calculates the Piola stress
following equation (13),

P =
n∑

k=1

w2,k
∂ f2,k
∂(◦)

∂ f1,k
∂(◦)

∂ f0,k
∂F

(17)

in terms of the first derivatives of the activation functions f2
and f1,

∂ f2
∂(◦) =






w1
w1exp(w1(◦))
w1/(1 − w1(◦))

...

and
∂ f1
∂(◦) =






1(◦)0
2(◦)1
3(◦)2
...

(18)

and the tensor basis, ∂ f0,k/∂F = ∂ Ik/∂F. In implicit finite
element algorithms with a global Newton Raphson iteration,
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the material subroutine also calculates the tangent moduli,

dP
dF

=
n∑

k=1

w2,k

[[
∂2 f2,k
∂(◦)2

[
∂ f1,k
∂(◦)

]2
+ ∂ f2,k

∂(◦)
∂2 f1,k
∂(◦)2

]

∂ f0,k
∂F

⊗ ∂ f0,k
∂F

+
[
∂ f2,k
∂(◦)

∂ f1,k
∂(◦)

]
∂2 f0,k
∂F2

]
(19)

in terms of the second derivatives of the activation functions
f2 and f1,

∂2 f2
∂(◦)2 =






0
w2
1exp(w1(◦))

w2
1/(1 − w1(◦))2

...

and
∂2 f1
∂(◦)2 =






0
2
6(◦)
...

(20)

and the tensor basis, ∂2 f0,k/∂F2 = ∂2 Ik/∂F ⊗ ∂F. We
translate our discoveredmodel into amodular universalmate-
rial subroutine within the Abaqus finite element analysis
software suite [1]. We leverage the UANISOHYPER_INV
subroutine to introduce our strain energy function (12) or
(16) in terms of the discovered pairs of network weights
and activation functions. Our universal material subrou-
tine uses the strain energy density, UA(1) = ψ , and
its first and second derivatives, UI1(NINV) = ∂ψ/∂ Ii ,
and UI2(NINV∗(NINV + 1)/2) = ∂2ψ/∂ Ii∂ I j , with
respect to the invariants. Following the Abaqus convention,
we introduce an array of generalized invariants,
aInv(NINV) = I ∗

i with i = 1, . . . ,NINV, where NINV
is the total number of isotropic and anisotropic invariants.
In our case, for a material with two fiber families, n0 =
[cos(α),± sin(α), 0]t , we introduce four additional invari-
ants, I4, I5, I6, I7, where I4, I6 and I5, I7 share the same
parameters [1].

Algorithm 1 illustrates the UANISOHYPER_INV pseu-
docode to compute the arrays, UA(1), UI1(NINV),
UI2(NINV ∗(NINV+1)/2), at the integration point level
during a finite element analysis. First, we initialize all rele-
vant arrays and read the activation functions k f1,k and k f2,k
and weights w1,k and w2,k of the n color-coded nodes of our
constitutive neural network in Fig. 2 from our user-defined
parameter table UNIVERSAL_TAB. Then, for each node, we
evaluate its row in the parameter table UNIVERSAL_TAB
and additively update the strain energy density function and
its first and second derivatives, UA, UI1, UI2.

Algorithm 2 summarizes the additive update of the free
energy and its first and second derivatives, UA, UI1, UI2,
within the universal material subroutine uCANN. Algo-
rithms3 and4provide the pseudocode for the two subroutines
uCANN_h1 and uCANN_h2 that evaluate the first and sec-

Algorithm1: Pseudocode for universal material subrou-
tine UANISOHYPER_INV
subroutine UANISOHYPER_INV(aInv,UA,UI1,UI2)

// initialize variables
set initial array values for UA, UI1, UI2;
set reference configuration
UANISOHYPER_INV;
set discovered parameters UNIVERSAL_TAB;

// evaluate all n rows in parameter table
for k in n do

// invariant, activation functions, weights
extract invariant kf0(k);
extract activation functionskf1(k),kf2(k);
extract weights w1(k), w2(k);

// invariant minus 3 or 1
xInv = aInv(kf0(k))-aInv0(kf0(k)) ;

// energy and derivatives UA, UI1, UI2

call uCANN(xInv,kf1(k),kf2(k),w1(k),
w2(k),UA,UI1,UI2);

end

// return updated arrays
return UA, UI1, UI2

Algorithm 2: Pseudocode to update energy and its
derivatives UA, UI1, UI2
subroutine
uCANN(xInv,kf1,kf2,w1,w2,UA,UI1,UI2)

// first layer: calculate f1,df1,ddf1
w0 = 1;
call uCANN_h1(xInv,w0,kf1,f1,df1,ddf1);

// second layer: calculate f2,df2,ddf2
call uCANN_h2(f1,w1,kf2,f2,df2,ddf2);

// update energy and derivatives
UA,UI1,UI2

UA = UA + w2 * f2;
UI1 = UI1 + w2 * df2*df1;
UI2 = UI2 + w2 *(ddf2*df1*df1 +
df2*ddf1);
return UA, UI1, UI2

Algorithm 3: Pseudocode to evaluate output of first net-
work layer f,df,ddf
subroutine uCANN_h1(x,w,kf,f,df,ddf)

// calculate first layer output f,df,ddf
for activation function kf

if kf = 1 then
f = w * x;
df = w * 1;
ddf = w * 0;

else if kf = 2 then
f = w**2 * x**2;
df = w**2 * 2*x;
ddf = w**2 * 2;

return f,df,ddf
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Algorithm 4: Pseudocode to evaluate output of second
network layer f,df,ddf
subroutine uCANN_h2(x,kf,w,f,df,ddf)

// calculate second layer output f,df,ddf
for activation function kf

if kf = 1 then
f = w * x;
df = w * 1;
ddf = w * 0;

else if kf = 2 then
f = exp(w*x)-1;
df = w * exp(w*x);
ddf = w**2 * exp(w*x);

else if kf = 3 then
f = -ln(1-w*x);
df = w / (1-w*x);
ddf = w**2 / (1-w*x)**2;

return f,df,ddf

ond network layers for each network nodewith its discovered
activation functions and weights.

