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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/LivingMatterL Understanding uncertainty is critical, especially when data are sparse and variations are
ab/CANN large. Bayesian neural networks offer a powerful strategy to build predictable models from
Keywords: sparse data, and inherently quantify both, aleatoric uncertainties of the data and epistemic
Uncertainty uncertainties of the model. Yet, classical Bayesian neural networks ignore the fundamental
Bayesian inference laws of physics, they are non-interpretable, and their parameters have no physical meaning.
Bayesian neural networks Here we integrate concepts of Bayesian learning and constitutive neural networks to discover
Constitutive artificial neural networks interpretable models, parameters, and uncertainties that best explain soft matter systems.
Automated model discovery Instead of training an individual constitutive neural network and learning point values of

the network weights, we train an ensemble of networks and learn probability distributions
of the weights, along with their means, standard deviations, and credible intervals. We use
variational Bayesian inference and adopt an efficient backpropagation-compatible algorithm
that approximates the true probability distributions by simpler distributions and minimizes
their divergence through variational learning. When trained on synthetic data, our Bayesian
constitutive neural network successfully rediscovers the initial model, even in the presence
of noise, and robustly discovers uncertainties, even from incomplete data. When trained on
real data from healthy and aneurysmal human arteries, our network discovers a model with
more stretch stiffening, more anisotropy, and more uncertainty for diseased than for healthy
arteries. Our results demonstrate that Bayesian constitutive neural networks can successfully
discriminate between healthy and diseased arteries, robustly discover interpretable models and
parameters for both, and efficiently quantify uncertainties in model discovery. We anticipate
our approach to generalize to other soft biomedical systems for which real-world data are
rare and inter-personal variations are large. Ultimately, our calculated uncertainties will help
enhance model robustness, promote personalized predictions, enable informed decision-making,
and build confidence in automated model discovery and simulation. Our source code, data, and
examples are available at https://github.com/LivingMatterLab/CANN.

1. Motivation

When someone asks you ‘How confident are you in your neural network?’, would not you want to respond ‘Very.’? But what makes
you believe that you are very confident? And how exactly do you quantify very? This is precisely what this manuscript is about.
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Plain neural networks are prone to overfitting and non-interpretable [1]. They make overly confident decisions, generalize poorly,
and are unsuitable for model discovery [2]. Here we address these limitations by using regularized variational Bayesian learning
to sparsify the weight vector of a constitutive neural network [3] and quantify the uncertainty in the remaining non-zero weights [4].
The underlying idea is to represent the weights of a constitutive neural network by their probability distributions. Then, instead of
training an individual constitutive neural network to learn point values of network weights [5], we train an ensemble of networks
to learn probability distributions of the weights, with means, standard deviations, and credible intervals [6]. In other words, each
network of the ensemble has its own network weights that we draw from shared probability distributions. We learn these probability
distributions using Bayesian inference [7].

In practice, probability distributions of neural network weights can be quite complex, and, to complicate matters, the probabilities
of individual weights can dependent on one another [8]. This makes, the exact Bayesian inference of the network weights a challenging
if not infeasible task. Instead, we can numerically approximate Bayesian inference, and three classes of algorithms have emerged
to do so: Markov Chain Monte Carlo methods that approximate posterior distribution of the network weights [4], dropout methods
that probe discrete ensembles by setting subsets of weights to zero [9], and variational inference [10]. Here we use variational
Bayesian inference [11] and adopt an efficient principled backpropagation-compatible algorithm [8] that approximates the probability
distributions of our network weights with simpler distributions by minimizing their divergence through variational learning [12].

Bayesian neural networks are by no means new, in fact, they were first introduced in the early 1990s [6]. Within the science and
engineering communities, they are enjoying increasingly popularity because they allow us to quantify both aleatoric and epistemic
uncertainties [13]. Aleatoric or data uncertainties result from an inherent randomness or variability in the data, which is irreducible.
Epistemic or model uncertainties result from a lack of knowledge or limitations in the model, which are potentially reducible, either
by collecting more data or by refining the model [14]. We can quantify aleatoric uncertainties with both frequentist and Bayesian
statistics, but only Bayesian statistics can quantify epistemic uncertainties [9]. It does so by treating the model parameters as
probability distributions [15]. This introduces uncertainties in the model itself, which we could reduce by collecting more data.

In many science and engineering applications, clean data are rare and cumbersome to collect [16]. At the same time, we have
a solid understanding of the underlying physics that our scientific community has built over many decades [17]. Naturally, this
raises the question how to best build this knowledge into efficient learning machines [18]. Two different strategies have emerged
to integrate physics-based knowledge into neural network models: Physics Informed Neural Networks or PINNs that incorporate
physics into the loss function using additional terms [19], and Constitutive Artificial Neural Networks or CANNs that hardwire the
underlying physics into the neural network design [20]. Our recent application of physics informed neural networks to real-world
nonlinear dynamical systems has revealed the critical need to supplement these networks with uncertainty quantification, especially
in situations where the underlying physics are not entirely known [21]. Here we build on this experience and explore the importance
of uncertainty quantification in the context of constitutive artificial neural networks [5]. Our guiding question is: How can we
discover the best model, parameters, and uncertainties for real-world nonlinear soft matter systems?

Towards this goal, in Section 2, we introduce the concept of Bayesian constitutive neural networks and derive their characteristic
three-term loss function in the context of regularized variational Bayesian inference. In Section 3, we design a family of isotropic
Bayesian constitutive neural networks and discover the best model, parameters, and uncertainties to explain synthetic soft matter
data, perturbed by aleatoric noise. In Section 4, we generalize this concept towards transversely isotropic Bayesian constitutive
neural networks and discover the best model, parameters, and uncertainties to explain experimental biaxial stress—stretch data of
healthy and diseased human tissues. We compare our observations, discuss our results, and summarize our conclusions in Section 5.

2. Bayesian constitutive neural networks

In the following, we briefly summarize the concept of Bayesian inference [7], discuss its computational realization using
variational Bayesian inference [10], and derive the loss function for Bayesian constitutive neural networks towards automated model
discovery [5].

Bayesian inference. Bayesian inference is a statistical method that updates the probability for a hypothesis as more information
becomes available using Bayes’ theorem. Bayes’ theorem states that the posterior probability is equal to the likelihood times the
prior probability, divided by the marginal likelihood or evidence,
P(P16)P(6)

P(O|P)= o P)

(€Y
Here P ( P | 0) is the likelihood function, in our case the conditional probability of the measured stresses P for given fixed parameters
0; P(0) is the prior probability distribution of the model parameters 0; P( P) is the marginal likelihood or evidence; and P (6 | P)is the
posterior probability distribution, the conditional probability of the parameters 6 for given measured stresses P. We can use Bayes’
theorem to infer the posterior probability distribution, and with it the model, parameters, and uncertainty that best explain given
data, in our case, labeled stress—stretch pairs.

