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Abstract

Entropic optimal transport offers a computationally tractable approximation to the
classical problem. We study the approximation rate of the entropic optimal transport
map (in approaching the Brenier map) when the regularization parameter ε tends to
zero in the semidiscrete setting, where the input measure is absolutely continuous
while the output is finitely discrete. Previous work shows that the approximation
rate is O(

√
ε) under the L2-norm with respect to the input measure. In this work, we

establish faster, O(ε2) rates up to polylogarithmic factors, under the dual Lipschitz
norm, which is weaker than the L2-norm. For the said dual norm, the O(ε2) rate is
sharp. As a corollary, we derive a central limit theorem for the entropic estimator for
the Brenier map in the dual Lipschitz space when the regularization parameter tends
to zero as the sample size increases.
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1 Introduction

1.1 Overview

For an absolutely continuous input distribution P and a generic output distribution
Q, both on Rd with finite second moments, the Brenier map [7] sending P to Q induces
the optimal coupling for the optimal transport problem with quadratic cost:

inf
π∈Π(P,Q)

∫
‖x− y‖2 dπ(x, y), (1.1)

where Π(P,Q) denotes the collection of couplings of P and Q. The Brenier map can be
characterized as a P -a.e. unique transport map given by the gradient of a convex function.
This celebrated result has seen numerous applications in statistics and machine learning,
ranging from transfer learning and domain adaptation to vector quantile regression and
causal inference; see [12] for a review of the recent development in statistical optimal
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transport. From a mathematical standpoint, the Brenier map provides a powerful tool
to derive functional inequalities [17] and suggests natural extensions of the quantile
function to the multivariate setting [11], among others.

In practice, however, directly solving the optimal transport problem (1.1) and com-
puting the Brenier map is challenging, especially when d is large. A popular remedy for
this computational difficulty is entropic regularization, whereby (1.1) is replaced with

inf
π∈Π(P,Q)

∫
‖x− y‖2 dπ(x, y) + εDKL(π‖P ⊗Q), (1.2)

where ε > 0 is the regularization parameter and DKL is the Kullback-Leibler divergence
defined by DKL(α‖β) :=

∫
log dα

dβ dα if α � β and := ∞ otherwise. Entropic optimal
transport is amenable to efficient computation via Sinkhorn’s algorithm, for which
rigorous convergence guarantees have been developed under different settings [25,
18, 1, 40, 3, 8, 23, 26, 36, 16, 14]. As ε shrinks, various objects from entropic optimal
transport converge to those for unregularized optimal transport—a topic that has seen
extensive research activities in recent years; see the literature review below.

Denoting by πε the (unique) optimal coupling for the entropic problem (2.3), an
entropic surrogate of the Brenier map is given by T ε(x) = E(X,Y )∼πε [Y | X = x], which
we shall call the entropic map[42]. To understand the quality of this computationally
tractable approximation, the rate at which the entropic map approaches the Brenier
map as ε ↓ 0 has received recent attention. [9] showed that if P and Q are compactly
supported and the Brenier map T 0 isM -Lipschitz (which precludes Q being discrete),
then ‖T ε − T 0‖2L2(P ) ≤ M(dε log(1/ε) + O(ε)). In the continuous-to-continuous setting,
imposing stronger smoothness conditions on the densities of P and Q and the dual
potentials, [42] established faster O(ε2) rates for ‖T ε − T 0‖2L2(P ). In the semidiscrete
setting (i.e., when P is absolutely continuous and Q is finitely discrete), [43] showed that

‖T ε − T 0‖2L2(P ) = O(ε), (1.3)

and their Example 3.5 demonstrates that this rate is sharp under L2(P ). The follow-up
work by the same authors [22] derived quantitative upper bounds on the L2(P ) error.

The goal of this paper is to explore quantitative upper bounds on the bias of T ε for
small ε in the semidiscrete setting, but from a different angle. Instead of the L2-norm,
we shall look at the linear functional 〈ϕ, T ε〉L2(P ) for a suitable Borel vector field ϕ and
derive quantitative upper bounds on 〈ϕ, T ε − T 0〉L2(P ). There are several applications
where a linear functional of the Brenier map is an object of interest (cf. [5, 49, 30]1).
In particular, while pointwise inference is essentially infeasible for the semidiscrete
Brenier map [45], a local average of the Brenier map via a suitable kernel can provide a
meaningful object for inference. The preceding bound (1.3) directly implies that, for any
bounded Borel vector field ϕ,

|〈ϕ, T ε − T 0〉L2(P )| ≤ ‖ϕ‖∞‖T ε − T 0‖L2(P ) = O(
√
ε). (1.4)

Perhaps somewhat surprisingly, we show that this rate can be much faster for smooth
test functions. Indeed, our main result shows that, if P is supported on a compact convex
set and has a positive Lipschitz density on the support, then for any α-Hölder vector field
ϕ with α ∈ (0, 1],

|〈ϕ, T ε − T 0〉L2(P )| = O(ε1+α ∨ ε2 log3(1/ε)).

