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Abstract

In Cameroon, dietary staples are frequently contaminated with diverse toxic fungal metabolites, known as
mycotoxins. Aflatoxins and fumonisins are a public health concern, particularly concerning cancer and/or early life
stunting. Mycotoxin mixtures are predicted from food measures; and this study reports the levels and frequencies
of urinary mycotoxin biomarkers in Cameroonian adults. A single first void urine sample was collected from 89
adults from Yaoundé, Cameroon. Urine samples were tested for eight distinct mycotoxins using measures of both
parent compounds and/or their metabolites by liquid chromatography-tandem mass spectrometry (LC-MS/MS).
Altogether, seven distinct mycotoxins, aflatoxin, fumonisin, deoxynivalenol, zearalenone, nivalenol, ochratoxin A,
and citrinin, (or their metabolites) were observed in urine samples. At least one mycotoxin was detected in all
of the urine samples, 87 (98%) of which were above the limit of quantitation. Aflatoxin M1 was detected in 42%
(n.d.-0.21 μg/l) of samples of which about a quarter additionally contained fumonisin B1. Of the remaining toxins
deoxynivalenol (78%), zearalenone (99%), ochratoxin A (95%), nivalenol (53%), and citrinin (87%) were present
in the samples. Alternariol was not detected in any sample. Mixtures of mycotoxins in the samples were frequently
observed with 64 samples (72%) containing more than five mycotoxin exposure biomarkers. Estimates of intake
exceeded the TDIs for fumonisin B1 (n = 4), deoxynivalenol (n = 1) and zearalenone (n = 2), no TDI is set for
aflatoxin. This study reveals frequent co-exposure of Cameroonian individuals to a complex mixture of toxic and
carcinogenic mycotoxins, with mixtures of aflatoxin and fumonisin being a particular priority from a public health
standpoint.
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1 Introduction

Agricultural crops around the globe that are used for
food and feed are frequently contaminated during crop
growth and/or storage by several toxigenic fungi that
produce poisonous secondary metabolites, known as
mycotoxins. A combination of poor agricultural prac-
tices, favourable temperatures and humidity, and poor
and extended storage practices, often exacerbate toxin
production, especially the aflatoxins, in sub-Saharan
Africa (Bennett and Klich, 2003; Medina et al., 2015;
Nji et al., 2022; Richard and Payne, 2003). Many myco-
toxins are heat resistant, such that traditional cook-
ing practices with grains or nuts have little impact on
plate-ready toxin concentrations (Ezekiel et al., 2019;
Karlovsky et al., 2016). Inmany parts of rural Africa diets
are both reliant on some of these high-risk grains and
nuts, and exhibit poor diversity, thus, mycotoxin expo-
sure seems inevitable.

Acute and chronic exposures to mycotoxins can be
harmful to health, and on occasions fatal (Lewis et
al., 2005). Mycotoxins such as aflatoxin B1 (AFB1) are
proven human carcinogens (IARC, 2012a). Additionally,
AFB1 and other mycotoxins are implicated in a range
of other conditions including kwashiorkor in children
(Tchana et al., 2010), infant stunting (AFB1 and fumon-
isin B1 (FB1)) (IARC, 2012b; Kimanya et al., 2010; Turner,
2013), immunosuppression (AFB1 and deoxynivalenol
(DON)) (Bondy and Pestka, 2000; Pestka, 2010; Pestka
et al., 2004; Pierron et al., 2016; Turner et al., 2003), and
neural tube defects (FB1) (Marasas et al., 2004; Miss-
mer et al., 2006). The diversity of these health effects
creates significant concerns regarding the need to mon-
itor and assess the potential risks posed to consumers
of mycotoxin-tainted foods in regions wheremycotoxin-
prone crops are frequently consumed (IARC, 2012b).
Maximum limits (MLs) in food for some mycotoxins
such as aflatoxins (AFB1, and total AFs), fumonisins
(FB1, and total FBs), ochratoxin A (OTA), deoxynivalenol
(DON), and zearalenone (ZEN) have been established
(EC, 2001, 2023; Egmond et al., 2007; FAO, 2004). Toler-
able daily intake (TDI) levels for some of the frequently
occurring toxins including FB1 has also been defined by
the Scientific Committee on Food (SCF, 2003) and DON
by the European Food Safety Agency (EFSA, 2017), like-

wise ZEN (EFSA, 2011); but as a proven carcinogen, no
recommended TDI is possible for AFB1.