Likelihood. The likelihood function L(0;P) = P(P | 6) quantifies the chance that some calculated parameters 6 explain the
measured stress P. It measures the goodness of fit between the observed stress—stretch data Pi(Fi) and the model output P(6, F,),
the discovered stress—stretch model of the neural network for the learnt parameters 0, at a fixed deformation gradient F;. The overall
likelihood P (P | @) is the product of i = 1,...,n individual likelihood functions p (P; | ), one for each deformation state F,. A
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common choice for p (P, | 0) is the normal distribution for which the measurements are centered around the mean ; at the hidden
real values P,-, with standard deviations ¢, that account for measurement errors, i.e.,

& 2
L(0:P)=P(P|0)=T[",p(O.F) with p@.F)= ———cxp JLPOE R ) @
' Nerre 20,2

A well-known disadvantage of the likelihood function (2) is that it involves the product of i = 1,...,n probabilities, which can
become extremely small, especially when dealing with large datasets. Computationally, too small likelihoods can result in numerical
instabilities as their product becomes too close to zero. Many machine learning tools avoid the product of probabilities in the
likelihood function (2) by using the natural logarithm of the likelihood, the log-likelihood function LL (6; P) instead,

LL(0; P) = log(L (6; P)) = log(P (P | 8)) = log(T]_, p(P; 1 0)) = X, log(p(P; | 0)). 3)

The log-transformation translates the product of probabilities into a sum of log-probabilities and helps maintain computational
precision and numerical stability. Computationally, it often proves convenient to convert the log-likelihood function (3) into the
negative log-likelihood function NLL (6; P),

NLL(6: P) = -LL(6: P)= - log(p(P; | 6)). @
and minimize the negative log-likelihood NLL rather than maximize the log-likelihood LL.

Maximum likelihood estimate. The parameter values that maximize the log-likelihood function LL(O; P) from Eq. (3) are the
maximum likelihood estimate of the true parameter values 6,

OvLe = arg max (L (0; P)) =arg max Yo, log(p(P; | 0)). )

Intuitively, the maximum likelihood estimate 6y, ¢ defines the set of parameters values that make the observed data, in our case the
measured stresses P, most probable. Maximizing the log-likelihood LL (6; P) from Eq. (3) is equivalent to minimizing the negative
log-likelihood NLL (6; P) from Eq. (4). This implies that the parameter vector that maximizes the log-likelihood @y ¢ is also the
parameter vector that minimizes the negative-log-likelihood,

OpLE = arg mein(NLL 6;P) = arg m{}n Zf‘:l —log(p( P,- 19)). 6)
Many machine learning tools have built-in algorithms for minimization, and favor the definition (6) over (5).

Priors. The prior probability distribution P (0) represents our initial belief about the distribution of the parameters before we have
observed any data. In our case, the model parameters are the weights of the neural network, 6 = { w,w* }. We can distinguish
two types of network weights, the external weights w out of the last hidden layer and the internal weights w* between the hidden
layers. For each parameter we would like to infer, we have to select a prior probability distribution p; (w;, w}) and the total prior
probability density P (6) becomes the product of all i = 1,...,n individual distributions,

PO =TI, p; (w; w)). @)

To increase the robustness of our model discovery, we only apply prior probability distributions to the external weights w = { w; },
while keeping the internal weights w* = {w} } deterministic. The choice of the individual distributions p; is based on our prior
domain knowledge or simply on mathematical convenience. For example, we could choose Gaussian distributions with probability
densities

. 1 (w; = 1)
= O th L= L ! , 8
= Na)  with b= e exp( o ) ®

with fixed means y; and standard deviations ¢;, or uniform distributions p; = 1 / (w; pax — W; min) With fixed upper and lower bounds
W; max @nd w; .. In Bayesian statistics, we use the prior P(6) to update the beliefs about the parameters 6 after observing the data
P(F,) using Bayes’ theorem (1). Importantly, while the priors can take various forms, such as normal or uniform, they are fixed
distributions that represent our initial beliefs about the parameters.

Marginal likelihood. The marginal likelihood function P(P) is also often referred to as evidence. It represents a likelihood function
in which the parameter variables are marginalized by integrating over the entire parameter domain,

P(P) = / P(P,0)do. 9)
6

Marginal likelihoods are generally difficult if not impossible to compute. If needed, we could integrate Eq. (9) using numerical
integration schemes such as Gaussian integration or Monte Carlo methods. Fortunately, for most practical purposes, we do not need
to know the precise value of the marginal likelihood P(P). Instead of evaluating absolute probabilities using Bayes’ theorem (1), we
typically focus on relative probabilities using the ratio of two posterior probabilities, P, (8, | P)/P, (8, | P). Since the marginal
likelihood is a normalizing constant, it cancels out when computing relative probabilities. For model comparison and parameter
estimation tasks, we often reduce Bayes’ theorem (1) to the fact that the posterior distribution P(6 | P) is proportional to the
product of the likelihood and the prior, i.e.,

P(O|P)xP(P|O)P(0). (10)
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For most practical purposes, knowing this proportionality (10) is sufficient and we do not need to know the exact value of the
marginal likelihood P ( P).

Posterior. The posterior probability distribution P(6 | P) is the conditional probability of the parameters @ for the given data P, the
experimentally measured stress. We can calculate the posterior probability from the likelihood P(P | 6) and our prior knowledge
encoded through the prior probability distribution P(0), using Bayes’ theorem (1),
P(P16)P(6)
P(P)

P(O|P)= xP(P|0)P(0). (11
The parameters 6 that maximize the posterior probability distribution P(8 | P) are called the maximum a posteriori estimate Oyp of
the true parameter values 6, and their values are independent of the marginal likelihood P( P,

Oap = argmax (P(0 | P)) = argmax (P(P|0)P(0)). (12)

A common strategy to estimate the posterior distributions (11) and the maximum a posteriori estimate (12) is multi-chain full-batch
Hamiltonian Monte Carlo, a highly efficient and well-studied Markov Chain Monte Carlo method. Theoretically, Hamiltonian Monte
Carlo is guaranteed to produce samples from the true posterior asymptotically. In practice, applying Hamiltonian Monte Carlo to
state-of-the-art neural networks is extremely challenging due to its high computational cost: It can take tens of thousands of training
epochs to produce a single sample from the posterior.

