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Abstract—Developing resilience in food, energy, and water
(FEW) systems is a critical priority. The structural topology
of the components of complex agricultural systems interact in
ways that can only be grasped via models and simulations. We
extend previous work on graph models that represent complex
inter-level topology. We show some results of simulating system
dynamic model as a formally tractable way of understanding
resilience in these systems.

Index Terms—Fault taxonomy; smart agriculture, Internet of
Things (IoT), resilience, technology interdependence graph

I. INTRODUCTION

Contemporary agriculture faces a range of novel challenges.
These include potential cyber-physical threats, the repercus-
sions of climate change, complex regulatory environments,
and shifting global financial conditions. The food-energy-
water (FEW) nexus, owing to its highly integrated and multi-
tiered nature, exhibits a heightened susceptibility to cascading
failures. In previous work [1] [2] [3], we have described
our approach to modeling the complex set of interacting
natural and engineered FEW systems in order to understand
potential vulnerabilities and increase overall resilience. That
work involved beginning with abstract graph theoretic models
of interacting components of the FEW system. Those models,
in turn, served as the basis for simulations. In those simula-
tions, we studied the effects of perturbations on the overall
resilience of the FEW system. The present paper extends that
work, offering new results that highlight the role of network
architectures in interacting multi-level systems for resilient
systems design.

II. BACKGROUND AND CONCEPTS

To design resilient FEW systems, it is crucial that we under-
stand the interdependency among water management practices,
water purification processes, energy sources, fertilizers, and
cyber infrastructures. Every one of these subsystems possesses
unique configurations, characteristics, and vulnerabilities. Dis-
turbances to any one subsystem may possibly influence other
components of the FEW system.
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In our analysis, resilience is treated in terms of perturbations
and the dynamics of the system [4]. In previous work, we
described the most important faults and perturbations that
contributed to failures of resilience in FEW systems and we
showed how preventing, masking, or avoiding them is the first
step to improving system resilience [1] [2] [3]. Our study of
FEW systems draws heavily on the comprehensive literature
regarding the taxonomy of faults, perturbations, reliability,
availability, and dependability in engineered systems [5] [6]
[7] [8] [9] [10] [11] [12].

As we discussed in [3], system is defined as an entity
that maintains its individuality as it interacts with other
entities [13]. In the case of FEW component systems, our
approach regards interactions as occuring at system boundaries
where services or transactions occur or are offered. System
services are the results of integration and working several
components inside the system at a specific state. A service
is part of the system functionality defined in the system
specification. Relations among components define the structure
of the system. The interaction of systems is complicated by
the important role played by economic and social factors in
FEW systems [14].

In this paper, we follow the definitions provided in [3],
where we defined what it means to offer a service at the system
boundary. For the purpose of simplifying the simulation, each
of the system components is treated as having a specific state.
The overall states of these components determine the state of
the system. When these components deviate from their defined
states, an anomaly in the service is observed at the boundary
of the system. A service failure takes place when the service
provided deviates from the correct service. Deviations from
correct services can result from errors. The cause of an error
is called a fault [5]. A sudden and discontinuous state change
is called disruption while a disturbance is a continuous state
change for a limited time that leads to service failure. The
manifested result of disruption at the system boundary is a
service outage, while the result of disturbance is a service
deviation that may lead to a service outage. A perturbation
is any unintended changes in the service level resulting in
disturbance and disruption caused by internal or external
faults [15] [16], which is an equivalent term for service failure.



