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Abstract

Landscape genomic approaches for detecting genotype-environment associations (GEA), isolation by
distance (IBD), and isolation by environment (IBE) have seen a dramatic increase in use, but there have been
few thorough analyses of the influence of sampling strategy on their performance under realistic genomic and
environmental conditions. We simulated 24,000 datasets across a range of scenarios with complex population
dynamics and realistic landscape structure to evaluate the effects of the spatial distribution and number of
samples on common landscape genomics methods. Our results show that common analyses are relatively robust
to sampling scheme as long as sampling covers enough environmental and geographic space. We found that for
detecting adaptive loci and estimating IBE, sampling schemes that were explicitly designed to increase coverage
of available environmental space matched or outperformed sampling schemes that only considered geographic
space. When sampling does not cover adequate geographic and environmental space, such as with transect-based
sampling, we detected fewer adaptive loci and had higher error when estimating IBD and IBE. We found that
IBD could be detected with as few as nine sampling sites, while large sample sizes (e.g., greater than 100
individuals) were crucial for detecting adaptive loci and IBE. We also demonstrate that, even with optimal
sampling strategies, landscape genomic analyses are highly sensitive to landscape structure and migration —

when spatial autocorrelation and migration are weak, common GEA methods fail to detect adaptive loci.

1 | Introduction

Landscape genomics aims to characterize and interpret complex patterns of local adaptation and genetic
structure based on a limited number of genetic samples (Manel et al. 2003; Storfer et al. 2007). The number and
spatial distribution of these samples can have substantial effects on the power and accuracy of common analyses,
and the strength of this effect is likely dependent on the environmental structure of the landscape and the
population dynamics of the study system (Dauphin et al., 2023; De Mita et al., 2013; Forester et al., 2018;
Lotterhos & Whitlock, 2015; Manel et al. 2012; Oyler-McCance et al., 2013; Selmoni et al., 2020). This
dependence remains poorly understood, however, because the sensitivity of common methods to sampling
strategy has not been evaluated across a realistic range of environmental, demographic, and genetic conditions.

Two major classes of landscape genomic analysis include (1) quantifying the drivers of genetic structure,
including isolation by distance (IBD; Wright, 1943) and isolation by environment (IBE; Wang, 2013), and (2)
identifying genes linked to environmental variation using genotype-environment association (GEA; Capblancq

& Forester, 2021; Caye et al., 2019; Frichot et al., 2013; Forester et al., 2018). Previous work evaluating the



performance of GEA under different sampling schemes and demographic scenarios have found mixed support
for the importance of sample distribution and have generally concluded that maximizing sample size is most
important (De Mita et al., 2013; Forester et al., 2018; Lotterhos & Whitlock, 2015; Selmoni et al., 2020). These
studies also showed that demographic conditions play a role in the performance of different methods and
sampling strategies, but all of them were limited to testing a small number of demographic scenarios (two to
four), likely due to computational constraints, and none evaluated the effects of landscape structure (though see
Forester et al. 2016) nor tested methods for detecting IBD and IBE (De Mita et al., 2013; Forester et al., 2018;
Lotterhos & Whitlock, 2015; Selmoni et al., 2020).

Here, we build off of existing studies to evaluate the effects of common sampling strategies on landscape
genomic analyses under complex and realistic conditions simulated using Geonomics (Terasaki Hart et al.,
2021). Our aim was to test a range of sampling strategies while varying key demographic and landscape
parameters expected to affect landscape genomic results, including population size, migration rate, selection
strength, autocorrelation within landscape layers, and correlation between landscape layers. We predicted that
weak migration and small population size would reduce discovery rates for GEA by generating confounding
population genetic structure (Hoban et al., 2016; Price et al., 2020; Li et al., 2017; Rellstab et al., 2015), but that
these same conditions would positively affect the performance of methods to quantify IBD and IBE since
decreased migration and small population size should increase signatures of isolation (Wang & Bradburd, 2014).
We expected that greater selection strength would have a positive effect on both GEA and detection of IBE by
increasing the strength of local adaptation. We hypothesized that the structure of the landscape, as defined by the
correlations between environmental variables and the degrees of spatial autocorrelation within them, would also
have a strong effect since landscapes drive spatially variable selection and, thereby, patterns of local adaptation
(Forester et al., 2016; Lotterhos 2022; Rellstab et al., 2015). Specifically, we predicted that higher
autocorrelation would have a positive effect on both GEA and the detection of IBE, while higher correlation
between landscape layers would make it harder to disentangle which environmental variable is associated with
an adaptive locus. Finally, we hypothesized that sampling design would interact with all of these factors to
determine the power and accuracy of landscape genomic analyses.

We created 32 unique simulation scenarios by varying population genetic and landscape parameters and
ran forward-time, spatially continuous, and individual-based Geonomics simulations (Terasaki Hart et al., 2021).
We allowed populations to evolve freely on the simulated landscapes and sampled them using a total of seven

individual- and site-based sampling schemes. We tested a suite of common landscape genomic methods for GEA



and for detecting IBE and IBD. By exploring the parameter space defined by the full crossing of simulation
conditions and sampling schemes, we created a robust framework through which to understand the effects of

sampling design, demography, and landscape structure on landscape genomic analysis.

