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Abstract. Large Language Models (LLMs) now excel at generative
skills and can create content at impeccable speeds. However, they are
imperfect and still make various mistakes. In a Computer Science edu-
cation context, as these models are widely recognized as “Al pair pro-
grammers,” it becomes increasingly important to train students on eval-
uating and debugging the LLM-generated code. In this work, we intro-
duce HYPOCOMPASS, a novel system to facilitate deliberate practice on
debugging, where human novices play the role of Teaching Assistants
and help LLM-powered teachable agents debug code. We enable effective
task delegation between students and LLMs in this learning-by-teaching
environment: students focus on hypothesizing the cause of code errors,
while adjacent skills like code completion are offloaded to LLM-agents.
Our evaluations demonstrate that HYPOCOMPASS generates high-quality
training materials (e.g., bugs and fixes), outperforming human counter-
parts fourfold in efficiency, and significantly improves student perfor-
mance on debugging by 12% in the pre-to-post test.
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1 Introduction

LLMs are becoming an integral part of software development—commercialized
tools like GitHub Copilot are now advertised as “your Al pair programmer” and
generate up to 46% of users’ code [6]. Despite their prevalence, LLMs often pro-
duce unpredictable mistakes [11], e.g., GPT-4 can still make mistakes 17% of the
time in coding tasks for introductory and intermediate programming courses [22].
The impressive yet imperfect generative capabilities of LLMs, coupled with the
associated risks of excessive reliance on these models, underscore the importance
of teaching evaluation skills to students. In the context of programming, students
must improve their debugging and testing skills [2].

However, debugging tends to be overlooked in formal educational curric-
ula, especially in introductory Computer Science classes (i.e., CS1) [21]. Prior
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Fig. 1. In HyPoCOMPASS, given a programming problem description (A), a student
user (in the role of a Teaching Assistant) needs to compile a test suite (B) and assist
multiple LLM-simulated agents (e.g., Bob, Chelsea, Dave) in an Office Hour Queue
(C) through a chat interface (E). Each LLM-agent acts as a novice seeking help with
a buggy solution (D) and provides feedback to the user (F).

research has outlined various factors contributing to the absence of debugging
instruction, such as instructors’ limited time budget for developing specialized
debugging materials and assessments [19]. Consequently, students primarily learn
debugging from working on their own mistakes, which can be rather frustrating—
they must invest substantial time and effort in hypothesizing the cause of bugs
while grappling with other cognitively demanding tasks, such as understanding
and writing code. These challenges prompt us to ask:

Research Question: Can we train students to improve debugging skills by
providing ezplicit and scaffolded practice with minimal cost to instructor time?

In this work, we focus on training students’ abilities in hypothesis construc-
tion, a critical step in debugging as established by prior work [29,30]. We intro-
duce HyroCowmpass (Fig. 1, Sect. 3), an interactive, LLM-augmented intelligent
tutoring system for debugging. Leveraging LLMSs’ material generation capabil-
ity, we have these models imitate CS1 students who have written buggy code
and require assistance from Teaching Assistants (TAs). Human novice students
assume the role of the TA, who helps troubleshoot these bugs. This enables
students to deliberately practice the skill of hypothesizing about the defects of
LLM-generated code, delegating other tasks not core to hypothesis construc-
tion (e.g., code completion) to the LLM. As a result, HyPOCOMPASS fosters an
engaging learning environment using the teachable agent framework [3] and pro-
vides students with guided exposure to LLM-generated bugs. We also employ
prompting strategies such as focused task formation and over-generate-then-
select to improve LLM generation quality in HyPoCoMPASS (Sect. 4).
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We conducted two evaluation studies and found that HyPOCOMPASS saves
instructors’ time in material generation and is beneficial to student learning. In
our LLM evaluation study (Sect.5), expert inspections on six practice problems
and 145 buggy programs showed that HyPOCOMPASS achieved a 90% success
rate in generating and validating a complete set of materials, four times faster
than human generation. Our learning evaluation study with 19 novices (Sect. 6)
showed that HyPOCOMPASS significantly improved students’ pre-to-post test
performance by 12% and decreased their completion time by 14%.

