

1 **Effect of plasma treatment on LMPAEK/CF tape and composites**
2 **manufactured by automated tape placement (ATP)**

3 Georges Chahine^{1*}, Umesh Marathe^{2*‡}, Liam Collins³, Vinoy Thomas⁴, Vipin Kumar², Ahmed
4 Arabi Hassen², Halil Tekinalp², Soydan Ozcan² and Uday Vaidya ^{1,2,5}

5 1. Tickle college of Engineering, University of Tennessee, Knoxville, TN, 37996 USA

6 2. Manufacturing Sciences Division (MSD), Oak Ridge National Laboratory (ORNL),
7 2350 Cherahala Blvd, Knoxville, TN 37832, USA

8 3. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory (ORNL),
9 Oak Ridge, TN 37830, USA

10 4. Department of Mechanical and Materials Engineering, University of Alabama at
11 Birmingham, (UAB), Birmingham, AL 35294

12 5. Institute for Advanced Composites Manufacturing Innovation, 10658 Checkerboard
13 Lane, Knoxville, TN 37932, USA.

14 *Authors contributed equally

15 ‡ Corresponding author, Email: maratheun@ornl.gov

16 Phone: +1 865 321 0838

17 **ABSTRACT**

18 Automated tape placement (ATP) process is widely used in aerospace for its advanced process
19 control and multi-axis capabilities but faces issues like limited choice of materials and
20 suboptimal tape consolidation. This study investigates air plasma treatment on ATP carbon
21 fiber thermoplastic feedstock tape to address these challenges. The effects on low melt
22 Polyaryletherketone/carbon fiber unidirectional tape (LMPAEK/CF UD tape) were analyzed.
23 Treated and untreated tapes were used to fabricate composites and evaluated for physical,
24 thermal, mechanical, and interfacial properties. Atomic force microscopy (AFM), X-ray
25 photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analyses revealed
26 surface roughness changes (on LMPAEK), extent of oxidation, and the presence of
27 hydroxyl/carboxyl groups. Composites from plasma-treated tapes showed a 7.6% increase in
28 tensile strength, 8% in tensile modulus, 18% in flexural strength, and 8.3% in flexural modulus.
29 The interlaminar shear strength improved by 18.7%. Failure analysis showed untreated
30 composites failed via inter-ply and fiber-matrix delamination, while treated composites

31 experienced matrix cracking and fiber breakage. This study highlights atmospheric plasma
32 treatment as a solution to ATP's limitations, significantly enhancing LMPAEK/CF UD tape
33 composites' properties.

34 1. INTRODUCTION

35 Composite materials are essential in engineering applications across industries such as
36 aerospace, automotive, wind energy, and sports. The performance of composites relies on the
37 interaction between three critical components: the matrix, reinforcement, and the interface. The
38 matrix, which can be either metal or polymer (thermoset or thermoplastic), binds the
39 reinforcement (particulate or fiber) and enhances the resulting mechanical properties like
40 strength and stiffness. The interface between matrix and reinforcement is crucial for stress
41 transfer and influences durability and mechanical performance [1-7]. Prior research emphasizes
42 that the interfacial quality is affected by factors such as the reinforcement's size, surface
43 chemistry, and physical features, including surface roughness. The performance properties of
44 composite can be tailored for typical applications by leveraging surface modification
45 treatments [8-14].

46 Surface modifications, particularly plasma treatments, have demonstrated the potential to
47 improve interfacial bonding. For instance, Sharma et al. [15] showed that plasma treatments
48 introducing hydroxyl groups on carbon fibers (CF) can enhance interfacial shear strength by
49 90%, significantly improving the stress transfer between fibers and the matrix. Further studies
50 on surface treatments, including oxidation, nanoparticle deposition, and irradiation,
51 corroborate the benefits of modifying carbon fiber surfaces to improve composite performance
52 [16-18].

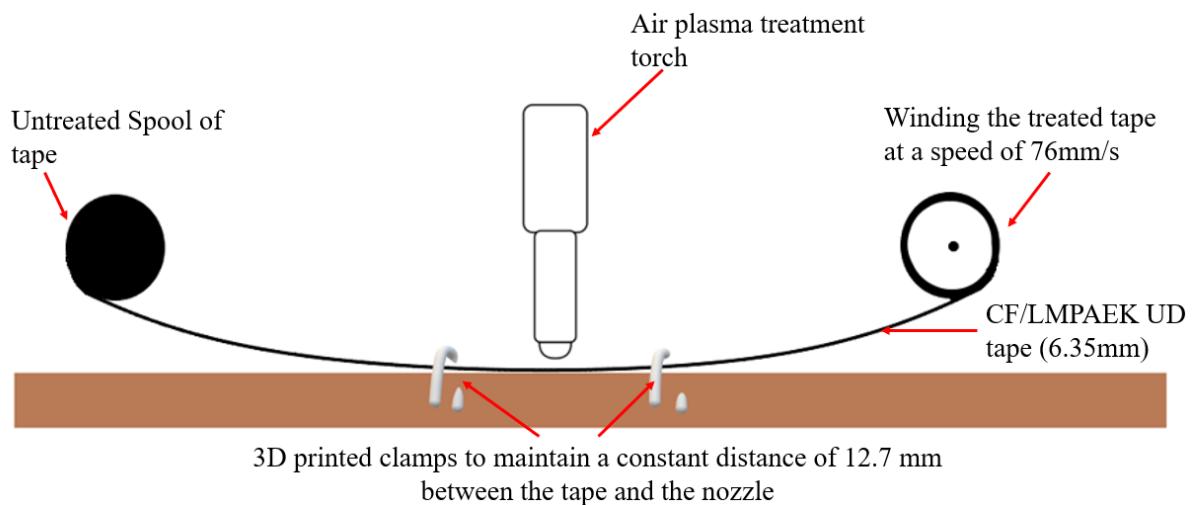
53 Automated Tape Placement (ATP) is a cutting-edge composite manufacturing technique
54 employed to fabricate advanced aerospace components. ATP uses heat and pressure to lay pre-
55 impregnated unidirectional (UD) tapes onto a mandrel, consolidating them in-situ. However,
56 challenges remain in mitigating porosity and enhancing interfacial bonding, often necessitating
57 secondary processes like compression molding [19-23].

58 Several studies have examined plasma treatment's effect on enhancing composite bonding in
59 different polymers. For instance, Li et al. [24] demonstrated a 138% increase in shear bond
60 strength in 3D-printed PEEK/CF after atmospheric plasma treatment. Yildirim et al. [25]
61 observed up to an 84-fold improvement in fracture toughness in CF/PEKK composites after
62 plasma treatment. Jyongsik et al. [26] reported a 52% increase in flexural strength in plasma-

63 treated CF/PEEK composites. Zhang et al. [27] demonstrated that oxygen plasma treatment of
64 carbon fiber-reinforced epoxy composites reduced the water contact angle from $\approx 75^\circ$ to 0° ,
65 leading to a 30% improvement in lap shear strength. Similarly, Lu et al. [28] investigated air
66 and argon plasma treatments on CF/PEEK composites, showing a 12.4% increase in interfacial
67 shear strength (IFSS) after 1 minute of air treatment and a 41% increase with argon plasma.
68 These studies underscore the potential of plasma treatments to improve interfacial bonding in
69 high-performance composites.

70 While prior research has focused on high-melting polymers like PEEK and PEKK, limited
71 studies have investigated plasma treatments on low-melting polyaryletherketone (LMPAEK),
72 especially in the context of ATP manufacturing. No published work, to our knowledge,
73 addresses the air plasma treatment of LMPAEK with carbon fiber in an integrated ATP process,
74 which forms a critical gap in understanding how to optimize in-situ consolidation without
75 secondary processes.

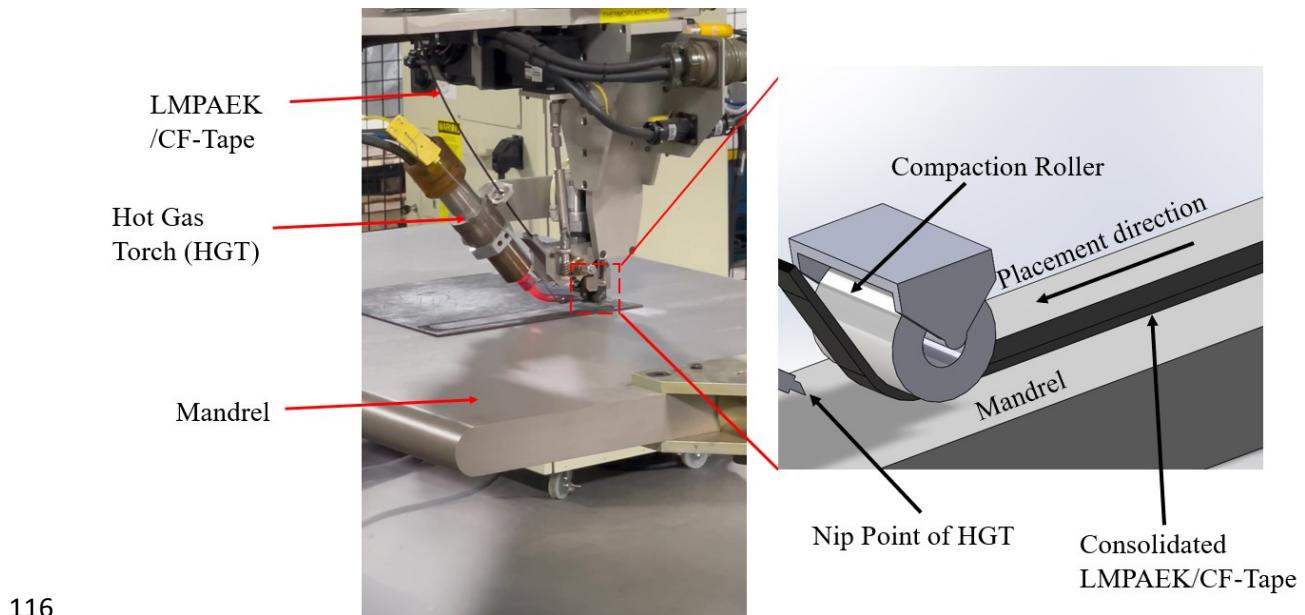
76 This study aims to bridge that gap by exploring the use of plasma treatment to enhance the
77 interfacial bonding of LMPAEK/CF tapes during in-situ consolidation in ATP manufacturing.
78 Specifically, the objective is to eliminate the need for secondary processes, such as compression
79 molding, by applying plasma treatment directly to LMPAEK/CF UD tapes, which are then
80 processed via ATP. The effectiveness of the plasma treatment is evaluated through various
81 characterization techniques (contact angle, scanning electron microscopy (SEM), X-ray
82 photoelectron spectroscopy (XPS), Atomic force microscopy (AFM)) and performance
83 metrics, including physical, thermal, mechanical, and interfacial properties of the resulting
84 composites.