In particular, this implies near O(ε2) approximation rates for Lipschitz test functions. The
hidden constant depends on ϕ only through its α-Hölder norm, so by taking the supremum

1Those references concern estimation of a linear functional of the univariate quantile function, which
naturally extends to the multivariate case by viewing the Brenier map as a multivariate quantile function.

ECP 30 (2025), paper 36.
Page 2/13

https://www.imstat.org/ecp

https://doi.org/10.1214/25-ECP682
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Approximation rates of entropic maps in semidiscrete OT

over ϕ whose α-Hölder norm is at most 1, the same rate holds for ‖T ε − T 0‖(Cα)∗ , where
‖ · ‖(Cα)∗ is the dual norm. This fast convergence rate under the dual norm is in line with
the (sharp) approximation rate of ε2 for the semidiscrete optimal transportation cost
itself [2]. Finally, building on our recent work [45], we derive a central limit theorem
in the dual space (Cα)∗ for the empirical entropic map with vanishing regularization
parameters.

1.2 Literature review

There is now a large literature on convergence and approximation rates of entropic
optimal transport costs, potentials, couplings, and maps when the regularization param-
eter tends to zero [33, 34, 31, 10, 13, 42, 15, 2, 38, 4, 20, 9, 43, 39, 22]. Among others,
[2] derived an asymptotic expansion of the entropic cost in the semidiscrete case when
the regularization parameter tends to zero, showing faster convergence at the rate ε2

than the continuous-to-continuous case. See also the follow-up work by [20].

There is also a growing interest in estimation and inference for the Brenier map
and its entropic variant [11, 29, 27, 42, 26, 41, 21, 45, 43, 32, 19, 44, 28]. Among
them, [42] proposed using the entropic map with vanishing regularization parameters to
estimate the Brenier map, and established convergence rates under the L2(P )-norm in
the continuous-to-continuous setting. However, these rate are suboptimal from a minimax
point of view [29]. For the semidiscrete setting, [43] established the O(n−1/2) rate for
the entropic estimator with vanishing regularization levels ε = εn = O(n−1/2) under the
squared L2(P )-norm. Our recent work [45] derived various limiting distribution results
for certain functionals of the empirical (unregularized) Brenier map, when the input P is
known but the discrete output Q is unknown.

1.3 Organization and notation

The rest of the note is organized as follows. Section 2 contains background material
on the optimal transport problem and its entropic counterpart. Section 3 presents our
main results. All the proofs are gathered in Section 4.

For a, b ∈ R, we use the notation a ∨ b = max{a, b} and a ∧ b = min{a, b}. We use ‖ · ‖
and 〈·, ·〉 to denote the Euclidean norm and inner product, respectively. Let 1N ∈ RN
denote the vector of ones. For d ∈ N and 0 ≤ r ≤ d, Hr denotes the r-dimensional
Hausdorff measure on Rd; cf. [24].

2 Background

2.1 Optimal transport

Let P and Q be Borel probability measures on Rd with finite second moments, and
write X and Y for their respective supports. Recall the quadratic optimal transport
problem (1.1), which, upon expanding the square, is equivalent to

sup
π∈Π(P,Q)

∫
〈x, y〉 dπ(x, y). (2.1)

The Brenier theorem [7] yields that whenever P is absolutely continuous, the problem
(2.1) admits a unique optimal solution π0, which is induced by a P -a.e. unique map
T 0 : X → Rd, in the sense that π0 = P ◦ (id, T 0)−1 with id denoting the identity map. We
call T 0 the Brenier map. See, e.g., [48, 46] for background of optimal transport.

We focus herein on the semidiscrete setting, where P is absolutely continuous while
Q is finitely discrete with support Y = {y1, . . . , yN}. Let q = (q1, . . . , qN )ᵀ be the vector of
masses with qi = Q({yi}) for i ∈ [N ] := {1, . . . , N}. In this case, the (semi)dual problem
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for (2.1) reads as

inf
z∈RN

∫
max

1≤i≤N
(〈x, yi〉 − zi) dP (x) + 〈z, q〉. (2.2)

Given any z0 = (z01 , . . . , z
0
N )ᵀ optimal solution to (2.2), the Brenier map is then given by

T 0(x) = ∇x

(
max

1≤i≤N
(〈x, yi〉 − z0i )

)
, P -a.e. x.

To simplify its description, for z ∈ RN , define the Laguerre cells {Ci(z)}Ni=1,

Ci(z) :=
⋂

j 6=i;1≤j≤N

{
z ∈ X : 〈yi − yj , x〉 ≥ zi − zj

}
,

using which the Brenier map is given by T 0(x) = yi for x ∈ Ci(z
0) and i ∈ [N ]. The

Laguerre cells form a partition of X up to Lebesgue negligible sets, so the preceding
description specifies a P -a.e. defined map with values in Y. Furthermore, as T 0 is a
transport map, we have P (Ci(z0)) = Q({yi}) = qi > 0 for i ∈ [N ].

The dual vector z0 is not unique as adding the same constant to all zi does not
change the value of the objective in (2.2). So, we always normalize z0 in such a way that
〈z0,1N 〉 = 0, which, together with mild conditions on P , guarantees uniqueness of z0.