In summary, we contribute:

— A pragmatic solution that balances the benefits and risks of LLMs in learning.
We use LLMs to prepare students to engage with imperfect LLMs, and we
highlight the importance of role-playing for practical LLM application and
task delegation to help students focus on essential skills.

— A theoretically grounded instructional design to enhance debugging skills. To
the best of our knowledge, we are the first to provide aligned instruction and
assessments on the hypothesis construction learning objectives, i.e., forming
hypotheses about the source of error, a core bottleneck in debugging [25].

2 Related Works

The Debugging Process. Debugging is a complicated process of various cogni-
tively demanding tasks, including understanding the code, finding bugs, and fix-
ing bugs, with the first two considered primary bottlenecks [19,25]. While many
studies have attempted to improve students’ code understanding [12], there is
limited instruction on bug finding. Researchers characterize the cognitive model
of bug finding as a hypothesis construction process, including initializing, modify-
ing, selecting, and verifying hypotheses (Fig. 2B) [29]. This process is challenging:
prior works show that novices struggle to systematically generate comprehensive
hypotheses and identify the right hypothesis, in contrast to experts [7,8]. Hence,
we emphasize teaching students to construct accurate hypotheses about bugs and
develop comprehensive hypotheses about potential bugs.

Tutors and Tools for Debugging Training. Prior studies [19] and online
discussions [21] indicate that teaching debugging is challenging and is rarely
included in CS1 curricula, due to logistical challenges like the lack of instruc-
tional time and resources [5,10]. Existing tools demand instructor effort and
often focus on the full debugging process, improving bug-fixing accuracy and
efficiency [1,15]. In contrast, few studies emphasize accurate or comprehensive
hypothesis construction (and they tend to be language-specific) [13,25]. To fill in
the gap, we design HYPOCOMPASS to provide deliberate practice [9] on hypothesis
construction, and use the LLM generation capability to provide easily adaptable
and targeted exercises with immediate feedback.

LLM Capabilities for CS Learning. LLMs can perform well in a CS1 class-
room [22], but concerns about misuse and LLM errors limit their use in educa-
tion [2]. Therefore, current deployments tend to focus on generating instructional
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Fig. 2. To enable deliberate practice, we establish a close mapping between the (A)
learning objectives, (B) the cognitive debugging process model, (C) the HyPOCOMPASS
interaction flow, and (D) the primary tasks students perform in HypoComprass. We
offload various material generation tasks to LLMs (C2).

materials (e.g., questions [24]). In our work, HyPOCOMPASS uses the LLM to
generate inter-dependent materials in an integrated process and frame the LLM
as a student asking for help [3], such that human novices can embrace imper-
fections in LLMs. Two unique capabilities of LLMs power this: (1) LLMs can
simulate different personas and tutoring interactions [18]; (2) LLMs make com-
mon mistakes and natural bugs similar to humans [20], which can be used as
buggy code practice examples. We adapt and develop various prompting meth-
ods [27] to enhance the quality of LLM generations.

3 The Design of HypoCompass

Grounded in the cognitive process [29] and the novice-expert difference in
hypothesis-driven debugging (Sect.2), we specify two crucial learning compo-
nents for HyPoCoOMPASS: comprehensive and accurate hypothesis construction.
Prior work shows that hypothesis construction is closely connected with test-
ing [30]: each additional test case should, ideally, be a hypothesis about what
can go wrong in the program. In turn, a comprehensive test suite (i.e., a set of
test cases) should allow an effective debugger to construct a accurate hypothesis
about why the program is wrong. We thus design toward two learning objectives
(Fig.2A,D):

LO1. Comprehensive Hypothesis Construction: Construct a comprehensive
test suite that well covers the possible errors for the given problem.