Variational Bayesian inference. Variational Bayesian inference has become a popular method to speed-up computation when
estimating complex probability distributions in the context of Bayesian statistics. Its underlying idea is to approximate complex
posterior distributions with a much simpler distribution, the variational distribution. Here we approximate the posterior probability
distribution P(6 | P) of the unknown parameter vector & = {w,w*} by a less flexible family of distributions, the variational
distribution Q(0; W) of the parameter vector W = {w, ww, w,}. This new parameter vector W consists of two types of
parameters, the network weights w and w*, and the variational parameters w, and w,. We follow the standard approach [8] and
assume that the variational approximation Q (0; W) adopts a parameterized Gaussian distribution,

Q(o; W)= HL] q; (6; W,‘,W;kaw,,,[, ng;)v (13)

as product of i = 1,...,n one-dimensional Gaussian distributions q;. Each individual Gaussian distribution is the product of the
normal distribution, N'(w,,;, w,,), in terms of the mean and standard deviation w,,; and w,;, and the neural network activation
function a;(w;, w}), in terms of the external and internal weights w; and w7,

q = Nw,;, ws,) a; (w;, wy). 14

Importantly, instead of using fixed means and standard deviations y; and o, as in Eq. (8), variational inferences treats the means
and standard deviations w,; and w,; as trainable variational parameters. Yet, here, instead of using the standard deviation w,;
directly, we subject it to the exponential linear unit function elu(w, ;), with elu(o) = (o) for non-negative arguments (o) > 0, and
elu(o) = a(exp((o) — 1)) for negative arguments (o) < 0. Using this modified distribution, g, = N (w,,;»elu(w, ) a; (w;, wy), instead
of Eq. (14) manages negative values by pushing them closer to zero and speeds up learning by bringing the normal gradient closer
to the unit natural gradient [22]. Now, the objective is to find the optimal parameters W, such that the variational approximation
Q(O; W) is as close to the true posterior distribution P(6 | P) as possible. We measure the divergence between Q(6; W ) and
P(6 | P) using the Kullback-Leibler divergence,

KLIQWW) Il PO| P)1= / QW) 10g—2H)_gp. 15)

P(O|P)

With the definition of the conditional probability, P(6 | P) = P(6, P)/P(P), and the calculus rules of the logarithm, log(A - B) =
log(A) + log(B) and log(A/B) = —log(B/A), this definition becomes

KLIQW) || P@ ] P)]= / QW) logP(P) d6 — / QW) log 20T

QW)

Since the probability of the data P(P) is independent of the parameters 0, the first integral simplifies to [ Qw) log(P(P)) do =
log(P(P)) [ Q(W)de, where the integral for all probability densities Q(W) is identical to one, [/ Q(W)d6 = 1, and the Kullback-
Leibler divergence (15) is identical to the following expression,
P(6,P)
QW)

de. 16)

de. a7

KLIQUW) || PO P)] = log(P(P)) — / QW) log

Minimum Kullback--Leibler divergence. The objective of the variational inference is to find the parameters W that minimize
the Kullback-Leibler divergence (17). Since the probability of the data P(P) is independent of the parameters W, we only need to
minimize the second term,

R P(6,P)
w —argmu1/n< /Q(W) log % d9>. (18)
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convergence of loss function
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Fig. 1. Convergence of loss function. During a representative training run, the Kullback-Leibler divergence L, and the total loss function L = Ly + Ly + L,
converge robustly as the network learns the network weights w and w* and the variational parameters w, and w,.

We now eliminate the unknown posterior probability using the definition of the conditional probability, P(6, P) =P (6| P)-P(P),
and apply the calculus rules of the logarithm,

. A w
wW* = argn‘}‘lln (/ QW) (—log(P(P|6))do +/ QW) log QP((Q)) d9> . (19)

The first term is the expected negative log-likelihood, NLL(6; P) = —log(P (P | 0)), given the parameters 6 distributed according to
the variational distribution Q, and the second term is the Kullback-Leibler divergence, KL[Q(W) || P(6)],

W* = argmin (Eg.ql ~log(P(P | 0)) ]+ KLIQW) || P©)]). 20
We now formulate the loss function for our Bayesian constitutive neural network motivated by Eq. (20).

Loss function. We train our Bayesian constitutive neural network by minimizing a three-term loss function L to learn the network
weights w and w* and the variational parameters w, and w, [8], i.e.,

L=Ly +Lg+L;— mui/n . (21)

The first term represents the expected negative log-likelihood NNL according to Eq. (4) given the parameters 6 with the variational
distribution Q,

Ly = Eg g [—log(P(P | 0)]. 22)

The second term is the Kullback-Leibler divergence between the variational approximation Q(0; W) that approximates the
parameters 0 using W and the prior P(0). By minimizing this second term, variational learning efficiently approximates the prior
distribution P(9) when the exact distribution is unknown,

L =KL[QG; W) || P(6IP)]. (23)

The third term is the L, regularization that sparsifies the model by penalizing the weighted L, norm of the external weights w [23],
where the penalty parameter a determines the number of active terms [3],

Ly=allwl; =aX™ lw]. (24)

In summary, the loss function (21) is a sum of a data-dependent part associated with the likelihood cost, a prior dependent part
associated with the complexity cost, and a regularization-dependent part associated with the sparsity cost [8]. We implement
our Bayesian constitutive neural networks in Tensorflow-Probability and minimize the loss function using the ADAM optimizer,
a robust adaptive algorithm for gradient-based first-order optimization. Fig. 1 illustrates the convergence of the loss function during
a representative training run. Both the Kullback-Leibler divergence Ly, and the total loss function L = Ly, + L, + L; converge
robustly, here for an example of Section 3 within 500 epochs, as the network learns the network weights w and w* and the variational
parameters w, and w,. From the learnt variational approximation Q (0; W) of the true posterior distribution P (6 | P), we sample
i = 1,...,M model parameters {6, } f‘;’ ) and derive the stresses { P(F;0,)} ,Z | for each sample. We report the means and standard
deviations of the stresses, where the former represent the model prediction and the latter quantify the model uncertainty.

In the following, we demonstrate how to design Bayesian constitutive neural networks for isotropic and transversely isotropic
incompressible hyperelastic materials. For the isotropic case, we discover the best model, parameters, and posterior distributions of
the stresses to explain synthetic stress—stretch data of a Mooney-Rivlin material in uniaxial tension, uniaxial compression, equibiaxial
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P(F)

Fig. 2. Isotropic Bayesian constitutive neural network. The network has two hidden layers to discover the free-energy function y(/,,I,) as a function of the
invariants of the deformation gradient F using eight terms. The first layer generates powers (o) and (0)> of the network input, the second layer applies the
identity (o) and exponential function (exp(o)) to these powers, and the network output is the sum of these eight terms, weighted by their probability densities
N(w,,w,). During training, the network learns the network weights w and w* and the variational parameters w, and w,.

tension, and pure shear, perturbed by aleatoric noise. For the transversely isotropic case, we discover the best model, parameters,
and posterior distributions of the stresses to explain experimental stress—stretch data of healthy and diseased abdominal aortic tissue
from the medial layer and from both media and adventitia layers combined when tested in equibiaxial tension.