2.2 Entropic optimal transport

The entropic optimal transport problem corresponding to (2.1) is

sup
π∈Π(P,Q)

∫
〈x, y〉 dπ(x, y)− εDKL(π‖P ⊗Q), (2.3)

where ε > 0 is the regularization parameter. For any P and Q with finite second moments
(i.e., beyond the semidiscrete setting), the problem (2.3) admits a unique optimal solution
πε, which is of the form

dπε

d(P ⊗Q)
(x, y) = e

〈x,y〉−φε(x)−ψε(y)
ε ,

where (φε, ψε) is any optimal solution to the dual problem2

inf
(φ,ψ)∈L1(P )×L1(Q)

∫
φdP +

∫
ψ dQ+ ε

∫∫
e

〈x,y〉−φ(x)−ψ(y)
ε dP (x)dQ(y).

Here, since πε is a coupling, one has
∫
e

〈x,y〉−φε(x)−ψε(y)
ε dQ(y) = 1, that is, φε(x) =

ε log
∫
e(〈x,y〉−ψ

ε(y))/ε dQ(y) for P -a.e. x. Substituting this expression leads to the semid-
ual problem. See [37] for a comprehensive overview of entropic optimal transport.
An entropic counterpart of the Brenier map was proposed in [42] by observing that
T 0(x) = E(X,Y )∼π0 [Y | X = x], i.e., the Brenier map agrees with the conditional expecta-
tion of the second coordinate given the first under π0. Replacing π0 with πε leads to the
entropic map T ε(x) = E(X,Y )∼πε [Y | X = x] for x ∈ X .

Specializing to the semidiscrete setting where Q has support Y = {y1, . . . , yN}, one
may reduce the semidiscrete problem to

inf
z∈RN

∫ {
ε log

N∑
i=1

qie
(〈·,yi〉−zi)/ε

}
dP + 〈z, q〉.

2Pairs of optimal potentials are a.e. unique up to additive constants, i.e., if (φ̃, ψ̃) is another optimal pair
then φ̃ = φ+ c P -a.e. and ψ̃ = ψ − c Q-a.e., for some c ∈ R.

ECP 30 (2025), paper 36.
Page 4/13

https://www.imstat.org/ecp

https://doi.org/10.1214/25-ECP682
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Approximation rates of entropic maps in semidiscrete OT

Replacing zi with zi + ε log qi, the above semidual problem is equivalent to

inf
z∈RN

∫ {
ε log

N∑
i=1

e(〈·,yi〉−zi)/ε

}
dP + 〈z, q〉. (2.4)

The latter semidual problem (2.4) admits a unique optimal solution zε subject to the
normalization 〈zε,1N 〉 = 0. In this case, the entropic map simplifies to

T ε(x) =

N∑
i=1

yi
e(〈x,yi〉−z

ε
i )/ε∑N

j=1 e
(〈x,yj〉−zεj )/ε

, x ∈ X .

3 Main results

We derive approximation rates of the entropic map T ε towards the Brenier map T 0

as ε ↓ 0. In contrast to [43, 22] that focus on the (squared) L2(P )-norm ‖T ε − T 0‖2L2(P ),

we consider the linear functional 〈ϕ, T ε − T 0〉L2(P ) =
∫
〈ϕ(x), T ε(x)− T 0(x)〉 dP (x), for a

suitable Borel vector field ϕ : X → Rd, and establish the rates. Taking the supremum
over a certain function class leads to the convergence rates under the corresponding
dual norm. We start from the assumption under which the results hold.

Assumption 3.1 (Conditions on marginals). (i) The input measure P is supported on a
compact convex set X ⊂ Rd with nonempty interior and has a Lebesgue density ρ that
is Lipschitz continuous and strictly positive on X . (ii) The output measure Q is finitely
discrete with support Y = {y1, . . . , yN} ⊂ Rd. For q = (q1, . . . , qN )ᵀ with qi = Q({yi}), we
assume that min1≤i≤N qi ≥ c0 for some (sufficiently small) constant c0 ∈ (0, 1).

Condition (i) guarantees uniqueness of the dual vector z0 (subject to the normalization
〈z0,1N 〉 = 0); cf. Theorem 7.18 in [46]. For a vector-valued mapping ϕ : X → Rd and
α ∈ (0, 1], the α-Hölder norm ‖ϕ‖Cα (Lipschitz norm when α = 1) is defined by

‖ϕ‖Cα := ‖ϕ‖∞ + sup
x,y∈X ;x 6=y

‖ϕ(x)− ϕ(y)‖/‖x− y‖α,

where ‖ϕ‖∞ = supx∈X ‖ϕ(x)‖. The following is our main result.

Theorem 3.2 (Convergence rates for Hölder test functions). Fix α ∈ (0, 1]. Under
Assumption 3.1, for every α-Hölder vector field ϕ : X → Rd,

|〈ϕ, T ε − T 0〉L2(P )| . ‖ϕ‖∞ε2 log3(1/ε) + ‖ϕ‖Cαε1+α, ∀ε ∈ (0, e−1),

where the inequality . holds up to a constant that depends only on α,X , ρ,Y, and c0.
Remark 3.3 (Bounded test functions). Inspection of the proof shows that if the test
function ϕ is only (measurable and) bounded, then |〈ϕ, T ε − T 0〉L2(P )| . ‖ϕ‖∞ε for
ε ∈ (0, 1), where the hidden constant depends only on X , ρ,Y, and c0.

