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Abstract
Accurate modeling of cardiovascular tissues is crucial for understanding and predicting their behavior in various physiological
and pathological conditions. In this study, we specifically focus on the pulmonary artery in the context of the Ross procedure,
using neural networks to discover the most suitable material model. The Ross procedure is a complex cardiac surgery where
the patient’s own pulmonary valve is used to replace the diseased aortic valve. Ensuring the successful long-term outcomes
of this intervention requires a detailed understanding of the mechanical properties of pulmonary tissue. Constitutive artificial
neural networks offer a novel approach to capture such complex stress–strain relationships. Here, we design and train different
constitutive neural networks to characterize the hyperelastic, anisotropic behavior of the main pulmonary artery. Informed by
experimental biaxial testing data under various axial-circumferential loading ratios, these networks autonomously discover
the inherent material behavior, without the limitations of predefined mathematical models. We regularize the model discovery
using cross-sample feature selection and explore its sensitivity to the collagen fiber distribution. Strikingly, we uniformly
discover an isotropic exponential first-invariant termand an anisotropic quadratic fifth-invariant term.We show that constitutive
models with both these terms can reliably predict arterial responses under diverse loading conditions. Our results provide
crucial improvements in experimental data agreement, and enhance our understanding into the biomechanical properties
of pulmonary tissue. The model outcomes can be used in a variety of computational frameworks of autograft adaptation,
ultimately improving the surgical outcomes after the Ross procedure.
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1 Introduction

Automated model discovery with constitutive artificial neu-
ral networks (CANNs) is an emerging technology aimed at
improving themodeling of complex biological tissues (Linka
and Kuhl 2023; St. Pierre et al. 2024; Martonova et al.
2024). This method combines machine learning with tra-
ditional constitutive modeling techniques to autonomously
discover material laws that describe how biological tissues
deform under various conditions. Cardiovascular tissues,
such as arteries and heart valves, are highly complex, exhibit-
ing nonlinear and anisotropic behaviors. A priori selection
of an appropriate traditional constitutive model to describe
these behaviors requires a deep expert knowledge, which can
introduce bias and limits successful modeling to a few well-
trained individuals. In contrast, CANNs leverage data from
experiments or simulations to learn these relationships auto-
matically. By training on experimental data, these networks
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are capable of capturing the intrinsic stress–strain relation-
ships of cardiovascular tissues, and when done right, even
generalize well to predict responses under previously unseen
conditions.

Previous research has investigated anisotropic neural net-
work models for human skin and healthy aortic arteries
(Linka et al. 2023; Peirlinck et al. 2024b). Informed by biax-
ial extension tests, these networks inherently satisfied general
kinematic, thermodynamic, and physical constraints. The
results suggest that constitutive neural networks can robustly
and consistently discover variations of arterial models from
experimental data. Notably, the discovered models are gen-
eralizerable and interpretable, with the majority of network
weights training to zero, while a small subset of non-zero
weights defines the discoveredmodel (Linka andKuhl 2024).

CANNs offer a key advantage in cardiovascular appli-
cations by automatically handling the complex, nonlinear
nature of tissue mechanics without relying on oversimplified
assumptions (Linka et al. 2021, 2022). This holds promise
for personalized medicine, where models can be customized
to patient data to individualize and improve surgical plan-
ning and device design (Peirlinck et al. 2021). The automated
nature of this approach reduces the time and expertise needed
for developing accurate models. CANNs are designed with
specific architectural features to ensure adherence to physics-
based constraints inherent to constitutivemodeling. Classical
artificial neural networks rely heavily on carefully chosen
activation functions and architectures that align with the
problem at hand. CANNs therefore represent an innovative
class of artificial neural networks that are explicitly tailored
to satisfy kinematical, thermodynamical, and physical prin-
ciples by design. They also restrict the space of permissible
functions, enabling robust training on experimental data.
In the realm of automated discovery of constitutive mod-
els from biological testing data, CANNs utilize specialized
inputs (such as deformation gradients) and outputs (such as
stress measures derived from an energy density function).
Additionally, their activation functions are crafted to uphold
essential properties like thermodynamic consistency, mate-
rial objectivity, material symmetry, physical constraints, and
polyconvexity (Linka and Kuhl 2023).

Therefore, ongoing research can benefit from the tight
integration of biomechanics, biomedical engineering, and
physics-informed machine learning (Holzapfel and Ogden
2017). Recent findings indeed suggest that neural networks
could automate model discovery and parametrization, poten-
tially transforming constitutive modeling and subsequent
finite element simulations (Weiss et al. 1996; Peirlinck et al.
2024a, c). Moreover, the high-throughput results of neural
networks allow for an in-depth analysis of the biological
nature of the considered data, providing additional insights
into the microstructural features of the input data.

The present work focuses on automated model discovery
and the application of constitutive neural networks to main
pulmonary artery experimental data, with the Ross procedure
in mind. The Ross procedure is a surgical technique to treat
aortic valve disease, particularly in young and active patients.
In the 1960s, Dr. Donald Ross designed this intervention by
taking the patient’s own pulmonary valve and placing it in
the aortic position to create a pulmonary autograft (Charitos
et al. 2012; Chauvette et al. 2019; El-Hamamsy et al. 2022;
Van Hoof et al. 2022). The new valve is alive and can adapt
over time, making the Ross procedure the only aortic valve
replacement technique that can restore long-term survival
and maintain quality of life. Despite scientific consensus on
its significant benefits, theRoss procedure still has a principal
failuremode, linked towall dilatation,which can lead to valve
leakage and reoperation.Dilatation occurs due to the inability
of the pulmonary autograft to adapt to the sudden increase
in loading when exposed to the four- to fivefold increase in
aortic pressures.

Here, we contribute to the broader picture of this research
by further investigating the mechanical behavior of pul-
monary tissue, which forms the baseline for the long-term
outcomes of the autograft in the Ross procedure. Multiple
computational modeling studies are currently investigating
the growth and remodeling outcomes of the Ross procedure,
ranging from analytical solutions to patient-specific finite
element frameworks (Famaey et al. 2018; Vastmans et al.
2021; Vervenne et al. 2023; Maes et al. 2024). Ultimately, all
of these models and results could make the Ross procedure
the preferred solution for aortic valve replacement world-
wide (Middendorp et al. 2024). At the very core of these
frameworks are the constitutivemodels and parameters of the
pulmonary autograft tissue. The sensitivity of the constitu-
tive equations and mechanical properties considered cannot
be underestimated, and the presentedCANNs aim to increase
the overall biofidelity of these computer simulations.

We base our study on biaxial extension data from n ! 8
pulmonary artery samples under different loading ratios. We
performsample-specificmodel discoverybothwith andwith-
out regularization. Additionally, we systematically explore
constitutive feature selection across all samples. This will
allow us to identify a universal constitutive behavior through
cross-sample feature selection regularization. To probe the
anisotropic tissue response, we perform a fiber angle sensi-
tivity analysis using a sweep ofmodelswith fixed fiber angles
across the axial-circumferential domain. Finally, we com-
pare our results with the traditional Holzapfel-Gasser-Ogden
model, which considers strain-stiffening collagen fibers in an
isotropic elastin matrix (Holzapfel et al. 2000). Ultimately,
our discovered models and constitutive insights into main
pulmonary arteries can inform and support computational
studies, particularly in the context of aortic valve replace-
ments through the Ross procedure.
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2 Materials andmethods

This section will first provide an overview of the unpub-
lished experimental mechanical biaxial extension data used
to train the neural networks. We will outline the considered
constitutive equations, including the deformation gradient
and its invariants. These invariants form the basis of the total
strain energy density function that constitutes the core of
a constitutive artificial neural network. We can then design
potential terms of this free energy density based on principles
of thermodynamic consistency,material objectivity and sym-
metry, incompressibility, and polyconvexity. Subsequently,
we will highlight the specific axial and circumferential first
Piola-Kirchhoff stress calculations for planar biaxial exten-
sion tests. At the model input, we will also study the effects
of varying collagen fiber angles and assess their influence on
the discoveredmodels. Finally, wewill outline different vari-
ations of the neural network loss function used for training.