2 | Materials and Methods

2.1 | Simulated landscapes

To evaluate the effects of landscape structure, we simulated environmental layers with different levels of
spatial autocorrelation (i.e., the tendency of nearby points to exhibit more similar values) and correlation
between layers. We used the R package “NLMR” version 1.1.1 (Sciaini et al., 2018) to create 100 by 100 cell
layers using a midpoint displacement neutral landscape model, which generates landscapes with realistic fractal
patterns and user-defined levels of spatial autocorrelation (Peitgen & Saupe, 1988). To simulate adaptation to
two environmental variables, we used a pair of simulated landscapes in each simulation. We set spatial
autocorrelation using the roughness parameter (H) to either 0.05 (weak autocorrelation; Moran’s I of
approximately 0.66) or 0.5 (strong autocorrelation; Moran’s I of approximately 0.99). We set the correlation
between layers to r = 0.3 (weak correlation) or r = 0.6 (strong correlation). We chose these levels of spatial
autocorrelation and environmental correlation based on distributions we generated from global temperature,
precipitation, and tree canopy cover rasters by randomly sampling windows of 100 by 100 cells and calculating
Moran’s I of the variables and the correlation between temperature and precipitation within each window (File
S2; Fick & Hijmans, 2017). To ensure that our results were not dependent on a particular landscape
configuration, we generated three independent replicates of our landscapes (see Figure S1 for example

landscapes).

2.2 | Geonomics simulations

To test the effects of population size, migration rate, selection strength, spatial autocorrelation, and
environmental correlation on the performance of different sampling strategies and methods, we simulated each
of these parameters at a “low” and “high” level (see File S3 for the complete parameters file; Figure S2). We ran
10 replications of each simulation to capture variation in results due to stochasticity. Together with the three sets

of simulated landscapes, this produced a total of 960 simulations (30 repetitions of 32 unique parametrizations).



We ran our simulations in Python version 3.9.7 (Van Rossum & Drake, 2009) using Geonomics version 1.3.9
(Terasaki Hart et al., 2021).

The simulated landscapes were provided to Geonomics as the environmental layers driving local
adaptation. A single environmental layer acts as the selective force for a single continuous trait. To simulate
multivariate adaptation (i.e., adaptation to multiple environmental gradients), we used two environmental layers
to drive selection on two separate traits. Each of the two traits had phenotypic values determined by the additive
effects of four independent, co-dominant loci, for a total of eight adaptive loci. The phenotype for a given trait
was calculated as the “null” phenotype plus the sum of the allele dosages at all loci underlying that trait
multiplied by their effect sizes. In our simulations, the “null” phenotype value was 0.50 and the effect sizes were
0.25 for two of the loci and -0.25 for the other two loci for each trait. Because the simulated species was diploid,
there were eight total alleles underlying each trait, resulting in phenotype values ranging from 0 to 1 by
increments of 0.125. We also simulated 10,000 neutral loci to simulate neutral population genetic structure. All
adaptive and neutral loci were allowed to freely recombine and, therefore, are unlinked.

We varied population size, migration rate, and selection strength in our Geonomics simulations to create
a range of population genetic scenarios (Table S1). We varied population size by changing the carrying capacity
(K) of each cell in the landscape, with all cells having uniform values. This results in population sizes of
approximately 3,000 - 4,000 when K = 1 and 5,000 - 7,000 when K = 2. We varied migration rate by changing
the variance of the lognormal distributions used to model migration and dispersal distances (Nield et al., 2020;
Russo et al., 2006; Uriarte et al., 2011). The mean of these distributions was set to 0 such that the expected
movement and dispersal values when variance = 0.25 was approximately 1 cell width and when variance = 1.00
was approximately 2 cell widths. We varied selection strength by changing the phenotypic selection coefficient
(¢), which dictates the strength of selection acting on all loci underlying a trait. We tested ¢ values of 0.5 and 1.0
for both traits to represent our lower and higher levels of selection, respectively. An individual’s fitness is
determined by the product of ¢ and the absolute difference between the individual’s phenotype value and the
environmental value at its location.

Each Geonomics simulation begins with a “burn-in” period where individuals move and reproduce,
without selection, until an equilibrium in the population dynamics is achieved, as described in Terasaki Hart et
al. (2021). Following this period, we ran our simulations for 6,000 time steps. We determined that 6,000 steps
was sufficient time for the simulations to achieve equilibrium by running a subset of simulations for 10,000

timesteps and testing for demographic and population genetic equilibrium over time (File S4). We also



confirmed post hoc that the simulations had reached equilibrium in mean fitness and that local adaptation had
occurred based on phenotype-environment correlations (File S5). We estimated the strength of genotype-
environment associations by calculating the magnitude of the correlation between dosages for each adaptive
locus and their corresponding environmental variable. We tested the effect of landscape and population genetic
parameters on local adaptation by running linear models with the phenotype-environment and genotype-
environment correlations as the response variables and the simulated parameters as the predictors. To estimate
the confounding effects of neutral structure under the different simulated conditions, we calculated the
correlation between each neutral locus and each environmental variable and compared the magnitudes across the

different parameter levels.

2.3 | Effects of sampling

To quantify the effects of sampling strategy on the performance of landscape genomic methods, we
varied the sampling unit (i.e., either individual- or site-based), sampling scheme (i.e., spatial distribution), and
sample size. For individual-based sampling, we extracted allele dosages, environmental values, and coordinates
for each individual. For site-based sampling, we extracted allele frequencies, average environmental values
across individuals, and coordinates for each site.

Under individual-based sampling, we selected samples across the landscape using four different schemes:
random, grid-based, transect-based, and a form of environmentally stratified sampling that we refer to hereafter
as ‘E-space sampling.’ The random sampling scheme mirrors unstructured or opportunistic sampling, and the
grid-based scheme mimics sampling efforts that aim for even geographic coverage. We used E-space sampling to
maximize the range of environmental values covered while minimizing spatial autocorrelation for both
environmental variables, thereby increasing the power to detect environmentally-driven patterns of genetic
variation while decreasing the confounding effects of spatial autocorrelation, which can lead to false discoveries.
This is similar to an approach described by Lotterhos & Whitlock (2015) that involves selecting sampling pairs
that are geographically close but environmentally distant. However, instead of selecting pairs, we performed E-
space sampling by taking sets of random samples and selecting the set that balanced maximizing the range of
environmental values covered against minimizing spatial autocorrelation measured with Moran’s 1. This was
done by calculating a score for each of the random sampling schemes by summing the scaled variance of each

environmental variable with scaled / - Moran s I and selecting the sample set with the highest score.