Finite element simulation We implement the universal
material subroutine in Abaqus FEA, and make it publicly
available on Github. To integrate it into a finite element
simulation, we need to define our discovered model and
parameters in a parameter table [1]. Each row of this table
represents one of the color-coded nodes in Fig. 1 and con-
sists of five terms: an integer kf0 that defines the index
of the pseudo-invariant xInv, two integers kf1 and kf2
that define the indices of the first- and second-layer activa-
tion functions, and two float values w1 and w2 that define
the weights of the first and second layers. We declare this
input format using the parameter table type definition in the
UNIVERSAL_PARAM_TYPES.INC file.

*PARAMETER TABLE TYPE, name="UNIVERSAL_TAB",
parameters = 5

INTEGER, , "index pseudo-invariant, kf0,o"
INTEGER, , "index 1st activ function, kf1,o"
INTEGER, , "index 2nd activ function, kf2,o"
FLOAT, , "weight 1st hidden layer, w1,o"
FLOAT, , "weight 2nd hidden layer, w2,o"

Within Abaqus FEA, we include the parameter table type
definition using

*INCLUDE, INPUT=UNIVERSAL_PARAM_TYPES.INC

at the beginning of the input file.We activate our user-defined
material model through the command

*ANISOTROPIC HYPERELASTIC, USER,
FORMULATION=INVARIANT

followed by the discovered parameters. From the constitutive
neural network in Fig. 2, we obtain sixteen entries for the
parameter table, four for each isotropic invariant, I1 and I2,
and four for each anisotropic invariant, I4 and I5, associated
with the first fiber family, n0 = [cos(α),+ sin(α), 0]t . We
add eight entries, four for each anisotropic invariant, I6 and
I7, indexed in Abaqus as invariants 8 and 9, associated with
the second fiber family, n0 = [cos(α),− sin(α), 0]t , with the
same parameters as I4 and I5. The header and the twenty-four
lines of our parameter table take the following format,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,1,w1,1, w2,1 1,1,2,w1,2, w2,2

1,2,1,w1,3, w2,3 1,2,2,w1,4, w2,4

2,1,1,w1,5, w2,5 2,1,2,w1,6, w2,6

2,2,1,w1,7, w2,7 2,2,2,w1,8, w2,8

4,1,1,w1,9, w2,9 4,1,2,w1,10, w2,10

4,2,1,w1,11, w2,11 4,2,2,w1,12, w2,12

5,1,1,w1,13, w2,13 5,1,2,w1,14, w2,14

5,2,1,w1,15, w2,15 5,2,2,w1,16, w2,16

8,1,1,w1,9, w2,9 8,1,2,w1,10, w2,10

8,2,1,w1,11, w2,11 8,2,2,w1,12, w2,12

9,1,1,w1,13, w2,13 9,1,2,w1,14, w2,14

9,2,1,w1,15, w2,15 9,2,2,w1,16, w2,16

The first index of each row selects between the first, second,
fourth, fifth, sixth, and seventh invariants, I1, I2, I4, I5, I6, I7,
the second index raises them to linear or quadratic powers,
(◦)1, (◦)2, and the third index selects between the identity or
the exponential function, (◦), (exp(◦) − 1). For brevity, we
can simply exclude terms with zero weights from the list.

4 Results

To demonstrate howwe can translate information seamlessly
from experiment to simulation, we perform three types of
examples: First, we discover the best model and parame-
ters to explain the experimental data with a limited number
of model terms from our library of sixteen commonly used
terms.We discover the best-in-class one- and two-term mod-
els, interpret their terms, and discuss their model parameters.
For the four best-in-class two-term models, we illustrate the
fit to the data, and perform a direct comparison with the
widely used classical Holzapfel model. Second, we discover
the best model and parameters to explain the data, but now
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without restricting the number of terms.We demonstrate how
to embed the model into our universal material subroutine,
and validate its implementation by comparing its finite ele-
ment simulations against the experimental data and against
the stress plots from our initial model discovery. Third, we
predict the diastolic and systolic wall stretches and stresses
across a human aortic arch, and compare the simulationswith
our newly discovered model against the classical Holzapfel
model. We illustrate how to parameterize the two models
and discuss their similarities and differences, locally at the
integration point level and globally at the structural level.

Discovering the best-in-class models First, to gain a bet-
ter intuition of our data, we discover the best families of
models with a limited number of terms [32]. In the most gen-
eral sense, our sixteen-node network in Fig. 2 introduces the
sixteen-term model in equation (12) parameterized in terms
of sixteen pairs of weights, {w1,◦, w2,◦}. In the most naive
approach, we could test all possible models. From combi-
natorics, we know that this is a total of 216 − 1 = 65,535
models, 16 with a single term, 120 with two, 560 with three,
1820 with four, 4368 with five, 8008 with six, 11,440 with
seven, 12,870 with eight, 11,440 with nine, 8008 with ten,
4368 with eleven, 1820 with twelve, 560 with thirteen, 120
with fourteen, 16 with fifteen, and 1 with all sixteen terms.
To understand the relevance of these sixteen terms, we begin
with a simplified analysis that constrains the number of non-
zero terms to either one or two [38]. We train the network
in Fig. 2 by minimizing the loss function (14) with the stress
definitions (11) using the biaxial test data of the media and
adventitia in Tables 1 and 2, and explicitly set the weights of
the remaining terms to zero [55].