Theorem 3.2 implies that the (right) derivative of the mapping ε 7→ 〈ϕ, T ε〉L2(P ) at
ε = 0 vanishes for any Hölder vector field ϕ. Indeed, the proof of the theorem shows that
the right derivative at ε = 0 agrees with∑

i 6=j

log 2

‖yi − yj‖

∫
Ci(z0)∩Cj(z0)

〈yj − yi, ϕ(x)〉ρ(x) dHd−1(x) = 0.

Hence, we need to look at a higher-order expansion of the mapping ε 7→ 〈ϕ, T ε〉L2(P )

around ε = 0, which requires careful analysis of the facial structures of the Laguerre
cells. In particular, special care is needed when yi − yj and yi − yk for some distinct
indices i, j, k are linearly dependent; see, e.g., the proof of Lemma 4.1 ahead. The proof
of Theorem 3.2 is inspired by the proofs in [2, 20] for the asymptotic expansions of the
entropic cost, but differs from them in some important ways, as detailed in Remark 4.3.
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Remark 3.4 (Sharpness of O(ε2) rate when α = 1). Theorem 1.1 in [2] establihses the
asymptotic expansion of E(X,Y )∼πε [‖X − Y ‖2], which, after rearranging terms, implies

〈id, T ε − T 0〉L2(P ) = −ε
2π2

24

∑
i<j

1

‖yi − yj‖

∫
Ci(z0)∩Cj(z0)

ρ(x) dHd−1(x) + o(ε2).

Since the identity mapping id is Lipschitz, the rate in Theorem 3.2 is sharp up to the
log3(1/ε) factor. The question of whether the polylogarithmic factor can be dropped for
a generic Lipschitz vector is left for future research.

Remark 3.5 (Sharpness of O(εα+1) rate in d = 1). As in [2, 43], consider d = 1, P =

Unif([−1, 1]), and Q = 1
2 (δ−1 + δ1), for which the entropic map is T ε(x) = tanh(2x/ε)

and the Brenier map is T 0(x) = sign(x). For ϕ(x) = sign(x)|x|α with α ∈ (0, 1], which
is α-Hölder on [−1, 1], one can verify from the dominated convergence theorem that
limε↓0 ε

−1−α〈ϕ, T ε − T 0〉L2(P ) =
∫∞
0
xα(tanh(2x)− 1) dx, where the integral on the right-

hand side is absolutely convergent. Hence, the O(ε1+α) rate in Theorem 3.2 is in general
sharp for α ∈ (0, 1).

Let Cα = Cα(X ;Rd) be the Banach space of α-Hölder mappings X → Rd endowed
with the norm ‖ · ‖Cα . The topological dual (Cα)∗ is the Banach space of continuous linear
functionals on Cα endowed with the dual norm, ‖`‖(Cα)∗ = supϕ:‖ϕ‖Cα≤1 `(ϕ). One may

think of any bounded measurable mapping T : X → Rd as an element of the dual space
(Cα)∗ by identifying T with the linear functional ϕ 7→ 〈ϕ, T 〉L2(P ). With this identification,
the preceding theorem yields rates of convergence of the entropic map under ‖ · ‖(Cα)∗ .
Corollary 3.6 (Convergence rates under dual Hölder norm). Fix α ∈ (0, 1]. Under
Assumption 3.1, ‖T ε − T 0‖(Cα)∗ . ε1+α ∨ ε2 log3(1/ε) for all ε ∈ (0, e−1), where the
inequality . holds up to a constant that depends only on α,X , ρ,Y, and c0.

We discuss a statistical application of the preceding result. Suppose the input
measure P is known but the output Q is unknown, and we have access to an i.i.d. sample
Y1, . . . , Yn from Q. Such a setting is natural when we think of the Brenier map as a
multivariate quantile function, where P serves as a reference measure (cf. [11]). Let
Q̂n = n−1

∑n
i=1 δYi denote the empirical distribution, which is supported in Y. In addition,

let T̂ 0
n and T̂ εn with ε > 0 be the Brenier and entropic maps, respectively, for the pair

(P, Q̂n). Our recent work [45] established a central limit theorem for T̂ 0
n in (Cα)∗,

√
n(T̂ 0

n − T 0)
d→ G in (Cα)∗, as n→ ∞, (3.1)

where
d→ signifies convergence in distribution and G is a centered Gaussian variable in

(Cα)∗ (the exact form of G can be found in Theorem 4 in [45]). The next result shows
that the same weak limit holds for the entropic estimator with ε = εn ↓ 0 sufficiently fast.