85 2. EXPERIMENTAL

86 2.1 Materials

87 Low melting Polyaryletherketone (LMPAEK) based UD tape was used to fabricate composites
88 using the ATP system. The ATP hot gas torch head designed and developed by Automated
89 dynamics in 2013 was attached to a Kawasaki ZZX130L 6-axis robot owned by Trelleborg
90 Group, Sweden. The tape comprises a LMPAEK with the melting temperature of 304° C, and
91 a processing temperature of 340° C. The 6.35 mm wide UD tapes were purchased under the
92 trade name of TC1225 LM PAEK/AS4D (34% resin content by weight) (thickness of tape: 0.15
93 mm), supplied by Toray Advanced Composites, Morgan Hill, CA, USA.

94 2.1 Plasma Treatment of the UD tape


95 Plasma treatment is a clean surface treatment, configured using parameters such as treatment
96 time, power, pressure, working gas or carrier gas (depending on its function) - its composition,
97 flow rate, and treatment distance. On the other hand, ATP is a process that lays tape at a specific
98 speed, temperature, and pressure. On the other hand, ATP is a process that lays tape at a certain
99 speed, temperature, and pressure. It was essential to optimize treatment time/speed by keeping
100 the rest of the parameters constant. The air plasma treatment was conducted using Plasma jet
101 (RD1004 Rotary Jet) and generator (FG5001 Openair-Plasma® Generator) supplied by Plasma
102 treat GmbH, Steinhagen, Germany. The plasma jet was kept static with respect to the horizontal
103 plane with a flow rate of 20L/min. The 6.35 mm wide UD tape was passed under the generated
104 plasma, keeping a 12.7 mm distance between the nozzle and tape, as shown in Fig. 1.

105
106 Fig. 1. Illustration of the treatment setup used to treat the LMPAEK/CF UD tape. The tape was
107 treated at the same speed as the deposition rate of the ATP (76 mm/s).

108 2.2 Development of ATP-based composite laminate.

109 The composites were developed using the ATP system as shown in Fig. 2. The hot gas torch
110 (HGT) was heated to 840° C (torch temperature) to achieve the nip point temperature of ~ 330°
111 C; a 6.35 mm steel compaction roller with a pressure of 140 N was used, followed by laying
112 18 layers of UD tape in the one direction (0°) over an aluminium flat mandrel of 1.2 m x 1 m
113 size. The speed of ATP was maintained at 76 mm/s, which was in sync with the speed of the
114 plasma treatment. The composites developed with treated and untreated tape are referred to as
115 CT and CU, respectively.

117 Fig. 2. Schematic depicting the ATP working principle. The LMPAEL CF- tape originates from
 118 the feedstock, is subsequently heated by the HGT, and undergoes in-situ consolidation as a
 119 specific load is applied through the compaction roller.

120 2.4 Characterization of LMPAEK/CF UD tape

121 2.4.1 Contact angle study.

122 Contact angle studies were performed on treated and untreated tapes using Kruss Goniometer
 123 with deionized (DI) water. A drop of 2 μ L of DI water (rate of 0.5 μ L/s) was placed on the tape
 124 sample (6.35 mm x 50.8 mm), 10 samples from different zone of the tape were tested to ensure
 125 consistency. Stabilized angles were measured using the ellipse fitting method [29]. Each
 126 sample was repeated 8-10 times, and the average values were reported.

127 2.4.2 Electron microscopy of LMPAEK/CF UD tape

128 Apart from functional groups, surface treatment (oxidation, plasma, nanoparticle-based
 129 treatments) can result in the etching of the carbon fiber surface, thus improving surface
 130 roughness [30]. In this study, SEM (Phenom XL G2) was employed to observe the physical
 131 changes imparted by plasma treatment to the treated tape. The gold coating was employed to
 132 avoid excessive charging and facilitate smoother raster scans.

133 2.4.3 Fourier Transform Infrared of LMPAEK/CF UD tape

134 A Fourier Transform Infrared (FTIR) spectrophotometer Vertex-70v was employed for the
 135 study. The tape was cut into 6.35 x 6.35 mm and used to collect the FTIR spectra in
 136 Transmittance mode. For each sample, 100 scans were recorded in transmittance from 500 to
 137 3500 cm^{-1} wavenumber.

138 2.4.4 X-ray photoelectron spectroscopy (XPS) surface studies of LMPAEK/CF UD tape

139 X-ray Photoelectron Spectroscopy (XPS) was utilized to examine the surface of LMPAEK/CF
140 UD tape using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. This instrument
141 operated in Fixed Transmission Mode with a pass energy set at 200 eV for survey spectra and
142 50 eV for core-level spectra. It utilized a monochromatic Al K α radiation source (1486.6 eV)
143 operating at 420 W (14 kV; 30 mA) for incident radiation. Emitted Electrons were collected at
144 a 90° angle from the sample, while maintaining a pressure of around 10⁻⁹ mbar (10⁻⁷ Pa).
145 Six LMPAEK/CF UD tape T and U samples were analysed. One U sample while the other five
146 were T for 5 sec, 10 sec, 15 sec, 30 sec, and 60 sec (named accordingly – T5, T10, T15, T30,
147 and T60). T and U tape samples were attached directly to the XPS sample holder with metal
148 clips followed by spectra acquisition. Shirley background was used for elemental
149 quantification. All measurements were done on the top-middle of tape surface.

150 2.4.5 Atomic force microscopy (AFM) of LMPAEK/CF UD tape

151 Cypher AFM (Asylum Research an Oxford Instruments company, Santa Barbara), tabletop
152 system was used in this study. Silicon probes (AC160, OLYMPUS) (tip radius: 7 nm) with an
153 approximate spring constant of 26 N/m and a resonance frequency of around 300 kHz were
154 employed for all AFM measurements. The imaging was conducted in tapping mode within the
155 attractive regime. For processing purposes, all topography images underwent 0th order
156 flattening. The treated and untreated samples were carefully prepared followed by mounting it
157 on carbon tape and subsequently on the AFM stage. 3 samples (6.35 x 6.35 mm) were prepared,
158 and multiple iterations of areal scans were conducted to understand physical, mechanical
159 changes caused by air plasma treatment.

160 2.5 Characterization of the treated and untreated composites

161 2.5.1 X-ray diffraction study (XRD)

162 XRD studies on the treated and untreated composites were evaluated using Empyrean X-ray
163 setup, with a K α radiation at 30mA and 40kV passing through a ½° divergence slit before
164 interaction with the sample. A set of 5 square samples (20 x 20 mm) were cut off from the
165 laminated composites using a water jet system. The test was conducted at a scan rate of 5°/min
166 for 2 Θ varying from 5° to 90°. The XRD data were plotted to find the percentage crystallinity
167 of the tested samples. XRD analysis was performed on LMPAEK/CF UD tape before and after
168 plasma treatment. The crystallinity was calculated with the help of the following equation:

$$169 \chi_c = \frac{\text{Area of the crystalline peaks}}{\text{Area of the crystalline peaks} + \text{Area of the amorphous peaks}} \times 100 \quad (1)$$

170 2.5.2 Thermogravimetric analysis

171 Thermogravimetric analysis (TGA) was performed using a TA instrument. Samples of ~50 mg
172 were placed in a small lead pan while heating was generated with a rate of 10° C/min from 0°
173 to 800°C in the presence of air. Purge gas flow rate to TGA chamber was maintained around
174 ~50 mL/min with nitrogen.

175 2.5.3 Dynamic mechanical analysis (DMA)

176 Dynamic mechanical analysis was conducted using TA instruments' QS500. The experiments
177 were conducted from 50°C to 350°C at a ramp rate of 5° C/min at 1 Hz frequency. 2-3 samples
178 with dimensions of 56 x 12 x 2.7 mm (Length x width x thickness) were prepared from each
179 laminated composite in accordance with ASTM D7028 standards. Tests were conducted in
180 three-point bending mode. Storage moduli, loss moduli, and tan delta were recorded as a
181 function of temperature during the experiment.

182 2.5.4 Interlaminar shear strength (ILSS) study

183 ILSS tests were conducted in accordance with ASTM D2344. To minimize edge roughness, the
184 specimens were cut using a water jet cutting machine (OMAX 2626, Jet machining center).
185 The tests were conducted in a 3-point bending configuration with a 1.0 mm/min crosshead
186 speed. At least 5 specimens/samples 27 x 5.4 x 2.7 mm (length x width x thickness) were tested
187 to ensure repeatability and statistical relevance.

188 2.5.5 Flexural strength and modulus study

189 Test Resources (Model 313 series), Minneapolis, MN, universal testing machine (UTM) with
190 50 kN load cell was used to perform a three-point bend test of the composites in accordance
191 with ASTM D790. A set of 10 specimens with dimensions of 54 x 12.7 x 2.7 mm (length x
192 width x thickness) of each was produced using the water jet cutting machine. The control rate
193 (0.75mm/min), stress, and strain were calculated based on the test standard.

194 2.5.6 Tensile strength and modulus study

195 A set of five specimens was prepared for tensile testing according to ASTM D3039. The
196 average width and length of the tensile coupon were 15 mm and 254 mm, with a thickness of
197 1.7mm. The test was performed on the 50 kN load cell test resource frame, and samples were
198 pulled at 2 mm/min loading rate. The tensile strain was monitored using an axial extensometer
199 Model 3542, Epsilon Technology Corp, Jackson, WY, USA.

200 2.5.7 Fractography

201 The failed tensile and ILSS samples were analysed to understand the failure mechanisms. The
202 samples were observed with SEM, QUANT FEG 650.

203 3 RESULTS

204 3.1 Characterization of the LMPAEK/CF UD tape

205 3.1.1 Contact angle study of LMPAEK/CF UD tape.

206 Fig. 3. illustrates the changes in water contact angle with varying plasma treatment durations.

207 The untreated LMPAEK/CF UD tape initially exhibited a contact angle of 87°, which decreased

208 to 79° after a 5-second plasma treatment. The reduction in contact angle, corresponding to the

209 highest oxygen content (~28%), can be attributed to the saturation of surface functional groups.