Figure3 summarizes the discovery of the best-in-class
one- and two-term models for the human aortic media and
adventitia in two 16 × 16 heat maps. Terms 1 through 8 are
associated with the isotropic invariants I1 and I2, terms 9
through 16 are associated with the anisotropic invariants I4
and I5. The squares on the diagonale indicate the goodness
of fit of the 16 one-term models for the media and the adven-
titia. All other squares indicate the goodness of fit of the 120
two-term models. The color code represents the remaining
loss after training, and is a measure for the goodness of fit
of each model. The best-in-class models are the models with
the lowest remaining loss, highlighted in dark blue. At first
glance, we observe four distinct blocks, the iso–iso block
in the upper left, the aniso–aniso block in the lower right,
and the iso–aniso blocks in the upper right and lower left.
The color code confirms our intuition, that a combination of
two isotropic or two anisotropic terms does not provide a
good explanation of the data. Instead, the best-in-class mod-

Table 3 Best-in-class one-term models. Models and parameters of the
constitutive neural network from Fig.2, trained with data from Table 1
for the media and Table 2 for the adventita. The four models are the
best-in-class one-term models from Fig. 2. Each block summarizes the
constitutive model, the input to the universal material subroutine, their
parameterizations for the media, top, and adventita, bottom, and their
overall ranking

els with the lowest remaining loss and the dark blue colors
are all located in the iso-aniso blocks.

Best-in-class one-term models The squares on the diago-
nales of Fig. 3 indicate the goodness of fit of the 16 one-term
models for the media and the adventitia.

Table 3 summarizes the four best-in-class one-term mod-
els: the exponential linear first invariant Demiray model [8],
the linear second invariant Blatz Ko model [4], the exponen-
tial linear second invariantmodel, and the linear first invariant
neo Hooke model [62]. Each block summarizes the constitu-
tive model, the input to the universal material subroutine,
their parameterizations for the media, top, and adventita,
bottom, and their overall ranking, right. Since our consti-
tutive neural network uses parameters with a clear physical
interpretation, we can translate the network weights into the
classical shear modulusµ, the stiffness-like parameter a, and
the unitless exponential weighting factor b. From compar-
ing the discovered parameters for both tissue types across
all four models, we conclude that the media, in each top
row, is about three to four times stiffer than the adventitia, in
each bottom row. Interestingly, the exponential first invariant
Demiray model [8] is the best of all sixteen models, both for
the media and adventitia. The linear second invariant Blatz
Ko model [4] is the second best model for the media, and the
third best for the adventitia. Strikingly, the widely used linear
first invariant neo Hooke model [62] is not among the three
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Fig. 3 Discovering the best-in-class models. Best-in-class one- and two-term models of the media and adventitia. Remaining loss of the 16
one-term models and 120 two-term models of the constitutive neural network from Fig. 2, trained with all ten datasets from Table 1 for the media,
left, and Table 2 for the adventitia, right. Terms 1 through 8 are associated with the isotropic invariants I1 and I2, terms 9 through 16 are associated
with the anisotropic invariants I4 and I5. Squares on the diagonale indicate the losses of the 16 one-termmodels, all other squares indicate the losses
of the 120 two-term models. Best-in-class models are the models with the lowest remaining loss, highlighted in dark blue. (Color figure online)

best-in-class one-term models, neither for the media nor for
the adventitia.

Best-in-class two-term models of the media All squares
that are not located on the diagonale of Fig. 3 illustrate the
goodness of fit of the 120 two-term models. Notably, for the
media, the four best-in-class two-term models are all located
in the second row and column of Fig. 3, left.

Table 4 summarizes the four best-in-class two-term mod-
els for the media. They all contain the isotropic exponential
linear first invariant Demiray term [8] from the best-in-class
one-term model, combined with an anisotropic term: the
quadratic fifth invariant term, the quadratic fourth invari-
ant term, the exponential quadratic fourth invariant term, or
the exponential quadratic fifth invariant term. For compar-
ison, Table 4 also reports the classical two-term Holzapfel
model [22] that contains the isotropic linear first invariant
term and the anisotropic exponential quadratic fourth invari-
ant term. Each block of the table summarizes the constitutive
model, the input to the universal material subroutine, and
their parameterizations.

Figure4 illustrates the performance of the four best-
in-class two-term models for the media from Fig. 2, left,
summarized in Table 4, and for comparison, the classical
Holzapfel model [22]. The circles represent the equibiaxial
testing data from Table 1. The reported loss quantifies the
goodness of fit for a simultaneous training with all all ten
stress-stretch pairs. The color coded regions highlight the
contributions of the individual model terms to the circumfer-
ential and axial stresses,σcir andσaxl, as functions of stretches
λcir andλaxl. The red regions represent the isotropic exponen-
tial linear first invariant term. The blue, green, turquoise, and
dark blue regions represent the anisotropic fourth and fifth
invariant terms. With a median collagen fiber orientation of

Table 4 Best-in-class two-term models of the media. Models and
parameters of the constitutive neural network from Fig. 2, trained with
all ten datasets from Table 1 simultaneously. The first four models are
the best-in-class two-term models from Fig.2, left; the fifth model is
the classical Holzapfel model. Each block summarizes the constitutive
model, the input to the material subroutine, and their parameters

123



Computational Mechanics (2025) 75:1703–1723 1713

Fig. 4 Best-in-class two-term models of the media. True stresses σcir and σaxl as functions of stretches λcir and λaxl for the constitutive neural
network from Fig. 2, trained with all ten datasets from Table 1 simultaneously. The first four columns illustrate the best-in-class two-term models
from Fig. 2, left; the right column illustrates the Holzapfel model [22] for comparison. Circles represent the equibiaxial testing data from Table 1.
Color-coded regions represent the discovered model terms. The remaining loss indicates the quality of the overall fit. (Color figure online)

7.00◦, the fibers in the media are almost aligned with the
circumferential direction. This implies that the axial direc-
tion, bottom, only sees the red isotropic response, while the
circumferential direction, top, sees a superposition of both,
the red isotropic and the green-to-blue anisotropic responses.
For the sake of compactness, we only display the equibi-
axial response, but note that the other four curves provide
an equally good fit to the experimental data. The classical
Holzapfel model [22] in Fig. 4, right, combines the isotropic
linear first invariant term in dark red and the anisotropic expo-
nential quadratic fourth invariant term in turquoise. While it
performs well in the circumferential direction, top right, its
linear isotropic term is incapable of capturing the nonlin-
ear isotropic matrix behavior in the axial direction, bottom
right. Its loss is about three times higher than the loss of the
discovered best-in-class two-term-model, Fig. 4, left.