In Cameroon, reports onmycotoxin contamination of
raw and cooked foods are increasing in the past decade
(Abia et al., 2013a, 2007; Ngwegoue et al., 2018; Njobeh
et al., 2010, 2013; Tchana et al., 2010). AFB1 and FB1
have been observed in groundnuts- and cereals-based
food, and in some cases, the concentrations exceeded
MLs stipulated by the Codex Alimentarius Commis-
sions (CAC, 2019; FAO, 2004) and the European Union
(EC, 2023). Limited studies are available that mea-
sure multiple urinary markers of mycotoxin exposure in
Cameroon, these include 175 adults (Abia et al., 2013b)
and 220 young children (Njumbe et al., 2013). Here we
report data from 89 Cameroon adults by a highly sensi-
tive LC-MS/MS method to add to the growing data sets
on individual mycotoxin measurements in Sub-Saharan
Africa.

2 Materials andmethods

Study populations, recruitment of participants and
sample collection
This study was carried out in 2013 in the city of Yaoundé,
Centre Region, Cameroon. Targeted sub-populations
were informed about the nature of the study. Signed
informed consent forms were obtained from 89 adult
male (n = 39) and female (n = 50) volunteers (age range:
28-85 years, body weight (range: 55-129 kg)) recruited
in this study. Ethical approval was received from the
Cameroon National Ethics Committee of Research
for Human Health (Authorisation No. 2013/05/252/
CNERSH/SP). First-morning urine samples, approxi-
mately 50ml each, were collected prior to intake of food
from each recruited individual in sealed mailing urine
bottles. The urine samples were immediately frozen
and transported on dry ice to BOKU/IFA-Tulln, Aus-
tria, where they were stored at −20 °C until analysis.
A priori, the study was neither attempting nor powered
to show differences by normal versus hypertensive sta-
tus. However, sixty-six of the participants were part of
a hypertension clinic in Yaounde (Les Promoteurs de la
Bonne Sante), who may have slightly different dietary
behaviours compared to non-hypertensives. Additional
data on age, weight, height or body mass index (BMI) of
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the hypertensive versus non-hypertensive participants
are provided in Supplementary Table S1.

Reagents and chemicals
Methanol (MeOH; LC gradient grade), acetonitrile
(ACN; LC gradient grade), and glacial acetic acid (HAc;
MS grade) were purchased from Merck (Darmstadt,
Germany). Mycotoxin standards were purchased from
Romer Labs Diagnostic GmbH (Tulln, Austria), includ-
ing: nivalenol (NIV), 13C-NIV, DON, 13C-DON, deepoxy-
DON (DOM-1), OTA, 13C-OTA, AFM1,13C- AFM1, citrinin
(CIT), FB1, 13C-FB1, 13C-ZEN or Sigma, Vienna, Aus-
tria (ZEN, α- and β-zearalenol (ZEL)). The deuterated
[2H4] alternariol (AOH) was synthesized by Asam et al.
(2009) and kindly provided by Prof. Michael Rychlik,
TU Munich. Solid standard substances were dissolved
in pure ACN (α- and β-ZEL; [2H4] AOH). All other
standards were delivered in either ACN or ACN/H2O
(FB1) and stored at −20 °C. A combined multi-standard
working solution for the preparation of calibrants and
spiking experiments was prepared in ACN, and also,
fresh mixture of 13C and deuterated [2H4] stable isotope
standards were prepared as described by Sarkanj et al.
(2018).

Sample Preparation
Urine samples were allowed to reach room tempera-
ture and centrifuged for 3 min at 5,600 ×g. The super-
natant (500 μl) was incubated with 500 μl phosphate-
buffered saline (200 mM, pH = 7.4) containing 3,000
U of β-glucuronidase from E. coli Type IX-A (Sigma-
Aldrich, G7396-2MU) (modified from Turner et al.,
2010) for 16 h at 37 °C to allow de-glucuronidation
of mycotoxin-glucuronides (e.g. DON-15-glucuronide,
ZEN-14-glucuronide, Warth et al., 2013). Following hy-
drolysis, 1 ml was passed through Oasis PRiMEHLB® SPE
columns (Waters, Milford, MA, USA), pre-equilibrated
with 1 ml MeOH, and then 1 ml H2O. After washing
twice with 500 μl H2O, mycotoxins were eluted with
200 μl ACN, three times. Extracts were evaporated under
nitrogen at room temperature, reconstituted with 470 μl
dilution solvent (10%ACN, 0.1%HAc) and fortified with
30 μl of the IS mixture as described by Sarkanj et al.
(2018).