For each sampling scheme, we selected 36, 81, 144, or 225 samples for a total of 16 unique sampling
strategies. These values were chosen to allow for even grid-based sampling since they are all square numbers
(e.g., a 6 by 6 grid-based can be used to obtain 36 samples). Applied across all 960 simulations, this resulted in
15,360 individual-based landscape genomic datasets. We performed random sampling by picking random
individual samples from across the landscape. We performed grid-based sampling by breaking up the landscape
layer into a grid based on the number of points to be sampled and sampling each cell randomly. For example, to
sample 36 points, we divided the landscape into a 6 by 6 grid and sampled one random point from each cell. We
performed transect-based sampling by taking random samples along three parallel and equidistant transects
across the landscape. We performed E-space sampling as described above, selecting from 1000 sets of random
samples of a given sample size. Examples of each sampling scheme are shown in Figure 1.

Under site-based sampling, we chose samples around “sites” selected based on the three possible
sampling schemes: random, grid, and E-space sampling. For each scheme, we used 9, 16, or 25 sites for a total
of nine unique sampling strategies, and we selected the ten closest samples to each site. These values were
chosen to allow for even grid-based sampling since they are all square numbers. Applied across all 960
simulations, this resulted in 8,640 site-based landscape genomic datasets. We performed random and E-space
sampling the same way as for individual-based sampling. We performed grid-based sampling by choosing
equidistant sites across the landscape based on the number of sites to be sampled. This scheme is analogous to
the individual grid-based sampling scheme and approximates a sampling scheme with even coverage of

geographic space. Examples of each sampling scheme are shown in Figure 1.

2.4 | Landscape genomic analyses

Using the 24,000 simulated landscape genomic datasets, we evaluated two GEA methods and two
methods for estimating IBD and IBE. For GEA analyses, we implemented Latent Factor Mixed Modeling
(LFMM?2; Caye et al., 2019) and Redundancy Analysis (RDA; Capblancq & Forester, 2021; Forester et al.,
2018). For estimating IBD and IBE, we chose Multiple Matrix Regression with Randomization (MMRR; Wang
2013) and Generalized Dissimilarity Modeling (GDM; Ferrier et al. 2007; Fitpzatrick & Keller, 2015; Mokany et
al., 2022). We selected these methods based on their widespread use and applicability to individual-based

sampling. We carried out our analyses using R version 4.3.0 (R Core Team, 2023).



2.4.1 | Genotype-environment association analyses

LFMM is a univariate GEA method that tests for significant associations between loci and environmental
variables while correcting for unobserved confounders using latent factors (Caye et al. 2019; Frichot et al.,
2013). We performed LFMM (Frichot et al., 2013) using the LFMM2 method, implemented in the R package
'Ifmm' version 1.1 (Caye et al., 2019).

There are two methods within LFMM, “lasso” and “ridge”, which differ in the penalty used for
regularized least-squares minimization (see Caye et al., 2019 and the “lIfmm” package documentation). We tested
both methods and found that the LFMM “ridge” method generally performed best in terms of TPR and FDR, so
we selected the “ridge” method for our analysis (File S6). LFMM also requires the selection of K latent factors
for use in the model. K can be selected based on estimates of population genetic structure from clustering
algorithms (Frichot et al., 2013). We used TESS3 to perform K selection with the R package “tess3r” version
1.1.0 (Caye et al., 2016). TESS3 provides estimates of population genetic structure while accounting for
geography (Caye et al., 2016). For each dataset, we evaluated K values from one to nine and automatically
determined K based on where the TESS3 cross validation score plateaued (Hyseni, 2019; File S6).

For RDA, we followed the procedure described by Capblancq & Forester (2021) using the R package
“vegan” version 2.6.4. RDA is a multivariate GEA method that uses constrained ordination to identify covarying
allele frequencies associated with multiple environmental variables (Capblanq & Forester, 2021; Forester et al.,
2018). In addition to standard RDA, we performed partial RDA (pRDA) conditioning on two genetic PCs to
correct for population genetic structure as in Lotterhos (2022).

For both LFMM and RDA, we used a minor allele frequency filter of 0.05, following common practice
used with real genomic datasets and because minor allele frequency filters can affect GEA results (Ahrens et al.
2021). We corrected the p-values produced by LFMM and RDA using a false discovery rate correction and
determined significance based on an alpha level of 0.05. Since RDA computes p-values based on RDA axes,
there is one set of p-values overall, rather than one for each environmental variable. Therefore, to distinguish
which loci were associated with which environmental variable, we assigned each locus identified by RDA to the
environmental variable it had the strongest correlation with, similarly to Capblancq & Forester (2021). The true
positive rate (TPR; the number of correctly identified loci, divided by the total number of adaptive loci) and the
false discovery rate (FDR; the number of loci identified incorrectly, divided by the total number of loci
identified) were used as evaluation metrics. The total nuber of adaptive loci for the TPR was calculated based on

the number of adaptive loci that passed the minor allele frequency filter (we did not count adaptive loci that were



essentially fixed). We calculated the TPR and FDR in two ways: (1) counting any adaptive loci identified as a
true positive or (2) counting only adaptive loci identified with the correct environmental variable as a true

positive. We will refer to these statistics as the relaxed and strict TPR and FDR, respectively.