Best-in-class two-termmodels of theadventitiaAll squares
that are not located on the diagonale of Fig. 3 illustrate the
goodness of fit of the 120 two-term models. Interestingly,
for the adventitia, the four best-in-class two-term models
are located in the second and sixth rows and columns of
Fig. 3, right. Table 5 summarizes the four best-in-class two-
term models for the adventitia. They contain the isotropic
exponential linear first or second invariant term from the best-
in-class one-term models, combined with the anisotropic
exponential linear or quadratic fifth invariant term. For com-
parison, Table 5 also reports the classical two-termHolzapfel
model [22]. Figure5 illustrates the performance of the four
best-in-class two-term models for the adventitia from Fig. 2,
right, summarized in Table 5, and for comparison, the
classical Holzapfel model [22]. The circles represent the
equibiaxial testingdata fromTable 2.The red and light orange

Table 5 Best-in-class two-term models of the adventitia. Models and
parameters of the constitutive neural network from Fig. 2, trained with
all ten datasets from Table 2 simultaneously. The first four models are
the best-in-class two-term models from Fig. 2, right; the fifth model is
the classical Holzapfel model. Each block summarizes the constitutive
model, the input to the material subroutine, and their parameters
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Fig. 5 Best-in-class two-term models of the adventitia. True stresses σcir and σaxl as functions of stretches λcir and λaxl of the constitutive neural
network from Fig. 2, trained with all ten datasets from Table 2 simultaneously. The first four columns illustrate the best-in-class two-term models
from Fig. 2, right; the right column illustrates the Holzapfel model [22] for comparison. Circles represent the equibiaxial testing data from Table 2.
Color-coded regions represent the discovered model terms. The remaining loss indicates the quality of the overall fit. (Color figure online)

regions represent the isotropic exponential linear first and
second invariant terms. The blue and dark blue regions rep-
resent the anisotropic exponential linear and quadratic fifth
invariant terms. With a median collagen fiber orientation of
66.78◦, the fibers in the adventitia are much closer to the
axial direction than for the media. As a result, both circum-
ferential and axial directions see the red and and orange
isotropic response and the blue anisotropic response, with
a pronounced anisotropy in the axial stresses, bottom. Simi-
lar to themedia, Fig. 4, the classical Holzapfel model [22] for
the adventitia, Fig. 5, right, has a loss that is about three times
higher than the loss of the discovered best-in-class two-term-
model, Fig. 5, left.

Discovering the best model and parameters Next, we
discover the best model and parameters–but now without
prescribing the number of terms–and use the model to val-
idate simulations with our universal material subroutine
against the experimental data and against the stress plots
from our model discovery. Model discovery is a sophis-
ticated trade-off between the number of discovered terms
and the accuracy of the fit [38]. Fortunately, we can fine-
tune this trade-off by adding an L p regularization term to
the loss function in Eq. (14). Specifically, with L1 regular-
ization and a penalty parameter α varying between α =
[0.000, 0.001, 0.010, 0.100], we observe that we can tune
the number of discovered model terms between five and one.
For our example, a penalty parameter of α = 0.001 pro-
vides a good balance between the number of terms and the
accuracy of the fit. Strikingly, for this penalty parameter,
the network discovers exactly the same model for the media
and the adventitia: a three-term model with the isotropic lin-
ear and exponential first invariant terms and the anisotropic
quadratic fifth invariant term,

ψ = 1
2
µ1[I1 − 3] + 1

2
a/b[exp(b[I1 − 3]) − 1] + 1

2
µ5[I5 − 1]2.

While the discovered model is the same for both tissue
types, the discovered parameters are different, with µ1 =
33.45kPa, a = 3.74kPa, b = 6.66, µ5 = 2.17kPa for
the media and µ1 = 8.30kPa, a = 1.42kPa, b = 6.34,
µ5 = 0.49kPa for the adventitia. These parameters reflects
the different tissue compositions [23], with the media about
three to four times stiffer than the adventitia. The discovered
model translates into the following four-line parameter table
for our universal material subroutine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,1,w1,1, w2,1 1,1,2,w1,2, w2,2

5,2,1,w1,15, w2,15 9,2,1,w1,15, w2,15

with w1,1 = 38.01, w2,1 = 0.44kPa, w1,2 = 6.66,
w2,2 = 0.28kPa, w1,15 = 24.68, w2,15 = 0.04kPa for the
media and w1,1 = 34.28, w2,1 = 0.12kPa, w1,2 = 6.34,
w2,2 = 0.11kPa, w1,15 = 15.32, w2,15 = 0.02kPa for the
adventitia.

Figures6 and 7 illustrate the discovered model for the
media and the adventita, top, and, for validation, the finite
element simulations with our universal material subroutine,
bottom. The circles illustrate the biaxial testing data from
Tables 1 and 2. The color coded regions highlight the contri-
butions of the individual model terms to the circumferential
and axial stresses, σcir and σaxl, as functions of stretches, λcir
and λaxl. The dark red and red regions represent the isotropic
linear first invariant neo Hooke term [62] and the exponential
first invariant Demiray term [8]. The blue regions represent
the anisotropic quadratic fifth invariant term.Overall, the dis-
covered model provides an excellent fit to the data, both for
the media and the adventitia. In both examples, in Figs. 6 and
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Fig. 6 Discovered model and finite element simulation of the media. True stresses σcir and σaxl as functions of stretches λcir and λaxl of the
constitutive neural network from Fig.2, trained with all ten datasets from Table 1 simultaneously. Circles illustrate the biaxial testing data from
Table 1. Top graphs display the discovered model, ψ = 1

2µ1[I1 − 3] + 1
2a/b[exp(b[I1 − 3])− 1] + 1

2µ5[I5 − 1]2; bottom graphs display the finite
element simulation with the discovered parameters µ1 = 33.45kPa, a = 3.74kPa, b = 6.66, µ5 = 2.17kPa. (Color figure online)

7, the finite element simulations with our universal material
subroutine, bottom, agree well with the experimental data
and with the model discovery plots, top.