3. Isotropic Bayesian constitutive neural networks

The isotropic Bayesian constitutive neural network takes the deformation gradient F, the gradient of the deformation map ¢ with
respect to the coordinates of the undeformed sample X, as input,

F=Vyop, (25)
and calculates the first and second invariants,

I,=[F-F]:1 and IZ:%[Ilz—[F‘-F]:[F‘-F]]. (26)
For perfectly incompressible materials, the third invariant remains constant and identical to one, I; = J = 1. The network discovers

hyperelastic material models that satisfy the second law of thermodynamics, which implies that the Piola stress P is the derivative
of the free energy w(F) with respect to the deformation gradient F modified by a pressure term, —p F™,

al al.
P=a_"'_pp—‘=a_"’_1 a_"’_z_pF—l, 27)
oF oI, oF = oI, oF
where the hydrostatic pressure, p = —% P : F, acts as a Lagrange multiplier that we determine from the boundary conditions. We

discover the free-energy function y using a Bayesian constitutive neural network that takes the deformation gradient F as input and

approximates the free-energy function y(F) as the sum of eight probability-weighted terms. Fig. 2 illustrates our neural network

with two hidden layers and eight nodes [5]. The first layer generates powers (o) and (o)? of the network input, the two invariants I,

and I,. The second layer applies the identity, (o) and the exponential function (exp(o)) to these powers. The network output is the

sum of these eight terms, weighted by their probability densities N'(w,,, w,). Importantly, since we focus on model discovery, we

only introduce probabilistic external weights, while keeping all internal weights deterministic. This naturally limits the number of

additional parameters, and makes the network more robust by design. The free-energy function of this networks takes the following
explicit form,

v =N, 1, w, ) wywy I =31 + N(w,. w,,) w, [exp(w; [1; =31 ) - 1]

+ N, 3, w,3) wywi [I -3 + N (W, 4, W5 4) Wy [exp(w} 1) - 31%) - 1]

+ N(Wwys5,Wes) wswi [ =31 + N(w,e,w,g) we [expwy [I; —3] )~ 1]

+ N W, 7,0, 7) wyw [ =312 + N(w,z.w,5) wy [exp(wg (I, - 31%) - 11,

3 (28)
3
:

corrected by the pressure term, y =y — p[J — 1]. To complete the definition of the Piola stress in Eq. (27), we take its derivatives
with respect to the two invariants,

0 )
0_IW = N, 1w, 1) wiwh + N(w, o, w,,) wywy exp(wh [1; —3])
61[/1 + 201 =31 N (W0, 3. 10,3) 3w’ + N (W, 4.10,4) wyw exp(w? [1) =317, 29)
Fy Nw,s, w,s) ws wi + N (w6 Ws6) wewy exp(wy [1, =31 )
2

+ 201 =31 Nw, 7, w,7) wywh + N(w, g, w,s) wg wyy exp(wy [ I, - 31%).

The network has two sets of network weights, w and w*, associated the eight terms of the free-energy function, and two sets of
variational parameters, w, and w,, associated with the means and standard deviations of these eight terms. We learn these 32
weights by minimizing the three-term loss function L = Ly + Ly, + L; in Eq. (21). We consider data from homogeneous uniaxial
compression, uniaxial tension, equibiaxial tension, and pure shear test.
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uniaxial compression uniaxial tension equibiaxial tension pure shear
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Fig. 3. Synthetic data and discovered isotropic model for training on all data. Nominal stresses P as functions of the stretches A for the isotropic, perfectly
incompressible Bayesian constitutive neural network with two hidden layers, eight nodes, and eight prior distributions from Fig. 2. We used all compressive data
up to 2 =0.8, and all tensile, biaxial, and shear data up to 1 = 1.3 for training. Dots illustrate the synthetic uniaxial compression, uniaxial tension, equibiaxial
tension, and pure shear data of the Mooney-Rivlin model with Gaussian noise; solid blue curves and blue-shaded areas indicate the mean predicted stresses +
standard deviations; color-coded areas highlight the eight possible contributions to the discovered stress function.

For the cases of uniaxial compression, and uniaxial tension, with a stretch A in the 1-direction, such that I} = 4> +24~! and
I, =24+ 17% and F = diag { 4,4"/2,171/2 } and P = diag { P,;,0,0}, the stress—stretch relation for isotropic materials [24] is
oy 1 oy 1
Ph=2—+-—|14-=]. 30
1 [611 /1@12] [ 2 (30)
For the case of equibiaxial tension, with a stretch A in the 1- and 2-directions, such that I, = 24> + 2™* and I, = 4* + 2472 and
F = diag { 4, 4,472} and P = diag { P||, P»,,0}, the stress-stretch relation for isotropic materials [5] is
oy 5 Oy 1
P =2 |—+2=—||A-=|=Py. 31
11 [ o, YA FE 22 (3D
For the case of pure shear of a long rectangular specimen stretched with A along its short axis in the 1-direction, and no deformation
along it long axis in the 2-direction, such that I, = I, = 4>+ 1+ 472 and F = diag{ A,1,4"'} and P = diag{ P,;, P»,,0}, the
stress—stretch relations for isotropic materials [5] are
oy dy 1 oy 2 0W 1
Pi=2—+ —||A-= and Pp=2|—+1r—||1-=]|. 32
! [‘"1 ‘Hz] [ /13] 2 [011 oI, A 2
We explore the performance of the isotropic Bayesian neural network from Fig. 2 on the basis of synthetic stress—stretch data
of a Mooney-Rivlin material [25,26] perturbed by aleatoric noise. The strain energy function of the Mooney-Rivlin model is
v = % wll =31+ % ur[ I, — 31, where u; and p, denote the two model parameters. Following Egs. (30), (31) and (32), we obtain
the explicit stress—stretch relationships for uniaxial compression and tension, P;; = [ u; + A~'uy 1[4 — A2 ], for equibiaxial tension,
Py = [y +Puy1[ 41— 2731, and for pure shear, P;; = [u; + up ][ A — 473 ]. To generate the synthetic data, we apply an additive
Gaussian aleatoric noise to the stress, f’“ = P|; + N (u,0). We select a zero mean, u = 0, and a standard deviation that scales
linearly with the absolute stress, ¢ = o, | P}, |, and sample synthetic stress—stretch data pairs {4, P;;} for all load cases. We then
apply Bayesian model discovery: We train the network by minimizing the loss function L, draw parameter samples { 0; } 1"1 from
the learnt variational approximation Q(0; W) of the true posterior distribution P(6 | P), derive stresses {P(F;0,)} I":’ | for each
sample from Egs. (30), (31), (32), and report the means and standard deviations of the stresses. To explore the predictive potential
of the Bayesian network and evaluating model robustness, we compare two cases, training on all data and training on incomplete
data while testing on the remaining data.