2.1 Experimental dataset

In the context of an animal study on the Ross procedure (Van
Hoof et al. 2021), we performed planar biaxial tensile tests
on squared samples (10 mm x 10 mm) of the ovine main
pulmonary artery, as shown in Fig. 1. The intimal side, or
inner surface, of the pulmonary artery was exposed through
an axial cut between the anterior cusp (left side of the figure)
and the left cusp (right side of the figure) (Thiene and Rizzo
2023). Twomain pulmonary artery samples (A and B), distal
to the valve sinuses, were extracted from a total of four ovine
pulmonary roots, bringing the total number of tested samples
to n ! 4 · 2 ! 8.

Five rakes were mounted on each side of the sample, with
an initial distance of 7mmbetween the rakes in both the axial
and circumferential directions. Planar biaxial tensile testing
(MessPhysik -Zwick/Roell)was performed at theCoreFacil-
ity for Biomechanical Characterization, FIBEr, KU Leuven.
Axial and circumferential stretches were increased stepwise
until single-rake failure occurred. This procedure resulted in
a complete dataset of increasing stretch levels at 5%, 10%,
20%, and 30%.

Native pulmonary arteries operate under diastolic-systolic
pressures of 8-20 mmHg, while systemic blood pressures in
the aorta average around 80-120 mmHg (Van Hoof et al.
2022).The biaxial load-free configuration corresponds to the
excised tissue under zero blood pressure, with unknown axial
and circumferential prestretches compared to the in vivo
physiological condition. Our displacement driven test pro-
tocol applied 30% deformation to the actuators (λ∗), before
preload correction and different from the DIC strain mea-
surements. Debes and Fung (1995) reported 21.5% circum-
ferential strain and 36.5% axial strain for in vivo pulmonary

Fig. 1 Biaxial tissue extraction and mounting. From four ovine pul-
monary roots, two main pulmonary artery squared samples per sheep
were extracted. This resulted in a total of n ! 8 samples, which were
mounted in the biaxial test device through rake fixation. The main col-
lagen fiber angle α is indicated in the figure and will be varied in the
axial-circumferential plane during modeling

arterial tissue, which is in the range of our end-state experi-
mentally biaxial data, with > 50% strains in both directions.
This rich dataset is especially important in the context of
the Ross procedure, exposing the pulmonary tissue to supra-
physiological strains.

Three axial-to-circumferential stretch ratios (2:1, 1:1, 1:2)
were applied through the displacement-driven actuators, for
each stretch level. A ratio of 2:1 means that the total stretch
level was applied by the actuator in the axial direction, and
half that stretch level in the circumferential direction. Four
preconditioning cycles were applied for each loading and
stretch ratio, and only the fifth cycle was considered for post-
processing (Fehervary et al. 2016).

Here, we write the imposed stretch levels and ratios as
applied by the actuators as λ∗

ax and λ∗
circ, which can be differ-

ent from the resulting measured planar biaxial deformations
in the tissue. Therefore, during testing, 2D digital image cor-
relation (DIC) particle trackingwas performed usingVIC 2D
(Correlated Solutions) to calculate the resulting tissue strains
(Vander Linden et al. 2023). We ensure uniform stresses
and strains by considering the central 25% of the sample
area (Sacks 2000). The results from opposite actuators were
averaged to obtain a single axial and circumferential curve.
This resulted in the actual stretches λax and λcirc shown
on the x-axes of our plots. Experimentally measured forces
were converted to tissue stresses on the y-axes using initial
load-free thickness and areal samplemeasurements, obtained
before testing via a Micro Laser Scanner (Acacia Technol-
ogy).

The resulting engineering stress versus DIC stretch curves
for the three ratios after preconditioning, i.e., thelast loading
cycles, are plotted for one representative sample in Fig. 2.
The complete dataset for all n ! 8 samples is available in
the Supplementary Materials. The biaxial dataset shows a
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Fig. 2 Experimental stress–strain curves.Engineering stress P versus
diagonal stretch components λ from the deformation gradient F for a
representative sample, in both the axial (red) and circumferential (blue)
direction. From left to right, the plots show the axial-to-circumferential

ratios of 2:1, 1:1, and 1:2. The curves represent the 5th loading cycle at
the 30% stretch level, with the preload correction applied to the stretch
domain

clear sample-to-sample heterogeneity, even within the same
animal. These aleatoric and epistemic uncertainties related to
biaxial testing of soft tissues have led to a generalized work-
flow on all samples, rather than comparing data per sheep.
In the axial-circumferential plane, shear stretches were two
orders of magnitude lower than the diagonal components
of the deformation gradient, highlighting minimal sample
alignment error duringmounting (Fehervary et al. 2018). The
latter is also in agreementwith the assumptionof symmetrical
collagen fiber families around the axial and circumferential
directions.

One should note that the engineering stress curves do not
start at zero stretch or zero stress. This is due to an applied
preload of 0.1 N during testing, which is reasonable for
aortic tissues but was considered excessive for pulmonary
artery tissues. Therefore, we corrected the zero-strain state
and considered the moment in time when all four actua-
tors experienced positive forces as the new reference. The
sample-specific initial stress of around 5 kPa in Fig. 2 thus
corresponds to the preloaded value 0.1 N, before DIC correc-
tion. Note that this force-driven prestretch correction differs
in the stretch domain between the axial and circumferential
directions, λax and λcirc, but uses the same 1:1 ratio offset,
λ∗
ax : λ∗

circ ! 1 : 1, for all three stretch ratios.

2.2 Constitutive modeling

In continuum mechanics, we can represent the initial config-
uration through a Lagrangian variable, X , and the current or
deformed configuration by a Eulerian variable, x. Amapping
function can transform one state into the other, x ! ϕ(X).
Locally, we use the deformation gradient tensor F to repre-
sent the change in infinitesimal line elements between both

configurations, dx ! F(X)dX . We can then write

F ! ∂x
∂X

! ∂ϕ(X)
∂X

. (1)

The symmetric right Cauchy-Green deformation tensor C is
defined as C ! FT · F. We can now indicate the Green-
Lagrange strain as E ! 1

2C− I, where I is the identity tensor
(Mooney 1940; Ciarlet 1988; Holzapfel 2002).

Another important continuum mechanics variable is the
Jacobian J ! det(F). The Jacobian expression itself is in
the third invariant, I3 ! det(FT · F) ! J 2. Here, we assume
a perfectly incompressible arterial tissue, thus characterized
by a constant Jacobian, and equal to one, I3 ! J 2 ! 1.