Predicting wall stresses in the human aortic arch To
explore whether our finite element simulations generalize
robustly, from the material point level to the structural level,
we now use our universal material subroutine to predict the
wall stresses across the human aortic arch and compare our
results against the Holzapfel model [16]. We explore the aor-
tic arch during diastole, at a blood pressure of 80mmHg, and
during systole, at 120mmHg, both applied quasi-statically,
andvisualize the predicted stresses and stretches in themedia,
in the adventitia, and in selected cross sections.

Figure8 shows our finite element model of the aortic arch,
created from high-resolution magnetic resonance images of
a healthy, 50th percentile U.S. male [43, 44]. We assume an
average aortic wall thickness of 3.0mm,where the inner 75%

of the wall make up the media and the outer 25% make up
the adventitia. The finite element discretization uses 60,684
linear tetrahedral elements for the media and 30,342 linear
tetrahedral elements for the adventitia, and has a total of
61,692 degrees of freedom. The local collagen fiber angles
against the circumferential direction are±7.00◦ in the media
and ±66.78◦ in the adventitia. The simulation in Fig. 8, left,
uses our newly discovered three-termmodelwith an isotropic
linear first invariant neo Hooke term, an isotropic exponen-
tial first invariant Demiray term, and an anisotropic quadratic
fifth invariant term, ψ = 1

2µ1[I1 − 3] + 1
2a/b[exp(b[I1 −

3]) − 1] + 1
2µ5[I5 − 1]2, with the discovered parameters

µ1 = 33.45kPa, a = 3.74kPa, b = 6.66, µ5 = 2.17kPa
for the media and µ1 = 8.30kPa, a = 1.42kPa, b = 6.34,
µ5 = 0.49kPa for the adventitia. The simulation in Fig. 8,
right, uses the Holzapfel model with an isotropic linear first
invariant neoHooke termand an anisotropic exponential term
that couples the first and fourth invariants through the dis-
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Fig. 7 Discovered model and finite element simulation of the adventitia. True stresses σcir and σaxl as functions of stretches λcir and λaxl of
the constitutive neural network from Fig.2, trained with all ten datasets from Table 2 simultaneously. Circles illustrate the biaxial testing data from
Table 2. Top graphs display the discovered model, ψ = 1

2µ1[I1 − 3] + 1
2a/b[exp(b[I1 − 3])− 1] + 1

2µ5[I5 − 1]2; bottom graphs display the finite
element simulation with the discovered parameters µ1 = 8.30kPa, a = 1.42kPa, b = 6.34, µ5 = 0.49kPa. (Color figure online)

Fig. 8 Human aortic archmodel andwall stresses in themedia and adventitia. The finite element discretization uses linear tetrahedral elements,
60,684 for the media and 30,342 for the adventitia, and has a total of 61,692 degrees of freedom. The color code highlights the maximum principal
stresses in the media and adventitia of the human aortic arch predicted by the newly discovered three-term model, left, and by the Holzapfel model,
right, both trained with the media and adventitia datasets from Tables 1 and 2. (Color figure online)
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persion parameter κ , ψ = 1
2µ[I1 − 3]+ 1

2a/b[exp(b[κ[I1 −
3] + [1 − 3κ][I4 − 1]2]) − 1] with the best-fit parameters
µ = 48.68kPa, a = 6.67kPa, b = 23.17, κ = 0.074 for
the media and µ = 13.22kPa, a = 0.93kPa, b = 12.06,
κ = 0.091 for the adventitia. We follow the common prac-
tice and only activate the fourth and fifth invariant terms in
tension, but not in compression.

Figure8 illustrates four stress profiles that provide a
first glance at the performance of both models: First, we
emphasize that all large scale structural simulations with our
universal material subroutine run and converge robustly, and
predict physically reasonable, smooth stress profiles across
the entire aortic arch. Second, we observe that, for both con-
stitutivemodels, themaximumprincipal stresses in themedia
are about three times higher than in the adventitia, which
agrees well with the recorded stresses in the experiment in
Tables 1 and 2 and with the discovered stiffness-like param-
eters in Tables 3 through 5. Third, and most interestingly,
the direct side-by-side comparison of the two different mod-
els reveals an excellent agreement of the stress profiles in
the low-stress regimes of the adventitia, and a very good
agreement in the high-stress regimes of the media, with only
a few minor local discrepancies. Overall, we conclude that
our universal material subroutine generalizes well from the
local material point level to the global structural level and
that the simulations with our newly discovered three-term
model perform similar to the widely used Holzapfel model
[16].

Predicting aortic arch mechanics with the newly discov-
eredmodel Figure 9 illustrates the circumferential and radial
stresses and stretches in the media, in the adventita, and in
selected cross sections, during diastole, top, and systole, bot-
tom. All simulations use the newly discovered model, ψ =
1
2µ1[I1−3]+ 1

2a/b[exp(b[I1−3])−1]+ 1
2µ5[I5−1]2, with

the discovered parameters µ1 = 33.45kPa, a = 3.74kPa,
b = 6.66, µ5 = 2.17kPa for the media and µ1 = 8.30kPa,
a = 1.42kPa, b = 6.34, µ5 = 0.49kPa for the adven-
titia. The simulations provide a nuanced perspective of the
mechanics of the aortic arch and detailed insights into the per-
formance of the new three-term model: First, we note that
both, stresses and stretches, are larger during systole than
during diastole, larger in the the media than in the adven-
titia, and larger circumferentially than axially. Second, in
the stresses profiles, we observe a significant jump between
the media and adventita layers, which is most visible in the
cross sectional view, and most pronounced during systole.
These intra-layer stress discontinuities could play a criti-
cal role in the pathogenesis of aortic dissection and aortic
aneurysm formation. Third, in the stretch profiles,weobserve
regional peaks beyond the experimental testing and network
training regime of 1.0 ≤ λ ≤ 1.2, which are highlighted
in bright yellow and most prominent in the circumferential

stretch during systole. The smooth stress and stretch pro-
files beyond the training regime suggest that the discovered
model generalizes well to larger stretch regimes, 1.2 ≤ λ,
and to higher blood pressures. Overall, we conclude that our
newly discovered model can predict physically meaningful
stretch and stress profiles in complex biological structures
and accurately capture the local and global mechanics of the
aortic wall.