Corollary 3.7 (Central limit theorem under dual Hölder space). Suppose Assumption 3.1
holds and in addition that one of the following holds for X : (a) X is a polytope, or (b)

Hd−1(∂X ∩H) = 0 for every hyperplane H in Rd. Then,
√
n(T̂ εnn − T 0)

d→ G in (Cα)∗,
provided that εn = o

(
n−

1
2(1+α) ∧ n−1/4/ log3/2 n

)
, where G is the same centered Gaussian

variable in (Cα)∗ as that in (3.1).

Remark 3.8 (Comparison with [43]). [43] showed that E[‖T̂ εnn − T εn‖2L2(P )] = O(ε−1
n n−1).

Combining the bias estimate in (1.3), they established E[‖T̂ εnn − T 0‖2L2(P )] = O(n−1/2) by

choosing εn decaying at the rate n−1/2. It is interesting to observe that, under the dual
norm ‖ · ‖(Cα)∗ , the empirical entropic map enjoys the parametric rate with εn decaying
substantially slower than n−1/2.
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4 Proofs

4.1 Preliminaries

Define
∆ε
ij(x) := 〈yi − yj , x〉 − zεi + zεj , ε ≥ 0.

Observe that Ci(z0) = {x ∈ X : ∆0
ij ≥ 0,∀j 6= i} and T ε(x) =

∑N
j=1 yj

e
−∆εij(x)/ε∑N

k=1 e
−∆ε

ik
(x)/ε for

any i ∈ [N ] and x ∈ X . Furthermore, define

Hij(t) := {x ∈ Ci(z
0) : ∆0

ij(x) = t}.

Observe that Hij(0) = Hji(0) = Ci(z
0) ∩ Cj(z0). For notational convenience, set Mρ =

supx∈X ρ(x) < ∞ and δ = mini 6=j ‖yi − yj‖ > 0. In what follows, the notation . means
that the left-hand side is upper bounded by the right-hand side up to a constant that
depends only on α,X , ρ,Y, and c0. We first establish the following preliminary estimates.

Lemma 4.1. Under Assumption 3.1, the following hold. (i). For any distinct indices i, j,

one has
∫
Ci(z0)

e−∆0
ij(x)/ερ(x) dx ≤ εMρ(diamX )d−1

‖yi−yj‖ . (ii). For any distinct indices i, j, k, one

has
∫
Ci(z0)

e−∆0
ij(x)/εe−∆0

ik(x)/ε ρ(x) dx . ε2 log2(1/ε) for ε > 0.

Proof of Lemma 4.1. (i). By the coarea formula [24, Theorem 3.11],∫
Ci(z0)

e−∆0
ij(x)/ερ(x) dx =

1

‖yi − yj‖

∫ ∞

0

(∫
Hij(t)

ρ(x) dHd−1(x)

)
e−t/εdt. (4.1)

The inner integral can be bounded byMρHd−1
(
Hij(t)

)
≤Mρ(diamX )d−1, as Hij(t) is a

hyperplane section of X , which implies that the right-hand side on (4.1) can be bounded
by ε‖yi − yj‖−1Mρ(diamX )d−1.

(ii). Fix η > 0. Set Ai`(η) := {x ∈ Ci(z
0) : ∆0

i`(x) ≥ η} and Bi`(η) := {x ∈
X : 0 ≤ ∆0

i`(x) < η}, for ` = j, k. Then, applying the coarea formula, the integral∫
Ci(z0)

e−∆0
ij(x)/εe−∆0

ik(x)/ερ(x) dx can be bounded by(∫
Aij(η)

+

∫
Aik(η)

+

∫
Ci(z0)∩Aij(η)c∩Aik(η)c

)
e−∆0

ij(x)/εe−∆0
ik(x)/ερ(x) dx

≤ δ−1e−η/ε
∫ ∞

0

{(∫
Hij(t)

+

∫
Hik(t)

)
ρ(x) dHd−1(x)

}
e−t/ε dt+MρHd(Bij(η) ∩Bik(η))

≤ 2δ−1εe−η/ε(diamX )d−1Mρ +MρHd(Bij(η) ∩Bik(η)).

For the second term on the right-hand side, we separately consider the following two
cases.

Case (a). Suppose that yi − yj and yi − yk are linearly independent. In this case,

Hd(Bij(η) ∩Bik(η)) ≤ (diamX )d−2 η2√
‖yi − yj‖2‖yi − yk‖2 − 〈yi − yj , yi − yk〉2

.

Case (b). Suppose that yi − yj and yi − yk are linearly dependent, so that yi − yk =

c(yi − yj) for some c 6= 0. We will show that there exists η0 > 0 that depends only on
X , ρ,Y, and c0 such that Bij(η)∩Bik(η) = ∅ for all η ∈ (0, η0). We only consider the c < 0

case. The c > 0 case is similar (see Step 1 of the proof of Theorem 1 (i) in [45] for a
similar argument). Suppose Bij(η) ∩ Bik(η) 6= ∅, which entails that there exists some
x ∈ X such that