For an anisotropic material, we can write the isotropic
invariants I1 and I2 as well as anisotropic invariants I4 and
I5 as functions of the deformation gradient (Spencer 1971):

I1 !
[
FT · F

]
: I,

I2 ! 1
2

(
I 21 −

[
FT · F

]
:
[
FT · F

])
,

I4 !
[
FT · F

]
: N ! n0 ·

[
FT · F

]
· n0,

I5 !
[
FT · F

]2
: N ! n0 ·

[
FT · F

]2
· n0.

(2)

Here, n0 is the main fiber direction in the undeformed
configuration, and n is its representation in the deformed
configuration. As such, we can write n ! F · n0, with its
associated structure tensor N ! n0 ⊗ n0. Considering a col-
lagen fiber angle α within the biaxial plane, we can then state
that n0 ! [cosα, sin α, 0]T . This indicative fiber direction
is indicated in Fig. 1.
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In what follows, and in the context of large deformations,
we introduce the first Piola-Kirchhoff stress P ! P(F) as

Pi j ! d fi
Tj dS

, (3)

where d fi is the force component in the deformed configu-
ration acting on the corresponding initial surface area. The
latter is defined by dS as the initial surface area on which the
force acts, andwith Tj representing the component of the unit
normal vector in the j-direction of the reference configura-
tion. For readability, we will use the term engineering stress
as first Piola-Kirchhoff stress alternate. Considering thermo-
dynamic consistency, we imply this engineering stress P is
equal to the derivative of the strain energy ψ with respect to
the deformation gradient F,

P ! ∂ψ(F)
∂F

. (4)

Next, material objectivity enforces that the constitutive equa-
tion does not depend on the external frame of reference, and
we require that the free energy function ψ is a function of
the right Cauchy-Green tensor C ! FT · F (Noll 1958):

P ! ∂ψ(C)
∂F

. (5)

Material symmetry for transversely isotropic materials now
allows us to write:

P ! ∂ψ(I1, I2, I4, I5)
∂F

− pF−T

! ∂ψ

∂ I1

∂ I1
∂F

+
∂ψ

∂ I2

∂ I2
∂F

+
∂ψ

∂ I4

∂ I4
∂F

+
∂ψ

∂ I5

∂ I5
∂F

− pF−T ,

(6)

where we again assume perfect incompressibility, enforced
by a hydrostatic pressure term −pF−T . We will be able to
solve the latter from boundary conditions later on. Finally, if
we consider polyconvexity of the free energydensity function
by ensuring that ψ ! ψ(I1) +ψ(I2) +ψ(I4) +ψ(I5), and by
deriving the partial derivatives of Eq. 2 as

∂ I1
∂F

! 2 F,

∂ I2
∂F

! 2 [I1F − F · FT · F],
∂ I4
∂F

! 2 F · N,
∂ I5
∂F

! F · [N · [FT · F] + [FT · F] · N],

(7)

we can write:

P ! 2
[(

∂ψ1

∂ I1
+ I1

∂ψ2

∂ I2

)
F − 2

∂ψ2

∂ I2
F · FT · F

+
∂ψ4

∂ I4
F · N

+
∂ψ5

∂ I5

(
F · N · FT · F + F · FT · F · N

)]

− pF−T .

(8)

The engineering stress is now defined as a function of the
deformation gradient and the derivative of the strain energy
density functionwith respect to the four invariants (Hartmann
and Neff 2003; Ehret and Itskov 2007).

2.3 Constitutive artificial neural network

Figure 3 shows the constitutive artificial neural network
framework with the relevant invariants for transversely
isotropic, perfectly incompressible materials. The network
has two hidden layers, with four and eight nodes. The first
layer generates powers (◦) and (◦)2 of the network input
and the second layer applies the identity (◦) and exponential
functions (exp(◦)) to these powers. The network is not fully
connected by design to satisfy the condition of polyconvex-
ity a priori. Explicitly, we can now write the resulting strain
or free energy density ψ(F) as a function of the considered
invariants:

ψ ! w1w
∗
1[I1 − 3]

+ w2[ exp(w∗
2[I1 − 3]) − 1]

+ w3w
∗
3[I1 − 3]2

+ w4[ exp(w∗
4[I1 − 3]2) − 1]

+ w5w
∗
5[I2 − 3]

+ w6[ exp(w∗
6[I2 − 3]) − 1]

+ w7w
∗
7[I2 − 3]2

+ w8[ exp(w∗
8[I2 − 3]2) − 1]

+ w9w
∗
9[I4 − 1]

+ w10[ exp(w∗
10[I4 − 1]) − 1]

+ w11w
∗
11[I4 − 1]2

+ w12[ exp(w∗
12[I4 − 1]2) − 1]

+ w13w
∗
13[I5 − 1]

+ w14[ exp(w∗
14[I5 − 1]) − 1]

+ w15w
∗
15[I5 − 1]2

+ w16[ exp(w∗
16[I5 − 1]2) − 1],

(9)

corrected by the pressure term, ψ ! ψ − p [J − 1]. The
network has a total of two times 16 trainable weights, with
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Fig. 3 Constitutive artificial
neural network. Transversely
isotropic, perfectly
incompressible, constitutive
artificial neural network with two
hidden layers for approximating
the free energy function ψ(I1,
I2, I4, I5) as a function of the
invariants of the deformation
gradient F using sixteen terms.
The first layer generates powers
(◦) and (◦)2 of the network input,
and the second layer applies the
identity (◦) and exponential
functions (exp(◦)) to these
powers, adopted from Linka
et al. (2023). The chosen color
code for the invariants in their
specific forms will be respected
throughout the continuation of
the paper

216 ! 65, 536 possible combinations of terms. In other
words, we can learn any strain energy function that follows
from first and second orders, and identity and exponential
additive combinatorics of the I1, I2, I4, and/or I5 invariants.
Note that the corrections −3 and −1 for the isotropic and
anisotropic terms, respectively, ensure that ψ ! 0 in the
undeformed state where F ! I, and thus I1 ! 3, I2 ! 3,
I4 ! 1, and I5 ! 1.

Here, we focus on a limited set of polynomial and
exponential functions, prescribed prior to model training.
Although this limits the model’s learning capabilities, this
assumption allows the network weights to have a clear phys-
ical interpretation in the form of shear moduli, stiffness-like
parameters, and exponential coefficients (Linka and Kuhl
2023). Therefore, CANNs as new subclass of models still
generalize all existing classical constitutive models for arte-
rial tissue.

2.3.1 Planar biaxial extension testing

Through axial-circumferential mounting of the samples in
the test device, as indicated in Fig. 1, we can state that the
transversally isotropic pulmonary artery is stretched in two
perfectly orthogonal and cylindrical directions, λ1 ! λax
and λ2 ! λcir. Indeed, in a biaxial extension context, we use
the stretch as a direction diagonal component of the defor-
mation gradient F, where λ1 ! F(1, 1) ! F11 represents
the axial direction, and λ2 ! F(2, 2) ! F22 represents the
circumferential direction. We assume that the tissue is per-
fectly incompressible, i.e., I3 ! λ21λ

2
2λ

2
3 ! 1, leading to

F ! diag{λ1, λ2, (λ1λ2)−1}. We can then rewrite Eq. 2 as

I1 ! λ21 + λ22 + (λ1λ2)−2,

I2 ! λ−2
1 + λ−2

2 + (λ1λ2)2,

I4 ! λ21 cos
2 α + λ22 sin

2 α,

I5 ! λ41 cos
2 α + λ42 sin

2 α,

(10)

and their derivatives using Eq. (7) as

∂ I1
∂F

! 2 diag{λ1, λ2, (λ1λ2)−1},
∂ I2
∂F

! 2 diag
{
λ1λ

2
2 + λ−1

1 λ−2
2 , λ21λ2

+ λ−2
1 λ−1

2 , λ1λ
−1
2 + λ−1

1 λ2},
∂ I4
∂F

! 2 diag{λ1 cos2 α, λ2 sin2 α, 0},
∂ I5
∂F

! 2 diag{λ31 cos2 α, λ32 sin
2 α, 0}.