210 Once the surface reaches this saturation point, further oxidation has a diminished impact on

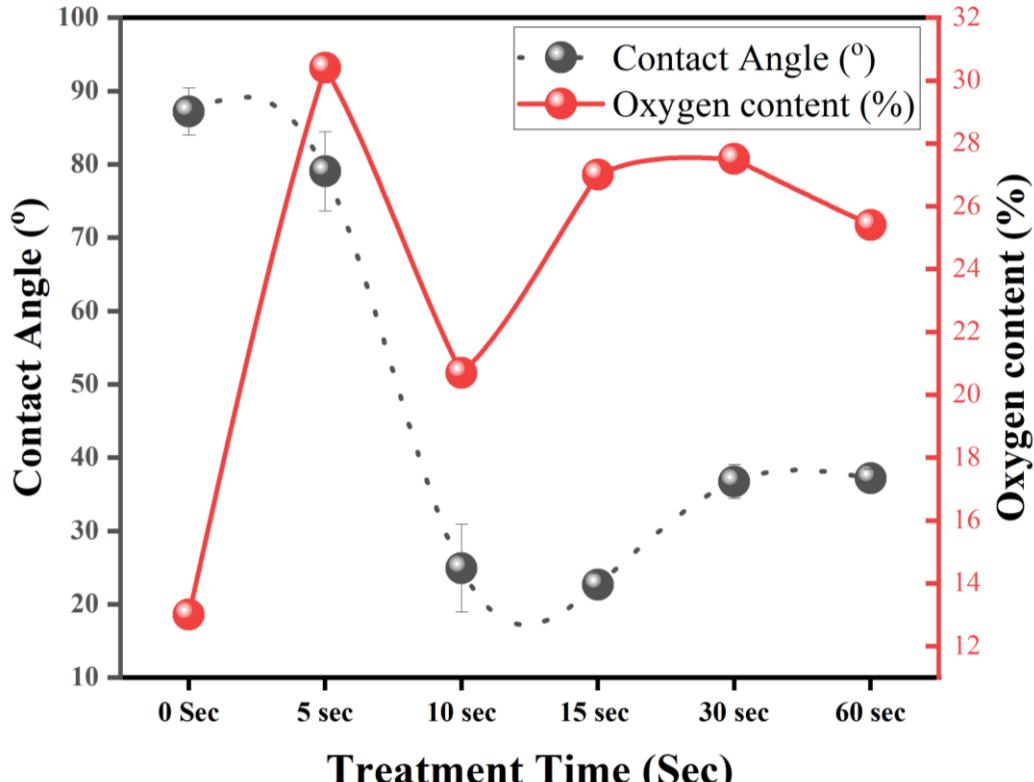
211 wettability. Additionally, increased oxygen concentration may alter surface morphology, such

212 as introducing micro-roughness, which limits further reductions in the contact angle. This

213 behavior is consistent with prior studies showing that beyond a certain threshold, further

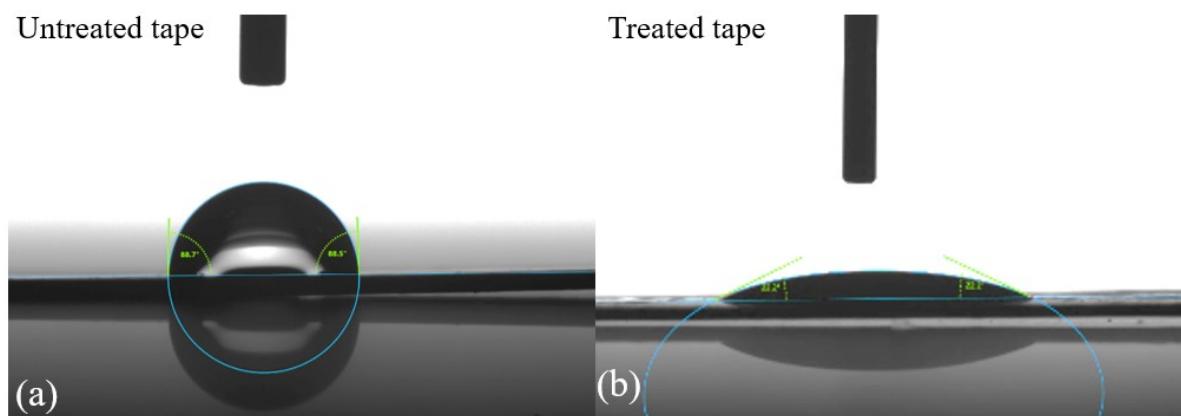
214 oxidation yields diminishing returns in wettability improvements [31].

215 As the treatment time extended to 10, 15, 30, and 60 seconds, the contact angle further dropped


216 to 24° and 22°, then increased to 36° and 37°, respectively. The rise in contact angle after

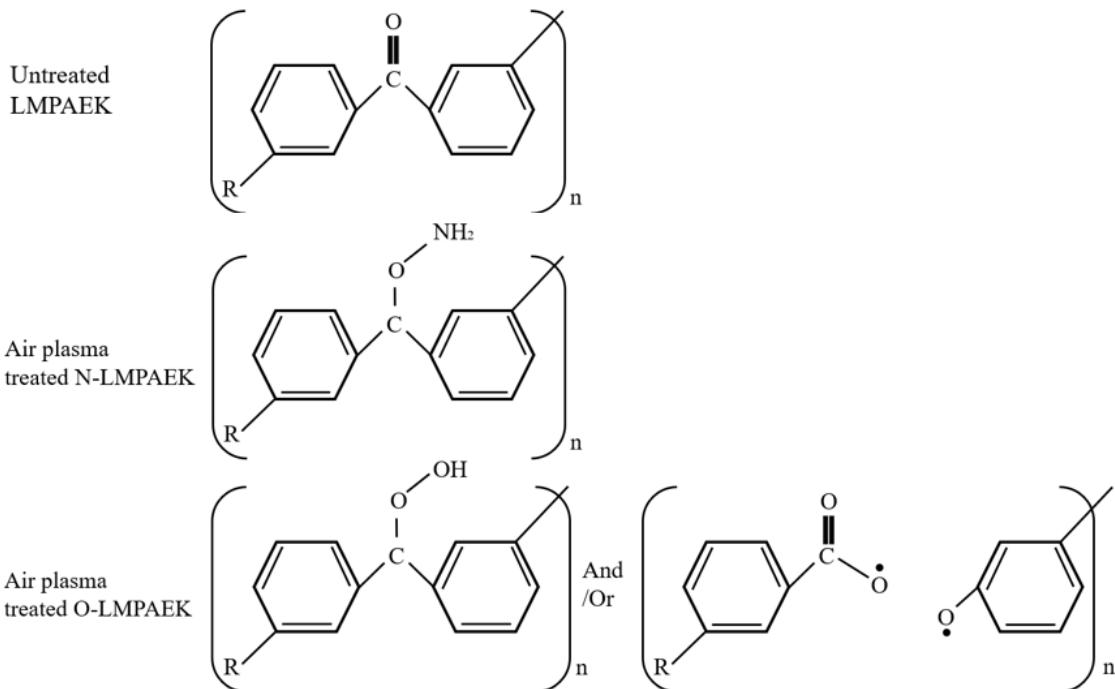
217 extended plasma exposure is likely due to increased nano-scale surface roughness, which is

218 known to affect wetting behavior [32]. The overall decrease in contact angle reflects an increase


219 in surface free energy and the development of hydrophilic functional groups on the tape's

220 surface, indicative of oxidation.

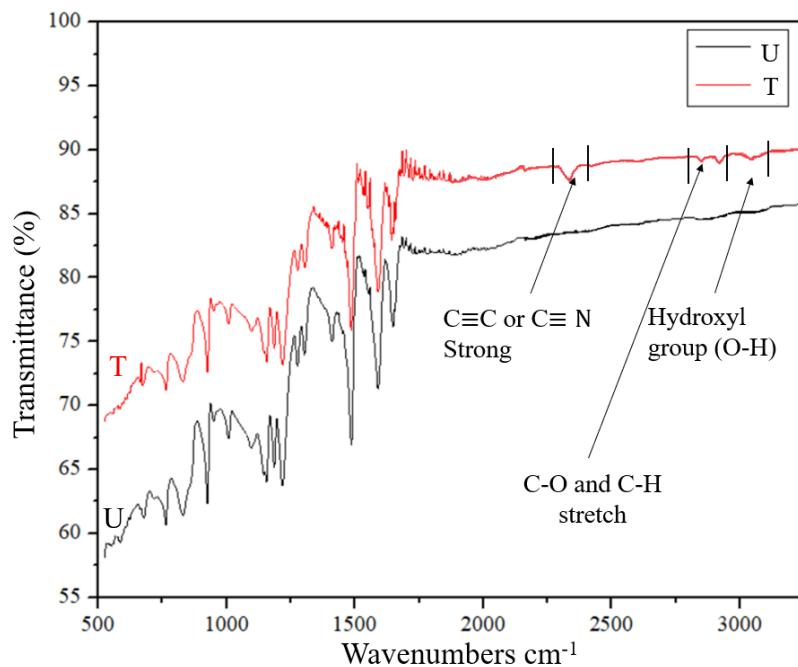
222 Fig. 3. The contact angle for treated tape as a function of treatment time: With the increase in
223 plasma treatment time, the contact angle reduced drastically. Additionally, with the increase in
224 contact angle after 15 sec treatment time, it increases again due to an excessive increase in
225 surface roughness [33]. The right Y axis shows the increase in oxygen content on the surface
226 (analysed from XPS spectra), i.e., polarity with treatment time. An increase in oxygen content
227 on the treated tape surface was found to be nonlinear with treatment time, however,
228 demonstrates the effectiveness of treatment.


229 Fig. 4 depicts the contact angle photographs for treated and untreated samples. In the case of
230 Fig. 4a (untreated sample), the contact angle was 87° due to borderline hydrophobicity on
231 CM/LMPAEK tape caused by the lack of hydrophilic moieties on LM-PAEK. With treatment,
232 the contact angle reduced to 22° , as seen in Fig. 4b. The fall in contact angle for treated tape is
233 supported by XPS and FTIR data. Increase in concentration of hydrophilic moieties and oxygen
234 content demonstrated by FTIR and change in % oxygen content through XPS in subsequent
235 sections.

236
237 Fig. 4. Contact angle measurement optical image plasma untreated tape (a) and the treated tape
238 (b). Reduced contact angle post plasma treatment is effect of formation of hydrophilic moieties
239 on the surface of ATP tape, cleaner surface.

240 3.1.2 FTIR analyses on the LMPAEK/CF UD tape

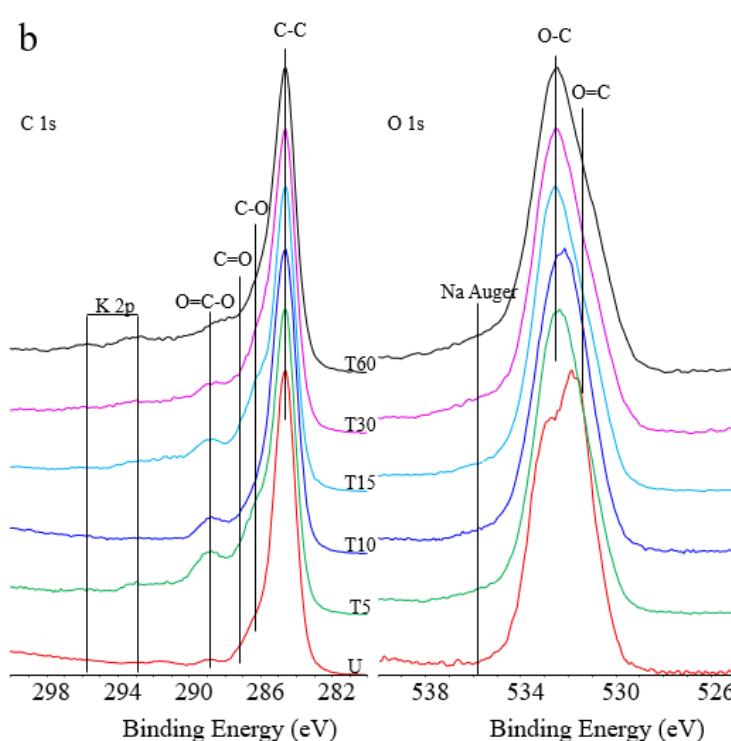
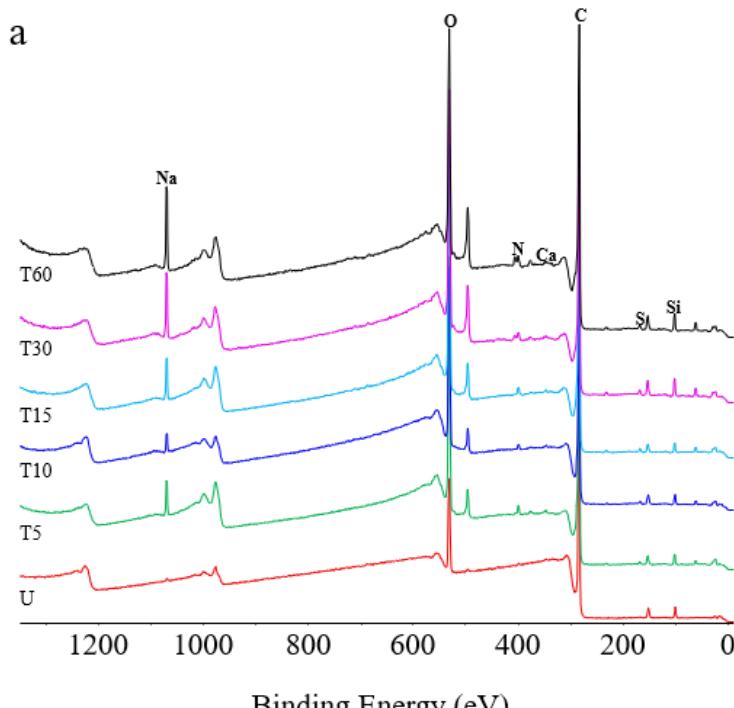
241 LMPAEK is a semicrystalline thermoplastic polymer characterized by the Phenylene rings (R-
242 rings) attached to ether, carbonyl and ketone via oxygen bridges (O) as shown in Fig. 5. **During**
243 **air plasma treatment, oxygen and nitrogen-based reactive species activates the surface of the**
244 **media [34].**