0 ≤ 〈yi − yj , x〉 − bij < η and 0 ≤ 〈yi − yk, x〉 − bik < η, (4.2)
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where bij = z0i − z0j . Let L1 and L2 be the hyperplanes defined by L1 = {x : 〈yi − yj , x〉 =
bij} and L2 = {x : 〈yi − yk, x〉 = bik}, which are parallel as yi − yj and yj − yk are linearly

dependent. As such, dist(L1, L2) =
|bij−c−1bik|

‖yi−yj‖ . On the other hand, by our choice of x
from (4.2),

dist(L1, L2) ≤ dist(x, L1) + dist(x, L2) ≤
η

‖yi − yj‖
+

η

‖yi − yk‖
=
η(1 + |c|−1)

‖yi − yj‖
,

so that |bij − c−1bik| ≤ η(1 + |c|−1). Observe that

Ci(z
0) ⊂ {x : 〈yi − yj , x〉 ≥ bij} ∩ {x : 〈yi − yk, x〉 ≥ bik}

⊂ {x : 〈yi − yj , x〉 ≥ bij} ∩ {x : 〈yi − yj , x〉 ≤ bij + η(1 + |c|−1)},

which implies that

qi = P (Ci(z
0)) ≤Mρ(diamX )d−1 η(1 + |c|−1)

‖yi − yj‖
.

Hence, if we choose

η0 =
δc0

2(1 + |c|−1)Mρ(diamX )d−1
,

then qi < c0 ≤ min` q` for η < η0, which is a contradiction. Conclude that Bij(η)∩Bik(η) =
∅ for η < η0.

Finally, by choosing η = ε log(1/ε), we see that the desired estimate holds for all
ε ∈ (0, ε0) for some ε0 > 0 that depends only on X , ρ,Y, and c0. For ε ≥ ε0, one may use

the crude upper bound
∫
Ci(z0)

e−∆0
ij(x)/εe−∆0

ik(x)/ερ(x) dx ≤
∫
Ci(z0)

ρ(x) dx ≤ 1, and adjust

the constant hidden in ..

4.2 Proof of Theorem 3.2

The proof is divided into two steps.
Step 1. We first establish that

|〈ϕ, T ε − T 0〉L2(P )| . ‖ϕ‖∞
(
‖zε − z0‖∞e2‖z

ε−z0‖∞/ε + ε2 log2(1/ε)
)
+ ‖ϕ‖Cαε1+α. (4.3)

Since {Ci(z0)}Ni=1 forms a partition of X up to Lebesgue negligible sets, one has

〈ϕ, T ε〉L2(P ) =

N∑
i=1

N∑
j=1

∫
Ci(z0)

〈yj , ϕ(x)〉
e−∆εij(x)/ε∑N
k=1 e

−∆εik(x)/ε
ρ(x) dx.

On the other hand, 〈ϕ, T 0〉L2(P ) =
∑N
i=1

∑N
j=1

∫
Ci(z0)

〈yi, ϕ(x)〉 e
−∆εij(x)/ε∑N

k=1 e
−∆ε

ik
(x)/ε ρ(x) dx. Sub-

tracting these expressions leads to

〈ϕ, T ε − T 0〉L2(P ) =
∑
i 6=j

∫
Ci(z0)

〈yj − yi, ϕ(x)〉
e−∆εij(x)/ε

1 +
∑
k 6=j e

−∆εik(x)/ε
ρ(x) dx. (4.4)

We will replace ∆ε
ij with ∆0

ij on the right-hand side.

Noting that e−∆εij/ε = e(z
ε
i−z

0
i−z

ε
j+z

0
j )/εe−∆0

ij/ε and ∆0
ik ≥ 0 for k 6= i on Ci(z

0) and
using the elementary inequality |et − 1| ≤ e|t||t|, one has, for x ∈ Ci(z

0),∣∣∣∣∣ e−∆εij(x)/ε

1 +
∑
k 6=j e

−∆εik(x)/ε
− e−∆0

ij(x)/ε

1 +
∑
k 6=j e

−∆0
ik(x)/ε

∣∣∣∣∣
≤

∣∣∣∣∣∣e−∆εij(x)/ε
(
1 +

∑
k 6=i

e−∆0
ik(x)/ε

)
− e−∆0

ij(x)/ε
(
1 +

∑
k 6=i

e−∆εik(x)/ε
)∣∣∣∣∣∣

≤ 4ε−1N‖zε − z0‖∞e−∆0
ij(x)/εe2‖z

ε−z0‖∞/ε.
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Lemma 4.1 (i) then yields∣∣∣∣∣∣〈ϕ, T ε − T 0〉L2(P ) −
∑
i 6=j

∫
Ci(z0)

〈yj − yi, ϕ(x)〉
e−∆0

ij(x)/ε

1 +
∑
k 6=j e

−∆0
ik(x)/ε

ρ(x) dx

∣∣∣∣∣∣
≤ 4N3‖ϕ‖∞Mρ(diamX )d−1‖zε − z0‖∞e2‖z

ε−z0‖∞/ε.

Furthermore,∣∣∣∣∣ e−∆0
ij(x)/ε

1 +
∑
k 6=j e

−∆0
ik(x)/ε

− e−∆0
ij(x)/ε

1 + e−∆0
ij(x)/ε

∣∣∣∣∣ ≤ e−∆0
ij(x)/ε

∑
k 6=i,j

e−∆0
ik(x)/ε.