(11)

We can now insert Eqs. (10) and (11) into the general
invariant-based definition of the engineering stress (6). By
assuming a zero engineering stress condition throughout
the thickness, we can additionally say that P33 ! 0 or
P ! diag{P11, P22, 0}. The latter defines the boundary con-
dition for the incompressibility requirement and leads to the
following expression for the hydrostatic pressure term p:

p ! 2
1

λ21λ
2
2

∂ψ

∂ I1
+ 2

(
1

λ21
+

1

λ22

)
∂ψ

∂ I2
. (12)

123



Constitutive neural networks for main pulmonary arteries: discovering the undiscovered 621

Altogether, we can explicitly provide an analytical expres-
sion for the engineering stresses P11 and P22, in terms of the
applied biaxial stretches λ1 and λ2, the stretches in the axial
and circumferential directions,

P11 ! 2

(

λ1 − 1

λ31λ
2
2

)
∂ψ

∂ I1
+ 2

(

λ1λ
2
2 − 1

λ31

)
∂ψ

∂ I2

+ 4λ1 cos2(α)
∂ψ

∂ I4
+ 8λ31 cos

2(α)
∂ψ

∂ I5
,

P22 ! 2

(

λ2 − 1

λ32λ
2
1

)
∂ψ

∂ I1
+ 2

(

λ21λ2 − 1

λ32

)
∂ψ

∂ I2

+ 4λ2 sin2(α)
∂ψ

∂ I4
+ 8λ32 sin

2(α)
∂ψ

∂ I5
.

(13)

We implement two symmetrical collagen fiber families
with respect to the circumferential direction, an reason-
able assumption in biomechanical analyses (Holzapfel
2008). The latter has also been confirmed by microstructural
imaging, demonstrating a symmetrical probability distribu-
tion of collagen fibers around the circumferential axis in
ovinemain pulmonary arteries (Rolf-Pissarczyk and Terzano
2023). However, a clear and unique collagen fiber angle
direction remains highly uncertain. Aim of this manuscript
is therefore also to computationally analyse this distribution
through a sweep collagen fiber angle possibilities, in order
to discover the most versatile constitutive model, and fur-
ther informing the directional spread. All of this without
unnecessarily increasing the parameter space with multiple
symmetrical fiber families. We therefore also assume the
two symmetrical collagen fibers to have identical mechanical
properties. We can then combine their effects in the fourth
andfifth invariants, bymultiplying the I4 and I5 contributions
in Eq. (13) by a factor of two.

2.4 Model discovery

We now explore the training of our constitutive artificial neu-
ral network in Fig. 3 using different learning schemes. In
particular, we will consider single or multiple samples in
the loss function, with or without L1 lasso regularization.
Moreover, we will compare fixing or fitting the fiber angle
α, influencing the contribution of the anisotropic terms I4
and I5. We will consistently train all networks for 8,000
epochs, with a batch size of 32. We allow for early stop-
ping within 2,000 epochs of no accuracy change. The robust
adaptive Adam algorithm is used for first-order optimization.
To prevent local minima effects, we initialized the weights
of the neural network layers with random values drawn from
a uniform distribution. More specifically, The Glorot normal
initializer is used for the identity functions, and an unseeded
random uniform initialization is used for the exponential
functions, with a minimum and maximum weight value of

0.0001 and 0.1, respectively. Finally, we assess the results in
terms of individual R2 values in the axial and circumferential
direction, for each applied ratio.

2.4.1 Sample-specific model discovery

With our set of weights w ! {w∗
1 , ..., w

∗
12, w1, ..., w12}

from Eq. (9), we perform a gradient descent learning on a
weighted least-squared error loss function L, penalizing the
error between the discovered model P(Fi , w) and the data
P̂i :

L(w; F) ! 1
ndata

ndata∑

i!1

∥∥∥∥∥
P(Fi , w) − P̂i

Pmax
dir,rat

∥∥∥∥∥

2

+ αreg

16∑

i!1

(
|w∗

i |+|wi |
)

→ min
w

,

(14)

where ndata is the total number of data points of a specific
sample, considering the three axial-vs-circumferential exper-
imental loading ratios, rat ! {2 : 1, 1 : 1, 1 : 2} and the two
axial and circumferential loading directions, dir ! {ax, circ}.
For our sample-specific neural networks, the number of dis-
crete data points ndata thus corresponds to the single sample
experimental results of Fig. 2, i.e., the preconditioned axial
and circumferential curves of the last loading cycle for each
of the three loading ratios. To account for all experiments
equally, we weight the error with the maximum engineering
stress per ratio and per direction, Pmax

smp,rat.
We enforce the weights to always remain non-negative,

w ≥ 0. L1 regularization, or lasso regularization, enables
extra feature selection and induces sparsity by reducing some
weights exactly to zero, which effectively reduces model
complexity and improves interpretability (McCulloch et al.
2024). Here, we set the parameter αreg to 0.01 when L1 reg-
ularization is activated.

2.4.2 Cross-sample feature selection

To include all n ! 8 samples during training, we adapt the
loss function as follows,

L(w; F) !
nsmp∑

i!1

1
ndata

ndata∑

i!1

∥∥∥∥∥
P(Fi , w) − P̂i
Pmax
smp,rat,dir

∥∥∥∥∥

2

+ αreg

16∑

i!1

(
|w∗

i |+|wi |
)

→ min
w

,

(15)

where we extend the loss function with nsmp to account for
different samples, from different biaxial datasets. Instead of
the extra summation, we could alternatively also use nall
instead of ndata Eq. (14), with nall now equal to the total
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number of data points of all samples combined, for all ratios
and in each direction. Note that we additionally calculate
the maximum engineering stress Pmax

smp,rat,dir for each sample,
still per ratio and per direction. This updated loss function
(15) allows us to discover a unique model or set of invari-
ant features, while we can still fit sample-specific weights in
a second iteration. Through cross-sample feature selection
regularization, this one-size-fits-all approach can therefore
find a universal constitutive behavior. We set the parameter
αreg to 0.001 when L1 regularization is activated.

2.4.3 Traditional model fitting

The traditional Holzapfel-Gasser-Ogden (HGO) model for
arterial tissue assumes strain-stiffening fibers embedded in
an isotropic matrix (Holzapfel et al. 2000). Considering the
invariants I1 ! λ21 + λ22 + (λ1λ2)−2 and I4 ! λ21 cos

2 α +
λ22 sin

2 α, the HGO model combines the isotropic linear
neo-Hookean term of the first-invariant [I1 − 3] with an
anisotropic quadratic exponential term of the fourth invariant
exp([I4 − 1]2). The specific Holzapfel-Gasser-Ogden strain
energy density function is then equal to

ψhgo ! c1
2
[I1 − 3] +

k1
2k2

(
exp(k2[I4 − 1]2) − 1

)
, (16)

with the shearmodulus c1, the stiffness-like parameter k1 > 0
and the non-dimensional coefficient k2 > 0. The last parame-
ter highlights the exponential stiffening of the collagen fibers.
Again, these three material parameters are enriched by the
structural fiber angle parameterα in the fourth-invariant term.
From our constitutive artificial neural network and the gen-
eralized Eq. (9), we derive and learn the exact same material
model with all other weights set to zero,

ψhgo ! w∗
1w1[I1 − 3] + w12

(
exp(w∗

12[I4 − 1]2) − 1
)
.