245

246 Fig. 5. Possible chemical changes of LMPAEK/CF UD tape due to air plasma treatment [35,
247 36].

248 Fu et al [35] reported the possible chemical groups occurred during H-plasma and O-plasma
249 treatment of PEEK, same family as LMPAEK. Based on their study and on the literature, it
250 could be assumed that during the air plasma treatment the C=O bond may have been converted
251 into C-O-OH, O-C=O in case of Oxygen and/or C-O-NH₂ by plasma-reactions from Oxygen
252 and Nitrogen plasma-species as shown in Fig. 5. FTIR studies were conducted on the treated
253 (T) and untreated (U) LMPAEK/CF UD tape to understand the chemical functional group
254 variation of the tape (Fig. 6). The peaks observed in the range from 3000 cm⁻¹ to 3150 cm⁻¹ in
255 the T tape were assigned to O-H functional group due to plasma treatment in comparison with
256 the U tape. The peaks ranging from 2650 cm⁻¹ to 2750 cm⁻¹ shows the presence of the C-H and
257 C-O stretch and it can be noticed that the intensity of the peaks in the T tape is higher than the
258 U one. The existence of the C-H/O stretch with low intensity in the U tape could be related to
259 the presence of phenyl group (C₆H₅-). (Carboxyl group (C-O stretched) could be observed as
260 well in the range between 1450 cm⁻¹ and 1750 cm⁻¹ with stronger peaks intensity in the T tape
261 compared to U. An intense peak was observed between 2160 and 2250 cm⁻¹ in the absorbance
262 sector that could be referred C≡C or C≡N. The increased intensity of the polar functional
263 groups, in the plasma treated samples can enhance the bonding interactions with the adjacent



264 tape through mechanisms such as covalent and hydrogen bonding, resulting in improved
265 adhesion and mechanical properties [37, 38].

266
267 Fig. 6. FTIR spectrum of the LMPAEK/CF UD treated and untreated tape. Appearance of a
268 new peaks between 2160 and 2250 Cm^{-1} . The intensity of the hydroxylic group and C-O stretch
269 and C-H stretch are higher in the T tape compared to U.

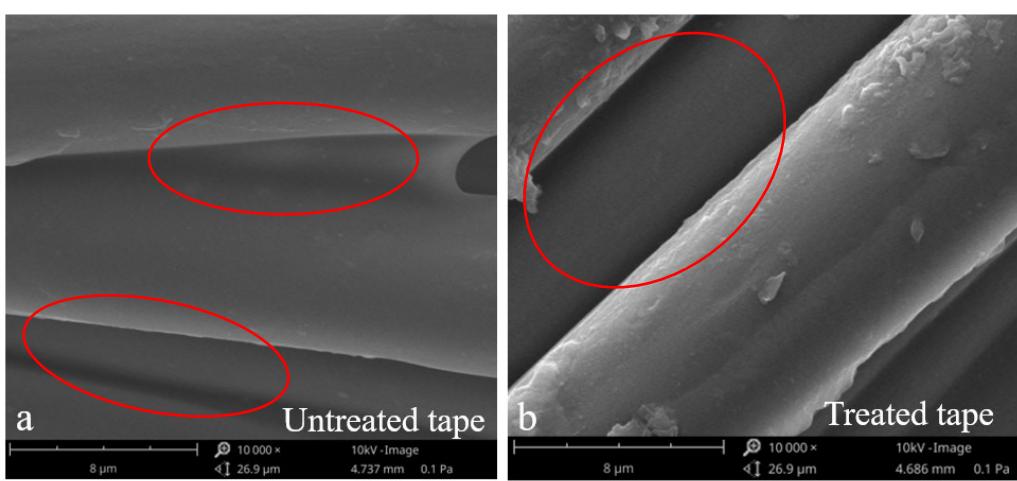
270 3.1.3 XPS surface studies of LMPAEK/CF UD tape.

271 A wide binding energy range survey spectrum was acquired on each sample to identify all
272 elements present. A set of narrow energy range core level spectra were acquired for each
273 identified element. A second set of data (survey and core level spectra) were acquired at a
274 different area of each sample to gain some insight into the surface uniformity. Fig. 7 shows the
275 overall surface composition of each sample. High resolution spectra result further corroborated
276 the data from FTIR and contact angle wettability studies, indicating more oxygen bonded
277 carbons (C-O and O-C=O) on the surface than C-C bonds due to air plasma processing.

280 Fig. 7. XPS survey spectrum (a) for the U and T LMPAEK/CF UD tape. The peaks intensity
 281 of Oxygen (O) and Nitrogen (N) are higher in the T samples compared to the U emphasizing
 282 the effect of plasma treatment on the surface. (b) deconvoluted XPS spectra for C 1s and O
 283 1s.

284 The amount of carbon (C) for the sample U i.e. untreated tape was highest. With treatment, the
 285 C content decreased, and oxygen (O) content improved. The increase in O content depicts the
 286 oxidation imparted by the plasma on the tape surface. The O increased from 13 at. % for the

287 tape U to above 25 at. % for the tape T sample (Tape T-5sec) showed highest oxygen content
288 of 30 at. %, the 5 sec treatment equivalents to with typical ATP layup speed (76mm/sec), N
289 also increased for each of the T samples (~1-3 at. %) as compared to the U sample as shown
290 Table 1.


291 Table 1. Surface Composition (at.%) for the U and T LMPAEK/CF UD tape for element C,O
292 and N.

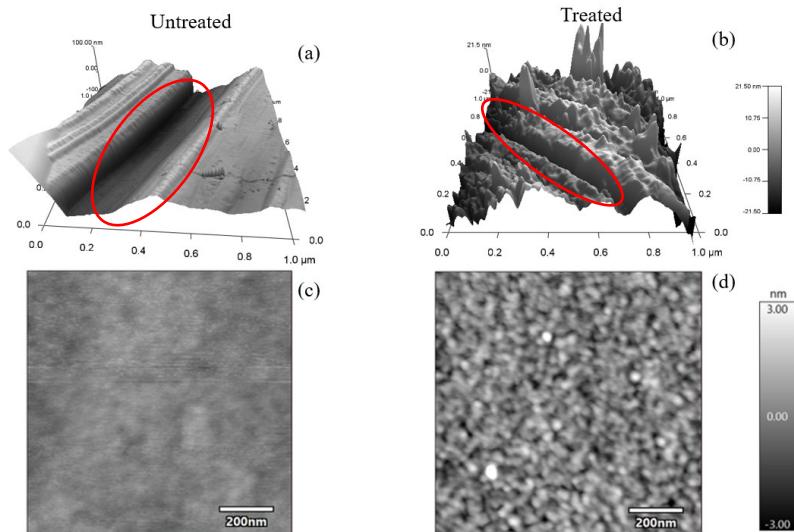
	C	O	N
U	82.8	13.0	0.6
T5	62.1	30.4	1.7
T10	73.9	20.7	0.9
T15	66.1	27.0	1.4
T30	61.3	27.5	2.3
T60	62.7	25.4	2.9

293

294 3.1.4 Microscopy Studies of LMPAEK/CF UD tape

295 Surface treatment oxidizes the carbon fiber surface through different oxidation mechanisms,
296 introducing a range of functionalities, both chemical and physical, on the surface of carbon
297 fibers [15]. Physical functionalities may include creating a rougher surface and increase surface
298 area, which can improve mechanical interlocking between the fiber and matrix, and remove
299 weaker regions from the fiber surface [15]. In the current study, the change in surface was
300 qualitatively studied using SEM. Fig. 8 depicts the SEM micrographs for untreated (a) and
301 plasma-treated (b) tape.

302

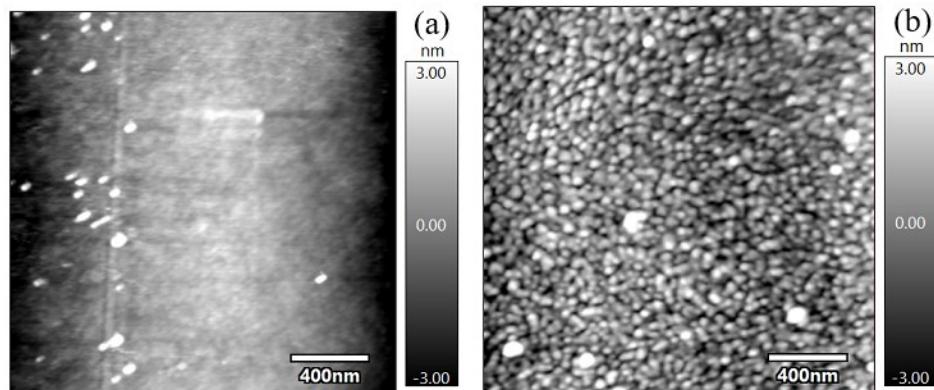

303 Fig. 8. SEM micrographs for U (a) and T (b) LMPAEK/CF UD tape: SEM micrographs depict
304 nature of attack of plasma species. U (untreated tape) tape depicts uniform and coherent surface

305 with no surface damage, whereas the plasma treated tape shows vivid feature i.e., increased
306 surface roughness, deeper crevices, and blistering of LMPAEK in the T (treated tape) tape.
307

308 It is evident from Fig. 8(a) that untreated tape possesses a smooth surface and no defect or
309 physical etching. In the case of Fig. 8(b) i.e., for treated tape, surface roughness was observed,
310 resulting from the interaction of polymeric surface of tape with ionic species and free radicals
311 during plasma treatment [1].