The system definition given here is recursive and can be
extended to the system’s components unless the components
are atomic. In previous work, we explained the interaction
between failures at different levels and how they can influence
other systems [3]. So, for example, if failures happen at the
component level and do not disrupt the whole service, then
the system may offer its services in a degraded mode. The
system specification identifies whether the system is in a
degraded mode or failure mode. The difference between these
two states identifies system resilience. If a system can return
from degraded mode within an appropriate time-frame while
offering basic services to its correct service mode, it is called
resilient, while a failed system does not return to performing
its service. Resilience is a concept that, while not always
defined with pinpoint accuracy, can still be grasped through a
set of general characteristics. These characteristics give us a
good understanding of the essence of resilience, even if they
don’t meet the strict standards of a philosophical definition
rooted in absolute or exclusive terms. In their work, Pipa and
Symons [4] distinguished two qualities often confused with
each other: robustness and resilience. Their analysis leads to
the conclusion that a system can be deemed resilient based on
specific criteria, even if those criteria might not capture the
entire complexity of the concept. On their definition, a system
can be said to be resilient if: (a) It is prepared for intervention
or perturbation, (b) it maintains its identity and bounces back
after perturbation, (c) it adapts in ways that are guided by its
identity in a time-frame that is appropriate to its identity, (d)
it learns from past perturbations or intervention. In this paper,
we take this general approach to resilience as the basis for our
simulation.

III. MODELING PERTURBATIONS TO FEW SYSTEMS

We use the abstract smart agriculture system presented in
graph theoretical terms in [3] as the base structure of the
simulation. The graph is G(V,E) such that V is a set of nodes
or vertices representing the system entities or components,
and E is a set of links or edges representing the connections
between nodes. Nodes represent component systems and links
show their connectivity. To distinguish kinds of links we use an
edge-colored graph Gconn = (Vc, Ec, C, χ), such that vi ∈ Vc

is a system and en ∈ Ec is a link between two adjacent
systems vi and vj . Furthermore, C is a set of colors equivalent
to the different types of flows in the graph and χ : Ec → C is
a function to assign a color to each edge. We can characterize
three networks containing four nodes, including Microgrid,
Ammonia, Farm, and Water [3].

We employ a directed graph to depict interdependencies
among systems, as not all systems reciprocally rely on each
other. These link directions illustrate the flow of items, ob-
jects, or energy. To showcase partial dependencies, we use
a weighted graph where each weight indicates the degree of
dependency and can correspond to the flow magnitude on
the link. The weights differ based on system specifications.
Figure 1 shows the graph model representing a FEW essential
systems and their dependencies [3].
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Fig. 1: A FEW abstract model

IoT enables individual system control and monitoring, thus
making agriculture a cyber-physical system. The cyber layer
overlays the physical system as illustrated in Figure 2. All
systems link to the Internet and are accessible through cloud
services. Communication links are bidirectional, symbolized
by double-headed arrows in the figure.

Fig. 2: A FEW cyber-physical abstract model

It is important to recognize that because the FEW sys-
tem, which combines both engineered and biological systems,
that any model must tackle systems with radically differing
degrees of resilience operating on different time-frames. For
example, a farm’s biological systems are typically capable of
withstanding a range of short-term faults and perturbations.
However, the recovery time of many natural systems may be
slower after very significant perturbations. As we discussed
in [3] in engineered systems, especially those without fault
tolerance mechanisms, the system state changes quickly when
the fault presents itself and the system may lose its normal
functionality suddenly. If the fault is persistent with a severe
effect in engineered systems, the system cannot offer any
services, while in biological systems, because of adaptation
there, a new service can appear after the cessation of the
fault. This type of change is common in social and ecological
systems and contrasts sharply with the nature of failure in
typical engineered systems.

It is important to recognize that faults and perturbations
are inevitable [17]. When systems are more interconnected,
their structural topology and interdependency usually become
more complex. This complexity can affect the system’s overall
function. For instance, the topology of a power grid can impact
the stability of power transmission, which can affect water
treatment systems’ operation and the production of ammonia
fertilizer for agriculture. These, in turn, can impact crop yields
and profitability.