Bayesian networks successfully rediscover the initial model, even in the presence of noise. Fig. 3 shows the discovered
model for the synthetic data of the Mooney-Rivlin model, y = % w1 =31+ % Hp [ I, — 3], with true parameters y; = 1kPa and
u, = 1kPa and an aleatoric scaling coefficient ¢, = 0.15, and an L, regularization parameter « = 0.001, trained on all data in
the stretch ranges of 4 = [0.8,...,1.0] for uniaxial compression, and A = [1.0,...,1.3] for uniaxial tension, equibiaxial tension,
and pure shear. Fig. 4 highlights the discovered isotropic model parameters along with their posterior distributions. Both figures
confirm that our Bayesian constitutive neural network successfully identifies the mean stress response and the uncertainty in the
data. First and foremost, out of 28 = 256 possible combinations of terms, the network robustly rediscovers the Mooney-Rivlin
model, y = % w L =31+ % U, [ I, — 3], with mean network weights of w, = 0.782kPa and ws; = 0.525kPa, which translate into
Mooney-Rivlin parameters of y; = 2w, = 1.564kPa and u, = 2ws = 1.050kPa, two meaningful parameters with physical units
and a clear physical interpretation [25,26]. In addition, the network also discovers the posterior distributions of the weights along
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Fig. 4. Posterior distributions of discovered isotropic model parameters for training on all data. When using all data for training, the isotropic, perfectly
incompressible Bayesian constitutive neural network robustly rediscovers the Gaussian noise perturbed Mooney-Rivlin model, w = w, [ I, —=3]+ w5 [ I, — 3], with
discovered network weights of w, = 0.782 +0.02 and ws = 0.525 + 0.01, while all other network weights correctly train to zero.

with their standard deviations, w; = 0.782 +0.02kPa and ws = 0.525 +0.01 kPa. Most importantly, the network autonomously trains
all inactivate model terms to zero [3], w, = w3 = wy; = wg = w; = wg = 0kPa, which is not straightforward in conventional
Bayesian neural networks [12]. Taken together, our Bayesian constitutive neural networks robustly and repeatably discover models,
parameters, and uncertainty from synthetic data, even in the presence of noise.

Bayesian networks robustly discover uncertainties in non-training regimes. Fig. 5 shows the discovered model for the synthetic
data of the Mooney-Rivlin model, y = % il =31+ % Hp [ I, — 3], with true parameters y; = 1kPa and u, = 1kPa, an aleatoric
scaling coefficient oy = 0.15, and an L, regularization parameter « = 0.001, trained on incomplete data in the stretch ranges of 1 =
[0.8,...,1.0] for uniaxial compression, and A = [ 1.0, ...,1.15] for uniaxial tension, equibiaxial tension, and pure shear, and tested in
the unseen stretch range of 1 = [1.15,...,1.3]. Fig. 6 highlights the discovered isotropic model parameters along with their posterior
distributions. Similar to the previous example, our Bayesian constitutive neural network successfully discovers the mean stress
response and the uncertainty in the data. However, the direct comparison of the uncertainties in the stress predictions in the blue-
shaded areas in Figs. 3 and 5 confirms our intuition that training on all data in Fig. 3 results in smaller uncertainties than training on
incomplete data in Fig. 5. Interestingly, the extrapolation into the unseen regime of 1.15 < 4 < 1.3 is better in uniaxial tension and pure
shear than in equibiaxial tension, where the uncertainties increase dramatically as the stretch increases. Nonetheless, the network is
still able to discover the initial Mooney-Rivlin model [25,26], w = % ui 1,3 J+% a [exp(w;[lz—fij)—l ] /b+% U, [ 1,31, but now with
an additional exponential linear first invariant Demiray-type term [27], % a[exp(w;[h —3]) — 1] /b. The discovered mean network
weights of w; = 0.824kPa, w, = 0.054kPa and ws; = 0.468kPa translate into Mooney-Rivlin stiffnesses of y; = 2w, = 1.648kPa
and p, = 2ws = 0.936KPa, a stiffness like parameter of a = 2w, w, = 1.42kPa, and a nonlinearity parameter of b = w; = 2.58,
four meaningful parameters with physical units and a clear physical interpretation. In addition, the network also discovers the
posterior distributions of the weights along with their standard deviations, w, = 0.824 + 0.010kPa, w, = 0.054 + 0.010kPa, and
ws = 0.468 + 0.003kPa. We observe that the non-Mooney Rivlin weight w, = 0.054 is an order of magnitude smaller than the
two Mooney-Rivlin weights w, = 0.824 and w; = 0.468. We conclude that the influence of the additional exponential linear first
invariant Demiray-type term [27], w, [exp(wz[lz —3]) — 1] is relatively small, and that the discovered model remains dominated
by the two Mooney-Rivlin terms [25,26], w,[I; — 3] and ws[I, — 3]. The small narrow red band of the exponential linear
first invariant contribution to the overall stress in Fig. 5 confirms this observation. Increasing the penalty parameter a beyond
a = 0.001 would reduce the number of active model terms. Naturally, the smallest weight, w, = 0.054, would be dropped first, and
we would recover the original Mooney-Rivlin model. Importantly, even for incomplete training data, the network autonomously
identifies the true non-zero model terms w, and ws, while training all other weights, except the additional small w, term, to zero,
ws = wy = wg = wy; = wg = 0kPa. We have confirmed, although not explicitly shown here, that we can explicitly modulate the
sparsification of the parameter vector w through the penalty parameter a [28] to fine-tune the trade-off between model accuracy and
model interpretability [29]. Especially in the context of interpretability, our specific network architecture, with standard external and
internal network weights w and w* and variational parameters w, and w, only after the final hidden layer, turns out to be critical
to selectively modulate sparsification. While we did experiment with alternative network architectures in which the variational
parameters replace the external network weights w, or all external and internal weights w and w* [4], we believe that our current
network architecture in Fig. 3 provides the most robust parameter sparsification and the most interpretable model discovery. Taken
together, our Bayesian constitutive neural network robustly and repeatably discovers predictive models, parameters, and uncertainty
from synthetic data, even in the presence of noise and incomplete training data.
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Fig. 5. Synthetic data and discovered isotropic model for training on incomplete data. Nominal stresses P as functions of the stretches 4 for the isotropic, perfectly
incompressible Bayesian constitutive neural network with two hidden layers, eight nodes, and eight prior distributions from Fig. 2. We used all compressive
data up to 2 = 0.8 for training, and tensile, biaxial, and shear data up to 4 = 1.15 for training, and up to A = 1.3 for testing. Dots illustrate the synthetic uniaxial
compression, uniaxial tension, equibiaxial tension, and pure shear data of the Mooney-Rivlin model with Gaussian noise; solid blue curves and blue-shaded areas
indicate the mean predicted stresses + standard deviations; color-coded areas highlight the eight possible contributions to the discovered stress function.
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Fig. 6. Posterior distributions of discovered isotropic model parameters for training on incomplete data. When using incomplete data for training, the
isotropic, perfectly incompressible Bayesian constitutive neural network rediscovers the Gaussian noise perturbed Mooney-Rivlin model with an additional
term, y = w; [I; = 3]+ w, [exp(w;[I, —3]) = 1],+ws [ I, — 3], with discovered network weights of w; =0.824 +0.01, w, = 0.054 +0.01 and w; = 0.468 +0.00, while
all other network weights correctly train to zero.