Analysis of urine samples by LC-ESI-MS/MS
Sample analysis was performed using a Sciex QTrap®
6500+LC-MS/MS system (Foster City, CA, USA)
equipped with a Turbo V electrospray ionization (ESI)
source interfaced with an Agilent 1290 series Ultra-high
performance liquid chromatography (UHPLC) system

(Waldbronn, Germany) following the method described
by Sarkanj et al. (2018) to quantify urinary mycotoxin
biomarkers (UMBs). In brief, analytes of interest were
separated on an Atlantis T3 HSS column (2.1 × 100 mm;
Waters, Wexford, Ireland) with 1.8 μm particle size. Elu-
ent A (water) and eluent B (ACN) were both acidified
with 0.1% HAc. After an initial period of 2 min at 90%
A, the percentage of B was linearly raised to 50% until
minute 15. Then, eluent B was raised to 95% until min
18 followed by a hold-time of 4 min and subsequent
3 min column re-equilibration at 90% A. The flow rate
was set to 100 μl/min. After injection of 10 μl, the needle
was washed for 20 s to minimize carry-over. The column
effluent was transferred either to the mass spectrometer
(minutes 5 to 22.5) or the waste via a six-port valve. The
analytes were separated on a column at 35 °C.

ESI-MS/MS was performed in scheduled multiple
reaction monitoring (sMRM) mode, with a 180 s detec-
tion window. At least two individual transitions were
monitored for each analyte. One chromatographic run
consisted of two MS/MS experiments where both ion-
ization modes run simultaneously using fast polarity
switching. All measurements were conducted using:
source temperature 550 °C, curtain gas 30 psi (69 kPa
of max. 99.5% nitrogen), ion source gas 1 (sheath gas)
80 psi (345 kPa of nitrogen), ion source gas 2 (drying
gas) 80 psi (345 kPa of nitrogen), collision gas (nitro-
gen) high. Ion spray voltage was −4,500 V in negative
mode while it was set to 4,500 V in positive mode.

Note: The total concentrations of DON, ZEN, and CIT
(expressed in μg/l) were the summed values of the par-
ent compound and its metabolite(s) taking molecular
weights of the components into account.’

Statistical analysis
Statistical analysis was performed using GraphPad In
Stat version 3.10 for Windows (GraphPad Software Inc,
San Diego, CA, USA) and Microsoft Office Excel 2010
(Part of Microsoft Professional Edition, Computer Pro-
gram), Statistica 13.3. (TibcoSoft, Palo Alto, CA, USA).
For comparisons between (sex) groups, the Mann-
Whitney U test was used since the data is not normally
distributed (tested by Shapiro-Wilk’sW test).

3 Results

There were no differences by hypertensive status in the
age, weight, height or BMI of the participants (see Sup-
plementary Table S1). In Table 1 basic anthropometric
parameters are provided for all study participants.
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Table 1 Anthropometric measures of the studied population (n = 89)

Participants (n = 89)
Sex: female and male 49 and 40
Age: mean (range) year 55.4 (28.0-85.0)
Age: median age, year 52
# of males of age below (or equal and above median value) 19 (21)
# of females of age below (or equal and above median value) 14 (35)
Weight: mean (range) kg 84.1 (55.0-129.0)
Height: mean (range) m 1.7 (1.5-1.8)
Body mass index (BMI): mean (range) kg/m2 30.2 (20.3-54.4)
BMI median value kg/m2 29.7
# of males with median BMI value and below (above median value) 22 (18)
# of females with median BMI value and below (above median value) 27 (22)
Occupation:

Retired civil servant 9
Civil servant 47
Home-care servant 16
Farmer 6
Others 11

Mycotoxin concentrations were measured in urine
samples from 89 adult Cameroonians (males, 39 and
females, 50). The LC-MS/MS method measured seven
parent mycotoxins and five mycotoxin metabolites in
the samples, limit of quantitation (LOQ) and limit of
detection (LOD) values vary for each toxin and metabo-
lite. The parent mycotoxins were FB1, OTA, DON, ZEN,
NIV, CIT, and AOH, whilst AFM1 (from AFB1), DOM-1
(from DON), α-ZEL and β-ZEL (from ZEN), and DHC
(from CIT) constituted the metabolic products. One or
more of the mycotoxins or metabolites were observed
in all 89 samples, with 87/89 samples having at least
one of the toxins at a concentration above the LOQ
(Table 2). AOHwas not detected in any of the urine sam-
ples. AFM1 was observed above the LOQ in 42% of the
samples (LOQ 0.001 μg/l: overall range n.d. −0.210 μg/l),
and FB1 was observed above the LOQ in 10% of the
samples (LOQ 0.15 μg/l: overall range n.d. – 0.83 μg/l).
Of the other mycotoxins, total DON (72%), total CIT
(80%), OTA (80%) and total ZEN (82%) were observed
most frequently above the LOQs, see Table 2. In the
cases of total DON and total ZEN, all glucuronides were
de-conjugated before quantitation, thus both free and
glucuronide-bound toxins were included in those data.

The co-existence of mycotoxins was observed in
human urine samples from Cameroon. A total of 88
(98.9%) of the 89 studied urine samples had two or
moremycotoxins at detectable concentrations (Table 3).
Altogether, 20 different patterns of urinary mycotoxin
mixtures were observed. The majority (64; 72%) of the

89 studied urine samples contained five to seven differ-
ent mycotoxin combinations constituting 10 of the 20
observed patterns. AFM1 was in 9/20 different mixture
combinations of urinary mycotoxins, including six com-
binations where urine contained five or more toxins.
AFM1 and FB1 were co-observed in three distinct urinary
mixtures. ZEN (19/20, 95%) and OTA (19/20; 95%) were
the most frequent mycotoxins represented in the mix-
tures, while FB1 was the least (7/20, 35%), see Table 3.

Intakes of each mycotoxin can be roughly estimated
using the individual mycotoxin concentration (includ-
ing parent and metabolites), an estimated average uri-
nary output of 1.5 l/day, mean estimates of transfer of
the mycotoxins from the diet to urine, and individual
body weight. In Table 4 the mean estimated intakes
are compared to established TDIs for four mycotox-
ins where the transfer percentage has been established.
There is no TDI for aflatoxins, and the overall mean
estimated intake for FB1, DON, ZEN, and CIT did not
exceed the TDI. A few individuals were predicted to
exceed the TDI for FB1 (4/89), DON (1/89), ZEN (2/89)
and CIT (1/89). No individuals exceeded the TDI for
more than one mycotoxin. Individuals with the max-
imum estimated intake were 2.95, 17.6, 0.48, and 30
times higher than the TDI for FB1, DON, ZEN, and CIT,
respectively. Using linear regression there were no sig-
nificant relationships between estimated intakes for any
of the fourmycotoxins, data not shown. Despite the high
occurrence frequencies of OTA and NIV, their estimated
intakes were not calculated considering there is inad-
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Table 2 Profiles of urinary mycotoxins biomarkers and their derivatives in 89 urine samples from Cameroon1

Analyte All studied participants (n = 89)
LOD / LOQ (μg/l) Meanp (SD) (μg/l) Medianp (IQR) (μg/l) n > LOD n > LOQ *Mean (max)

(μg/l)
AFM1 0.0005/0.001 0.03 (0.05) 0.01 (0.01-0.03) 37 (42%) 37 (42%) 0.01 (0.21)
FB1 0.05/0.15 0.43 (0.22) 0.35 (0.24-0.49) 25 (28%) 9 (10%) 0.08 (0.83)
DON 0.05/0.15 15.9 (94.4) 1.91 (1.21-5.91) 67 (75%) 64 (72%) 11.5 (759)
DOM-1 0.05/0.15 4.5 (8.3) 1.25 (0.76-2.07) 15 (17%) 13 (15%) 0.67 (27.4)
Total DON - 17.8 (80.4) 1.38 (0.29-5.16) 72 (78%) 68 (76%) 12.1 (760)
ZEN 0.001/0.003 0.16 (0.21) 0.08 (0.05-0.18) 86 (97%) 71 (80%) 0.13 (1.10)
α-ZEL 0.001/0.003 0.58 (0.76) 0.33 (0.09-0.82) 4 (5%) 4 (5%) 0.03 (1.67)
β-ZEL 0.001/0.003 0.30 (0.13) 0.32 (0.22-0.40) 6 (7%) 4 (5%) 0.01 (0.42)
Total ZEN - 0.17 (0.31) 0.07 (0.02-0.16) 88 (99%) 73 (82%) 0.17 (1.67)
OTA 0.0003/0.001 0.01 (0.01) 0.004 (0.002-0.008) 84 (95%) 71 (80%) 0.006 (0.090)
NIV 0.033/0.10 0.59 (0.79) 0.33 (0.19-0.77) 47 (53%) 32 (36%) 0.23 (4.36)
CIT 0.01/0.03 0.28 (0.39) 0.14 (0.06-0.33) 66 (74%) 51 (57%) 0.16 (2.15)
DHC 0.003/0.01 2.1 (12.0) 0.40 (0.19-0.73) 63 (71%) 63 (71%) 1.5 (96)
Total CIT - 2.3 (10.3) 0.24 (0.05-0.73) 77 (87%) 71 (80%) 1.66 (97.5)