Predicting aortic arch mechanics with the Holzapfel
model Figure 10 illustrates the stresses and stretches in
the in the media, in the adventita, and in selected cross
sections, during diastole and systole similar to Fig. 9, but
now using the Holzapfel model [16], ψ = 1

2µ[I1 − 3] +
1
2a/b[exp(b[κ[ I1 − 3] + [1 − 3κ][I4 − 1]2]) − 1], with
the best-fit parameters, µ = 48.68kPa, a = 6.67kPa,
b = 23.17, κ = 0.074 for the media and µ = 13.22kPa,
a = 0.93kPa, b = 12.06, κ = 0.091 for the adventitia.
The simulations provide additional insight into the simi-
larities and differences of both constitutive models: First,
within the experimental testing and network training regime,
1.0 ≤ λ ≤ 1.2, the predictions with the Holzapfel model
in Fig. 10 are virtually identical to the predictions with our
new three-term model in Fig. 9. This is particularly evident
during diastole, and across the entire adventita during both
diastole and systole. Second, beyond the experimental test-
ing and network training regime, 1.2 ≤ λ, we observe small
discrepancies between both models, which are located pri-
marily in the bright yellow regions of the high-stretch regime.
This agrees with our intuition that the exponential term of
the Holzapfel model introduces a more pronounced stiffen-
ing than the quadratic term of our newly discovered model,
especially in the high-stretch regime. Overall, we conclude
that both models perform almost identically during diastole,
within their training regime, and very similarly during sys-
tole, beyond their training regime, where the stresses of the
Holzapfel model are locally slightly higher than those of the
new three-term model, while its stretches are locally slightly
lower.

5 Discussion

Computational modeling is vital for unraveling the biome-
chanics of the aorta and offering insights into its disease
mechanisms. Finite element analyses enable a precise iden-
tification of regions of non-physiological deformations or
stresses, which could indicate the onset of vascular diseases
such as aortic dissection or aneurysm formation. Constitu-
tive modeling lies at the heart of any finite element analysis,
and selecting the best model and parameters is crucial for its
success. Common finite element analysis tools offer a wide
variety of constitutive models to choose from, but selecting
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Fig. 9 Diastolic and systolic stresses and stretches in the human aortic arch predicted by the newly discovered model. Circumferential and
radial stresses, σcir and σaxl, and stretches, λcir and λaxl, in the media, in the adventita, and in selected cross sections, during diastole, top, and
systole, bottom. Simulations use the discovered model, ψ = 1

2µ1[I1 − 3] + 1
2a/b[exp(b[I1 − 3]) − 1] + 1

2µ5[I5 − 1]2, with the discovered
parameters µ1 = 33.45kPa, a = 3.74kPa, b = 6.66, µ5 = 2.17kPa for the media and µ1 = 8.30kPa, a = 1.42kPa, b = 6.34, µ5 = 0.49kPa for
the adventitia

Fig. 10 Diastolic and systolic stresses and stretches in the human aortic arch predicted by the Holzapfel model. Circumferential and radial
stresses, σcir and σaxl, and stretches, λcir and λaxl, in the media, in the adventita, and in selected cross sections, during diastole, top, and systole,
bottom. Simulations use the Holzapfel model, ψ = 1

2µ[I1 − 3] + 1
2a/b[exp(b[κ[I1 − 3] + [1 − 3κ][I4 − 1]2]) − 1], with the best-fit parameters,

µ = 48.68kPa, a = 6.67kPa, b = 23.17, κ = 0.074 for the media and µ = 13.22kPa, a = 0.93kPa, b = 12.06, κ = 0.091 for the adventitia
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the best model remains a matter of user experience and per-
sonal preference. The objective of this study is to eliminate
user bias and fully automate the process of model selection
using constitutive neural networks. We train these networks
with experimental data from biaxial extension tests on the
human aorticmedia and adventita, and discover the bestmod-
els and parameters to explain the data. Our model discovery
workflow automatically generates an input file for a univer-
sal material subroutine that can represent more than 60,000
different constitutive models and is seamlessly embedded in
the finite element analysis pipeline. In this manuscript, we
rationalize the process of model discovery, discuss models of
different complexity, demonstrate their performance on the
experimental data, compare them against the current gold
standard model, and use the best model and parameters to
predict stress and stretch profiles across the aortic arch dur-
ing diastole and systole.

Model discovery is a balance between complexity and
accuracy The universal approximation theorem states that a
neural network with a single hidden layer—with a sufficient
number of nodes and appropriate activation functions—can
approximate any continuous function on a compact sub-
set of its domain to arbitrary precision [26]. This implies
that, with a sufficient number of nodes, a neural network
should be able to approximate any of the stretch-stress pairs
of our biaxial tests. However, in constitutive modeling, we
are not interested in learning just any function. Instead, we
seek to discover the best function that not only approximates
the data, but also satisfies common thermodynamic princi-
ples and physical constraints [31]. These include material
objectivity, material symmetry, incompressibility, polycon-
vexity [29, 57], and thermodynamic consistency [33, 59].
Conveniently, we hardwire these principles into our consti-
tutive neural network in Fig. 2 to ensure that our discovered
functions satisfy these constraints a priori. Specifically, our
network has two hidden layers and represents the free energy
function as the sum of the contributions of the sixteen nodes
of its second layer [35].Naturally, activating all sixteen nodes
is the best strategy to fine-tune the fit to the data and achieve
the highest level of accuracy. At the same time, the result-
ing sixteen-term model is inherently complex and difficult
to interpret [53]. Nonetheless, if we are only interested in
finding the best-fit model and parameters for a finite ele-
ment analysis, this is probably just fine. We can feed all
sixteen terms directly into our universal material subrou-
tine and perform our engineering analysis. Undoubtedly, this
will make the best and most explicit use of the available
data.