(17)

The learned weights of this model then relate one-to-one to
the material parameters of the original HGOmodel, Eq. (16)
with c1 ! 2w∗

1 w1 and k1 ! 2w∗
12w12 and k2 ! w∗

12.

2.4.4 Reducedmodel discovery

After training the networks by minimizing the loss func-
tions (14) and (15), we can reduce the complete strain energy
density function of Eq. (9) to a select group of constitutive
features or number of terms. Interestingly, we uniformly dis-
cover a two-term model for main pulmonary artery tissue
with an isotropic exponential first-invariant term, (exp([I1 −
3] − 1)), and an anisotropic quadratic fifth-invariant term,
([I5 − 1]2). By constraining all other weights to zero dur-
ing training, we can use our constitutive neural network to

perform a parameter identification for the following reduced
strain energy density function,

ψ red ! w2 exp(w∗
2[I1 − 3] − 1) + w∗

15w15[I5 − 1]2. (18)

Per sample, or for all samples together, we can now fit two
distinct sets of weights, w∗

2 and w2 for the isotropic term,
exp([I1 − 3]− 1), and w∗

15 and w15 for the anisotropic term,
[I5 − 1]2.

2.4.5 Fiber angle direction

We initialize the main collagen fiber angle to a certain
direction in the axial-circumferential plane, and then con-
sider it either as a fixed and predefined variable or as a
fitted and trainable variable during learning. This parame-
ter α is mathematically present in the undeformed collagen
fiber vector n0 ! [cosα, sin α, 0]T , and microstructurally
visible in Fig. 1. Subsequently, its microstructural infor-
mation propagates into the neural network through the
anisotropic I4 and I5 invariants, and appears as cos2(α) for
the axial direction and sin2(α) for the circumferential direc-
tion in the engineering stress calculations of Eq. (13). To
initialize the fiber orientation in the network, we rely on
previous microstructural analyses for biologically inspired
collagen fiber directions (Fata et al. 2013; Rolf-Pissarczyk
and Terzano 2023). Researchers have used multi-photon
microscopy and second-harmonic generation imaging on
similar main pulmonary arteries to measure probability den-
sity functions for the collagen fiber orientation. Although
these probability density functions exhibit notable in-plane
axial-circumferential spreads, we postulate that the collagen
fibers have a predominantly circumferential orientation.

For a fixed fiber direction, we can also vary α stepwise,
from a complete axial orientation, α ! 0◦, toward a com-
plete circumferential orientation,α ! 90◦, as {0◦, 10◦, 20◦,
30◦, 40◦, 45◦, 50◦, 60◦, 70◦, 80◦, 90◦}. One can note
that for α ! 45◦, the fiber contribution to the axial and cir-
cumferential direction are identical. In a biaxial tensile test,
such a scenario would lead to similar force readings in the
two orthogonal directions, and as such a material that can be
considered to showcase perfectly isotropic behavior. For the
fitted fiber direction, we consider the same range of angles
as a multi-start initialization or initial guess, but then learn
the unknown fiber direction during training.

3 Results and discussion

We report the outcomes of the different learning schemes for
our constitutive artificial neural network (Fig. 3). In partic-
ular, we considered a fixed or fitted the collagen fiber angle
during training, and with or without L1 regularization in the
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loss function. We trained the model per sample individu-
ally, Eq. (14), but also for all biaxial samples together, Eq.
(15). A detailed overview of all discovered models and cor-
responding parameters, for all n ! 8 samples and for all
training conditions, can be found in the SupplementaryMate-
rials.

3.1 Sample-specific model discovery

In this section, we illustrate the process of model discovery
for one representative sample, corresponding to the sample
dataset in Fig. 2. We distinguish four learning variations or
categories:

• training with no regularization: αreg ! 0, and fitted fiber
angle α

• training with L1 regularization: αreg > 0, and fitted fiber
angle α

• training with no regularization: αreg ! 0, and fixed fiber
angle α

• training with L1 regularization: αreg > 0, and fixed fiber
angle α

Training the neural networks in this section took about 4 min
on a standard laptop for a single sample,with one condition of
regularization and one initial guess of fiber angle, either fitted
or fixed during training. Inspired bymicrostructural analyses,
we plot the results for an initial collagen fiber direction of
α ! 70◦, but subsequently train the network with fixed or
fitted angles (Rolf-Pissarczyk and Terzano 2023).

Figure 4 shows the discovered models and resulting engi-
neering stress contributions of the trained weights for our
selected sample, without regularization and with a fitted fiber
angle. We discover a model in three terms, exp([I1 − 3]) and
exp([I5 − 1]) and [I5 − 1]2, with an overall goodness of fit
of R2 > 0.99. The resulting fiber angle direction is equal
to 49.8◦ after training. The latter reflects an almost perfectly
isotropic behavior, slightly oriented toward the circumferen-
tial direction. Even without any regularization, the majority
of weights already train to zero. This suggests that the archi-
tecture of our neural network in Fig. 3 naturally supports
sparse solutions, likely because of its orthogonal activation
functions.

When adding regularization to the exact same network
through the L1 term (αreg ! 0.01), but still allowing the
collagen fiber angle to be free and included in the learning
process, we observe the results in Fig. 5. In agreement with
the theory behind regularization, now, even more weights
train to zero until, in the extreme case, only a single term,
[I5 − 1]2, remains. This model reduction comes at the price
of a major drop in the goodness of fit, R2 < 0.84. In sup-
port of our unregularized solution, the fiber angle remains
at α ! 49.0◦, indicating a nearly isotropic behavior with a

slight preference toward the circumferential direction. From
a biological perspective, a one-term model in terms of only
the fifth-invariant is non-intuitive, especially considering the
presence of both isotropic elastin and anisotropic collagen
throughout the arterial wall. These observations suggest that,
with the chosen regularization parameter αreg, we have likely
over-regularized the model discovery network.

Figure 6 shows the results for the same input data, but
now with the collagen fiber angle fixed at 70◦ during train-
ing. We observe a good fit with R2 > 0.98, and a clear,
more substantial contribution of the isotropic terms and
weights. Specifically, we discover the full range of first-
invariant terms, [I1 − 3] and exp([I1 − 3]) and [I1 − 3]2

and exp([I1 − 3]2), while the anisotropic terms [I5 − 1] and
[I5 − 1]2 now only have minor contributions.

We can again regularize the same network using L1 reg-
ularization (αreg ! 0.01), while fixing the collagen fiber
angle α at 70◦. Figure 7 clearly shows the expected reduction
in the number of discovered terms. The isotropic exponen-
tial term, exp([I1 − 3]), and the anisotropic quadratic term,
[I5 − 1]2, which emphasizes the circumferential direction,
are nowmore evident. By comparing the regularized network
with fixed angle in Fig. 7 with the regularized network with
fitted angle in Fig. 5, we can clearly see a major isotropic I1
presence and a minor circumferential anisotropic I5 contri-
butionwhen the fiber angle is fixed.When the angle direction
is fitted, themodel adapts toward amore isotropic angle, with
larger, but microstructurally less relevant I5 weights.