LO2. Accurate Hypothesis Construction: Given the failed test cases, con-
struct an accurate explanation of how the program is wrong.

Interface and Key Components. We designed HyPOCOMPASS through an
iterative development process with 10 pilots, including CS1 students, TAs, and
instructors. In the resulting interface (Fig.1), a human student would be asked
to play the role of a TA where they help an LLM-simulated student (LLM-agent)
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Fig. 3. (a) HypoCoMPAss offers (1) test category hints to help write a comprehensive
test suite systematically; (2) test case hints to help students add missing test scenarios;
(3) candidate explanation pool to clarify misconceptions of alternative explanations.
(b) HyPoCoOMPASS provides immediate feedback to (1) incorrect test cases, ensuring
students understand the code behavior; (2) correct explanations, as correct code fixes;
(3) incorrect explanations, as confusion messages from the LLM-agent.

in debugging. They need to write and sort test cases into categories (Fig. 1B)
that represent different hypotheses of what inputs may trigger errors in code.

Once the student is satisfied with their test suite, HyPOCOMPASS shows
them an Office Hour Queue (OHQ) simulator (Fig.1C). As the student inter-
acts with each LLM-agent, the agent presents a buggy code snippet (Fig.1D).
The student guides the LLM-agent in debugging code through a dialog interface
(Fig. 1E), selecting or creating test cases that reflect their hypotheses of the bug,
and selecting explanations for the bug among a pool of candidate natural lan-
guage explanations. These candidates each explain a different bug, representing
alternative hypotheses that may confuse students (e.g., Fig. 3a3).

The LLM-agent then uses the test case and explanation to revise the code,
providing immediate feedback to the student (Fig.3b). If the explanation is cor-
rect, the agent will conduct minimal code fixes, and present the color-coded edits
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as feedback (Fig. 1F, a zoomed-in view is in Fig. 3bs). Otherwise, the LLM-agent
will ask the student to reflect on their hypothesis by responding with a confusion
message that highlights the discrepancy between the student’s explanation and
the actual code behavior (Fig. 3bs).

Once the student correctly confirms that all the bugs are fixed, they can
move to help the next LLM-agent (Fig.1C). Upon completion, HYPOCOMPASS
will provide the next round of exercises with another programming problem.
While the numbers are configurable, by default HypoCompASS includes two
programming exercises, each with three LLM-agents (buggy programs).

LLM-generated materials

[Input: Problem descriptions @ + pre-defined test suites ....]

’ Write a Python function first_num_greater_than
/I\\ (numbers_list, key) that takes a list of integers...
® 00 @ [osccrchirstnmgreater-than((z,3],) — 3)] Generate multiple buggy codes per probler
Generate descriptive test case hint, per test case ¢ ‘l' l’ def first_num_greater_than (numbers_list, key):
iy [ X X X J for i in range(len(numbers_List)):
Write a test case to cover the scenario where the if numbers_list[i] > key:
key number is presented in the list, but there are return num
numbers greater than the key else:
return None
Generate I i and fix per bug
... J Zi::igg:i:"%"g:::::'é:i:gHjé?:zog) g * z * Explanation: Your code returns None if the first number
T | S = . in the list is not greater than the key. It doesn't check the
Generate starter test case categories hint, per cluster rest of the numbers in the list
Fix: Move “return None” out of the for loop so that it only
No numbers in list greater than key executes after all numbers have been checked.
¢ Generate bug fixes, per (bug, fix statement)
V¥ VvV s first_num_greater_than (numbers_list, key):
P . . 0000 for i in range(len(numbers_list)):
Outp‘ut: MI:I"IP'E 0@ 0@ e0e if numbers_list[i] > key:
practice suites return num
return None

Fig. 4. Examples of inputs and outputs to the LLM material generation pipeline.