1 LOD = limit of detection; LOQ = limit of quantitation; Meanp =mean of samples > LOQ; Medianp =median of samples > LOQ; SD = Standard
Deviation; IQR = Interquartile range; Max =Maximum;% = Percentage; nd = Not detected; *Mean (max) =Mean (maximum) all samples –
values calculated with half LOD values used for samples < LOD and half LOQ used for values < LOQ; AFM1 = aflatoxin M1; FB1 = fumonisin
B1; DON = deoxynivalenol; DOM-1 = deepoxy-deoxynivalenol; Total DON =∑(DON + DOM-1); ZEN = zearalenone; α-ZEL = α-zearalenol;
β-ZEL = β-zearalenol; Total ZEN =∑(ZEN +α-+β-ZEL); OTA = ochratoxin A; NIV = nivalenol; CIT = citrinin; DHC = dihydrocitrinone; Total
CIT =∑(CIT + DHC).

equate guidance on the estimated excretory rates for
these mycotoxins.

4 Discussion

Several studies have reported mixtures of mycotoxins
in dietary staples in Cameroon (Abia et al., 2013a, 2017;
Tchana et al., 2010). Human biomonitoring (HBM) typ-
ically provides more reliable exposure estimates, and
as such improve studies assessing the relationships
between dietary mycotoxins and human health. This
study aimed to determine the levels of urinary biomark-
ers of mycotoxin exposures in male and female adults in
the city of Yaounde, Centre Region, Cameroon.

This study supports recent observations of frequent
mycotoxin co-exposures in African populations based
on urinary measures. This study observed 11 myco-
toxin analytes, in 89 urine samples, while earlier stud-
ies in Nigeria, Cameroon, South Africa, and Cameroon
reported eight, eleven, four, and seven mycotoxin ana-
lytes, respectively (Abia et al., 2013b; Ezekiel et al., 2014;
Njumbe et al., 2013; Shephard et al., 2013), in roughly
similar-sized studies. The mean (maximum) concentra-

tion of AFM1 [0.03 (0.21) μg/l; 42%] in urine analysed
in the present study was similar, albeit lower, compared
with the mean (maximum) levels of AFM1 previously
reported in adult urine from Cameroon [0.05 (1.38) μg/l;
10%] (Abia et al., 2013b) and urine from households
in Nigeria [0.3 (1.5) μg/l; 14.2%] (Ezekiel et al., 2014);
however, the AFM1 incidence was higher in our present
study than in the two previous reports. Mycotoxins such
as aflatoxins are known to have heterogeneous distribu-
tion in crops and food stores, and vary by season and
climate (IARC, 2012a,b; Medina et al., 2017). The FB1
concentrations were similar in the present study (mean
0.43 (max 0.83) μg/l, 10%) compared to those previously
reported (mean 0.33: max 9.54) μg/l, 3%) in Cameroon
(Abia et al., 2013b), though the maximum level was
somewhat higher. The detected mean FB1 concentra-
tion in our study was, however, lower than the mean
concentration [4.6 (max 12.8) μg/l; 13.3%] reported in
a Nigerian population (Ezekiel et al., 2014). These differ-
ences should not be over-interpreted given the relatively
small numbers of samples involved. In addition, previ-
ous reports from Burkina Faso identified large variations
(10-fold differences in mean) for FB1 contamination of
maize collected from the same region in one year; and
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Table 3 Mycotoxin mixtures in 89 urine samples from Cameroon

No. of mycotoxins Mycotoxins mixture types1 Frequency
AFM1 FB1 DON ZEN OTA NIV CIT

7 + + + + + + + 6 (6.7%)
6 + - + + + + + 10 (11.2%)

+ + + + + - + 2 (2.2%)
- + + + + + + 11 (12.4%)