4. Transversely isotropic Bayesian constitutive neural networks

The transversely isotropic Bayesian constitutive neural network takes the deformation gradient F as input,

F=Vyo. (33)

In addition, its kinematics are characterized through a pronounced direction n, with unit length || n)|| = 1 in the undeformed

configuration, which map onto the pronounced direction n = F - n; with stretches || n|| = 4, in the deformed configuration. We

characterize the deformation state through the two isotropic invariants I; and I,, and two anisotropic invariants I, and I5 [30],
Iy= [F-F]:I and I, =3[>=[F-F]:[F F]], 4
Iy=ny-[F"-Fl-ny, and Is=  ny-[F'-F]* n,.

A perfectly incompressible material has a constant Jacobian equal to one, I; = J? = 1. The network discovers hyperelastic material
models that satisfy the second law of thermodynamics, and their Piola stress P = dy(F)/oF is the derivative of the free energy
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Fig. 7. Transversely isotropic Bayesian constitutive neural network. The network has two hidden layers to discover the free-energy function w(I,,1I,,1,,1s) as
a function of the invariants of the deformation gradient F using sixteen terms. The first layer generates powers (o) and (o)’ of the network input, the second
layer applies the identity (o) and exponential function (exp(c)) to these powers, and the network output is the sum of these sixteen terms, weighted by their
probability densities N (w,,w,). During training, the network learns the network weights w and w* and the variational parameters w, and w,.

w(F) with respect to the deformation gradient F modified by a pressure term —p F~',
p-W _ pr_woL oy dlh oyl owdls .

P = , (35)
oF oI, OF oI, oF ' 01, oF ' 0I5 oF

where the hydrostatic pressure, p = —% P : F, acts as a Lagrange multiplier that we determine from the boundary conditions.

We discover the free-energy function w using a Bayesian constitutive neural network that takes the deformation gradient F
as input and approximates the free-energy function w(F) as the sum of sixteen probability-weighted terms. Fig. 7 illustrates our
neural network with two hidden layers and sixteen nodes [31]. The first layer generates powers (o) and (0)? of the network input,
the two invariants I, and I,. The second layer applies the identity, (o) and the exponential function (exp(c)) to these powers. The
network output is the sum of these sixteen terms, weighted by their probability densities N (w,,w,). The free-energy function of
this networks takes the following explicit form,

v=Nw, we;)w w [ =3] + Nw,, .w,, ) w, [expw; [I; =3])~-1]
+ Nw,s we3) wy wh =3P+ N,y w,q ) wy Lexpw) [T —31%)—1]
+ NWwys ,Wes ) ws wi [ =31 + N(w, e, Ws6 ) we [expwy [I—3])~1]
+ Nw,; w7 ) wy w [ - 312+ Nw,s ,wsg ) wg Lexp(wy I, — 313 - 1] 36)
+ NWwyg ,Weg ) Wy wy [y =11 + N (W, 10 Wo 10) Wio [exp(w?, Iy — 1] ) = 1]

+ N, 11, W, 17) Wiy wh [Ty =112+ N (W, 12, W, 12) wya [expw?, [1y —11%) = 1]

+ N(w”’m,wa,n) wyzwiy Is =11 + ./\/'(wu,14, We14) Wig [exp, [Is =11 ) = 1]

+ N Wy 15 W 15) Wis whs s = 112 + N(w,, 16, W, 16) wig [expw’, [Is = 11%) =11,

corrected by the pressure term, w =y — p[J — 1]. To complete the definition of the Piola stress in Eq. (35), we take its derivatives
with respect to the two invariants,
oy

o, = N, swey) wy wy + Ny, ,w,,) w, wy exp(w, [I; —=31)
ow + 201 =31 Nw,; ,w,3) ws w;; + NW,g s wey) wy w}: exp(w;i [1,-31%),
0—12 = Nw,s ,wys) ws wi + NWw,e »Ws6) We w§ exp(w; [1,=31)
o +2[1,-3][ J\/‘(wm JWe7) wy wi + N(w,hg ,Wyg) Wy w; exp( w; [I,-31%), 37)
FTA = NW,o s we9) Wy wy + N(W, 19, W4 10) Wiowi exp(wyy [1y— 1 ]2)
o + 200 =11l Ny 11> W, 1) Wy wzl + N W, 10, W, 12) wlzwz2 exp(wz2 [I,—-171%),
m N N (W, 13, We,13) Wiz Wiy + N Wy, 14, W 14) wiswi, exp(wy, [Is=11)

+ 2[5 = L1l N (W, 15w, 15) wiswis + N(w, 16, W, 16) Wiewhe exp(wh, [Is — 11%).

The network has two sets of network weights, w and w*, associated the sixteen terms of the free-energy function, and two sets of
variational parameters, w, and w,, associated with the means and standard deviations of these sixteen terms. We learn these 32
weights by minimizing the three-term loss function L = Ly, + Ly, + L; in Eq. (21).

10
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We consider data from biaxial extension tests with stretches 4; and 4, in the 1- and 2-directions, such that I, = /1%+/1§+(/11 4,)72 and
I = 72442 +(A 4,)? and Iy = A2 cos®a+ 4% sin’a and I5 = A% cos?a+ 43 sin’a. The deformation gradient is F = diag { 4, Ay, (4;4,)7" }
and the Piola stress is P = diag{ P, P»,0}. We use the zero-normal-stress condition, P;; = 0, to determine the pressure,
p=2(AA)"% 0w /oI, + 2(/11’2 +47 2) 0w /a1, [32]. In what follows, we use data from biaxial extension tests on samples with two fiber
families with identical properties that are mounted symmetrically with respect to the 1- and 2-directions. This implies that we can
combine the effects of both fiber families in the fourth and fifth invariants I, and I5 by multiplying the anisotropic stress terms by a
factor n; = 2. In addition, we assume that these two fiber families do not interact such that the eighth invariant vanishes identically,
Iy = 0 [33]. Eq. (35) then provides explicit analytical expressions for the Piola stresses P, and P, in terms of the stretches 4; and
Ay [34],

d oy oy dy
=2l - | Lo a2 L X hon dcoa 2L+ ang costa 2L
322 oI, 23| oI, ol, ol
- 172 - I (38)
1| ow 1| oy oy oy
P2=2 }»2—@ a[l +2 /1%).2—1—3 H+2nt /lzsmaﬁ+4nt i3§1naE,

which we translate into the Cauchy stresses o} and o, that are reported in the experiment [35] using J6 = P-F' = oy /0F -F' —p1,

d 0 oy dy
o =2 /ﬁ—L LA /1212 ! —W+2nf/12<:os a—+4nfi4cos a—,
2222 | ol 22| or, ol ol
L 172 L 1 (39)
_ 2 1 al[/ 2,2 1 () 2 6 4 ()l[/
0’2—2 /12—@ 011 +2 ﬂlﬂ.z-l-l—% ﬁ+2ntﬂsmaﬁ+4ntlsmaﬁ.