3.2 Cross-sample feature selection

Following section 2.4.2 on regularization through cross-
sample feature selection, and according to the updated loss
function over all samples of Eq. (15), we can train a network
with all n ! 8 samples combined. The latter corresponds to
locations A and B in Fig. 1, originating from the four dis-
tinct ovine pulmonary roots. Naturally, all samples are now
taken into account. To reduce uncertainty across the sam-
ples, we fix the fiber angle to 70◦. Here, our objective is to
discover one single model for all data sets. This implies that
the magnitude of the weights for the individual samples is
of secondary importance. For all samples combined, we can
now plot the results without regularization (Fig. 8) and with
L1 regularization (Fig. 9).

The discovered features are as follows:

without regularization
exp([I1 − 3]) [I5 − 1]2 exp([I5 − 1]2)

with L1 regularization
[I1 − 3] exp([I1 − 3]) [I5 − 1]2
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Fig. 4 No regularization - fitted fiber angle. Automated model dis-
covery for a single sample using the full network without regularization
(αreg ! 0). The legend highlights the discovered invariant terms in bold.

The collagen fiber angle was fitted during training: 49.8◦. R2
ax ! 0.994

and R2
circ ! 0.991

Fig. 5 L1 regularization - fitted fiber angle.Automatedmodel discov-
ery for a single sample using the full network, with L1 regularization
(αreg ! 0.01). The legend highlights the discovered invariant terms

in bold. The collagen fiber angle was fitted during training: 49.0◦.
R2
ax ! 0.777 and R2

circ ! 0.888
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Fig. 6 No regularization - fixed angle.Automatedmodel discovery for
a single sample using a full network without regularization (αreg ! 0).

The legend highlights the discovered invariant terms in bold. The col-
lagen fiber angle was circumferentially fixed during training (70◦).
R2
ax ! 0.988 and R2

circ ! 0.989

Fig. 7 L1 regularization - fixed angle. Automated model discov-
ery for a single sample using a full network with L1 regularization
(αreg ! 0.01). The legend highlights the discovered terms in bold. The

collagen fiber angle was circumferentially fixed during training (70◦).
R2
ax ! 0.896 and R2

circ ! 0.928

123



626 T. Vervenne et al.

Fig. 8 Cross-sample feature selection - no regularization. Automated model discovery for all samples combined, without L1 regularization
(αreg ! 0). The collagen fiber angle was circumferentially fixed during training (70◦). The legend highlights the non-zero weights in bold

Fig. 9 Cross-sample feature selection - L1 regularization. Automated model discovery for all samples combined, with L1 regularization (αreg !
0.001). The collagen fiber angle was circumferentially fixed during training (70◦). The legend highlights the non-zero weights in bold
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Here, we have lowered the impact of the L1 regular-
ization by reducing the regularization parameter to αreg !
0.001. Notably, we consistently discover an isotropic and
an anisotropic term to describe all eight samples combined.
Without regularization, and out of more than 60,000 models,
we discover the exact same constitutive behavior as previ-
ous studies for layers of healthy human aortas (Peirlinck
et al. 2024b). Indeed, for an experimental dataset originating
from tissues under different native blood pressure conditions
(pulmonary vs. aortic tissue), the neural network overcomes
aleatoric and epistemic uncertainties to discovery the exact
same constitutive behavior.

Taking both cross-sample feature selection training
schemes, we observe an overlap of the same exp([I1−3]) and
[I5 − 1]2 features, without and with regularization, respec-
tively. Training this enlarged neural network for all n ! 8
samples takes about 20 min per condition of regularization.
As part of the network’s design, we initially train the weights
in a one-size-fits-all approach. This will be useful for rep-
resenting the entire population of main pulmonary arteries,
and will allow us to retrain the weights while constraining
the network to the universally discovered feature invariants.
The Supplementary Materials additionally present the cross-
sample feature selection results for different initial fiber angle
directions, both fixed and fitted during training.

3.3 Fiber angle analysis

Considering all individual n ! 8 samples, we now train
the network for a sweep of fixed fiber angles. As such, we
can perform an in-depth sensitivity analysis on this collagen
fiber angle, sweeping the direction through the entire axial-
circumferential domain. Figure 10 shows the results without
L1 regularization, highlighting the predominantly discovered
isotropic exponential term, exp([I1 − 3]). Clearly, a higher
number of anisotropic terms are discovered when the fiber
angle is fixed toward a more circumferential range of the
sweep with α > 45◦. The latter corresponds to the observed
increased nonlinearity in the circumferential direction of
our data. In other words, we observe a naturally occurring
sparsity in the anisotropic invariants for the more compli-
ant direction, while training in the stiffer direction picks up
the anisotropic invariant terms. Figure 11 shows the same
training workflow across angles but now with L1 regulariza-
tion applied. When comparing both histograms, we observe
a clear sparsification of our regularization through a decrease
in the number of discovered terms, along with a shift from
isotropic to anisotropic terms.The anisotropic quadratic fifth-
invariant term, [I5 − 1]2, becomes the most prevalent now.
Again, we see an increased sparsity in the anisotropic terms
for the axial range of fiber angles for α < 45◦. The main fea-
ture discovery when sweeping the collagen fiber angle can
be summarized as follows:

without regularization
[I5 − 1]2

with L1 regularization
exp([I1 − 3])

Interestingly, we also observe a general shift from the
isotropic first-invariant I1 terms toward the more nonlinear
isotropic second-invariant I2 terms. Recent research has also
shown that the second invariant in the isotropic part of the
strain energy function can enrich themodel discovery process
(Kuhl andGoriely 2024).Moreover, this is in agreement with
similar neural networkmethods showing that cardiac tissue is
best described by second invariant models (Martonova et al.
2024).

The dispersed Gasser-Ogden-Holzapfel model proposes
a collagen fiber dispersion to overcome the assumption of
single-direction fiber families (Gasser et al. 2006):

ψ
goh
disp ! c1

2
[I1 − 3] +

k1
2k2

(
exp[k2[I ∗

1/4 − 1]2] − 1
)
, (19)

where a mixed isotropic-anisotropic fiber invariant term
expands as I ∗

1/4 ! κ I1 + (1− 3κ)I4, and the microstructural
fiber dispersion parameter κ significantly influences the con-
stitutive equation (Peirlinck et al. 2024a). When κ ! 0, we
have I ∗

1/4 ! I4, and themodel reduces to the traditional HGO
model in Eq. (17), with no collagen fiber dispersion. When
κ ! 1/3, we have I ∗

1/4 ! I1/3, and the model reduces to a
fully isotropic exponential model. A distribution of collagen
fiber directions would be in agreement with the probability
density function of angle directions around the circumferen-
tial axis in ovine main pulmonary arteries, as observed by
Rolf-Pissarczyk and Terzano (2023). However, the focus of
thiswork is to discover a selected set of invariantswith a clear
distinction between isotropic and anisotropic terms, reason
why we did not include a phenomenological fiber dispersion
parameter κ . Alternatively, we could also introduce multi-
ple fiber families, each with different discrete fiber angles αi
and/or mechanical properties (Ramachandra and Humphrey
2019). These collagen fiber families could then be incorpo-
rated into the CANNs through multiple invariants I4(i i) and
I5(i i) (Peirlinck et al. 2024a). This approach can be imple-
mented in the HGO model through a fiber-specific term Ei ,