5 + + + + + - - 1 (1.1%)
+ - - + + + + 3 (3.4%)
+ - + + + - + 11 (12.4%)
- + - + + + + 4 (4.5%)
- + + + + - + 3 (3.4%)
- - + + + + + 13 (14.6%)

4 + - - + + + - 1 (1.1%)
+ - - + + - + 2 (2.2%)
- + - + + - + 1 (1.1%)
- - + + + - + 14 (15.7%)
- - - + + + + 1 (1.1%)
- - + + + + - 1 (1.1%)

3 + - - - + - + 1 (1.1%)
- - - + + - + 2 (2.2%)
- - - + + + - 1 (1.1%)

2 - - - + - - + 1 (1.1%)
Occurrence (n = 20) 9 7 10 19 19 10 16
% 45 35 50 95 95 50 80

1 AFM1 = aflatoxin M1; FB1 = fumonisin B1; DON = deoxynivalenol; ZEN = zearalenone; OTA = ochratoxin A; NIV = nivalenol; CIT = citrinin.

additionally in the same village where maize was col-
lected in two separate years (Nikiema et al., 2004, 2008).
Thus, significant variations in biomarker data are to be
expected in urine from distinct studies even in similar
locations with similar reliance on maize as a dietary sta-
ple.

DON (and its metabolite DOM-1), ZEN (and its
metabolites: α-ZEL and β-ZEL) and OTA were detected
in urine, typically at higher frequencies than AFM1 and
FB1. Total DON was detected about twice as frequently
(76%) in this study compared to an earlier Cameroon
study (Abia et al., 2013b), and much more frequently
than in Nigeria (5%), where children rather than adults
dominated the exposure (Ezekiel et al., 2014). In South
Africa, a similar high frequency (100%) of total DON
was reported as observed in the present study (Shep-
hard et al., 2013). In these earlier studies, the mean
concentrations were typically around 5-15 μg/l, and this
is in line with many studies in regions outside of Africa
(Šarkanj et al., 2013; Turner et al., 2012). However, while
the mean [17.8 μg/l] is similar, one individual sam-
ple [760 μg/l] was notably higher in the current study

than most previously reported HBM studies. Notwith-
standing, the major metabolite of DON in human urine,
DON-15-glucuronide (Warth et al., 2012a, 2013) was not
measured directly in this study as enzymatic deconjuga-
tion was applied (Sarkanj et al., 2018).

The mean (maximum) concentration of OTA and
ZEN were relatively lower in this study compared to
previously reported data from Cameroon (Abia et al.,
2013b) and Nigeria (Ezekiel et al., 2014). However, the
extremely high detection rate of 82% for total ZEN
is somehow worrisome given the high xenoestrogenic
potential of ZEN and its phase I biotransformation prod-
ucts (Preindl et al., 2019). Recent studies further high-
lighted that ZEN is prone to synergistic mixture effects
(Vejdovszky et al., 2017a,b) and able to pass the placental
barrier and thus exposure of mothers is likely to result
in in utero exposure of the unborn child (Warth et al.,
2019). The impact of these chronic low-dose exposures
on the endocrine system and related disease should be
investigated in future studies.

The mean NIV level recently reported in a Nige-
rian study (Sarkanj et al., 2018) was approximately
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Table 4 Intake estimates based on urinary mycotoxin concentrations

Aflatoxin Fumonisin Deoxynivalenol Zearalenone Citrinin
Urinary excretion rate [%] 1-3a 0.3b 72c-69g 9.4d-36.8e 40f
Intake Mean (SD) [μg/kg bw/d] h 0.007 (0.02) 0.44 (0.86) 0.29 (1.86) 0.009 (0.019) 0.095 (0.64)
Max intake [μg/kg bw/d] h 0.14 5.89 17.6 0.121 6.09
Established TDI [μg/kg bw/d] None defined 2 1 0.25 0.2
Individuals exceeding TDI h n/a 4/89 1/89 0/89 1/89

a Zhu et al. (1987).
b Average of two mean urinary excretory FB1 values: 0.5% (Riley et al., 2012) and 0.075% (van derWesthuizen et al., 2011).
c Turner et al. (2010) – and was used as the urinary excretion factor for DON.
dWarth et al. (2013).
e Llorens et al. (2018) – and was used as the urinary excretion factor for ZEN considering 24 h urine samples were collected.
f Degen et al. (2018).
g Mengelers et al. (2024). Tolerable daily intake (TDI) values for FB1 defined by the Scientific Committee on Food (SCF 2003); DON by the