2.4.2 | IBE and IBD analyses

We performed MMRR as described in Wang (2013). We performed GDM using the R package “gdm”
version 1.5.0.9.1 (Fitzpatrick et al., 2022). Both of these methods estimate IBD and IBE based on the
relationships between genetic, geographic, and environmental distances. The key difference between these
methods is that GDM fits nonlinear functions, known as I-splines, while MMRR uses linear regression with
randomization (Ferrier et al., 2007; Fitzpatrick & Keller, 2015; Mokany et al., 2022; Wang 2013). The
coefficients output by these models were used to estimate the contributions of IBD and IBE, and the p-values
from their significance procedures were used to determine detectability of IBD and IBE. We used Euclidean
genetic, geographic, and environmental distances as inputs for both the MMRR and GDM models. For GDM,
genetic distance values must be less than or equal to one, so we rescaled the euclidean genetic distances from
zero to one. For variable significance testing we used a total of 50 permutations for both methods.

To evaluate the accuracy of these models, “full” models were built using 1000 randomly selected
individuals to approximate “true” values for IBD and IBE using a consistent number of samples across all of the
simulations, which varied in total population size. We post hoc confirmed that coefficient values plateaued by
1000 samples (File S7). The error of the coefficients of IBD and IBE were calculated by taking the difference
between the full model values (i.e., the “true” values) and the sub-sampled model values (i.e., the “observed”
values). Because the maximum coefficient value for MMRR is one while for GDM there is no upper limit, the
coefficients, and therefore the errors, cannot be directly compared. To make the errors more comparable, we
scaled the coefficients by dividing by the maximum full model coefficient value across all of the simulations for
each method so the maximum possible coefficient value was one. We calculated the mean absolute error by
taking the mean absolute value of the difference between the full and sub-sampled model coefficients. Because
there were two environmental variables, we averaged the error for IBE across both environmental variables. We
calculated the correlation between the full model coefficients obtained from MMRR and GDM to get an
approximation of the agreement between the two methods. We also confirmed post hoc that IBD and IBE had
time to develop by calculating the proportion of times that IBD and IBE were detected as significant using the
full models (File S7).



We calculated the TPR and FDR for detection of IBD and IBE based on the bootstrapped p-values from
each method with an alpha cut-off of 0.05. MMRR calculates bootstrapped p-values based on a null distribution
of t-values from permuting the rows and columns of the genetic distance matrix. GDM calculates bootstrapped
p-values based on a null distribution of deviance-explained values from permuting each predictor variable
individually. The TPR was the proportion of times there was a positive detection in both the sub-sampled model
and the full model. The FDR was the proportion of times there was a detection in the sub-sampled model that
was not shared with the full model. The statistics for both environmental variables were averaged to get the
overall IBE TPR and FDR. Sometimes GDM was unable to calculate p-values because (1) the variable
coefficient was zero, (2) the variable permutation procedure could not be conducted because more than two
variable coefficients in the model were zero, or (3) the variable permutation procedure failed because one of the
models used in the calculation could not be fit. In the case of (1), the corresponding variable was treated as non-
significant because the coefficient was zero. In the case of (2) and (3), the p-value based statistics TPR and FDR

were not calculated since the variable permutation procedure could not be carried out.

2.4 | Summary analyses

We used linear mixed effect models to summarize the results of the landscape genomic analyses. The
response variable for these models was the evaluation statistic of interest. The fixed effects were the parameter
levels, the sampling scheme, and the number of samples. Separate models were run for each sampling unit (i.e.,
individual and site-based sampling). A random effect for the random seeds used to generate the sets of simulated
landscapes was used to account for similarities in results between landscapes generated using the same random
seed. We used a Type III Analysis of Variance (ANOVA) to test for significant differences across the predictor
variables using Satterthwaite’s degrees of freedom method with the R packages “lme4” version 1.1.34 (Bates et
al., 2015) and “ImerTest” version 3.1.3 (Kuznetsova, Brockhoff, & Christensen, 2017). We used the “emmeans”
version 1.8.7 (Lenth, 2023) R package to compare the estimated marginal means for the different sampling

strategies with a Tukey adjustment for multiplicity.

3 | Results

3.1 | Simulation results
We confirmed that local adaptation occurred across almost all of our simulations based on phenotype-

environment correlations. We found a significant association between phenotype and environment for at least



one trait in 93% of the simulations (p <.05; File S5). Of the 7% of simulations that did not have significant
associations, 100% of them occurred when spatial autocorrelation was low and correlation between layers was
high (File S5). We found significant correlations between the adaptive loci and their corresponding
environmental variable 63% of the time (p < .05; File S5). Spatial autocorrelation had the greatest effect on the
strength of local adaptation; phenotype-environment and genotype-environment correlations were much stronger

when autocorrelation was high (mean r

phenotype 0.86 +0.05, mean

genotype — 0.32 £ 0.04) than low (mean

rphenotype

=0.36 £0.18, meanr

senotype — 0-09 + 0.05; File S5). Phenotype-environment and genotype-environment

correlations were also strengthened by larger population sizes, stronger selection, less migration, and lower
environmental correlation (p < .05 for all effects), but the magnitude of the fixed effects for these variables were
all <0.1 (File S5). We found that high spatial autocorrelation and low migration led to stronger environmentally-
associated neutral structure; mean genotype-environment correlations at non-adaptive loci were stronger under
high (r=0.12 + 0.04) compared to low (r = 0.06 +0.03) autocorrelation and stronger under low (r=0.13 =+
0.04) compared to high (r= 0.06 + 0.02) migration (File S5). Based on these results, it is evident that (1) low
spatial autocorrelation weakens phenotype- and genotype-environment correlations and (2) low migration
strengthens these correlations but generates stronger confounding correlations between neutral loci and the

environment.

3.2 | GEA analyses

We evaluated how key landscape and population genetic parameters affected the performance of GEA
methods under different sampling strategies. We found that the best conditions for detecting adaptive loci were
when migration and spatial autocorrelation were high (Figure S4; Figure S3; File S6). Outside of these
conditions, the TPR for LFMM and RDA were frequently zero across all schemes (Figure S4; Figure S5; File
S6). The low TPR in scenarios with low spatial autocorrelation and low migration were likely because (1) the
strength of local adaptation was weaker under low autocorrelation and (2) the confounding effects of neutral
structure were stronger under low migration.