A. Simulation Model and Analysis

Stella [18] is a system dynamic simulation environment
supporting discrete event and agent-based simulation tech-
niques. We use this environment to model the components
and relationships of a FEW system. We use the combination
of system dynamic and discrete event techniques to study the
effect of external and internal faults on the overall performance
of the system. We design the model to represent the same
structure illustrated in Figure 1. The high-level model of the
system is shown in Figure 3, which is an extended version of
our previous study [3] with more capability to simulate faults.
Each node in Figure 1 has been implemented as a module with
their details in Stella. The connections in Figure 3 are flows
between modules equivalent to edges in the graph model and
feedback loops to exchange control information. In the real
world, the feedback loops construct the cyber-physical system.
The color-coded links represent a different type of flow in the
system, though the colors do not have any meaning to Stella.
Circles provide input values to the model or store results. Input
values can be constants or mathematical functions changing
during the simulation. Each input is evaluated in each simula-
tion step and is fed to the model. We explain each component
of the model in the following.

Fig. 3: Simulation model

We consider an isolated microgrid in this model designed
only for FEW operations. This assumption helps to study
the system’s sustainability more effectively compared to the
connected microgrid. In a connected microgrid, any challenges
to the electrical grid may propagate to the microgrid. Our
future plan is to study the resilience of this option on a FEW
system.

We examine frequent internal and external microgrid faults.
Weather conditions, like changing wind speeds or cloud cover-
age, are common external faults that moderately impact wind
turbines and solar panels’ electricity production. Though re-
sources are available to identify the average of sunny days [19]

or wind speed in a certain location [20], deviation from the
average value is inevitable. Minor weather changes can disrupt
ill-prepared microgrids, and global warming exacerbates these
shifts. Two primary solutions to weather-related failures are
adding more renewable resources and utilizing battery storage.
In isolated grids, battery storage is cost-effective and logical,
as surplus electricity can’t be sold. Here, batteries are charged
with any excess electricity.

A key external fault for the microgrid is fluctuating electric-
ity demand in its subsystems. The ammonia system requires a
consistent electricity amount, posing no significant demand
threats, but it consumes most of the electricity in smaller
farms. The farm’s irrigation system periodically alters electric-
ity demand, but its max consumption is predefined. Similarly,
the water system has a set pumping capacity, though electricity
shortages can have varying impacts during simulations.

The major internal fault of the microgrid is equipment
failure. However, solar panels and wind turbines are relatively
reliable. For example, photovoltaic modules have warranties of
up to 20 years while their mean time between failure (MTBF)
are over 100 years [21]; therefore, we ignore such faults in
the simulation.

We use the information in Table I for the capital and
operational costs [22] for the microgrid equipment. Electric-
ity generation with wind turbines depends on many factors,
including wind speed and the length of the turbine blades,
although their production efficiency does not exceed 30% with
current technology [23].

We assume that wind turbines can generate electricity 24
hours a day. However, electricity generation by solar panels
depends on the weather condition and the installation site [19].
The peak sun hours vary between 2.2 to 7.4 hours around the
globe. We consider 5 hours a day for this simulation. Figure 4
shows the structure of the microgrid module. In the module,
generated electricity is distributed with priority. The highest
priority assigns to the water module, followed by the farm
and ammonia modules.

Fig. 4: The microgrid module

The farm module simulates irrigation and ammonia fertilizer
usage, with needs based on crop types per acre inputted.



Technology Capital Cost ($/W) Operating Cost($/kWh) Production per Unit Production hour per Day
Wind turbine $0.991 to $1.315 Less than 0.01 Variable 24

Photovoltaic Solar $2.65 Less than 0.01 400 W/m2 2.2 to 7.4
600 kW Battery Storage $0.47 Negligible 2400 Variable

TABLE I: Energy Cost

Water and ammonia availability are dictated by their respective
modules. A shortage of these resources can cause significant
issues in the module. Persistent water scarcity can render farm-
ing unfeasible in an area, leading to broader socioeconomic
impacts and potential cascading failures. While our hydrology
team studies West Kansas water resources, this simulation only
accounts for random seasonal effects.

The farm module’s fertilizer needs primarily depend on
electricity, with a smaller water requirement compared to
irrigation. While a lack of fertilizer doesn’t have devastating
effects, it does decrease crop yields and profits.