We highlight the two most essential components of the interaction:

— Frame imperfect LLMs through role-play. We use the LLM to simulate
students who wrote bugs and have human novices offer help. This teachable
agent setup supports learning, helping students reflect on their knowledge
and reason through diverse bugs [23]. Having students work through “other
people’s errors” also boosts their motivation and protects their self-efficacy [3].
More importantly, it actively involves novices in identifying bugs in LLM-
generated code, enabling guided exposure to LLM imperfectness.

— Task delegation between students and LLMs. To ensure deliberate
practice on comprehensive and accurate hypothesis construction, students pri-
marily engage in two tasks corresponding to each learning objective (Fig. 2D):
(1) making the test suite more complete (LO1); and (2) correctly mapping
explanations to bugs (LO2). We align student interaction flow (Fig. 2C;) with
the cognitive model of debugging [29] (Fig. 2B). LLMs take over other tasks
that are indirectly related to the core learning goals, including generating
diverse bugs and fixes, which frees students from code writing. We also use
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LLMs to support scaffolding, generate hints (Fig. 3a), and provide immediate
feedback throughout the practice (Fig.3b).

4 LLM Integration

As shown in Fig. 2Cs, we use LLM to generate five types of materials: (1) test
case category hints, (2) test case hints, (3) buggy programs, (4) explanations
of bugs, and (5) programs with bugs fixed. We reduce instructor workload by
generating practices using just a problem description, a reference solution, and
a reference test suite with about 10 inputs, and we further minimize human
verification overhead with optimized prompts and automated algorithms. Our
generation process is detailed in Fig. 4, example prompts are in Table 1, and full
prompts are in Table3 in Supplements'. OpenAI’s gpt-3.5-turbo is used for
all materials, except for explanation generation, which uses gpt-4 for enhanced
reasoning capabilities. Below are key factors to the success of generation:

Task Formation and Decomposition. We iterate on our prompts according
to the nature of the task. First, as LLMs behave inconsistently when the user
tasks conflict with LLMs inherent training objectives [28], we carefully formulate
the task to avoid introducing competing tasks. Take Local Bug Fiz (Table1) as
an example: when we directly ask the LLM to fix a bug according to an explana-
tion, we observe that the model almost always over-fix all bugs irrespective of the
provided instructions. This is because LLMs can be biased towards generating
fully correct code (part of the LLM pre-training) and away from local bug fixing
(changing only the buggy snippet described by the instruction, the desired task).
Hence, we re-frame it as a translation task, converting bug-fixing instructions to
its code format o1ld — new code snippet. This task re-framing mitigates the
model’s inherent bias, reducing over-fixing errors by 70%.

Second, for multi-step tasks (e.g., Local Bug Fir), we adopt LLM-
chains [27], decomposing tasks into sub-tasks handled by separate steps, such
that each step contributes to stable performance. Third, we also address prompt
complexity by explicitly prioritizing essential requirements. For tasks like gen-
erating Bug Explanations and Fix Instructions (Table1), we prioritize precise
bug extraction, instructing the model to list all unique bugs upfront. Secondary
requirements (e.g., word limits) are specified only in the output format. This
hierarchical disentanglement significantly improves success rates by over
40%.

Over-Generate-then-Select. While LLMs can easily generate random mate-
rials, it is nontrivial to ensure that their generations have pedagogical values. For
example, behaviorally distinct bugs help students practice with varied instances,
but it is hard to enforce through prompting as it requires LLMs to “know” bug
behaviors. Nonetheless, we can configure the non-deterministic LLMs to over-
generate multiple solutions with mixed qualities [17], and then select a subset
of desired ones (Fig.5). We apply this strategy in multiple places:

! Supplemental materials are at: http://tinyurl.com/hypocompass-sup.


http://tinyurl.com/hypocompass-sup
http://tinyurl.com/hypocompass-sup

272 Q. Ma et al.

Table 1. Prompts and temperatures (Temp.) for generating bugs, explanations, and
fixes. The temperature is set higher for more diverse and random outputs.