In cases where the TPR was not zero, we found that correction for population structure using partial RDA
resulted in reduced TPR compared to standard RDA; the magnitude of the reduction depended on simulated
conditions and sampling strategy, but on average the relaxed TPR was reduced by 0.08 using partial RDA (File
S6). Given these results, we focus further discussion of RDA on regular and not partial RDA. We also found that,

as expected, the relaxed TPR (i.e., based on any adaptive loci identified) were generally higher than the strict



TPR (i.e., based on only adaptive loci identified with the correct environmental variable); however, the
difference between the two was relatively small (mean difference of 0.004 for LFMM and 0.01 for RDA; File
S6). Our finding of little to no difference between strict and relaxed TPR was consistent even under high
environmental correlation (mean difference of less than 0.02 for both methods; File S6), indicating that both
methods were able to distinguish between the driving environmental variables, even when the variables were
correlated. The effects of simulation conditions and sampling strategy were consistent between the strict and
relaxed TPR and FDR, so henceforth we refer to the strict statistics, unless specified otherwise (File S6).

Our results showed that transect-based sampling performed poorly and had a significantly lower TPR
than the other individual-based sampling schemes for both LFMM and RDA (Figure 2, Figure S5, Figure S6;
File S6). The estimated difference in TPR between transect-based sampling and the other schemes was
approximately 0.02-0.05 across both methods and all simulated conditions (p <.001; File S6). The differences
were most prominent under the best conditions for GEA analysis (i.e., high autocorrelation, high migration,
strong selection, large population size, and low correlation between layers); under these conditions, transect-
based sampling led to an average reduction in the TPR of 0.08 for LFMM and 0.09 for RDA compared to other
schemes (File S6). Under site-based sampling, the E-Space scheme performed better than random schemes for
both methods (estimated difference of 0.03 for LFMM and 0.02 for RDA, p < 0.001; Figure 2; File S6). E-space
sampling also performed better than grid-based sampling for LFMM (estimated difference of 0.02, p <.001; File
S6) and had comparable TPR to grid-based sampling for RDA (estimated difference of 0.01, p = 0.21; File S6).
Under both individual- and site-based sampling, differences in FDR between sampling schemes were
insignificant or small (e.g., estimated differences of < 0.05; Figure 2; Figure S5; Figure S6; File S6).

We found that large sample sizes (>100 samples) were necessary for strong GEA performance. However,
under unfavorable conditions for GEA (i.e., low spatial autocorrelation and low migration), almost no adaptive
loci were detected, even with the largest sample sizes (Figure S4; Figure S5; File S6). Outside of these
conditions, the TPR generally increased with increasing sample size and plateaued around 200 samples with
TPR of around 0.90 for LFMM and 0.70 for RDA under the best conditions for GEA (Figure 2; File S6). For
site-based sampling, with increasing sample size the TPR stayed relatively constant for LFMM at around 0.40
and increased for RDA up to about 0.60 under the best conditions for GEA (Figure 2, Figure SS5; File S6). For
LFMM, the FDR decreased with increasing sample size for both individual- and site-based sampling but was

generally above 0.50 under site-based sampling (Figure 2, Figure S5; File S6). For RDA, the FDR was



universally close to zero for individual-based sampling and less than 0.30 for site-based sampling regardless of

sample size (Figure 2, Figure S5; File S6).

3.3 | IBD and IBE analyses

We found that both GDM and MMRR were almost universally able to detect IBD regardless of sampling
strategy and simulation conditions (Figure 3, Figure S7; File S7). The best and worst performing scheme in
terms of IBD error varied between different simulation conditions; for example, with MMRR, under the best
conditions (characterized by lower migration), transect-based sampling produced consistently higher error, but,
under the worst conditions (characterized by higher migration), performed no differently than other schemes
(Figure 3, Figure S7). For GDM, under the best conditions, grid-based site-based sampling performed similarly
to other schemes, but, under the worst conditions, had much lower error than other schemes (Figure 3, Figure
S7). Otherwise, we did not observe any notable differences between schemes (Figure 3, Figure S6, Figure S7;
File S7). IBD error decreased with increasing sample size and appeared to start plateauing around 225
individual-based samples and 25 site-based samples (Figure 3, Figure S7). Our test for concordance between
MMRR and GDM coefficients of IBD found that they were strongly, positively correlated overall (r = 0.91, p
<.001; File S7). The coefficients were most strongly correlated when migration was high and population size
was large (r = 0.60, p <.001; File S7) and most weakly correlated when migration was low and population size
was small (r=0.21, p=0.001; File S7).

Our results indicated that detection of IBE was very sensitive to simulation conditions, sample size, and
method. The TPR for IBE was highest when migration was low and spatial autocorrelation was high (Figure S7;
File S7). When migration was high and spatial autocorrelation was low, IBE did not establish in most cases,
based on the full models (e.g., MMRR had a full model IBE detection rate of 13% under these conditions; File
S7), as might be expected under these conditions, and therefore detection rates were low overall. GDM had
much lower detection rates for IBE than did MMRR (Figure 4, Figure S8; File S7). MMRR was able to detect
IBE with intermediate success (e.g., TPR of ~50 - 80% for individual-based sampling; Figure S8) when either
migration rates were high and spatial autocorrelation was high or when migration rates were low and spatial
autocorrelation was low, but GDM was infrequently able to detect IBE under these conditions (TPR <~25%;
Figure S8). We believe this difference is due to how these methods assess significant relationships (see
Discussion). Another difference between results for the two methods is that MMRR sometimes produced

negative coefficients for IBE. This is of note since the expectation for IBE is that increasing environmental



distance results in increasing genetic distance, so coefficients of IBE are expected to be positive. Only a small
proportion (< 5%) of the negative coefficients for MMRR were significant (File S7). Negative coefficients of
IBE were more common when spatial autocorrelation was weak and environmental correlation was high (File
S7). Weaker selection strength and lower migration rates also resulted in a greater proportion of negative
coefficients, but had a less notable effect (File S7). We found that the full model coefticients of IBE were
strongly correlated between MMRR and GDM (r = 0.67, p <.001; File S7) and the strength of the relationship
was consistent across different levels of migration and autocorrelation, suggesting concordance between the
approaches (File S7).