312 3.1.5 Atomic force microscopy (AFM) of LMPAEK/CF UD tape

313 Fig. 9 presents surface topology images obtained via Atomic Force Microscopy (AFM),
314 comparing the surface topography of plasma-treated and untreated samples within both fiber-
315 rich and polymer-rich regions. Observations from fiber-rich regions, Fig. 9a and b, highlight
316 inter-fiber crevices, appearing as deep valleys. Substantial variation in inter-fiber crevices has
317 been observed across the entirety of both samples which hampered direct quantitate evaluation
318 of surface roughness in these regions. However, simple qualitative analysis reveals that the
319 fiber surfaces are smoother in untreated samples, a finding corroborated by SEM observations
320 in section 3.1.4. However, as mentioned the significant height disparities and curved surface
321 across fibrous areas hindered accurate quantitative assessment of surface roughness. Further
322 measurements in the flat areas have been conducted, polymer-rich regions situated between the
323 fibrous areas. Fig. 9(c, d) presents 2D height images for untreated and treated samples,
324 specifically targeting these polymer-rich regions. Utilizing a grayscale across all images
325 facilitates an immediate and clear comparison, illustrating a noticeable increase in surface
326 roughness following plasma treatment. Quantitative analysis of the root means square
327 roughness indicated a more than twofold increase, from 320 pm to 820 pm standard deviation,
328 between untreated to treated samples respectively. The relatively smoother surfaces of these
329 polymer-rich regions enabled the determination that the treated samples exhibit distinct surface
330 features, a direct result of the interaction between mixed ionic species and the LMPAEK
331 surface. Surface roughening increases the effective bonding area, improves the surface area for
332 convective heat transfer between heated N₂ gas and LM-PAEK/CF tape, improving mechanical
333 interlocking between the tape and substrate. This enhanced interaction leads to better
334 consolidation during the ATP process.

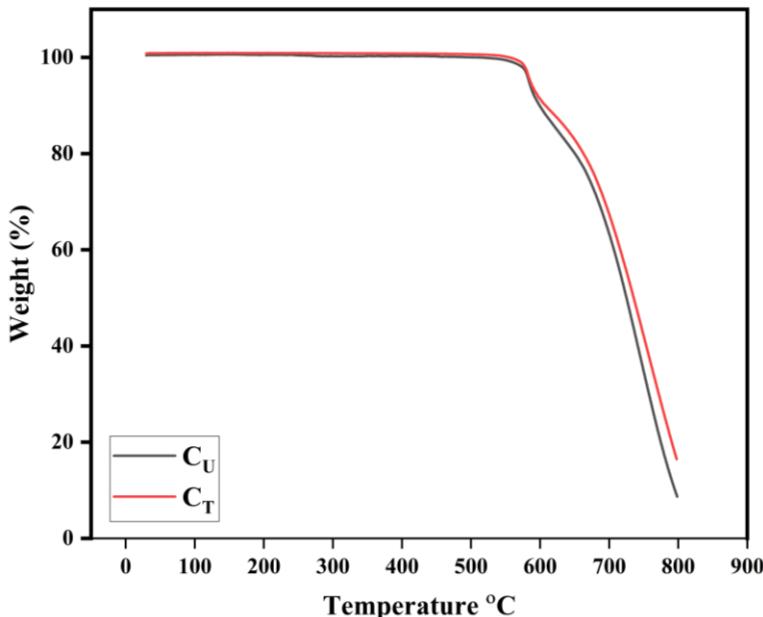


335

336 Fig. 9. Comparative AFM topography imaging of LMPAEK/CF UD tape for both untreated (a,
 337 c) vs. treated (b, d) samples. Panels (a) and (b) depict 3D topography focusing on fiber-rich
 338 regions. Panels (c) and (d) are 2d images for polymer rich regions, illustrating changes in
 339 surface structure post-treatment.

340 Interaction of plasma species with polymer could result in change in chemical, physical and
 341 mechanical properties of surface through different mechanisms such as micro-etching, cleaning
 342 of organic contamination and chain scission vis-a-vis polymer degradation [38]. The AFM
 343 profile obtained in this study suggests micro-etching and chain scission as active mechanism.
 344 The dominant effect usually depends upon operating parameters of plasma treatment and
 345 determines extent of surface functionalization, crosslinking and degradation [39, 40]. For
 346 treated sample, it was observed that there was change in the surface roughness, and it was effect
 347 of surface cleaning i.e. removal of surface adsorbed contamination, degradation of low
 348 molecular weight moieties and polymer chain scission on carbon fiber rich and polymer rich
 349 area, which could create further low molecular weight polymer surface layer [41]. Fig. 10a
 350 shows untreated tape's polymer rich region depicts relatively uniform surface and change in
 351 roughness over the region, whereas Fig. 10b illustrates wide variation in roughness across the

352 region depicting the polymer surface etching achieved by plasma treatment. The Grayscale on
353 the right of 2D profiles portrays the extent of difference in the Z axis variation.



354
355 Fig. 10. 2D profile of polymer rich region of untreated (a) and treated (b) LMPAEK/CF UD
356 Tape by AFM.

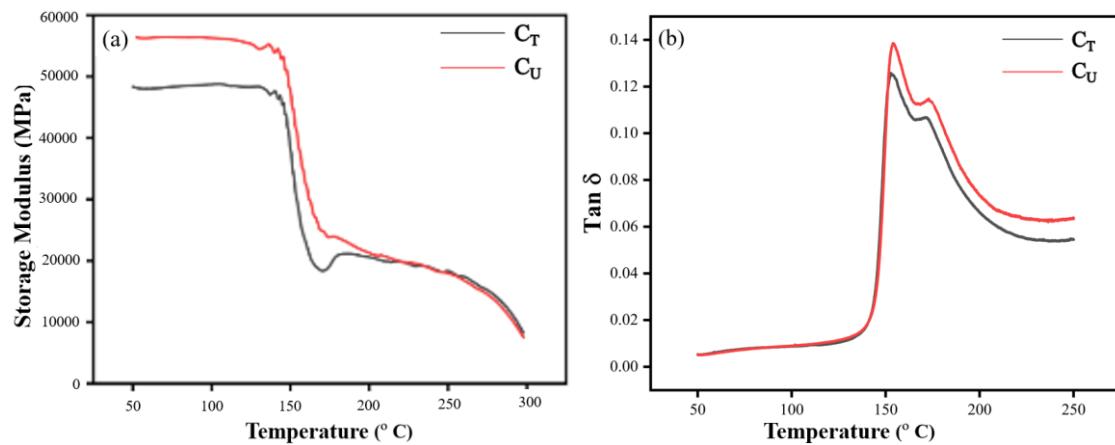
357 3.2 Characterization of treated and untreated composites

358 3.2.1 Thermogravimetric analysis

359 **Fig. 11 illustrates the results of thermogravimetric analysis for both treated and untreated tapes,**
360 **revealing only a slight modification in thermal degradation behaviour.** Table 2 presents the
361 temperatures at which 5% (T5) and 10% (T10) weight losses occur for the developed
362 composites. The untreated composite labelled C_U exhibits marginally lower T5 and T10
363 temperatures in comparison to its counterpart, C_T. This increased weight loss observed in both
364 composites can likely be ascribed to enhanced oxidation, a consequence of exposure to an air
365 environment. The residue percentage has been considered at 800°C, the residue percentage of
366 C_U (8.79%) was lower than C_T (16.40%). Similar thermograms (Fig. 11) for developed
367 composites shows that plasma treatment did not lead CF-LMPAEK tape to thermal mass
368 degradation.

369

370 Fig. 11. Thermogravimetric analysis for composite CU and CT


371 Table 2. T5 and T10 temperatures for composite CU and CT

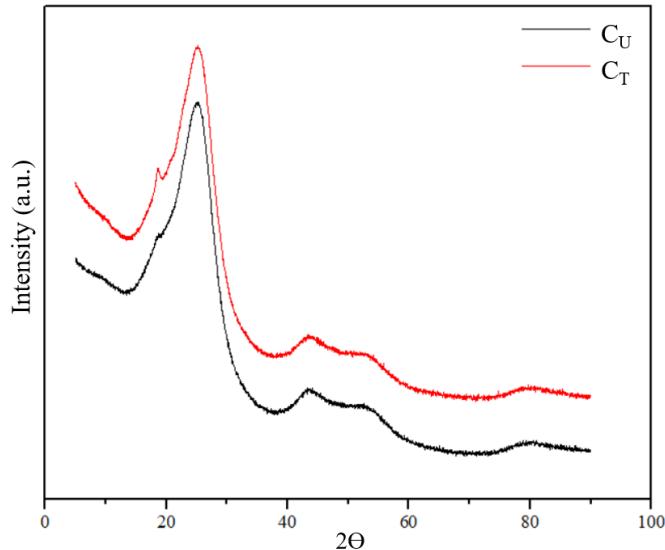
Composites	T5 (° C)	T10 (° C)
CU	583.79	598.62
CT	586.33	609.18

372 3.2.2 Dynamic mechanical analysis (DMA)

373 Fig. 12 illustrates the variations in (a) the storage modulus (E') across a specified temperature
 374 spectrum (50-275° C), and (b) presents the $\tan \delta$ values. Concurrently, Table 3 shows the
 375 storage modulus metrics at 50° C alongside the glass transition temperatures for CU and CT.
 376 Fig. 12 in conjunction with Table 3 elucidates that the composite material CT exhibits a superior
 377 storage modulus at 50° C when compared with CU. This improvement in storage modulus is
 378 attributable to the enhanced interlaminar adhesion facilitated by the synergistic effect induced
 379 by chemical and physical modifications achieved through the plasma treatment employed on
 380 the LMPAEK/CF UD tape before tape layup using ATP system. Chemical and physical
 381 modification observed due to plasma treatment corroborates with the mechanical response of
 382 composite CT under tensile stress, where composite CT demonstrates a failure mode
 383 characterized by singular point fracture as opposed to the multi-layered delamination observed
 384 in CU load-displacement behaviour as depicted in Fig. 15, Fig. 17). Furthermore, CT shows an
 385 elevated glass transition temperature relative to CU indicating a marginal increment, which is
 386 an indicator of the enhanced inter-ply and interfacial interactions within CT composites at
 387 molecules scale. Added chemical functionality (hydroxyl and carboxyl groups) by plasma

388 treatment on CF/LMPAEK tape results in covalent and/or secondary bonding between treated
 389 CF/LMPAEK tape and substrate tape (exposing untreated side) [42]. The chemical interaction
 390 was found to be at the polymer-polymer (of two adjacent tapes) interface (explained in section
 391 4) and not at the polymer-fiber interface. This improved molecular interaction (which is lacking
 392 in the conventional ATP process) results in improved yet comparable mechanical performance
 393 (tensile and flexural strength and their failure modes).