Material ‘ Generation goal ‘ Temp.
Buggy To over-generate bugs with mixed quality for further selection. 0.7
code

[s ]You are a novice student in intro CS, you make mistakes and write
ys- buggy code.

Problem Description: {problem description}
Write different buggy solutions with common mistakes like novice
students:

[User]

Bug expl. | To describe each unique bug, and write a corresponding fix instruc- 0.3
& fix | tion. If there are multiple bugs in the code, generate their explana-
instruct. tions and fixes separately.

You are a helpful and experienced TA of an introductory programming

[Sys.] class.

Hi, I'm a student in your class. I'm having trouble with this
problem in the programming assignment: {problem description} Here’s
my buggy code: {buggy_code} What’s wrong with my code? List all the
unique bugs included, but do not make up bugs. For each point, put
in the format of: {explanation: accurate and concise explanation of
what the code does and what the bug is, for a novice, fix: how to
fix the bug, within 30 words}

Only return the bullet list. Do not write any other text or code.

[User]

Bug fix To edit the buggy code according to the fix instruction, w/o over- or 0.3
under- fix.

[Sys.]You fix bugs in Python code closely following the instructions.

[User]Original code: {buggy.code}; Code modification: {explanation}
Translate the statement into actual, minimal code change in this

format:

{original code snippet:

editing""

-> edited code snippet:

copy the lines of code that need

write the edited code snippet""}

[LLSII {old to new snippet in JSON, e.g., numbers_list[i] <= key - numbers_list[i] > key
}
[ ]Old Code:{buggy_code}; Instruction:{0ld snippet to new snippet};
S€) New Codes:

(1) To expose students to behaviorally distinct bugs, we over-generate buggy
code (Table1). We filter out correct code, and we vectorize buggy code’s
behavior based on the reference test suite (Fig. 5A, 0 being failed tests). We
then greedily choose a diverse subset of buggy programs with the maximum
pairwise distance, using Euclidean distance on the error vectors (Fig. 5B).
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Fig. 5. Over-generate and automatically select materials with pedagogical values.

(2) To help students clarify misconceptions (Fig. 5C), we want distracting expla-
nations that look similar to the actual explanation for each practice buggy
code. We choose from the over-generated buggy code pool, find two with the
smallest Euclidean distance to the target code, and use their corresponding
explanations as distractors. The mapping also helps generate the confusion
messages (Fig. 3bs)—when a student selects the distractor explanation, we
use its corresponding buggy code to find test cases to present to students.

(3) To capture key testing aspects in our test category hints (Fig. 5D), we clus-
ter reference test cases into semantically meaningful groups. We build den-
drograms from test case vectors with Agglomerative Hierarchical Cluster-
ing [14], which guide the selection of test category hints from the over-
generated pool.

Human-in-the-Loop Verification. As shown in Fig.4, while the hints for
test cases and categories are generated separately, the materials relevant to bugs
are generated in sequential order. We perform human verification per step to
mitigate the risk of cascading errors in subsequent steps. We provide more details
on human verification and editing times in Sect. 5.

5 LLM Evaluation: Generation Efficiency and Quality

We evaluated the generations on six different problems from prior work [4] and
our own problems (detailed in Table4 in Supplements). On average, for each
problem, we generated 3 test category hints, 10 test case hints, 24 buggy pro-
grams, explanation and fix instructions, and 33 bug fixes. The total number and
the success rates are summarized in Table 2. We provided the success criteria for
all types of materials in Table 5 in Supplements.


http://tinyurl.com/hypocompass-sup
http://tinyurl.com/hypocompass-sup

274 Q. Ma et al.

Table 2. LLM Evaluation: Time, Success rate, and Inter-Rater Reliability scores (i.e.,
TRR% = #agreements / #total labels, # is Cohen’s Kappa coefficient).