We found that the best sampling scheme for detecting IBE varied across method and simulation
conditions (Figure 4, Figure S6; Figure S9; File S7). Transect-based sampling had the highest error with MMRR
(estimated difference of 0.007-0.008 compared to other schemes, p <.001; File S7); however, similarly to IBD
error, this difference was mainly found under the best conditions for detecting IBE (Figure 4; File S7) and
otherwise transect-based sampling performed similarly to other schemes (Figure S9). Individual-based E-space
sampling had higher TPR than random and grid-based sampling (estimated difference of 0.08-0.09, p <.001;
File S7) and comparable rates to transect-based sampling (p = 0.09; File S7); However, this pattern was most
evident under the low spatial autocorrelation and low migration scenario shown in Figure S8 and was not
consistent across other simulated conditions. Under site-based sampling, E-space sampling had the highest TPR
for MMRR (estimated difference of 0.14 compared to grid-based sampling and 0.05 compared to random-based
sampling, p <.001; File S7), but, again, this difference was inconsistent across simulated conditions (Figure S8;
File S7).

For GDM, the TPR for IBE was often undefined because IBE was not detected in the full GDM models
(i.e., the denominator for the TPR calculation was zero; Figure S9; File S7). The TPR was also occasionally
undefined in cases where the variable significance procedure could not be carried out because more than two
variable coefficients in the model were zero or because one of the models used in the calculation could not be fit
(File S7). Overall, the TPR was only consistently defined when spatial autocorrelation was high and migration
was low (Figure 4; File S7).

We found that detection of IBE required large sample sizes (>100 samples). When individual-based
sample sizes were approximately 100 or greater, IBE was detected almost 100% of the time by MMRR and
about 50% of the time at best by GDM (Figure 4; File S7), when migration was low and spatial autocorrelation

was high. Under the same conditions, for the largest site-based sample sizes, IBE was detected less than 50% of



the time by MMRR and less than 10% of the time by GDM (Figure 4; File S7). We found that more migration
and lower spatial autocorrelation resulted in lower detection rates using both MMRR (for individual-based
sampling: 3

=-0.43,p<.001; B =0.27, p =<.001; Figure S3; File S7) and GDM (for

migration spatial autocorrelation

individual-based sampling: 3 =-0.25,p<.001; B

migration

spatial autocorrelation — 0.12, p <.001; Figure S3; File S7).
When migration was high and spatial autocorrelation was low, IBE did not consistently establish in our
simulations, as expected under conditions of high gene flow and low environmental structure (Figure S8). For

both MMRR and GDM, IBE error decreased with increasing sample size and plateaued around 225 individuals
and 25 sites (Figure 4, Figure S9; File S7).

4 | Discussion

We found that landscape genomic methods were largely robust to sampling schemes. However, sampling
to maximize environmental space and minimize sample spatial autocorrelation (i.e., E-space sampling)
performed better than or comparably to other sampling schemes, while transect-based sampling led to
consistently worse results. Sufficient sample size (>100 samples) was critical for detecting adaptive loci and
IBE, but not for detecting IBD. Our results show that landscape structure and migration have significant effects
on the performance of landscape genomic analyses. Even though local adaptation occurred across most of our
simulated conditions, high environmental spatial autocorrelation and strong migration were the only conditions
under which we were able to consistently identify adaptive loci and high spatial autocorrelation and weak

migration were the only conditions under which we could consistently detect IBE.

4.1 | The effect of sampling strategy on GEA analyses

Transect-based sampling resulted in lower detection ability for GEA analyses (Figure 2). We believe this
is due to the irregular distribution of geographic distances and potential gaps in coverage of the environmental
gradient caused by sampling along transect lines. Otherwise, we found that the differences between schemes
under individual-based sampling were minor in most cases (e.g., absolute differences in TPR of < 0.02; Figure 2;
Figure S5), likely because they all covered large parts of geographic and environmental space. However, there
are other schemes which we did not evaluate, because they have known inadequacies, such as highly clustered
sampling or sampling with large gaps, which we expect would exhibit substantially worse performance than the

schemes we tested here. Altogether, we suggest that landscape gnomic researchers may not need to be too



concerned about picking between sampling schemes (e.g., random versus E-space) so long as they gather enough
samples to sufficiently cover environmental and geographic space.

Differences between sampling schemes were more substantial under site-based sampling, likely because
there were gaps in coverage of geographic and environmental space caused by sampling fewer locations overall.
For site-based sampling, we found that E-space sampling resulted in significantly higher TPR compared to
random sampling (estimated difference of 0.03 for LFMM and 0.02 for RDA, p <0.001 for both; Figure 2; File
S6) and had comparable or higher TPR than grid-based sampling (estimated difference of 0.02 for LFMM and
0.01 for RDA, p <.001 and p = 0.21, respectively; Figure 2; File S6). These differences were especially
pronounced under the best conditions for detecting genotype-environment associations (high autocorrelation and
high migration); for example, with RDA using 25 sites, the average TPR was 0.62 for E-space sampling and 0.55
for random sampling (File S6). This is in line with findings of Lotterhos & Whitlock (2015) who tested an
analogous approach of sampling pairs that were geographically close but environmentally distant and found that
sampling to maximize adaptive differences and minimize neutral distances resulted in increased power for GEA.
When researchers are aiming to capture patterns across more than a couple of environmental gradients, sampling
to maximize environmental coverage may be even more important.