We explore the performance of the transversely isotropic Bayesian neural network from Fig. 7 on the basis of real stress—stretch data
from human abdominal aortic tissue samples [35,36]. We consider three data sets of axial and circular stretch stress pairs from the
healthy medial layer, the healthy composite aorta, and the aneurysmal composite aorta, in the stretch ranges of 1.00 < 4,,;, A, < 1.15
and apply Bayesian model discovery: We train the network by minimizing the loss function, draw parameter samples from the learnt
variational approximation of the true posterior distribution, derive stresses for each sample, and report the means and standard
deviations of the stresses. We compare the discovered models, parameters, and uncertainties.

Bayesian networks robustly discover model, parameters, and uncertainties for the healthy medial layer. Fig. 8, right,
shows the equibiaxial extension data and the discovered model for the healthy human medial aorta. The training data consist
of axial and circumferential stretch stress pairs from n = 7 samples of the medial layer with collagen fiber orientations n, =
[cos(@),sin(a),0]" for @ = 9.85°. Notably, the data points of the healthy medial aorta in Fig. 8 display a moderate inter-sample
variation, a pronounced stretch stiffening, and a notable anisotropy. For the model discovery, we used L, regularization with a
regularization parameter a = 0.01. Interestingly, out of 2! = 65,536 possible models, the Bayesian network discovers a familiar
model, y = = a1 [exp(bl[I 1 =3D-11+ +1 > a4 [exp(by[I, — 11*) — 1], that is dominated by the red exponential linear first invariant
Demiray term [27], 2 ay [exp(b[1; — 3]) — 1], and by the light blue exponential quadratic fourth invariant Holzapfel term [37],
% ay [exp(by[T, — 11?) — 1]. Importantly, the network robustly discovers a sparse and interpretable model [3], with only two terms —
an isotropic term associated with the extracellular matrix and an anisotropic term associated with the collagen fibers — while all
other network weights autonomously train to zero. Notably, the discovered model agrees well with a previous analysis of human
tissue samples from the healthy medial aorta, which ranked this model within the best-in-class two-term models for the healthy
media [38], not only for data from equibiaxial testing, but for data from five different biaxial tests combined [39]. The non-zero
weights of the model translate into stiffnesses of «@; = 1.12kPa and a, = 1.72kPa and nonlinearity parameters of b, = 5.87 and
b, = 3.96, four meaningful parameters with a clear physical interpretation. Fig. 8, left, highlights the discovered model parameters
associated with these two terms, w, = 1.212 + 0.11kPa and w;, = 1.715 + 0.09kPa, along with their posterior distributions and
standard deviations. Compared to the previous examples based on synthetic data perturbed by controlled Gaussian noise in Figs. 4
and 6, the posterior distributions of the weights in Fig. 8, right, display significantly larger standard deviations. This agrees with
our expectation of large parameter variations across real biomedical data [35], and with the wide inter-sample spread in the raw
data in Fig. 8, left. Taken together, our Bayesian constitutive neural network robustly discovers interpretable transversely isotropic
models, parameters, and uncertainties from real world data; it not only learns point values, but distributions of parameters with
credible intervals, means, and standard deviations that provide valuable information to communicate our confidence in the model,
and improve the model if needed.

Bayesian networks discover a more linear model with more uncertainty for the composite aorta than for the medial layer.
Fig. 9, left, shows the biaxial extension data and the discovered model for the healthy human composite aorta. The training data
consist of axial and circumferential stretch stress pairs from n = 6 samples of the composite tissue with collagen fiber orientations
ny = [cos(a), sin(a), 0]' for « = 29.8°. Notably, within the tested stretch regime of 1.00 < 4,, A, < 1.15, and for the tested equibiaxial
state, the data points of the healthy composite aorta in Fig. 9 display a significant inter-sample variation, but no stretch stiffening, and
only moderate anisotropy. As a result, the discovered model, y = % u 1, -3 ]+% us [ Is—11?, is dominated by the dark red linear first
invariant neo Hooke term [40], % u; [1; =31, supplemented by the dark blue quadratic fifth invariant term, % us [ Is—11%. Similar to
the previous example, the L, regularization promotes a sparse and interpretable model [3], with only two terms, one isotropic and
one anisotropic, while all other network weights autonomously train to zero. This includes the weights of the exponential terms
that were prominently featured by the medial layer model [39] to account for the nonlinear stretch stiffening in Fig. 8, that is

11



K. Linka et al. Computer Methods in Applied Mechanics and Engineering 433 (2025) 117517

circumferential discovered weights

30 40 ) ol 2
; HEn :
o a o
e e —
- - S w,;=1.212+/-0.110 Wy, =1.715+/- 0.090
[%] 4 wn 8
o o 2
s s ) Q | W1 Wy W3 Wy W5 Wg Wy Wg Wg Wi Wiy Wip Wiz Wi WisWig
p 2 ot | AEEEE EEEERN
35 50 4 5
g g 4—@ o o
5‘ i — —
o b
% 7 ) = N
0 0 0 0

1.00 stretchA[-] 1.15 1.00 stretchA [-] 1.15 0.9 W, 16 15 Wiy 2.0

o data M [:-3] M exp((;-3]) M3 Mexp((:-3]1) M [1»-3] exp([l>-3]) [1-3] exp([1>-3]%)
O mean | [l4-1] exp([l4-1]) (-1 Mexp((l-1]2) M5  Hexp((s-1]) M [s-1° M exp([is-1]?)

Fig. 8. Biaxial extension data and discovered model, parameters, and uncertainties for healthy medial layer. True axial and circumferential stresses o, and
o4, as functions of the biaxial stretches 4,,, and A, for the transversely isotropic Bayesian constitutive neural network with two hidden layers, sixteen nodes,
and sixteen prior distributions from Fig. 7. Dots illustrate the axial and circumferential biaxial extension data of n =7 healthy medial aortic samples; solid blue
curves and blue-shaded areas indicate the mean predicted stresses + standard deviations; color-coded areas highlight the sixteen possible contributions to the
discovered stress function. The Bayesian network discovers a two-term model, y = w, [exp(w;[I; — 31) — 1] + wy, [exp(w},[1, — 11%) — 1], with network weights of
w, =1.212+0.11 and w,, = 1.715 £ 0.09, while all other network weights train to zero.

not present in the composite tissue samples in Fig. 9. The non-zero weights of the discovered composite model translate into the
stiffnesses of y; = 2.748kPa and u;5 = 0.362kPa, two meaningful parameters with a clear physical interpretation. Fig. 9, right,
highlights the discovered model parameters associated with these two terms, along with their posterior distributions and standard
deviations, w; = 1.374 + 0.22kPa and w5 = 0.181 + 0.02kPa. Again, we observe larger standard deviations than for the synthetic
data in Figs. 4 and 6, but also larger standard deviations than for the medial layer in Fig. 8, right. Confirming this observation, the
model uncertainty for the composite aorta associated with the blue-shaded areas in Fig. 9, left, is significantly larger than the model
uncertainty for the medial layer associated with the blue-shaded areas in Fig. 8, left. Since the composite aorta is made up of two
mechanically relevant layers [37], the media and the adventitia, both with distinct collagen fiber orientations [35], a mechanistic
microstructural model for the composite aorta would need to include at least two anisotropic terms, one for each layer [41]. Instead,
we discover a macroscopic phenomenological model that averages the collagen fiber stiffening and anisotropy into a more linear
and more isotropic model. Notably, our Bayesian network discovers large aleatoric and epistemic uncertainties that alert us of
these unreliable predictions and call for model improvement [13]. Taken together, our Bayesian network autonomously discovers
distinct characteristic models for different tissue types: a mechanistic microstructural model with exponential stiffening and notable
anisotropy for the medial layer and a phenomenological macrostructural model with a linear response and more isotropy for the
composite aorta. Naturally, this composite model contains less microstructural information and generates larger uncertainties.