The irrigation system has a preset maximum water-pumping
capacity and operates seasonally. System failure, though rare,
can range from severe to catastrophic, depending on its timing.
A failure early in the season, during germination, is most
detrimental. In reality, farmers often maintain and repair
systems pre-season due to its importance to yields and profit.
Our simulations don’t currently factor in this fault due to
insufficient data on crop yields. Fertilizer usage is similar, but
its deficiency isn’t as impactful as water’s.

The water module in the model simulates water availability
to the entire system. The pumping capacity can be initialized
before the simulation. Two sources of water are simulated in
the module; surface and underground water. Drawing water
from both sources is subject to external policy/regulation
determining how much water may be used. This external
policy is treated as an external fault to the water module that
subsequently affects the farm and ammonia modules through
the failure to provide the necessary water. To implement this
fault in the module, we consider the water level in wells.
Extensive pumping decreases the water level, especially if the
water drawn is more than the incoming flow to the well. If the
water level goes below a predetermined value, the pumping
should be stopped for some predetermined period to avoid
damaging the aquifer. The incoming water flow to the well
can be initialized. After passing the period, the water level is
checked, and pumping starts if the water level has improved.

Another external fault of this module is the availability
of electricity. Shortage of electricity disrupts pumping. As
mentioned, the highest priority of electricity distribution is
assigned to this module. If there is no water from the water
module, irrigation and ammonia production is disrupted. How-
ever, more study is required to identify priority of modules to
receive electricity. As mentioned, the ammonia system needs
less water and more electricity compared to the farm. In
a critical situation, when the resources are scared during a
challenge, the decision should be made about which system
provides more profit in a certain time.

Within the system, pump malfunction is a prominent poten-

tial internal fault, jeopardizing the operations of both the farm
and ammonia systems. The repercussions on the farm system
are largely time-sensitive: a mishap during the irrigation phase
can have devastating consequences, whereas an off-season per-
turbation is usually less damaging. Conversely, any disruption
to the water system halts ammonia production for its duration,
leading to daily profit reduction. Diligent maintenance of the
pumps can mitigate the likelihood of such disruptions.

The ammonia module simulates a solid oxide electrolysis
cell (SOEC) with an exothermal Harber-Bosch Reactor to
produce ammonia [24]. This technology requires 334 KW per
day to produce one ton of ammonia [25]. We consider the
same energy consumption pattern in this simulation.

Electricity and water provided by the microgrid and water
systems are two major external sources of faults in this
module. Electrical fluctuations during production can harm the
system, extend production times, and diminish profits. Without
additional resources, this fault could frequently occur with
significant impacts. Water shortages, while more predictable
and of longer duration, lead to considerable profit loss. To
counter brief electrical disruptions, we’ve incorporated battery
storage in the module. However, given the infrequency of
water shortages, we’ve opted not to include additional water
storage in the system.

For optimal profitability, ammonia production should be
consistent throughout the year. While a portion of the pro-
duced ammonia is utilized in the farm module, the surplus
needs storage for eventual sale. This necessitates an ammonia
storage tank. However, the tank’s capacity and transportation
intervals introduce potential issues. If the tank reaches its
capacity, production must halt. Similarly, any disruptions in
transportation can lead to the tank filling up, necessitating a
pause in production. Notably, the tank’s size can influence the
frequency of transportation.

We simulate the model with sensitivity analysis for a sample
farm under normal operating conditions where resources are
sufficient. During the analysis, the number of PV panels and
wind turbines changes as indicated in Table II to realize the
proper amount of electricity for the system and the operation
cost. The analysis is performed over 10 runs. In each run,
external faults are also imposed on the model that affects the
amount of electricity and ammonia production and available
water. All the results are shown with a 95% confidence
interval. Table II shows the simulation parameters and the
type of failure distribution imposed on the model. The external
values in the table show that faults happen outside the module,
but they affect the module. The constant shows constant values
during the simulation, but they are adjustable.