We found that RDA had lower FDR than LFMM, while LFMM had higher TPR than RDA (Figure 2;
Figure S5). When the number of samples was small (i.e., less than 114 samples or 25 sites), LFMM suftfered
from extremely high FDR (Figure 2; Figure S5). In contrast, RDA had universally low FDR at large sample sizes
(more than 114 samples or 25 sites) and moderate FDR at small sample sizes (Figure 2; Figure S5). Ahrens et al.
(2021) similarly found that LFMM had high false positive rates. Ahrens et al. (2021) also found that RDA was
unable to detect any loci, correctly or incorrectly, in their analyses, which is similar to our findings that RDA had
generally lower TPR and FDR than LFMM. In terms of selecting between regular and partial RDA, we found
that correcting for structure with PCs using partial RDA resulted in a loss of power, similarly to Forester et al.
(2018) and Lotterhos (2022). TPR for both methods increased with increasing sample size and plateaued around
200 samples (Figure 2), which is in line with findings by Forester et al. (2018), Oyler-McCance et al. (2013), and
Selmoni et al. (2020). Our comparison between the relaxed versus strict TPR revealed only minor differences
between the two (average difference of < 0.01; File S6), demonstrating that these methods were able to
distinguish between the environmental variables driving selection on each trait, even when the variables were
correlated (r = 0.6). This is a promising finding as the ability to distinguish between environmental drivers of

selection in scenarios where the variables of interest are correlated is of key interest in landscape genomics;



however we caution that at levels of environmental correlation higher than simulated here (r > 0.6), which can be
the case for variables such as temperature and precipitation (File S2), it is still likely that GEA methods would
not be able to distinguish between the environmental drivers.

We were unable to detect almost any adaptive loci when migration was weak or when the environmental
variables had low levels of spatial autocorrelation (Figure S4; Figure S5). We found that under low spatial
autocorrelation, the signal of local adaptation was much weaker based on phenotype-environment and genotype-
environment correlations, while under low migration, the signal of confounding population genetic structure was
stronger based on correlations between non-adaptive loci and the environment (File S5). Even with large sample
sizes, we were unable to identify any loci correctly under these conditions (Figure S4; Figure S5). In these
scenarios, it is more conservative to use RDA due to the lower likelihood of false discoveries. However, if the
goal is maximizing the detection of adaptive loci and the tradeoff of false discoveries is acceptable, we advise
using LFMM, since RDA is unlikely to detect any loci at all (Figure S4; Figure S5). Forester et al. (2016)
similarly found that higher levels of spatial autocorrelation corresponded to stronger local adaptation and better
GEA analysis performance. However, while Forester et al. (2016) found that high dispersal resulted in worse
GEA analysis performance, we found the opposite effect (File S6). It is challenging to pinpoint the source of this
difference because our simulations have several key differences; Forester et al. (2016) simulated a single
adaptive locus governing a single trait on a binary environmental landscape, while we simulated multiple
adaptive loci governing multiple traits on continuous landscapes. A likely explanation is that we did not simulate
high enough migration rates to reach the level of swamping gene flow described by Forester et al. (2016) and
that if we continued to increase the migration rate we would see similar results. In the same vein, it ipossible that
Forester et al. (2016) did not uncover the strong confounding effects of population structure at lower levels of
dispersal that we did because a single adaptive locus of strong effect is easier to detect than several loci with
smaller effects (Lotterhos, 2023).

A limitation of our results 1s that we did not evaluate the effects of different genetic architectures,
although the prevailing genetic architecture underlying traits that drive environmental adaptation remains largely
unknown. In general, polygenic architectures comprising many alleles of small effect may be common in
environmental adaptation (Savolainen et al., 2013), but prolonged divergent selection may give rise to 'clustered'
architectures in which loci of small effect cluster into tightly linked haplotypes of larger effect (Yeaman, 2022).
Our simulations approximate these clustered architectures as an oligogenic system. While we do not vary the

numbers and effect sizes of the loci involved, and thus do not explore the influence of genetic architecture on our



results, we expect doing so would generate similar results to Lotterhos (2023): increasing polygenicity would
likely decrease the appearance of clear clines and make GEA largely unsuccessful. Landscape genomic
researchers should bear this in mind, as the genomic architecture underlying ecological traits of interest is often
unknown but may frequently be polygenic (Savolainen et al., 2013), presenting a significant hurdle for GEA.
Another caveat of our study is that we do not know how well our simulated selection strengths align with
real environmental selection, because the strength of environmental selection in nature remains difficult to
quantify. We controlled selection strength in our simulations using the phenotypic selection coefficient (¢). In
Geonomics, an individual’s fitness is determined by the product of ¢ and the degree of phenotype-environment
mismatch. We set the levels of ¢ at 0.5 and 1.0 to observe the effect of halving the strength of selection. We
found that weaker selection corresponded to lower detection rates of adaptive loci, as expected, and selection

strength does not appear to have any notable interacting effects with sampling scheme.

4.2 | The effect of sampling strategy on IBD and IBE methods

Across all of the simulated conditions and sampling regimes, we were able to detect IBD consistently
using both MMRR and GDM, even with as few as nine sites (Figure 3; Figure S7). For MMRR, transect-based
sampling resulted in higher error when IBD was stronger (e.g, under low migration and high spatial
autocorrelation; Figure 3; Figure S7). For site-based sampling, there were no notable differences between
schemes for either method, except grid-based sampling led to lower error for GDM when IBD was weaker (e.g.,
under high migration and low spatial autocorrelation; Figure 3; Figure S7). Error in estimating the coefficient of
IBD decreased with increasing sample size and began plateauing around 225 individual-based samples and 25
site-based samples (Figure 3; Figure S7).