Hence, by Lemma 4.1 (ii), we conclude that∣∣∣∣∣∣〈ϕ, T ε − T 0〉L2(P ) −
∑
i 6=j

∫
Ci(z0)

〈yj − yi, ϕ(x)〉
e−∆0

ij(x)/ε

1 + e−∆0
ij(x)/ε

ρ(x) dx

∣∣∣∣∣∣
. ‖ϕ‖∞

(
‖zε − z0‖∞e2‖z

ε−z0‖∞/ε + ε2 log2(1/ε)
)
.

Setting hϕij(t) =
∫
Hij(t)

〈yj − yi, ϕ(x)〉ρ(x) dHd−1(x), an application of the coarea formula
yields ∫

Ci(z0)

〈yj − yi, ϕ(x)〉
e−∆0

ij(x)/ε

1 + e−∆0
ij(x)/ε

ρ(x) dx =
ε

‖yi − yj‖

∫ ∞

0

hϕij(εt)
e−t

1 + e−t
dt.

We will replace hϕij(εt) with h
ϕ
ij(0). To this end, we need the following estimate, whose

proof will be given after the proof of this theorem.

Lemma 4.2. For any distinct indices i, j, Hd−1
(
Hij(t)∆[Hij(0) + tvij ]

)
. t for all t > 0

with vij = (yi − yj)/‖yi − yj‖2. Here [Hij(0) + tvij ] = {x+ tvij : x ∈ Hij(0)}.
The above lemma yields

|hϕij(t)−hij(0)| . ‖ϕ‖∞t+
∫
Hij(0)

‖ϕ(x+tvij)ρ(x+tvij)−ϕ(x)ρ(x)‖ dHd−1(x) . ‖ϕ‖Cα(t∨tα),

where we used the fact that ρ is Lipschitz and X is bounded. This implies∣∣∣∣∫ ∞

0

(hϕij(εt)− hϕij(0))
e−t

1 + e−t
dt

∣∣∣∣ . ‖ϕ‖Cαεα, ε ∈ (0, 1),

Furthermore, since hϕij(0) = −hϕji(0) (as Hij(0) = Hji(0) = Ci(z
0) ∩ Cj(z

0)), we have∑
i6=j h

ϕ
ij(0)/‖yi − yj‖ = 0. Putting everything together, we obtain the estimate in (4.3).

Step 2. In this step, we establish that ‖zε − z0‖ . ε2 log3(1/ε) for ε ∈ (0, e−1), which,
combined with Step 1, leads to the result of the theorem. This is a slight improvement
on Corollary 2.2 in [20], but follows from the arguments there with a minor modification.
We provide an outline below.

Set

Gi(ε, z) =

∫
e(〈x,yi〉−zi)/ε∑N
j=1 e

(〈x,yj〉−zj)/ε
ρ(x) dx− qi, i ∈ [N ],

and G(ε, z) = (G1(ε, z), . . . , GN (ε, z))ᵀ. By the first-order condition for the semidual
problem (2.4), zε for ε > 0 satisfies G(ε, zε) = 0. By Theorem 3.2 in [20], ∇zG(ε, z

ε) is
invertible on (1N )⊥ (the vector subspace ofRN orthogonal to 1N ), so the implicit function

theorem yields that the mapping ε 7→ zε is C1 on (0,∞) with żε = −
[
∇zG(ε, z

ε)
]−1

Ġ(ε, zε),
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where żε = dzε/dε and Ġ(ε, z) = ∂G(ε, z)/∂ε (note here that Ġ(ε, z) ∈ (1N )⊥). Again,
using Theorem 3.2 in [20], one obtains ‖żε‖ . ‖Ġ(ε, zε)‖/λ2, where λ2 denotes the
second smallest eigenvalue of the matrix diag{q1, . . . , qN} − qqᵀ. By [47], λ2 & 1. Finally,
the proof of Theorem 3.3 in [20] yields that for any η > 0,

|Ġi(ε, zε)| . ε−2η3 + ε−2e−η/ε
(
1 + η2 + εη + (η + ε2)e−η/ε

)
, i ∈ [N ].

Choosing η = 3ε log(1/ε) leads to ‖żε‖ . ε log3(1/ε), so that ‖zε − z0‖ ≤
∫ ε
0
‖żt‖ dt .∫ ε

0
t log3(1/t) dt . ε2

(
1 + log(1/ε) + log2(1/ε) + log3(1/ε)

)
. ε2 log3(1/ε) for ε ∈ (0, e−1).

This completes the proof.