Bayesian networks discover a more exponential model with larger uncertainties for the diseased than for the healthy aorta.
Fig. 10, left, shows the biaxial extension data and the discovered model for the aneurysmal human composite aorta. The training data
consist of axial and circumferential stretch stress pairs from n = 6 samples with collagen fiber orientations n; = [cos(), sin(a),0]* for
a = 31.5°. Similar to the healthy tissue samples in Fig. 9, the data points of the diseased tissue samples in Fig. 10 display a significant
inter-sample variation; yet, in contrast to the healthy samples, they also display a pronounced stretch stiffening, a notable anisotropy.
Accordingly, the discovered model, y = % ul =317+ % alexp(b[ I5—1 1%)—11/b, is dominated by the dark blue exponential quadratic
fifth invariant Holzapfel-type term [37], %a [exp(b[ Is — 11%) — 11/b, supplemented by a small yellow quadratic second invariant
term [42], % ul[ I, — 312 Similar to all previous examples, the L, regularized network robustly discovers a sparse and interpretable
model with only two terms, one isotropic and one anisotropic, while all other network weights autonomously train to zero [3]. The
non-zero weights translate into the model parameters of x4 = 0.048kPa, a =2w,swj, = 0.05kPa, and b = wj, = 5.0. Fig. 10, right,
highlights the two discovered parameters, their posterior distributions, and their standard deviations, w,; = 0.024 + 0.02kPa and
wye = 0.042 + 0.01 kPa. In agreement with our intuition, of all three discovered models, for the healthy medial layer, the healthy
composite aorta, and the aneurysmal composite aorta, the model for the aneurysmal composite aorta displays the largest degree of
uncertainty, as we conclude from the large blue-shaded areas in Fig. 10, left. This uncertainty is a natural result of the complex but
diffuse microstructure of aneurysmal tissue, dominated by straight and thick struts of collagen [35]. Taken together, our Bayesian
constitutive neural networks successfully delineate between healthy and diseased tissues and discover different models — linear for
the composite healthy and exponentially stiffening for the composite diseased tissue — both with interpretable parameters, credible
intervals, means, and standard deviations.
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Fig. 9. Biaxial extension data and discovered model, parameters, and uncertainties for healthy composite aorta. True axial and circumferential stresses ¢,,, and
o4, as functions of the biaxial stretches 4,,, and A for the transversely isotropic Bayesian constitutive neural network with two hidden layers, sixteen nodes,
and sixteen prior distributions from Fig. 7. Dots illustrate the axial and circumferential biaxial extension data of n = 6 healthy composite aortic samples; solid
blue curves and blue-shaded areas indicate the mean predicted stresses + standard deviations; color-coded areas highlight the sixteen possible contributions to
the discovered stress function. The Bayesian network discovers a two-term model, y = w, [ I; —3]+ w5 [ Is — 1>, with network weights of w, = 1.374+0.22 and
w5 = 0.181 +0.02, while all other network weights train to zero.
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Fig. 10. Biaxial extension data and discovered model, parameters, and uncertainties for aneurysmal composite aorta. True axial and circumferential stresses o,
and o, as functions of the biaxial stretches 4,,, and A, for the transversely isotropic, perfectly incompressible Bayesian constitutive neural network with two
hidden layers, sixteen nodes, and sixteen prior distributions from Fig. 7. Dots illustrate the axial and circumferential biaxial extension data of n = 6 aneurysmal
aortic samples; solid blue curves and blue-shaded areas indicate the mean predicted stresses + standard deviations; color-coded areas highlight the sixteen possible
contributions to the discovered stress function. The Bayesian network discovers a two-term model, y = w, [I, = 31> + w4 [exp(wis[ 15 — 11?) — 1], with network
weights of w; = 0.024 +0.02kPa and w4 = 0.042 + 0.01 kPa, while all other network weights train to zero.

5. Conclusion

The inability to communicate uncertainty and the risk to produce unreliable predictions are serious deficiencies of classical
neural networks. This makes them unsuitable for biomedical applications, where data are sparse and vary significantly from one
patient to another. To supplement medical decision making by neural network modeling — especially with a view towards human
health - it is absolutely critical to know and understand the uncertainties associated with our model predictions. Here we propose an
efficient and robust method, regularized variational Bayesian inference, to train constitutive neural networks and discover the model,
parameters, and uncertainties that best explain and predict the unique characteristics of biomedical systems. Importantly, since we
focus on model discovery, we only replace the external weight of the network by their probabilistic counterparts, while keeping the
internal weights deterministic. This naturally limits the number of additional parameters, and makes the network more robust by
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design. To demonstrate the potential of this approach, we prototype solutions on synthetic data perturbed by aleatoric noise and
on real world data from healthy and diseased human arteries. Our results on synthetic data demonstrate that Bayesian constitutive
neural networks can successfully rediscover the initial model, even in the presence of noise, and robustly discover uncertainties, even
from incomplete training data. Interestingly, we observe larger uncertainties for equibiaxial tests than for tension, compression, and
shear tests. These uncertainties provide valuable guidance for model improvement: If we decided to collect more data, additional
equibiaxial tests would most efficiently reduce epistemic uncertainties and improve model robustness. Our results on healthy and
diseased human arteries demonstrate that Bayesian constitutive neural networks can successfully discriminate between healthy and
diseased tissues, robustly discover interpretable models for both, and efficiently quantify uncertainties in model discovery. Notably,
model uncertainty is smallest for the healthy medial layer, moderate for the healthy composite aorta, and largest for the diseased
aorta. This observation is in line with an increasing microstructural complexity, from the well-organized healthy medial architecture
with pronounced collagen fiber orientations to the distorted aneurysmal tissue with dispersed collagen fragments. Importantly, the
failure of the Bayesian prediction presents an opportunity to learn: We could expand our current model library and reanalyze the
same data with new models, or even collect new data and improve model performance in regions with high uncertainties. Especially
in risk-sensitive areas like medical diagnosis, it is paramount that we can precisely communicate our confidence in our model
predictions. Here we have prototyped this approach for healthy and diseased human arteries. We envision that Bayesian model
discovery will generalize naturally to other biomedical systems for which real-world data are rare and inter-personal variations are
large. Knowing, understanding, and communicating the uncertainties in automated model discovery is a vital step to improve model
prediction, enable personalized simulation, and support informed decision making.
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