Material Raw LLM outputs Human verification

# Generation | Avg. gen time | Success% | Avg. edit time | IRR% | &
Test case description hint | 61 0:00:37 98.36% | 0:00:08 100% |-
Test case category hint 18 0:00:10 94.44% | 0:00:10 100% |-
Buggy code 145 0:01:30 57.93% | 0:00:02 n/a |n/a
Bug explanation and fix | 145 0:03:36 91.72% | 0:00:52 90% | 0.875
Bug fix 195 0:02:45 86.15% 0:00:37 92% |0.752

Method. Two authors annotated 10% of the generations at each step individ-
ually, and discussed to resolve the disagreement and update the codebook. An
external instructor annotated the same 10% of LLM-generated materials, using
the updated codebook. We calculated the inter-rater reliability (IRR) between
the external instructor and the resolved annotation among the two authors using
percent IRR and Cohen’s Kappa. As shown in Table 2, the agreements are sat-
isfactory across different model generations (IRR% > 90% and x > 0.75)%. One
author annotated the rest of the materials to calculate the success rates. We log
the verification and editing time, as proxies to the instructor overhead.

To compare LLM and human generations, we recruited two experienced CS
TAs to each create practice materials for a specific problem. Each TA received
the same input as LLMs, was asked to produce one set of materials matching
the amount of content LLMs produced, and was compensated for their time.

Result: Efficient and High-Quality Generation. We achieve high-quality
generation: a complete set of practice materials with 9 buggy programs (3 for
practice and 6 more as distractors), 9 bug explanations, 9 bug fixes, 10 test case
hints, and 3 test category hints can be generated with a 90% success rate and
only takes 15 min to label and edit. As we over-generate and automatically select
buggy code, a success rate over 50% is reasonable for practical use.

Employing LLMs can also be significantly more efficient. In total, a TA spent
around 60 min to generate one set of practice materials for HyPoCoMPASS. One
TA noted the difficulty in consistently creating unique and high-quality materials
after 30 min, saying that “the importance of the bug I create would start to
decline.” The same author evaluated the TAs’ generations using the annotation
codebook, which had a 100% success rate and took 11 min. The time invested in
generating and editing instructional materials for HyPoCoOMPASS using LLMs
was 4.67 times less than that of the human TAs.

Buggy programs undergo automatic testing, so human verification is unnecessary
(n/a). If both raters unanimously agree in one category, kappa is undefined (-), so
k is only noted when there’s less than 100% IRR agreement on a single label.
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Question 3.1 suetoneanswer Question 7 setect oneansver

Testcase 2: assert (remove_extras_code2([1, 1, 2, 31) = [1, 2, 31)
Given this current test suite, which test case out of the pair, if added to the test suite, can cover Actual behavior: ' TypeError' 'int' object is not iterable.

additional aspects of the problem and make the testing more comprehensive? In other words,
which test case is more likely to reveal an issue or bug in a code solution that this current test
suite would not reveal?

Python

assert(nun_snaller([10, 10
assert(nun_smaller([10, 20,
assert(nun_smaller([10, 19, 21

10) == 8)
20) == 1)
36) == 3)

newlst 4= 1
8 return new_lst

A. assert(num_smaller([1, 3, 5, 71, 5) == 2)
‘What's the bug exposed by this test case?
B. assert(num smaller([10, 10, 20, 30, 30], 40) == 5) A. ‘The bug occurs because the loop variable 1 is mistakenly used as both the clement and
index of the lst. This leads to incorrect comparisons and triggers i TypeEzzox in

Answer: 1st[i+1] because 1 is an element of the list, not an index.

B. The bug is caused by not initializing the new_Lst properly. The code fails to explicitly

Question 3.2 s assign an empty list 1o new_1st, 5o when concatenating elements to new_1st using the

+= operator, a TypeErzor oceurs because new_Lst is not iterable.