ψ
hgo
fib ! c1

2
[I1 − 3]

+
∑

i

k1
2k2

(
exp[k2[I ∗

1/4(i i) − 1]2] − 1
)
,

(20)

either with or without dispersion (Sempertegui and Avril
2024).
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Fig. 10 Fixed fiber angle sweep - no regularization. Sweep of fixed
collagen fiber angles, without regularization (αreg ! 0). We vary the
fixed collagen angle as follows: {0◦, 10◦, 20◦, 30◦, 40◦, 45◦, 50◦,
60◦, 70◦, 80◦, 90◦}, where 0◦ represents the axial fiber direction, 45◦

indicates isotropic fiber behavior, and 90◦ corresponds to acircumfer-
ential fiber direction. A separate network for each of the n ! 8 samples

has been trained in each collagen fiber angle category. The legend high-
lights the discovered terms and their prevalence across the whole 11
angles x 8 samples ! 96 training routines spectrum, predominated by
exp([I1 − 3])

Fig. 11 Fixed fiber angle sweep - L1 regularization. Sweep of fixed
collagen fiber angles with L1 regularization-(αreg ! 0.01). We vary
the fixed collagen angle as follows: {0◦, 10◦, 20◦, 30◦, 40◦, 45◦,
50◦, 60◦, 70◦, 80◦, 90◦}, where 0◦ represents the axial fiber direction,
45◦ indicates isotropic fiber behavior, and 90◦ corresponds to a circum-
ferential fiber direction. A separate network for each of the n ! 8

samples has been trained in each collagen fiber angle category. The
visual classification of the different samples per angle group is indi-
cated in the cell of the first row, middle column. The legend highlights
the discovered terms and their prevalence across the whole 11 angles x
8 samples ! 96 training routines spectrum, predominated by [I5 − 1]2
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Altogether we postulate that the collagen fibers have a
predominant circumferential orientation, which also corre-
sponds to the mechanical data, and the discovered consti-
tutive behavior during the alpha sweeps. Indeed, anisotropic
invariants become apparent only in the circumferential range
of collagen fiber angles. When circumferentially fixing the
collagen fiber orientation on the other hand, circumferential
fibers again alignwith the distribution ofRolf-Pissarczyk and
Terzano (2023).

3.4 Traditional model fitting

As a cross-comparison with literature, we now constrain our
network to the traditional HGO model of Eq. (17), consist-
ing of an isotropic linear first-invariant term, [I1 − 3], and
an anisotropic quadratic exponential fourth-invariant term,
exp([I4 − 1]2) (Holzapfel et al. 2000). Figure 12 shows the
resulting weights after training, with a fitted collagen fiber
angle equal to 49.0◦. L1 regularization is not applicable here,
and we learn the fiber angle after initialization. Through Eq.
(16), we report the known HGO model parameters based on
the learned weights, c1 ! 1.95 kPa and k1 ! 0.77 kPa and
k2 ! 0.145. These parameters fall within expected stiffness
ranges, and the fit can be considered fairly good. This is rea-
sonable, as the HGO model has been widely validated for a
broad range of biological tissues.

3.5 Reducedmodel discovery

Considering the results from the cross-sample feature selec-
tion and the fiber angle analysis in the previous Sects. 3.2
and 3.3, we alternatively constrain our neural network from
Fig. 3 or general Eq. (9) to only the two newly discov-
ered terms, exp([I1 − 3]) and [I5 − 1]2. The combination of
these two terms would correspond to a material fitting with
the reduced constitutive description, Eq. (18). The trained
weights of this novel constitutive model yield a balanced
isotropic-anisotropic contribution, and a general goodness
of fit of R2 > 0.99, even with only two terms. The results
for our representative sample are shown in Fig. 13. Obvi-
ously, network L1 regularization is obsolete here. Training
this reduced neural network takes about 90 seconds. Note
that the collagen fiber angle fitted in the current reduced
model plots. As expected, we observe a slightly circumferen-
tial orientation of the fiber angle for the fifth-invariant term,
but with no real pronounced anisotropy in the overall model
(α ! 50.9◦). Additionally, the mechanical data themselves
display amore compliant behavior in the axial direction, with
higher stretches after preload correction, and a stiffer behav-
ior in the circumferential direction, with higher experimental
forces, all in agreement with the discovered models here, and
with previously published experimental data on similar tissue
types.

Notably, our newly discovered constitutive model, Eq.
(18), leads to an increase in R2 compared to traditional
HGO model, when comparing the fitting accuracy of Fig. 13
with Fig. 12. Strikingly, we rarely discover the charac-
teristic exponential quadratic fourth-invariant term of the
traditional material HGO model when sweeping the col-
lagen fiber angles for all samples, as shown in Fig. 10
and Fig. 11, with a 1% and 0% occurrence of ([I_4-1]ˆ2),
without and with L1 regularization, respectively. Instead,
the anisotropic quadratic fifth-invariant term of the updated
reduced model seems to better minimize the loss function of
our network, and is therefore better suited to characterize the
generally compliant and highly nonlinear constitutive behav-
ior of pulmonary arteries. Accordingly, also an exponential
first-invariant term exp([I1 − 3]) seems to be the preferred
learned isotropic part of the strain energy function, instead
of the traditional linear [I1 − 3].

To further quantify our results, Fig. 14 illustrates the aver-
aged R2 value for all of the n ! 8 samples, with individual
weights trained for the whole range of fixed collagen fiber
angles. Heat map colors compare the fitting accuracy of the
reducedmodel (exp([I1−3]) and [I5−1]2) to theHGOmodel
([I1 − 3] and exp([I4 − 1]2)). For a fiber angle in the range
45◦ ≤ α ≤ 50◦, and fixed in this direction during learn-
ing, the traditional model fits the dataset well. However, we
see a clear fitting improvement and model generalization for
all fiber angles with our newly discovered constitutive equa-
tion. By combining an isotropic exponential first-invariant
term with an anisotropic quadratic fifth-invariant term, we
observe an R2 > 0.9 over the whole collagen fiber spectrum,
whereas the traditional model only performs well when the
fixed angles are in the same range as the resulting fitted fiber
angles (i.e., close to isotropy, tending toward the circumfer-
ential direction). The exact weights for all angles and for both
models are provided in the Supplementary Materials. Both
the HGO model and the newly discovered constitutive law
have three distinct model parameters, with the fiber angle
direction as possible extra structural variable. A unique fit
is therefore unlikely, but an accurate constitutive description
highly important.

Given the uncertain probability density distribution of col-
lagen fiber orientations observed by Rolf-Pissarczyk and
Terzano (2023), it remains challenging to define a single
and main collagen direction in sheep pulmonary arteries.
We therefore want a constitutive model that is predictive,
versatile and accurate for a range of collagen fiber angles,
predominated by the circumferential direction. Our newly
discovered constitutive model more has an isotropic expo-
nential term and an anisotropic quadratic fifth-invariant
anisotropic term, compared to the combination of an isotropic
linear term and an anisotropic quadratic exponential fourth-
invariant term in the HGO model. The former thus appears
to better describe the highly nonlinear behavior of main
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pulmonary arteries, with preferred fiber directions symmet-
rically around the circumferential direction. The traditional
HGOmodel also appears to bemore sensitive to the unknown
and uncertain collagen fiber angle.