Figure 5 shows cost of electricity production per day during



Simulation Parameter Value Failure distribution
Wind turbine 25 to 35 Constant

PV panel 300 to 450 Constant
Wind energy 8 KW Normal dist.
PV energy 400 W/m2 Linear

Ammonia production 1 tone/day External
Water (ammonia) 1588 liters External

Fertilization period 180 Constant
Crops ammonia demand Normal dist. External

No. Crops 3 (adjustable) Constant
Unit of planting Acre Constant

Irrigation Normal dist. External
Irrigation capacity 500 m3/day Linear/external

Duration 365 days NA
No. of run 10 NA
Delta time 0.25 NA

TABLE II: Simulation Parameters

a year over 10 runs. The optimum electricity production is
584 KW per day, resulting from 340 PV panels and 32 wind
turbines (not shown in this Figure). Since the delta time is
0.25 in the simulation, four samples are calculated in each
time unit. Moreover, The maximum operation cost is around
4 dollars per day. Fluctuations in electricity generation per day
are due to the changes in wind speed and the sunlight period.

Fig. 5: Operation cost per day

Figure 6 illustrates the battery charging pattern over 10 runs
with sensitivity analysis when the number of PVs and wind
turbines changes. It is assumed that the battery is fully charged
at the beginning of the simulation. However, the mean value
shows that, in average, the battery charge is close to zero
during the simulation. It implies that the system cannot even
tolerate any small fluctuation in electricity production in many
situations resulting in failure in other systems.

Figure 7 represents the water drainage process. The water
needed for ammonia production is minimal compared to that
for farm irrigation. Consequently, water usage outside of irri-
gation seasons is virtually nil. As seen in the figure, there are
days when the system demands its maximum water capacity.
On such days, the ammonia module lacks the necessary water,
halting ammonia production. A consistent amount of water is
essential for ammonia production, resulting in a steady line
on the graph during periods when water is only used for
this purpose. Readings below 1,588 liters per day suggest a

Fig. 6: Battery charging per year

fault, which could arise from pump malfunctions, electricity
production issues, or fluctuating water levels. It’s important
to note that irrigation takes precedence over ammonia pro-
duction. Thus, in situations of limited water supply for both
needs, priority is given to the irrigation system. This aligns
with findings from the ammonia module, which noted water
shortages during the simulation.

Fig. 7: Water draining from surface and ground resources

Figure 8 shows the volume of ammonia reserved for sale.
We’ve incorporated a storage tank specifically for any surplus
ammonia intended for sale. In this model, the tank’s capacity is
capped at 20 tons. Every 90 days, stored ammonia is shipped
out for sale, utilizing a transportation vehicle with a 10-ton
capacity. Notably, the first shipment occurs 30 days in, but
doesn’t use the vehicle’s full carrying capacity. Conversely,
after the second shipment, residual ammonia remains in the
tank. This suggests that, in future scenarios, the tank may
fill up before scheduled transportation, potentially interrupting
ammonia production.

Figure 9 highlights the profits from ammonia. There’s a
noticeable gap between the peak and trough earnings. Given
that water is generally abundant and the ammonia tank is not
at capacity (Figure 8), this variance stems primarily from elec-
tricity availability. Thus, augmenting our electricity resources
is likely to increase the profits from ammonia production.

The results of the simulation illustrate that how faults in



Fig. 8: Sales and transportation pattern

Fig. 9: Ammonia profit

a FEW system affect different components and due to the
interconnections among these systems, failures happen in ways
that can be shown via the simulation.

IV. CONCLUSION

The overarching goal of our project is to provide decision-
support tools that allow communities and policymakers to de-
sign resilience into complex smart agriculture systems. In this
paper, we use our abstract model to design a simulation tool
for a FEW system and provide a framework to demonstrate
where and how common faults in such systems should be
implemented to study the resilience of the system.
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