Proof of Lemma 4.2. Set bij = z0i −z0j for notational convenience. Since x ∈ [Hij(0)+tvij ]

for t > 0 satisfies 〈yi − yj , x〉 − bij = t, one sees that [Hij(0) + tvij ] \Hij(t) ⊂ Ci(z
0)c ∩

Cj(z
0)c. Set Hijk(t) = {x : x ∈ Hij(0), x + tvij ∈ Ck(z

0)}, then [Hij(0) + tvij ] \Hij(t) ⊂⋃
k 6=i,j

[
Hijk(t) + tvij

]
. For x ∈ Hijk(t), the translation of x by tvij alters the sign of

〈yi− yk, x〉 − bik, which can happen only when 0 ≤ 〈yi− yk, x〉 − bik ≤ t‖yi− yk‖/‖yi− yj‖.
This implies Hijk(t) ⊂

{
x ∈ X : 〈yi − yj , x〉 = bij , bik ≤ 〈yi − yk, x〉 ≤ bik +RY t

}
=: Aijk(t)

with RY = maxi, j, k distinct
‖yi−yk‖
‖yi−yj‖ . We separately consider the following two cases.

Case (i). Suppose that yi − yj and yi − yk are linearly independent. In this case
Hd−1(Aijk(t)) . t.

Case (ii). Suppose that yi−yj and yi−yk are linearly dependent, i.e., yi−yk = c(yi−yj)
for some c 6= 0. Set L1 = {x : 〈yi − yj , x〉 = bij} and L2 = {x : 〈yi − yk, x〉 = bik} = {x :

〈yi − yj , x〉 = c−1bik}. Since L1 and L2 are parallel, we have dist(L1, L2) =
|bij−c−1bik|

‖yi−yj‖ . In

addition, if x ∈ Aijk(t), then dist(x, L1) = 0 and dist(x, L2) ≤ RY t
‖yi−yk‖ . Arguing as in

the proof of Lemma 4.1 (ii), one can show that there exists a sufficiently small t0 that
depends only on X , ρ,Y, and c0 such that Aijk(t) = ∅ for all t ∈ (0, t0).

Now, since the Hausdorff measure is translation invariant, we have

Hd−1
(
[Hij(0) + tvij ] \Hij(t)

)
≤
∑
k 6=i,j

Hd−1(Aijk(t)) . t, t ∈ (0, t0). (4.5)

For t ≥ t0, one may use the crude estimateHd−1
(
[Hij(0)+tvij ]\Hij(t)

)
≤ Hd−1(Hij(0)) ≤

(diamX )d−1 and adjust the constant in . to see that the estimate (4.5) holds for all t > 0.
Next, consider the set Hij(t) \ [Hij(0) + tvij ]. Each x ∈ Hij(t) \ [Hij(0) + tvij ] satisfies

〈yi − yj , x− tvij〉 = bij , so one must have x− tvij ∈ Ci(z
0)c ∩ Cj(z0)c. This implies that

Hij(t) \ [Hij(0) + tvij ] ⊂
⋃
k 6=i,j [H̃ijk(t) + tvij ], where H̃ijk(t) =

{
x ∈ Ck(z

0) : x + tvij ∈
Ci(z

0), 〈yi−yj , x〉 = bij
}
. In this case, each x ∈ H̃ijk(t) satisfies −RY t ≤ 〈yi−yk, x〉−bik ≤

0, so that H̃ijk(t) ⊂
{
x ∈ X : bik − RY t ≤ 〈yi − yk, x〉 ≤ bik, 〈yi − yj , x〉 = bij} =: Bijk(t).

Arguing as in the previous case, we have Hd−1(Bijk(t)) . t. This completes the proof.

Remark 4.3 (Comparison with [2, 20]). A key estimate in the proofs of Theorem 1.1
in [2] and Theorem 2.3 in [20] that concern the asymptotic expansions of the entropic

cost is on the integral
∫
Ci(z0)

∆0
ij(x)

e
−∆0

ij(x)/ε∑N
k=1 e

−∆0
ik

(x)/ε
ρ(x) dx. Crucial to their derivations is

to use the fact that ∆ij(x) ≥ 0 on Ci(z0) to upper and lower bound the integral. Then,
applying the coarea formula and change of variables t/ε→ t leads to the O(ε2) rate. In
our case, the integrand in (4.4) need not be nonnegative nor a function of ∆ij(x), so
different arguments are needed.

4.3 Proof of Corollary 3.7

Let q̂n,i = Q̂n({yi}), then mini q̂n,i ≥ c0/2 with probability approaching one. Hence,
Corollary 3.6 yields ‖T̂ εnn − T̂ 0

n‖(Cα)∗ . ε1+αn ∨ ε2n log
3(1/εn). It remains to verify that the
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central limit theorem (3.1) for T̂ 0
n holds under our assumption. To this end, it suffices

to verify Assumptions 1 and 2 in [45]. Assumption 1 in [45] holds under the current
Assumption 3.1 and the additional assumption made in the statement of the corollary. To
verify Assumption 2 in [45] (L1-Poincaré inequality for P ), we first note that it suffices
to verify the L1-Poincaré inequality with the expectation replaced by the median; cf.
Lemma 2.1 in [35]. Recall that the median minimizes the expected absolute deviation.
Since X is convex, the uniform distribution over X satisfies (the median version of) the
L1-Poincaré inequality with constant K, say; cf. [6]. For any smooth function f on Rd,

min
c

∫
|f − c| dP ≤Mρmin

c

∫
X
|f − c| dx ≤ KMρ

infx∈X ρ(x)

∫
‖∇f‖ dP.

This implies that P satisfies Assumption 2 in [45].
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