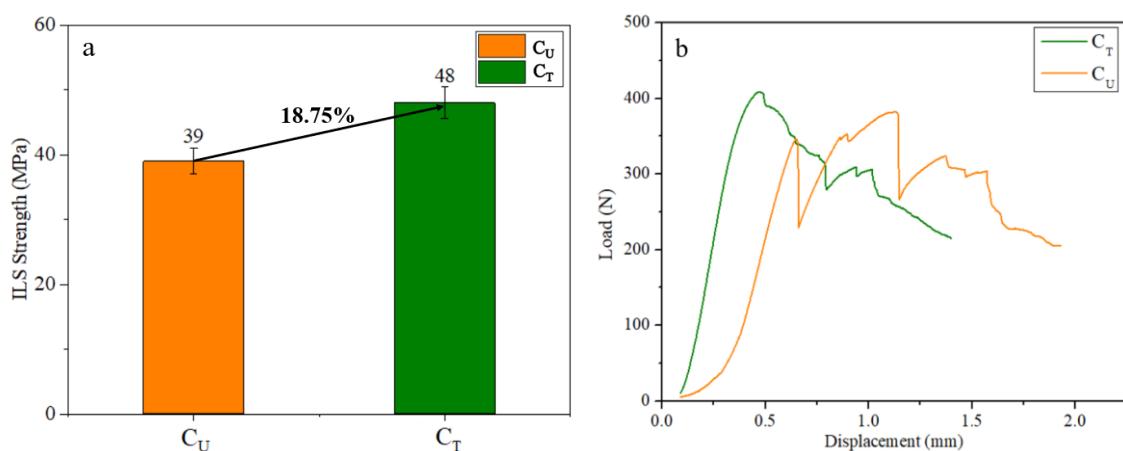
394

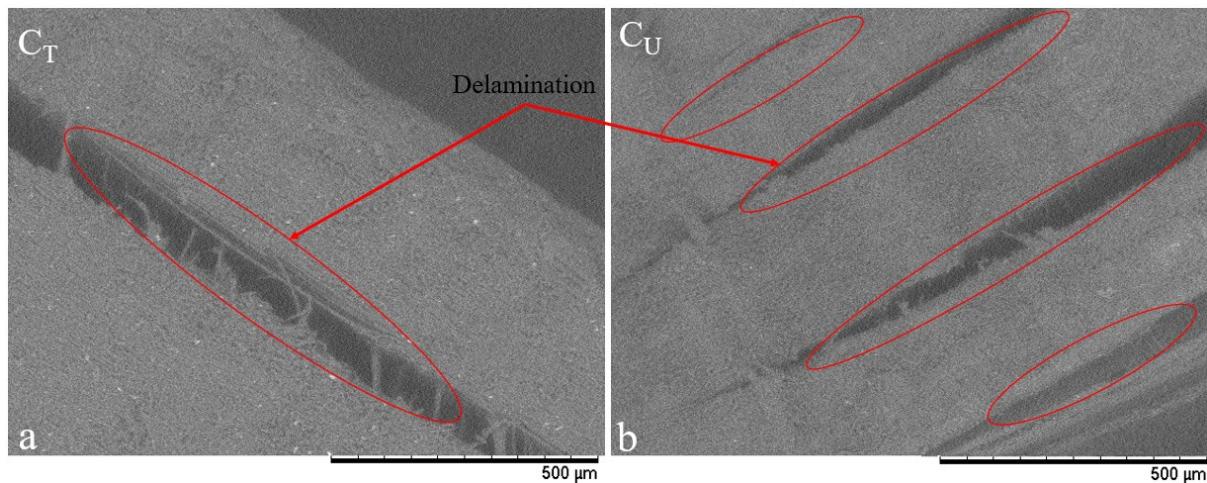

395 Fig. 12. Visco-elastic performance of developed composites (a) storage modulus and (b) \tan
 396 δ .

397 Table 3. Storage moduli and glass transition temperature by dynamic mechanical analysis

Properties	C_U	C_T
E' at 50° C (GPa)	48.33	56.71
T_g (° C)	152.75	154.90

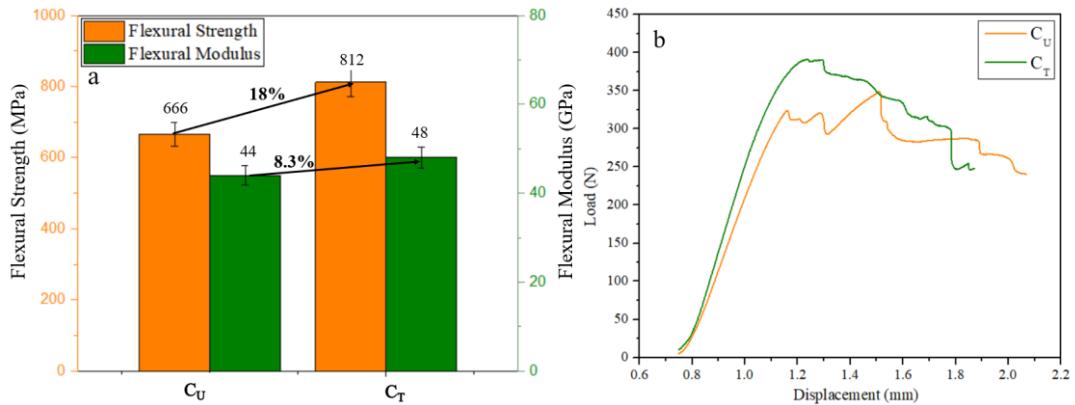
398 3.2.3 Crystallinity measurement of C_T and C_U .

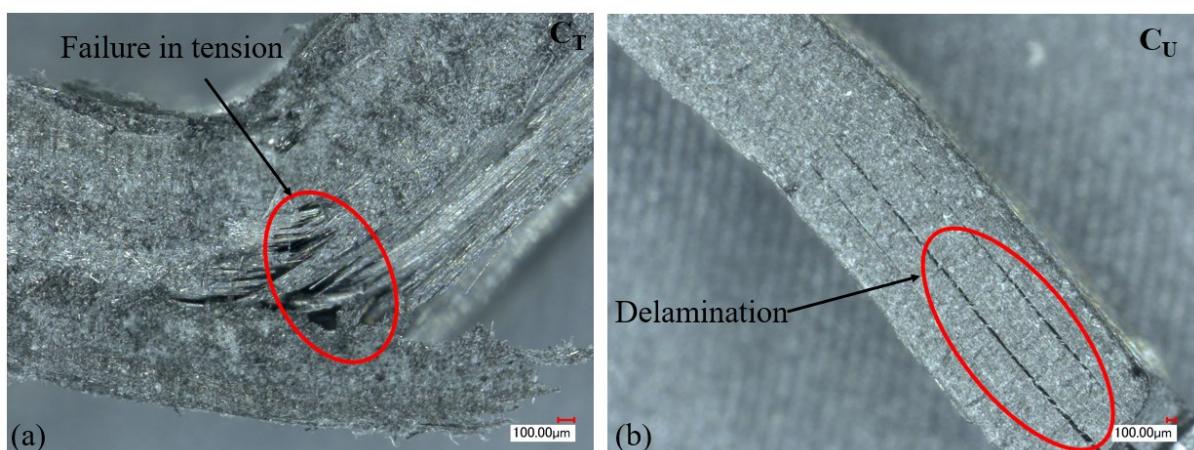

399 The crystallinity values for C_U and C_T were 29.4 and 33.2 %. The crystallinity is directly
 400 affected by the cooling rate applied on the tape during manufacturing [21]. However, in this
 401 study both C_U and C_T were processed with identical parameters. The findings that the
 402 crystallinity of C_T was higher than C_U could be due to the effect of air plasma treatment on the
 403 LMPAEK/CF UD tape. Korycki et al [43] mentioned in their studies that the crystallinity of
 404 the materials would be affected by plasma treatment. However, achieving a higher crystallinity
 405 would increase the shear strength, tensile strength and modulus of the composites [21, 44].


406
407 Figure 13. X-ray diffractogram for the developed composites C_U and C_T .

408 3.2.4 Interlaminar shear strength (ILSS)

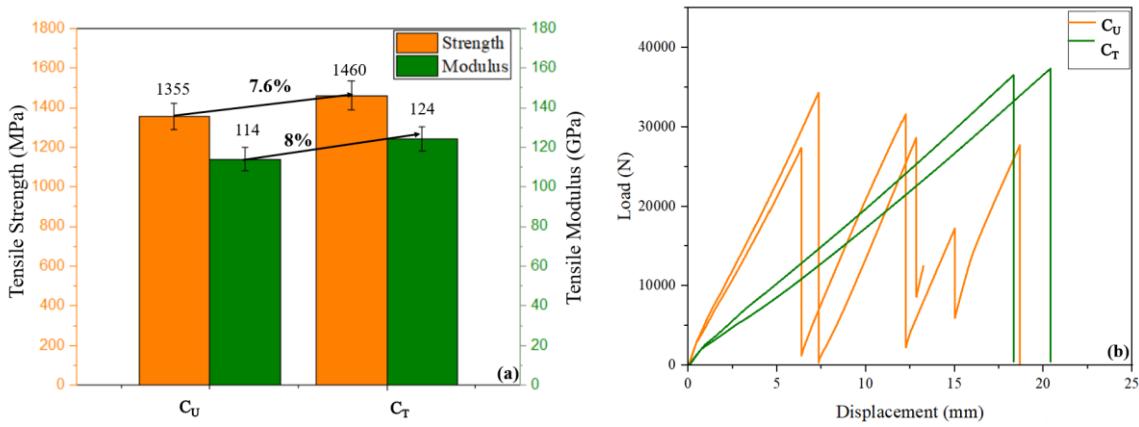
409 Fig. 14a shows the ILSS behavior of the C_U and C_T . ILSS of C_T improved by $\sim 18\%$ compared
410 to C_U . The improvement in ILSS samples can be attributed to the effect of air plasma treatment
411 on the LMPAEK/CF UD tape. The [increase](#) of surface energy witnessed by contact angle (87°
412 to 22°) and the increase of the surface roughness monitored by AFM, alongside the formation
413 of hydroxyl/carboxyl group reported by FTIR, led to a higher ILSS in C_T than C_U . The air
414 plasma treatment influenced the failure mechanism of C_T as well. Fig. 15 shows the failure
415 analysis of the C_U and C_T tested samples. It was observed that delamination occurred in both
416 ILSS tested samples (C_U and C_T). Fig. 15a showed that the samples extracted from the C_T
417 exhibited a single time failure. However, the samples tested from C_U displayed a multiple crack
418 in the sample before attaining the complete failure as shown in Fig. 15b. [This behavior is also](#)
419 [reflected in \(Fig. 14b\) where \$C_U\$ demonstrates non-linear behavior, with progressive failure and](#)
420 [delamination, while \$C_T\$ exhibits a single failure after reaching maximum load, characterized by](#)
421 [a more linear response prior to the attaining the maximum.](#)


423 Fig. 14 (a, b). Average interlaminar shear strength of the C_T and C_U . An enhancement of
424 18.75% has been noticed in the C_T compared to C_U . [Load vs displacement depicting the](#)
425 [failure behavior of the ILSS samples.](#)


426 Fig. 15. (a, b). SEM images of failed ILSS samples of C_T and C_U respectively. Delamination
427 was observed almost between each laminate in the C_U , and just in one spot for the C_T .
428