European Food Safety Agency (EFSA 2017), likewise, ZEN (EFSA, 2011). 0.2 : Similarly, for CIT, the value used (0.2 μg/kg bw per day) is an
assumed preliminary TDI for CIT determined by the EFSA as a level of no concern for nephrotoxicity (EFSA, 2012).

h Calculations are based on the individual weight of 89 participants; An assumed daily urine excretion of 1.5 l for all sub-populations; and
Mean (Standard Deviation, SD; likewise, maximum, max) all samples – values calculated with half LOD values used for samples < LOD
and half LOQ used for values < LOQ, using the equation below, as reported by (Solfrizzo et al. 2014 with modification):

Mean (or Maximum) Estimated Exposure (μg/kg bw/day)

=
100 × (Mean mycotoxin in μg/l) × (Assumed daily urine excretion of 1.5 l)

(Mean urinary excretory rate in %) × (Individual body weight of 89 adults in kg)

10 times greater than the level reported here for the
Cameroonian population. Urinary CIT and its metabo-
lite, DHC, were quantified in this study for the first
time in Cameroon. The dietary source of CIT in the
studied population in the city of Yaounde is probably
from stored grains and other plant-based foods such as
fruits and spices (EFSA, 2012). The detected mean (max-
imum) concentration of total CIT [2.3 (98) μg/l; 80%]
in this present study were lower than those in Nigeria
[6.0 (241) μg/l; 66%] (Sarkanj et al., 2018), although our
study had a higher incidence. Comparison of urinary
mycotoxin concentrations by either sex or by hyper-
tensive status did not reveal any significant differences
(P < 0.05), noting limited study size would preclude
meaningful comparisons.

One urine sample contained only two mycotoxins
(ZEN and CIT), while 19 combinations of three or up
to seven mycotoxin urinary biomarkers were observed;
more than 70% of the urines contained five or more dif-
ferent mycotoxins. Complexmixture toxicology remains
poorly examined though several groups have recently
examined the combined effects in vitro (Assunção et
al., 2019; Eze et al., 2019; Fernández-Blanco et al., 2018;
Gong et al., 2019; Kouadio et al., 2007; Lin et al., 2019;
Marin et al., 2019; Vejdovszky et al., 2016, 2017; Wan et
al., 2013a,b,c, 2014), with animal studies beingmore lim-
ited (Przybylska-Gornowicz et al., 2018;Wan et al., 2016).

These studies remain hard to interpret for public health
decisions, but some suggest more than additive effects,
thus the mixtures reported here and elsewhere high-
light significant knowledge gaps. It will be important to
conduct longitudinal studies to better understand typ-
ical patterns and seasonal variation to better inform
our understanding of mixture exposures. An interesting
example of such longitudinal mycotoxin co-exposure
assessment was recently published for an infant that
was exclusively fed by breastmilk, which was tested for
29 mycotoxins (Braun et al., 2020). Furthermore, more
recent studies from sub-Saharan Africa have revealed
potential correlations between the chemical exposome
(e.g. total faecal mycotoxin levels) and the gut micro-
biome (Ayeni et al., 2024; Oesterle et al., 2024). However,
it will be evenmore relevant to consider other food- and
environment-related exposures beyond mycotoxins as
proposed by the exposome concept (Ayeni et al., 2022;
Vermeulen et al., 2020; Warth et al., 2017; Wild, 2005).

From the mean (maximum) levels of some of the
major urinary mycotoxins in this present study, an
estimated average dietary exposure was calculated on
the basis of each participant’s estimated dietary expo-
sure using each participant’s urine mycotoxin exposure
amount, individual weight, an assumed 1.5 L urinary
output per day and estimated urine excretion rate for
each mycotoxin. For data with urinary concentration