Model discovery can be non-robust and non-interpre-
table In many practical applications, we are not just inter-
ested in finding the best-fit model with an arbitrarily large
number of terms. Instead, we want to discover the most rele-

vant terms to best describe experimental data. This can have
multiple reasons: First, minimizing the loss function (14)
with 16 terms and 24 independent weights translates into a
complexnon-convex optimizationproblemwithflat gradients
and multiple local minima [38]. It is computationally expen-
sive, if not impossible, to find its global minimum. Second,
with somany degrees of freedom, there is a risk of overfitting.
Even if we found the globalminimum, it might be highly sen-
sitive to outliers or measurement errors [5]. In other words,
we might find the best-fit model for a specific data set, but
this model tends to be non-robust and non-generalizable to
unseen data. Third, and probably most importantly for our
purposes, a sixteen-termmodel is virtually non-interpretable
[10]. We cannot interpret the relevance of its terms, compare
the meaning of its parameters, and identify the underlying
mechanisms associated with individual terms. A fully acti-
vated model provides virtually no microstructural insights
into the material response. This raises the holy grail question
in model discovery: How can we fine tune the number of
terms?

Lp regularization promotes robust and interpretable
models The concept of L p regularization or bridge regres-
sion dates back more than three decades and was introduced
to shrink the parameter space in a data analysis [12]. It has
re-gained attention as a powerful tool to promote sparsity in
system identification [6], and, most recently, in discovering
constitutive models from data [10, 38]. L p regularization
adds a penalty term, α||w||pp, to the loss function (14),
where α ≥ 0 is a non-negative penalty parameter and
||w||pp = [∑npara

i=1 |wi |p ]1/p is the L p norm of the vec-
tor of network weights w. L p regularization introduces
two hyperparameters, the power p by which it penalizes
the individual model parameters, and the penalty param-
eter α by which it scales the relative importance of the
regularization term compared to the network loss [38].
Both parameters enable a precise control of model dis-
covery and it is crucial to understand their mathematical
subtleties, computational implications, and physical effects:
L0 regularization or subset selection directly penalizes the
number of non-zero terms by solving the discrete combi-
natorial problem, which is a simple and unbiased method
to explicitly prescribe the number of terms [28]. L1 reg-
ularization or lasso enables feature selection and induces
sparsity by reducing some weights exactly to zero, which
effectively reduces model complexity and improves inter-
pretability [61]. L2 regularization or ridge regression seeks
to reduce outliers and improve predictability by reducing
absolute values while maintaining all parameters [18], which
essentially does the opposite of what we seek to accomplish
here.

L0 regularization identifies the best-in-class models L0
regularization or subset selection turns the continuous model
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selection problem into a discrete combinatorial problemwith
(2n-1) possible combinations of terms [28]. This makes this
type of regularization computationally intractable formodels
with a large number of terms.However, instead of performing
a subset selection from all possible 65,535 models, we use it
to discover the best-in-class one- and two-term models—
out of subsets of 16 and 120 possible models—and gain
insight into the relevant terms and model parameters [38].
Interestingly, in our example, for both media and adventitia,
the best-in-class one-term model in Table 3, with the low-
est remaining loss of 84.49 for the media and 3.29 for the
adventita, is the classical exponential linear first invariant
Demiray model [8]. The best-in-class two-term models in
Table 4 for the media and Table 5 for the adventitia expand
this term by either the quadratic fifth invariant or the expo-
nential quadratic fifth invariant, with remaining losses of 8.84
for the media and 0.79 for the adventitia. Since L0 regu-
larization explicitly penalizes every additional term in the
loss function (14) by α, it favors the two-term model for
the media for α ≤ 84.49/8.84 = 9.56 and for the adventi-
tia for α ≤ 3.29/0.79 = 4.17, and only selects the purely
isotropic one-termDemiraymodel [8] for penalty parameters
larger than these values. This simple example illustrates the
role of the penalty parameter α as a hyperparamter to fine-
tune subset selection by modulating the number of non-zero
terms.

L1 regularization induces sparsity and improves inter-
pretability A less invasive approach to regularize the loss
function without having to explicitly probe all combina-
tions of terms is L1 regularization or lasso [61]. Here we
apply L1 regularization with varying penalty parameters α

and monitor the remaining loss. We find a reasonable bal-
ance of complexity and accuracy for a penalty parameter of
α = 0.001. Strikingly, for this parameterization, out of all
65,535 combinations of terms, our network discovers exactly
the samemodel for themedia and the adventitia: a three-term
model with an isotropic linear first invariant neo Hooke term
[62], an exponential linear first invariant Demiray term [8],
and the anisotropic quadratic fifth invariant term. Its non-
zero network weights translate into interpretable material
parameters in the form of a shear modulus, a stiffness-
like parameter, an exponential coefficient, and a shear-type
modulus, all with physically meaningful units. Our newly
discovered model is sparse, robust, and interpretable, its
contains terms of popular constitutive models, and is a nat-
ural generalization of our discovered best-in-class one- and
two-term models. We feel that it strikes an excellent bal-
ance between complexity and accuracy. From Figs. 6 and 7,
we conclude that it approximates our experimental data well

and integrates seamlessly into our universal material subrou-
tine.