Why is the test case you selected a better complement to the test suite? C. The bug is due to an incorrect conditional statement. The code incorrectly compares 1
A because it tests for a different output number with 18t [4+1] instead of comparing adjacent clements of the list, which triggers
B. because it introduces smaller single-digit numbers in the arguments TypeError when tying to compare an integer 1 with a list lement.
C. because it tests for the case where x is not in seq D. “The bug oceurs because the code incorreetly assumes that 1 is iterable when
D. because it tests for the presence of duplicated x within a smaller list concatenating it to new_Lst with the += operator. In this case, & is an integer, which is

not iterable, and it causes a TypeError.

Fig. 6. Pre-post test question examples for LO1 comprehensive (Q3.1 and Q3.2) and
LO2 accurate hypothesis construction (QT).

6 Learning Evaluation: Pre- / Post-Test Study

Can novices better formulate hypotheses after engaging with HyPpoCoMPASS? We
conducted a learning evaluation with 19 students and compared the difference
in speed and performance from the pre-test to the post-test.

Assessment. To best capture student learning gains on our learning objectives,
we took a backward design method [26] to create an aligned assessment for the
comprehensive LO1 and accurate LO2 hypothesis construction skills. We con-
ducted multiple rounds of pilots to refine our intervention and pre-post tests. Our
final tests are based on two programming exercises with comparable difficulties.
We counterbalanced pre-post tests’ problems to control for problem sequence
influence. Each test consists of seven questions, with three assessing LO1 and
four for LO2. Figure 6 provides a sample for each. For instance, Question 3.1 asks
students to identify the more suitable test case to add to an existing test suite,
evaluating their ability to construct comprehensive hypotheses (LO1). We mea-
sure students’ performance using their test scores based on a standard rubric.
We also log the pre-post tests’ completion time as a proxy for proficiency.

Method: Study Procedure and Participants. Our hour-long user study
constituted a pre-survey, pre-test, interaction with HyPOCOMPASS, post-test,
and a post-survey. Participants began with a pre-survey, which asked demo-
graphic information and 7-level Likert Scale questions on their debugging expe-
riences. Then, participants had up to 20 min for the pre-test. The system inter-
action consisted of two problems, where participants needed to write a test suite
and explain bugs in three different buggy programs for each problem. The first
problem was the same as in the pre-test, and the second problem matched the
screening survey’s exercise. By reusing problems that students have seen, we
isolate our learning objectives from the program comprehension skills. After
a subsequent 20-min post-test, participants filled out a post-survey with Lik-
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ert Scale and open-ended questions on their experience and perceptions using
HypoCowmprass. Participants received a $15 Gift Card for their time.

We recruited a diverse group of undergraduate and graduate students from
four public or private US institutions. Interested participants completed a screen-
ing survey, which included a programming exercise that also served as the second
exercise in our study. To ensure a suitable skill range, we excluded those with
extensive programming experience or who quickly solved the exercise. After fil-
tering, 19 participants (S1-19) were included in the study—12 females, 6 males,
1 non-binary, and 8 non-native English speakers, with an average age of 20.7.

Quantitative Result: Learning Gains. A two-tailed paired t-test showed
that students’ pre-test to post-test scores significantly improved by 11.7% (p =
0.033 < 0.05), and the time of completion significantly reduced by 13.6% (p =
0.003), indicating success in learning through HyPOCOMPASS interaction. Note
that the bugs used in pre-post tests are generated by humans and are not the
same as in HYPOCOMPASS. As such, the significant learning gains indicate that
students could learn debugging skills transferable to real-world bugs.

Where does the learning gain come from? We break down the analyses by
learning objectives. We found a small 6.1% improvement in the score and a
large 23.6% time reduction for comprehensive hypothesis construction (LO1),
and a large 15.8% improvement in the score and a small 9.0% time reduction
for accurate hypothesis construction (LO2). Therefore, students showed more
efficiency enhancement in LO1, and more learning gains in LO2. Note that these
improvements may confound with problem difficulty, as the items corresponding
to LO1 (pre-test ;1 = 54%) seem easier than the ones for LO2 (pre-test u = 38%).