429 3.2.5 Flexural Strength and Modulus

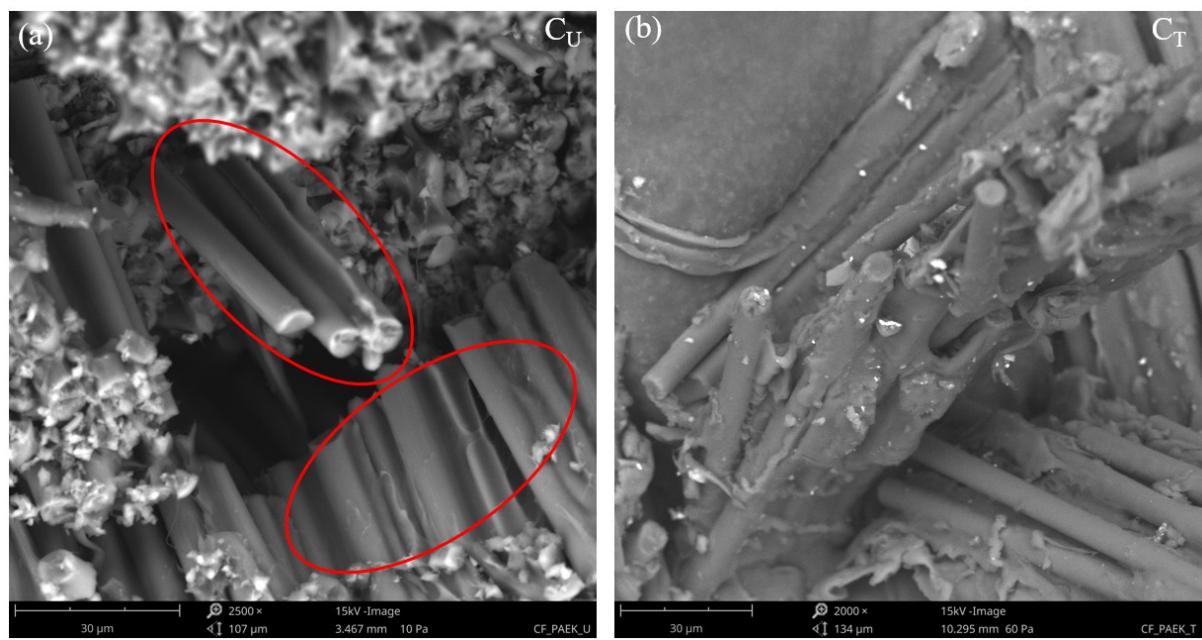
430 Air plasma treatment of the LMPAEK/CF UD tape affected the flexural behavior of C_T and C_U .
431 It was noticed that the flexural strength and modulus of C_T were approximately 18% and 8.3%
432 higher than the C_U , respectively, as shown in Fig. 16a. Along the flexural properties
433 enhancement, a different failure behavior between C_U and C_T samples was observed. Fig. 17(a,
434 b) illustrate low-magnification optical microscopy (OM) images for the tested flexural
435 specimens. It was perceived that the coupons extracted from the C_T exhibited a failure in tension
436 according with ASTM D790. The flexural tested samples of C_U displayed a delamination along
437 the length coupons. In the case of composite C_U , the major failure mechanism includes inter-
438 laminar delamination caused by weak inter-tape adhesion. On the other hand, post treatment-
439 composite C_T , the dominating failure mechanism shifts to fiber breakage, matrix cracking on
440 (tension dominated) bottom side of flexural specimen. [This behavior is also evident in \(Fig.](#)
441 [16b\) where \$C_U\$ exhibits progressive failure and delamination, while \$C_T\$ demonstrates a typical](#)
442 [failure pattern characterized by an initial linear response up to the ultimate strength, followed](#)
443 [by a transition into a plastic deformation zone and final failure in tension. Fig. 17\(a, b\)](#)
444 [demonstrates that the plasma treatment reduces the inter-tape delamination \(inferior](#)
445 [performance\) and increased interlaminar adhesion. The matrix failure and fiber breakage were](#)
446 [observed as the dominating failure mechanism for composite \$C_T\$.](#)


447
448 Fig. 16 (a,b). Average flexural strength and modulus of C_T and C_U in accordance with ASTM
449 D790. The flexural strength and modulus of C_T is 18% and 8.3% higher than C_U . **Load vs**
450 **displacement depicting the failure behavior of the flexural samples.**

451
452 Fig. 17(a, b). Optical microscopy (OM) images show ASTM D790 acceptable failure behavior
453 for the C_T brittle failure mode in tension, and interlaminar failure mode in the C_U specimens,
454 illustrating delamination in the samples.

455 3.2.6 Tensile Strength and Modulus

456 Air plasma treatment had a positive impact on the tensile behavior of C_T . Fig. 18a shows the
457 average tensile strength and modulus of the C_T and the C_U . An improvement of 7.6% has been
458 noticed in the tensile strength, with 8% in the tensile modulus, as shown in Fig. 18a. The load
459 versus displacement behavior of two C_U and C_T samples have been reported as seen in Fig. 18b;
460 The failure mechanism showed that the C_U samples attained several cycles of
461 maximum/minimum load before approaching a complete failure at ~ 25 kN with a displacement
462 of 18.5 mm, elucidating delamination, and fiber debonding behavior. The outcome of plasma
463 treatment was noticed in the failure behavior of the C_T samples, the linearity, and the brittle
464 failure, as shown in Fig. 18b.



465

466 Fig. 18a. Average tensile strength and modulus for C_T and C_U. An increase of 7.6% in strength
 467 and 8% in modulus has been noticed in the C_T. Fig. 18b shows load versus displacement,
 468 illustrating the failure behavior of the tensile samples.

469 3.2.7 Fractography

470 Fig. 19 shows the SEM micrographs for the failed samples under tensile loading. Fiber matrix
 471 debonding was the primary failure mechanism for the C_U variant. Debonded fibers and cavities
 472 of carbon fibers are marked in Fig. 19a. The failure of carbon fiber was brittle in nature for
 473 both composites, which is consistent with the literature [8, 45, 46]. In the case of C_T, the absence
 474 of fiber matrix debonding, as shown in Fig. 19, depicts that the plasma treatment activates the
 475 surface by imparting chemical and physical attributes to the ATP feedstock tape, resulting in
 476 stronger bonding between carbon fiber and LMPAEK, which is reflected in mechanical
 477 properties evaluation and interlaminar shear strength performance (Fig. 16, Fig. 17 and Fig. 18).

478

479 Fig. 19. SEM micrographs depicting failed samples during tensile test (a) C_U and (b) C_T.

480

481 4. DISCUSSION

482 Different characterizations, such as contact angle measurements, FTIR, and AFM, were
483 conducted to investigate the effect of plasma treatment on the surface of LMPAEK/CF UD
484 tape. In the case of water contact angle measurement, it was observed that the contact angle
485 decreased to 22° from 87°. The decrease in contact angle indirectly suggests that the surface
486 was more receptive to polar interactions due to the formation of chemical functional groups.
487 The increased presence of functional groups was confirmed by FTIR spectra. These polar
488 groups were introduced through the reactive species (from plasma treatment) with the polymer
489 chain, resulting in the formation of ketone group, peroxide-carbonyl, and hydroxyl groups on
490 the PAEK, the functional groups interact with each other covalently (forming strong interaction
491 between hydroxyl and carboxyl groups) or through van der waal forces such as hydrogen
492 bonding (especially in the case of amine functional groups). These chemical interactions result
493 in strong LMPAEK – LMPAEK interactions. Alongside chemical modification, plasma
494 treatment imparts a certain roughness to the CF/LMPAEK surface. AFM measurements
495 demonstrate the change in surface roughness/topology for plasma-treated LMPAEK/CF UD
496 tape. Polymer chain scission (potential) and etching (proved through AFM experiments
497 (section 3.1.5)) are the foremost mechanisms that contribute to increased surface roughness, as
498 supported by current study and prior research. Applying controlled roughness through surface
499 treatment can enhance the mechanical bonding between substrates (in the current study
500 CF/LMPAEK UD tape). However, excessive roughness of both the polymer and reinforcement
501 could lead to a decline in composite properties due to defects introduced during the surface
502 treatment process [38, 47].

503 The effect of plasma treatment increased surface roughness vis-à-vis surface area for plasma
504 treated LMPAEK/CF UD tape results in more efficient melting/softening (efficient heat transfer
505 due to enhanced surface area) of the ATP tape compared to untreated tape. Furthermore, the
506 chain scission, degradation of low molecular weight chains, and physical surface defects (such
507 as surface damage at (nanoscopic/microscopic level) and contamination on LM-PAEK/CF ATP
508 tape - majorly originated from handling of tapes) removal due to plasma treatment, can result
509 in relatively low defect, improving interaction between two adjacent tapes. Beyond better
510 homogeneity, the functional groups extend covalent bonding between tapes. These chemical
511 and physical interactions were evident in the improvements in ILSS (18.75%), flexural strength
512 and modulus (18% and 8.3%), and tensile strength and modulus (7.6% and 8%) properties in
513 CT compared to CU, respectively. The absence of delamination during mechanical testing

514 captured by OM and SEM (in failed samples) demonstrated the interlaminar homogeneity for
515 C_T .

516

517 CONCLUSIONS

518 The study investigates the integration of continuous plasma treatment in the ATP process to
519 enhance the production of ATP-based composites with superior properties. Air plasma
520 treatment was shown to be an effective way to enhance the in-situ consolidation of
521 LMPAEK/CF UD tape processed through HGT on the ATP. It involves the treatment of
522 LMPAEK/CF UD tape at a specific ATP feed rate. Key findings include:

- 523 • The air plasma treatment not only enhanced the surface characteristics of the
524 LMPAEK/CF UD tape, leading to improved adhesion and interfacial bonding, but also
525 demonstrated compatibility with the ATP process without introducing any defects.
- 526 • The treated tape showed a fall in water contact angle by $\sim 65^\circ$, which corresponds to the
527 formation of hydrophilic chemical functional groups. The change in the roughness of
528 LMPAEK/CF UD tape corroborates to physical changes caused by plasma treatment.
- 529 • The composite C_T (developed from treated tape) shows improved tensile strength and
530 modulus, flexural strength and modulus, and ILSS by 18.75%, 18% and 8.3% and 7.6%
531 and 8%, respectively.
- 532 • The primary mechanisms behind these enhancements include the development of
533 chemical functionality and subsequent covalent bonding and hydrogen bonding to the
534 overlapping tape while processing, improved surface roughness due to plasma
535 treatment, and the removal or degradation of surface imperfections from the
536 LMPAEK/CF UD tape surface.
- 537 • The failure mechanism for the short beam test for ILSS was changed from inter-ply
538 delamination to matrix cracking, fiber pull out, fiber pull out and matrix cracking.

539 ACKNOWLEDGEMENT

540 The authors acknowledge the support from the US Department of Energy (DOE), Office of
541 Energy Efficiency and Renewable Energy, and Advanced Materials and Manufacturing Office.
542 http://energy.gov/dow_nloads/doe-public-access-plan The authors extend their gratitude to
543 Chase McCullar for his assistance in carrying out mechanical testing. Additionally, they wish
544 to thank SEAMTN (HQ00052110069) for providing resources for the tape cut and surface

545 analysis, Institute of Advanced Composites Manufacturing Innovation (IACMI) (DE-
546 EE0006926) for granting access to the ATP robot and other assets, Plasmatreat north America
547 for providing the air plasma setup, and IUCRC (A22-0196) for offering technical assistance
548 and resources.