World Mycotoxin Journal 17 (2024) 191–203



198 W.A. Abia et al.

below the LOQ, either half the LOD for concentrations
below LOD and half the LOQ for concentrations below
LOQ was used. This is generally used in food safety risk
assessment (European Food Safety Agency, EFSA) as it
provides conservative estimates for calculation of expo-
sure assessment (EFSA, 2010). Dietary AFM1 (hydroxy-
latedmetabolite of AFB1, relative potency factor 0.1 with
respect to a liver carcinogenic potency of 1 for AFB1) is
considered to be of concern, and besides not appropri-
ate to establish TDI, its calculated margin of exposure
based on a benchmark-dose level (BMDL10) of 0.4 μg/kg
bw/d, is below 10,000 (EFSA CONTAM Panel, 2020).
For FB1, DON and ZEN the mean estimated intakes
were all less than the TDIs, suggestingmodest exposures
occurred for most. However, in this limited study, seven
individuals (i.e. 8%) of the study population exceeded
one of the TDIs. For FB1, 4/89 (4.49%) individuals had
estimated intakes above the TDI (range: 2.3-5.9 μg/kg
bw/d). Based on food measures and urinary markers,
aflatoxin, and fumonisin exposure remain a significant
concern in sub-Saharan Africa including Cameroon
(Abia et al., 2013a,b, 2007; Njumbe et al., 2013; Sarkanj
et al., 2018; Tchana, et al., 2010; Warth et al., 2012b). In
this study co-exposures to AFM1 and FB1 occurred in
about 10% of the samples. For DON, only one individual
exceeded the 1.0 μg/kg bw/d TDI (EFSA, 2017), however,
this intake estimate, by far exceeded data typically seen
in Sub-Saharan Africa at 17.6 μg/kg bw/d and is rela-
tively higher than the previously reported study from
Cameroon (Abia et al., 2013b). Likewise, the TDI of ZEN
derived by the European Food Safety Agency (EFSA,
2011) was exceeded by the estimated maximum expo-
sure level for total ZEN in urine samples from two indi-
viduals (0.30 and 0.48 μg/kg bw/d). For CIT, considering
the level of no concern for nephrotoxicity, 0.2 μg/kg
bw/d (EFSA, 2012), only one individual’s derived CIT
exposure estimate exceeded it. Overall, although only a
few individuals exceeded TDIs for FB1, DON, ZEN, and
CIT, several percent of the study population were not
insignificant (Abia et al., 2013b). Furthermore, the spot
(early morning) urine samples analysed in this study
might not have revealed a complete excretion profile of
the mycotoxins relative to a 24 h urine sample which
would reflect total daily excretion when considering the
case of DON (Alvito et al., 2022; Llorens et al., 2018;
Mengelers et al., 2024). In addition, multiple collections
over several days would create a more reliable ‘typical’
exposure assessment. Some additional caution is always
required in interpreting intake estimates from small to
moderate studies. For example, for toxins such as DON
high rates of excretion and a strong correlation between

intake has been observed (reviewed by Turner and Sny-
der, 2021). A somewhat lower excretion rate for AFM1 is
reported, however, intake of the toxin and the urinary
biomarker concentration are strongly correlated. Thus
there is good strength in using these urinary measures
to estimate intake for DON and AFB1 (the parent com-
pound of AFM1), albeit with some noise in the precision
of a mean intake with this modest-sized study. However,
the excretion rate of FB1 in urine is both extremely low
and poorly correlated with intake (Alvito et al., 2022;
Riley et al., 2012; Turner and Snyder, 2021), thus caution
is required for this intake estimate.

5 Conclusions

This study has further revealed that mycotoxin expo-
sure is prevalent in the city of Yaounde, Centre Region,
Cameroon. This is evident in the detection of 11 myco-
toxins (sevenmycotoxins representative of AF, FB, DON,
ZEN, NIV, OTA and CIT, and four of their metabolites:
α/β-ZEL, DOM-1 and DHC) in 89 adult urines in this
region. Most importantly is that every single urine sam-
ple contained at least one mycotoxin. For the first time
urinary CIT and its metabolite, DHC, were quantified
in urine samples from Cameroon. The co-existence of
as many as seven mycotoxins in up to 20 different pat-
terns may worsen the scenario and predict potential
health risk for the population. Although the TDIs for FB,
DON, ZEN, and CIT were not exceeded, the presence of
biomarkers of the (genotoxic) human carcinogen (IARC
classification Group 1) (aflatoxin) in 42% of the sam-
ples and of those about a quarter additionally contained
fumonisin B1 (possibly carcinogenic to humans (IARC
Group 2B)) is a concern. The potential risk derived from
additional mixture effects remains poorly defined, but
as further studies add to these data sets their puta-
tive contributions may be understood, while aflatoxins
and fumonisins remain a priority in populations such as
Cameroon with a high incidence of liver disease (Ank-
ouane et al., 2014; Bigna et al., 2017; Djuidje et al., 2018)
and stunting (Nzefa et al., 2019; UNICEF/WHO/WB,
2019).
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