Ourdiscoveredmodel generalizes fromthematerial point
level to structural analysis One of the main reasons to
develop constitutive models for biological tissues is to per-
form realistic biomedical simulations [42, 44]. The ultimate
test of our discovered model is to probe its performance in
realistic finite simulations, beyond the material point level.
Here we use the example of stress analysis in the aortic
arch. Understanding the structural and mechanical distinc-
tions between the media and adventitia layers of the aorta is
crucial for comprehending vascular health and disease [23,
27]: The media is rich in elastin fibers and smooth mus-
cle cells, it provides elasticity and contractility, and enables
hemodynamic function. The adventitia consists primarily of
collagenfibers andfibroblasts and provides structural support
and integrity. By building our model directly from data—
without user bias throughmodel selection—we can precisely
capture the nuances between the load carrying capacity of
the media and the adventitia [40, 41]. Disruptions in the del-
icate balance between these layers contribute to pathological
conditions such as aortic dissection or aneurysms formation
[48, 51]. Mechanical heterogeneity and regional stress vari-
ations play a pivotal role at the onset of these conditions.
Our finite element model is built around our new universal
material subroutine [46] that can account for these layer-
specific properties and aid in predicting disease progression,
assessing rupture risk, and developing targeted interventions.
This subroutine not only includes our discovered three-term
model, but all 65,535 possible models of our constitutive
neural network in Fig. 2 [35], simply by twenty-four lines
of its input file. A side-by-side comparison with the popular
Holzapfel model in Figs. 9 and 10 suggests that our discov-
ered model not only performs identically during diastole,
within the stretch range of the training regime, and but also
performs nearly similarly during systole, beyond the initial
training regime. The small local discrepancies between both
models are not a flaw of our new model, but rather a result of
the limited experimental test range within stretches of only
1.0 to 1.2. From the experimental stretch-stress curves in
Fig. 1, we conclude that within this range, the stress response
of the fibers is neither fully quadratic as in our discovered
model, nor fully exponential as in the Holzapfel model [16].
Overall, we believe that newly discovered model performs
well in realistic structural simulations and can provide a com-
prehensive understanding of the interplay between the layers
of the aorta to informs strategies for early disease detection,
risk stratification, and tailored therapeutic approaches in the
benefit of cardiovascular health.

Limitations While our results solidly suggest that we can
discover interpretable models with physically meaningful
parameters from data and integrate these models into a finite
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element simulation via our new universal material subrou-
tine, a few limitations remain: First, here we have prototyped
our approach for discovering a personalized arterial model
of a healthy 56-year-old male. It would be interesting to
expand our method to include all n = 17 healthy and n = 11
aneurysmatic aortas of the initial study [40]. Second, while
our study shows that L p regularization is a robust method
to control the number of model terms through the penalty
parameter α, especially the low-penalty models with a large
number of discovered terms remain sensitive to the initial
conditions. If the goal is to discover the best model with
a small number of interpretable terms, we recommend to
always perform an L0 regularization first, and solve for the
discrete combinatorics problem—at least for the best-in-class
one- and two-term models—to gain a feeling for the relevant
terms [38]. If the goal is to discover a viable model for a
finite element simulation, the sparseness of the solution is
less relevant, sincewe can feed any discoveredmodel into our
universal material subroutine and obtain comparable results.
Third, while different discovered models perform similarly
within the training range, they may deviate outside the train-
ing regime. For finite element simulations, this may occur in
regions of local stress concentrations, where the simulated
stretches and stresses exceed the experimental measurement
range. This is not a flaw of the model discovery itself, but
rather a limitation of the available training data, which, in
our example, did not properly tease out the stretch-stiffening
regime. As a result, the discovered anisotropic term that best
explains our available data turns out to be quadratic, and
not exponential like in the classical Holzapfel model [16,
22]. Fourth, for illustrative purposes, the neural network and
the material subroutine we propose here are intentionally
invariant-decoupled. Our recent study includes an advanced
material subroutine that can handle coupled invariants like
I1 and I4, selective activation under tension only, and quasi-
incompressibility through the third invariant I3 [45]. Fifth,
we use fiber orientations from structural imaging. We could
potentially learn these orientations as network weights in a
zeroth layer that calculates the fourth and fifth invariants. We
have tried this approach, and, while it works well for clean
synthetic data, it is highly sensitive to noise in real-world
experimental data, which is why we decided to assume fixed
fiber orientations here. Finally, to address the current limi-
tation to hyperelastic materials, we have recently expanded
the concept of constitutive neural networks to viscoelastic-
ity [65] and to general inelasticity [19] to address potential
effects of time-dependency, growth, and remodeling.

6 Conclusion

Personalized computational simulations can help us under-
stand the biomechanics of cardiovascular disease, predict

patient-specific disease progression, and personalize treat-
ment and intervention. Material modeling is critical to
realistic physics-based simulations, but selecting the best
model is limited to a few highly trained specialists in the
field. In biomedical applications, poor model selection does
not only jeopardize the success of the entire simulation,
but can have life-threatening consequences for the patient.
Here we explore the feasibility of removing user involve-
ment and automating material modeling in finite element
analyses. We leverage recent developments in constitutive
neural networks, machine learning, and artificial intelligence
to discover the best constitutivemodel from thousands of pos-
sible combinations of a few functional building blocks. We
seamlessly integrate all discoverable models into the finite
element workflow by creating a universal material subrou-
tine that contains more than 60,000 models, made up of 16
individual terms. Our results suggest that constitutive neu-
ral networks can robustly discover various flavors of arterial
models from data, feed these models directly into a finite
element simulation, and predict stress and strain profiles that
compare favorably to the classical Holzapfel model. Replac-
ing dozens of individual material subroutines by a single
universal material subroutine will make finite element sim-
ulations more accessible and user-friendly, more robust and
reliable, and less vulnerable to human error. Democratizing
biomedical simulation by automating model selection could
induce a paradigm shift in physics-based simulation, broaden
access to simulation technologies, and empower individuals
with varying levels of expertise and diverse backgrounds to
actively participate in scientific discovery in the benefit of
human health.
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