549 REFERENCES

550 [1] Marathe UN, Bijwe J. High performance polymer composites - Influence of processing technique
551 on the fiber length and performance properties. *Wear*. 2020;446-447.

552 [2] Sahu R, Ponnusami SA, Weimer C, Harursampath D. Interface engineering of carbon fiber
553 composites using CNT: A review. *Polymer Composites*. 2023.

554 [3] Simaafrookhteh S, Tsokanas P, Loutas T, Lomov SV, Ivens J. Measuring the interlaminar fracture
555 toughness of thin carbon fiber/polyamide6 composites using adhesively bonded stiffeners.
556 *Composites Part A: Applied Science and Manufacturing*. 2023;107841.

557 [4] Wasti S, Schwartz B, Yeole P, Chahine G, Tekinalp H, Ozcan S, et al. BAMBOO FIBER Overmolding
558 Textile Grade Carbon Fiber Tape and Bamboo Fiber Polypropylene Composites. *SAMPE JOURNAL*.
559 2023;59(2):22-9.

560 [5] Yao S-S, Jin F-L, Rhee KY, Hui D, Park S-J. Recent advances in carbon-fiber-reinforced thermoplastic
561 composites: A review. *Composites Part B: Engineering*. 2018;142:241-50.

562 [6] Yuan X, Jayaraman K, Bhattacharyya D. Effects of plasma treatment in enhancing the performance
563 of woodfibre-polypropylene composites. *Composites Part A: Applied Science and Manufacturing*.
564 2004;35(12):1363-74.

565 [7] Zhang J, Lin G, Vaidya U, Wang H. Past, present and future prospective of global carbon fibre
566 composite developments and applications. *Composites Part B: Engineering*. 2022;110463.

567 [8] Bonhomme J, Argüelles A, Viña J, Viña I. Fractography and failure mechanisms in static mode I
568 and mode II delamination testing of unidirectional carbon reinforced composites. *Polymer Testing*.
569 2009;28(6):612-7.

570 [9] Fu S, Sun Z, Huang P, Li Y, Hu N. Some basic aspects of polymer nanocomposites: A critical review.
571 *Nano Materials Science*. 2019;1(1):2-30.

572 [10] Lew C, Chowdhury F, Hosur MV, Netravali AN. The effect of silica (SiO₂) nanoparticles and
573 ammonia/ethylene plasma treatment on the interfacial and mechanical properties of carbon-fiber-
574 reinforced epoxy composites. *Journal of adhesion science and technology*. 2007;21(14):1407-24.

575 [11] Ma K, Wang B, Chen P, Zhou X. Plasma treatment of carbon fibers: Non-equilibrium dynamic
576 adsorption and its effect on the mechanical properties of RTM fabricated composites. *Applied
577 Surface Science*. 2011;257(9):3824-30.

578 [12] Pukanszky B, VÖRÖS G. Mechanism of interfacial interactions in particulate filled composites.
579 *Composite Interfaces*. 1993;1(5):411-27.

580 [13] Tiwari S, Sharma M, Panier S, Mutel B, Mitschang P, Bijwe J. Influence of cold remote nitrogen
581 oxygen plasma treatment on carbon fabric and its composites with specialty polymers. *Journal of
582 Materials Science*. 2011;46:964-74.

583 [14] Vinodhini J, Sudheendra K, Balachandran M, Bhowmik S. Influence of argon plasma treatment
584 on carbon fibre reinforced high performance thermoplastic composite. *High Performance Polymers*.
585 2021;33(3):285-94.

586 [15] Sharma M, Gao S, Mäder E, Sharma H, Wei LY, Bijwe J. Carbon fiber surfaces and composite
587 interphases. *Composites Science and Technology*. 2014;102:35-50.

588 [16] Hull KL, Sayed M, Al-Muntasher GA. Recent advances in viscoelastic surfactants for improved
589 production from hydrocarbon reservoirs. *SPE Journal*. 2016;21(04):1340-57.

590 [17] Mengjin W, Lixia J, Suling L, Zhigang Q, Sainan W, Ruosi Y. Interfacial performance of high-
591 performance fiber-reinforced composites improved by cold plasma treatment: A review. *Surfaces and
592 Interfaces*. 2021;24:101077.

593 [18] Sethi S, Ray BC. Environmental effects on fibre reinforced polymeric composites: Evolving
594 reasons and remarks on interfacial strength and stability. *Advances in colloid and interface science*.
595 2015;217:43-67.

596 [19] Brasington A, Sacco C, Halbritter J, Wehbe R, Harik R. Automated fiber placement: A review of
597 history, current technologies, and future paths forward. *Composites Part C: Open Access*. 2021;6.

598 [20] Croft K, Lessard L, Pasini D, Hojjati M, Chen J, Yousefpour A. Experimental study of the effect of
599 automated fiber placement induced defects on performance of composite laminates. *Composites*
600 *Part A: Applied Science and Manufacturing*. 2011;42(5):484-91.

601 [21] Heathman N, Koirala P, Yap T, Emami A, Tehrani M. In situ consolidation of carbon fiber PAEK via
602 laser-assisted automated fiber placement. *Composites Part B: Engineering*. 2023;249:110405.

603 [22] Rousseau G, Wehbe R, Halbritter J, Harik R. Automated Fiber Placement Path Planning: A state-
604 of-the-art review. *Computer-Aided Design and Applications*. 2018;16(2):172-203.

605 [23] Tafreshi OA, Hoa SV, Shadmehri F, Hoang DM, Rosca D. Heat transfer analysis of automated fiber
606 placement of thermoplastic composites using a hot gas torch. *Advanced Manufacturing: Polymer &*
607 *Composites Science*. 2019;5(4):206-23.

608 [24] Li W, Sang L, Jian X, Wang J. Influence of sanding and plasma treatment on shear bond strength
609 of 3D-printed PEI, PEEK and PEEK/CF. *International Journal of Adhesion and Adhesives*.
610 2020;100:102614.

611 [25] Yildirim C, Ulus H, Beylergil B, Al-Nadhari A, Topal S, Yildiz M. Effect of atmospheric plasma
612 treatment on Mode-I and Mode-II fracture toughness properties of adhesively bonded carbon
613 fiber/PEKK composite joints. *Engineering Fracture Mechanics*. 2023;289:109463.

614 [26] Jang J, Kim H. Improvement of carbon fiber/PEEK hybrid fabric composites using plasma
615 treatment. *Polymer composites*. 1997;18(1):125-32.

616 [27] Zhang Z, Wilson JL, Kitt BR, Flaherty DW. Effects of Oxygen Plasma Treatments on Surface
617 Functional Groups and Shear Strength of Carbon Fiber Composites. *ACS Applied Polymer Materials*.
618 2021;3(2):986-95.

619 [28] Lu C, Qiu S, Lu X, Wang J, Xiao L, Zheng T, et al. Enhancing the interfacial strength of carbon
620 fiber/poly (ether ether ketone) hybrid composites by plasma treatments. *Polymers*. 2019;11(5):753.

621 [29] Fitzgibbon A, Pilu M, Fisher RB. Direct least square fitting of ellipses. *IEEE Transactions on*
622 *pattern analysis and machine intelligence*. 1999;21(5):476-80.

623 [30] Song W, Gu A, Liang G, Yuan L. Effect of the surface roughness on interfacial properties of carbon
624 fibers reinforced epoxy resin composites. *Applied surface science*. 2011;257(9):4069-74.

625 [31] Park S, Kim J, Park CH. Influence of micro and nano-scale roughness on hydrophobicity of a
626 plasma-treated woven fabric. *Textile Research Journal*. 2017;87(2):193-207.

627 [32] Mittal KL. *Contact Angle, Wettability and Adhesion*, Volume 3: CRC Press; 2003.

628 [33] Cassie A, Baxter S. Wettability of porous surfaces. *Transactions of the Faraday society*.
629 1944;40:546-51.

630 [34] Machala Z, Tarabová B, Sersenová D, Janda M, Hensel K. Chemical and antibacterial effects of
631 plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species,
632 plasma sources and air flow conditions. *Journal of Physics D: Applied Physics*. 2018;52(3):034002.

633 [35] Fu Q, Gabriel M, Schmidt F, Müller W-D, Schwitalla AD. The impact of different low-pressure
634 plasma types on the physical, chemical and biological surface properties of PEEK. *Dental Materials*.
635 2021;37(1):e15-e22.

636 [36] Zhang S, Awaja F, James N, McKenzie DR, Ruys AJ. Autohesion of plasma treated semi-crystalline
637 PEEK: Comparative study of argon, nitrogen and oxygen treatments. *Colloids and Surfaces A:*
638 *Physicochemical and Engineering Aspects*. 2011;374(1-3):88-95.

639 [37] Goddard JM, Hotchkiss J. Polymer surface modification for the attachment of bioactive
640 compounds. *Progress in polymer science*. 2007;32(7):698-725.

641 [38] Oehr C. Plasma surface modification of polymers for biomedical use. *Nuclear Instruments and*
642 *Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*. 2003;208:40-7.

643 [39] Švorčík V, Kotál V, Slepčík P, Bláhová O, Špírková M, Sajdl P, et al. Modification of surface
644 properties of polyethylene by Ar plasma discharge. Nuclear Instruments and Methods in Physics
645 Research Section B: Beam Interactions with Materials and Atoms. 2006;244(2):365-72.
646 [40] Chan C-M, Ko T-M, Hiraoka H. Polymer surface modification by plasmas and photons. Surface
647 science reports. 1996;24(1-2):1-54.
648 [41] Yasuda H, Hirotsu T. Critical evaluation of conditions of plasma polymerization. Journal of
649 Polymer Science: Polymer Chemistry Edition. 1978;16(4):743-59.
650 [42] Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology
651 as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules.
652 2009;10(9):2351-78.
653 [43] Korycki A, Carassus F, Tramis O, Garnier C, Djilali T, Chabert F. Polyaryletherketone Based Blends:
654 A Review. Polymers. 2023;15(19):3943.
655 [44] Vieille B, Albouy W, Chevalier L, Taleb L. About the influence of stamping on thermoplastic-based
656 composites for aeronautical applications. Composites Part B: Engineering. 2013;45(1):821-34.
657 [45] Cheng J, Li H-j, Zhang S-y, Xue L-z, Luo W-f, Li W. Failure behavior investigation of a unidirectional
658 carbon–carbon composite. Materials & Design. 2014;55:846-50.
659 [46] Danzi F, Campos PJS, Arteiro A, Dalli D, Furtado C, Chevalier J, et al. Longitudinal failure
660 mechanisms and crack resistance curves of unidirectional thermoplastic composites. Engineering
661 Fracture Mechanics. 2023;282:109147.
662 [47] Morent R, De Geyter N, Desmet T, Dubruel P, Leys C. Plasma surface modification of
663 biodegradable polymers: a review. Plasma processes and polymers. 2011;8(3):171-90.
664