In contrast to IBD, detecting and estimating IBE proved to be more challenging. We found that detection
of IBE was most successful when migration was low and spatial autocorrelation was high, which makes sense
given that these conditions create greater population genetic structure and stronger local adaptation and therefore
stronger IBE (Figure 4; File S7). When one of these conditions (i.e., low migration or high spatial
autocorrelation) was met, but not the other, IBE was detected at intermediate frequency using MMRR but almost
never using GDM (File S7). When neither condition was met, IBE was rarely detected by either method (Figure
S9).

GDM generally had much lower levels of detection for IBE compared to MMRR (Figure 4; Figure S9).

We believe this difference may be due to how these methods determine significance. MMRR calculates p-values



based on permuting the rows and columns of the genetic distance matrix while GDM calculates p-values based
on permuting each predictor variable individually (Fitzpatrick et al., 2022; Wang, 2013). The GDM permutation
test is likely more conservative than that of MMRR. Despite these differences in detection, the coefficients of
IBE were strongly correlated between GDM and MMRR (r > 0.6; File S6), suggesting that estimates of IBE
from the two methods are comparable.

To optimize the sampling approach for the detection and estimation of IBE, we recommend using E-
space sampling. E-space sampling resulted in better or similar detection of IBE compared to other individual-
and site-based sampling schemes (Figure 4; Figure S8; Figure S9). We suggest avoiding transect-based sampling
to detect and estimate IBE, as this scheme had higher error in many cases, especially for MMRR (Figure 4). We
recommend that 100 or more individual samples or 50 or more sites be used for detecting IBE with MMRR
(Figure 4). For GDM, larger sample sizes are needed, but even with large sample sizes IBE detection rates may

be low (Figure 4; Figure S9).

4.3 | Conclusions

The performance of landscape genomic analyses is shaped by the interactions between sampling strategy,
population dynamics, and landscape structure. Through individual-based, forward-time simulations on realistic
landscapes we show that, as long as sampling covers sufficient environmental and geographic space, differences
between sampling schemes are likely to be minimal. To optimize performance, we recommend using E-space
sampling, as it performs better than or comparably to other sampling schemes. We also recommend avoiding
transect-based sampling, which consistently produces the worst results. We find that having over 100 samples,
collected individually or by site, is essential for GEA analysis and for detecting and estimating IBE, but is not
necessary for detecting and estimating IBD. When spatial autocorrelation and migration are weak, RDA and
LFMM fail to detect adaptive loci, regardless of sample scheme and size, and when spatial autocorrelation is
weak and migration is strong, GDM and MMRR fail to detect IBE, but still manage to detect IBD. Otherwise,
when spatial autocorrelation and migration are high and sampling adequately covers environmental and
geographic space, we find that GEA methods are able to detect around 80% of the loci underlying multivariate
adaptation. Our results demonstrate the importance of simulating complex population genetic and landscape
scenarios when evaluating sampling strategies, as the relative performance of different strategies varied

dramatically, and often idiosyncratically, under different conditions. Altogether, we show that landscape genomic



practitioners should focus on maximizing overall sample size using any even sampling scheme, especially in
scenarios where landscape structure is weak.
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A Individual-based sampling B. Site-based sampling
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Figure 1.
Example of different (A) individual-based and (B) site-based sampling strategies on an example landscape with

high spatial autocorrelation. Abbreviations: transect-based (T), random (R), grid-based (G), E-space (ES).
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Figure 2. Selected simulation results showing the effect of sampling strategy on TPR and FDR for GEA
analyses under the best conditions. Sampling strategy includes sampling units (i.e., individual and site-based;
panels A and B, respectively), sampling scheme (e.g., random), and sample size. The best conditions are high
spatial autocorrelation, low environmental correlation, high migration rate, large population size, and strong
selection. To see results under the worst conditions, see Figure S5. Results for all other simulated conditions and
statistics can be found in File S6. Each point represents the average of all of the simulation iterations and
landscape seeds. The bands represent one standard deviation from the mean. Abbreviations: Redundancy
Analysis (RDA), Latent Factor Mixed Models (LFMM), transect-based (T), random (R), grid-based (G), E-space

(EG), strict true positive rate (TPR), and strit false discovery rate (FDR).
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Figure 3. Selected
simulation results showing the effect of sampling strategy on detection and estimation of IBD under the best
conditions. Sampling strategy includes sampling units (i.e., individual and site-based; panels A and B,
respectively), sampling scheme (e.g., random), and sample size. The best conditions are low correlation between
layers, low migration rate, small population size, and strong selection. For MMRR, high spatial autocorrelation
is also best (i.e., significantly reduces error), but the effect is small (< 0.01; File S7), and therefore for
consistency with the IBE plots, high spatial autocorrelation is used in this figure. To see results under the worst
conditions, see Figure S7. Results for all other simulated conditions and statistics can be found in File S7. Each
point represents the average of all of the simulation iterations and landscape seeds. Abbreviations: Multiple
Matrix Regression with Randomization (MMRR), Generalized Dissimilarity Model (GDM), transect-based (T),
random (R), grid-based (G), E-space (ES), true positive rate (TPR), false discovery rate (FDR), and mean

absolute error (MAE).
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Figure 4. Selected simulation results showing the effect of sampling strategy on detection and estimation of IBE
under the best conditions. Sampling strategy includes sampling units (i.e., individual and site-based; panels A
and B, respectively), sampling scheme (e.g., random), and sample size. The best conditions are high spatial
autocorrelation, low environmental correlation, low migration rate, small population size, and strong selection.
To see results under the worst conditions, see Figure S9. Results for all other simulated conditions and statistics
can be found in File S7. Each point represents the average of all of the simulation iterations and landscape seeds.
Abbreviations: Multiple Matrix Regression with Randomization (MMRR), Generalized Dissimilarity Model
(GDM), transect-based (T), random (R), grid-based (G), E-space (ES), true positive rate (TPR), false discovery

rate (FDR), and mean absolute error (MAE).