Qualitative Result: Student Perceptions. We further unpack how
HypoCoMPASS contributed to learning by analyzing the survey responses. Stu-
dents valued being able to offload some debugging subtasks to HYPOCOMPASS,
such as writing code and explanations. For example, S1 said “looking at the test
behavior and the explanation options really helps relieve that burden.” Students
also generally felt that the LLM-generated bugs and fixes were authentic. Most
participants could not tell if their practiced programs were written by students
or AT because of their experiences making or seeing similar mistakes from peers.

Moreover, students reported that HyPOCOMPASS was engaging, fun, not
frustrating, and helped build confidence in debugging. A Wilcoxon signed-rank
test shows a significant increase in self-rated confidence in debugging by 15%
(p = 0.007). Students rated HyPOCOMPASS as significantly more engaging (6.0
out of 7), fun (6.0), and less frustrating (2.5) than their conventional way of
learning debugging and testing (p < 0.005 for each). S8 especially liked the
teachable agent setup: “the role play just feels more natural because it feels like
explaining to a rubber duck instead of to talking to myself”.

7 Discussion

Teachable Agent for Appropriate Reliance with Imperfect Als. Our
work illustrates a scenario in which LLM-generated bugs are not seen as problems
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but rather as features. HyPOCOMPASS’s teachable agent setup provides students
with moderated exposure to imperfect LLMs, and may help them learn that LLMs
are fallible and calibrate trust accordingly. Future iterations could remove mate-
rial validation and allow direct exposure to unfiltered LLM mistakes in real-time
interactions, taking full advantage of the teachable agent framework. Students
will naturally expect that the LLM-agent seeking help may make mistakes (e.g.,
fail to follow bug-fixing explanations). This approach, however, requires a more
sophisticated design for scaffolding students in recognizing LLM errors.

Task Delegation for Shifting Learning Focus. Our exploration lays the
foundation for a paradigm shift toward cultivating higher-order evaluation skills
in the generative Al era. Essentially, we asked: what skills should we offload,
and what should we learn? Most students in our study appreciated offloading
subtasks to LLM (Sect. 6); however, some need more scaffolds, while others pre-
fer less. Future research can investigate more personalized task delegation. For
example, students who need more help can use LLMs to facilitate code trac-
ing, and students can also write their own explanations for bugs based on their
proficiency. Deciding the bare minimum programming skills and human-ATI col-
laboration skills to teach also warrants further exploration [16].

Modularize to Adapt to Different Needs. Though most students and
instructors found HyPOCOMPASS engaging, some expressed concerns about the
deployment and maintenance cost of a new tool. To maximize utility to diverse
users, we can modularize different components in HyPoCoMPASS. Instructors
who prefer to distribute training materials as handouts can rely entirely on the
material generation module. In contrast, instructors who want to experiment
with TA training can employ HyPOCOMPASS with practice generated using their
training questions. Future studies may perform ablation studies to evaluate dif-
ferent HYyPOCOMPASS components with more extensive classroom deployment.

Limitation. We primarily evaluated whether HYPOCOMPASS can bring learning
and efficiency gains through small in-lab experiments. With this prerequisite,
we plan to conduct future classroom deployment with controlled comparisons.
There is also a limitation regarding the reported efficiency of the LLM-assisted
instructional material development, as the instructors need some familiarization
time with the tool and the process.

8 Conclusion

In an attempt to answer how LLMs can reshape programming education’s focus,
we introduce a novel system, HYyPOCOMPASS, and new instructional designs
for hypothesis construction skills. We aim to provide engaging and deliberate
practice on debugging to novices, using our theoretically motivated and empir-
ically tested teachable agent augmented by LLM. Our evaluations show that
HypoCoMpPAss can efficiently help instructors create high-quality instructional
materials, effectively train novices on comprehensive and accurate hypothesis
construction, and facilitate students’ confidence and engagement in debugging.
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