Finally, we can also uniformly fit the same reduced neu-
ral network considering all samples together, as visualized
in Fig. 15. We used cross-sample feature selection and train-
ing on the whole dataset to discovered a combination of an
isotropic exponential first-invariant term, exp([I1 − 3]), and
an anisotropic quadratic fifth-invariant term, [I5−1]2.Wecan
subsequently test this updated constitutivemodel on the same
complete dataset together, see Eq. 15, but by constraining the
neural network weights accordingly now. Although a clear
and unique collagen fiber angle direction around the circum-
ferential direction remains highly uncertain, we interestingly
observe a fitted fiber angle of 89.9◦. Training all samples
together thus results in an almost perfectly circumferential
collagen fiber direction. Again, even when neglecting fiber
dispersion, this is again in agreement with the experimental
data of Rolf-Pissarczyk and Terzano (2023).

Taken together, our invariant-based model discovery
approach with more than 60,000 possible model terms
reduces to a select subset of constitutive behaviors, and pro-
vides crucial insights into the biomechanics of the pulmonary
arterial wall that would be impossible to obtain with a tradi-
tional modeling approach.

4 Conclusion and outlook

In this work, we discovered a novel constitutive model for
the main pulmonary arteries:

ψ ! a1(exp(a2[ I1 − 3 ]) − 1) + b([I5 − 1]2),

characterized by three material parameters, a1, a2 and b,
which aligns perfectly with recently discovered material
models for systemic arterial tissues (Peirlinck et al. 2024b).
Specifically, we combined biaxial tensile testing of n ! 8
pulmonary artery sampleswith automated constitutivemodel
discovery using artificial neural networks. Our constitutive
neural network approximates the free energy function ψ

using sixteen terms. Its first layer generates powers (◦) and
(◦)2 of the four network invariants, I1, I2, I4, I5, while the
second layer applies the identity (◦) and exponential function
(exp(◦)) to these powers. From cross-sample feature selec-
tion regularization and an in-depth sensitivity analysis of the
collagen fiber direction, we conclude that the constitutive
behavior of pulmonary arteries is best characterized by a two-
termmodel in terms of an isotropic exponential first-invariant
term and an anisotropic quadratic fifth-invariant term.

Our main pulmonary artery biaxial dataset allowed us to
discover the updated constitutive material model in supra-
physiological strain regimes, relevant for theRoss procedure.
Computational models of the Ross procedure could now sim-
ulate the actual in vivo conditions, and estimate wall stresses
and deformations over time. This would allow us to improve
clinical outcomes by investigating and predicting potential
chirurgical solutions. Key and critical for such in silico simu-
lations would then again be the constitutive description of the
considered pulmonary tissue.Moreover, an accuratematerial
model is especially important in regions of high stress con-
centrations (Peirlinck et al. 2024b). This is to be expected in
the context of the Ross procedure, where pulmonary arteries
are acutely exposed aortic conditions, i.e., four to fivefold
increase in blood pressures.

Future work should first address the uncertainty in the
data, possible through recently developed Bayesian constitu-
tive artificial neural networks (Linka et al. 2025). This would
alleviate the averaging assumptions of the presented cross-
sample feature selection regularization. Moreover, we could
explicitly learn the uncertainty in the fiber direction with
a mean collagen fiber angle and a standard deviation that
characterizes the fiber dispersion, instead of using a purely
phenomenological fiber dispersion parameter.

Linka et al. (2023) used the same convolutional artificial
neural network approach to autonomously discover consti-
tutive models for skin, based on very similar biaxial tensile
tests. Biaxial test ratios were divided into training and test
data. While the parameter values were different for each set
of training data, the set of active parameters and discovered
invariants were the same across all datasets, discovering a
uniform constitutive model. Here, our holistic biaxial dataset
is a prerequisite to cover a large stretch area in the axial-
circumferential plane, and as such required to describe and
discover the arterial tissue model the best. Future work could
consider a validation step through a different mechanical
setup, such as combined extension-inflation test (Wang et al.
2021). Pressure-diameter curves could indeed nicely relate
experimental and in vivo condition with respect to axial and
circumferential stretches. A computational model with the
newly discovered constitutive description ofmain pulmonary
arteries could then show that we indeed better predict stresses
and strains for untrained data.

Similar artificial neural networks have recently enabled
the robust discovery of anisotropic constitutive models for a
wide variety of warp-knitted fabrics (McCulloch and Kuhl
2024). By considering different mounting orientations, the
authors discovered interpretable anisotropic models that per-
formed well in both training and testing. Such medical
textiles, commonly used in cardiovascular applications, can
serve as external supports for the Ross procedure to prevent
acute dilatation of the transplanted pulmonary tissue in the
high-pressure aortic environment (Verbrugghe et al. 2013;
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Fig. 12 Traditional Holzapfel-Gasser-Ogden - single fit. Material
fitting for a single sample using the HGO neural network. The fitted col-
lagen fiber angle is equal to 49.0◦ after training. R2

ax ! 0.965 and

R2
circ ! 0.957. The learned weights are w1, 1 ! 0.838, w2, 1 ! 2.33

kPa, w1, 12 ! 0.413, and w2, 12 ! 2.66 kPa

Fig. 13 Reduced constitutive neural network - single fit. Material
fitting for a single sample using the reduced neural network. The fit-
ted collagen fiber angle is equal to 50.9◦ after training. R2

ax ! 0.993 and

R2
circ ! 0.992. The learned weights are w1, 2 ! 0.185, w2, 2 ! 10.45

kPa, w1, 15 ! 0.462, and w2, 15 ! 0.274 kPa
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Fig. 14 Fitting accuracy - heat map comparison. Reduced constitu-
tive neural network fit and traditional Holzapfel-Gasser-Ogden fit in
terms of total R2, averaged over the axial and circumferential direction,
for all ratios, and across the whole 11 angles x 8 samples ! 96 training
routines spectrum Indeed, the restricted neural networks were trained

for each of the n ! 8 samples in each imposed fiber angle category, and
we varied the fixed collagen angle as follows: {0◦, 10◦, 20◦, 30◦, 40◦,
45◦, 50◦, 60◦, 70◦, 80◦, 90◦}, where 0◦ represents the axial fiber
direction, 45◦ indicates isotropic fiber behavior, and 90◦ corresponds
to a circumferential fiber direction

Fig. 15 Reduced constitutive neural network - combined fit.Unique
material fitting using the reduced neural network for all samples com-
bined. The fitted collagen fiber angle is equal to 89.9◦ after training. The

learned weights are w1, 2 ! 0.424, w2, 2 ! 8.48 kPa, w1, 15 ! 0.222,
and w2, 15 ! 0.112 kPa

Nappi et al. 2020; Vervenne et al. 2023). Many unknowns
remain regarding the mechanocompatibility of these tex-
tiles and their interaction with the native tissue (Singh et al.
2015; Ramachandra et al. 2020). Textile stiffness should pre-
vent short-term acute dilatation, while textile compliance
should restore long-term blood pressure pulsatility. Once
again, computational design solutions will critically depend
on the models and parameters of the underlying pulmonary
autograft tissue.

The principal take-home message of the present work is
that the constitutive behavior of main pulmonary arteries
can best be described by combining an isotropic exponential
first-invariant term, exp([I1 − 3]), and with an anisotropic

quadratic fifth-invariant term, [I5 − 1]2. Critical to discov-
ering this sparse and interpretable model has been cross-
sample feature selection and a thorough collagen fiber angle
analysis sweep.

SupplementarymaterialsThe source data, code, and results
are available inKULeuven’s researchdata repository: https://
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