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We examine the spectrum and quantum states of small lattices with cylindrical and toroidal topol-
ogy subject to a scalar gauge potential that introduces a position dependent phase in the inter-site
coupling. Equivalency of gauges assumed in infinite lattices is generally lost due to the periodic
boundary conditions, and conditions that restore it are identified. We trace the impact of various
system parameters including gauge choice, boundary conditions and inter-site coupling strengths,
and an additional axial field. We find gauge dependent appearance of avoided crossings and persis-
tent degeneracies, and we show their impact on the associated eigenstates. Smaller lattices develop
prominent gaps in spectral lines associated with edge states, which are suppressed in the thermo-
dynamic limit. Toroidal lattices have counterparts of most of the features observed in cylindrical
lattices, but notably they display a transition from localization to delocalization determined by the
relation between the field parameter and the number of lattice sites.

I. INTRODUCTION

The quantum mechanical behavior of charged particles
in a two dimensional (2D) lattice potential in a magnetic
field is an exceptionally rich system, largely responsible
for making concepts of topology an essential feature of
many body quantum systems [1, 2]. The characteristic
fractal spectrum known as the Hofstadter butterfly [3] is
one of the most familiar patterns in all of physics. Within
the vast literature on this system, studies of its spec-
tral features generally assume an infinite lattice which,
in physically relevant cases, can be mapped to a 1D pe-
riodic lattice with modulated on-site energies described
by the well-known Harper equation [4]. Furthermore, in
the context of electronic systems, the magnetic field is
the fundamental physical entity, and gauge invariance is
invoked for a flexible choice of potential. In this paper,
we look beyond these assumptions motivated by broader
possibilities in the context of synthetic gauge fields in
ultracold atoms [5, 6].

With synthetic gauge fields, by construction the vec-
tor potential is the fundamental ingredient, the Abelian
gauge created via an effective phase on the inter-site cou-
pling [7]; the flux and the magnetic field are the emer-
gent features. Non-trivial global topology of the lattices
also breaks the equivalence of typically interchangeable
gauges [8]. Thus, a more bottom up perspective is sug-
gested where the choice of the gauge, such as defined for
analogous infinite systems, determines the physical prop-
erties. Such synthesized systems with one or more peri-
odic boundaries imposed by the topology, can be scaled
down to just a few lattice sites, to accentuate the impact
of boundary conditions. That will be our target regime,
since smaller systems can also provide insights often lost
in the complexity of larger systems. Specifically, small
lattices can highlight features of coherent quantum media
that are suppressed as the system size increases. Topol-
ogy can impact quantum states, and not their classical
counterparts, precisely because of the coherence of the

former; and when the physical dimension of a system is
large compared to the relevant coherence lengths, some
of the more profound impacts of topology are lost. Lat-
tices with a few sites can be made to sustain coherence
across the entire system.

Interest in synthetic gauge fields has been driven by the
physics of the quantum Hall effect (QHE) [9, 10] and its
origins in electronic systems has continued to define the
configurations and assumptions invoved in atomic sys-
tems. However, optical lattices with ultracold atoms do
not always have to be limited by those considerations.
Although not natural in electronic systems, cylindrical
or toroidal topologies can be constructed using a variety
of approaches that have been proposed and some imple-
mented in experiments. Trapping atoms in a ring config-
uration, topologically equivalent to a cylinder has been
utilized in numerous experiments [11–14], and azimuthal
lattice structure has been demonstrated [15, 16].

While there have been ideas to construct cylindrical
and toroidal configurations in real space [17–19], exper-
iments in recent years have taken the route of utilizing
synthetic dimensions [20, 21] to implement such configu-
rations, wherein the periodic boundary condition is im-
plemented by cyclic coupling of internal states [22–29].
Such configurations are leading to confirmation of sem-
inal models as well as the discovery of new phenomena.
Considering that only a few internal states are typically
involved, of the order of three or four, these systems can
be readily adapted to examine the physics of small topo-
logical lattices by limiting the number of sites in real
space using external confining potentials. Measurement
of the system properties can done with established imag-
ing methods [30, 31] supplemented by newer stroboscopic
techniques that can access effects of correlations [32].

The behavior and dynamics of quantum systems are
defined by the nature of the spectrum and the associ-
ated eigenstates. Prior studies are characterized by fea-
tures: Most are focussed on the systems where the spatial
boundary conditions are not a significant factor. Sec-
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FIG. 1. (Color online) Schematic of different boundary con-
ditions considered, shown for a M × N = 4 × 4 lattice. Box
boundary condition is assumed in the non-periodic directions.
The inter-site coupling, of strength Jx, Jy, contain phase fac-
tors g(m), f(n) with site dependence arising from the gauge
field, each depending on the complementary index.

ondly, those few that do consider cylindrical or toroidal
configurations in real space are concerned mostly with
the physics associated with the QHE [33]. This has also
had a defining influence for the recent studies with syn-
thetic gauge fields, and specifically the few papers that
have started to examine lattices with non-trivial topology
in the context of ultracold atoms [17–19, 23–25, 28, 29].
While such studies continue to be extremely interesting
in their own right, we have a different goal in this pa-
per, which is to understand the impact of the non-trivial
topology on the basic spectrum of a 2D lattice subject to
an effective magnetic field.

With continuing preoccupation with more esoteric as-
pects, the more basic features like the spectral proper-
ties for non-trivial topologies have not been thoroughly
analyzed. Even for trivial topology, the well-known Hof-
stadter butterfly [3] represents a critical point of that
system [10], and hence its most complex incarnation;
making it difficult to separate out the impacts of vari-
ous system parameters. Adding in non-trivial topology
in real space complicates it further. The purpose of this
paper is thus to fill in a gap in the literature by providing
a comprehensive and comparative study of the spectrum
and eigenstates of cylindrical and toroidal lattices as con-
trasted with planar 2D lattices. We will consider small
lattices and take a grounds-up approach by switching on
different features in turn, as a general strategy to iden-
tify the distinctive features and their influencing factors.
We will also describe the impact of the prominent spec-
tral features on the eigenstates. This will map out the
basic properties of a coherent medium in such topologi-
cal lattices and help better understand their dynamical
behavior of broad interest.

We describe our physical model and assumptions in
Sec. II, and discuss the loss of equivalency of typical
gauges in the presence of periodic boundary conditions
in Sec. III along with the conditions under which they
are restored. Section IV does a comparative analysis of
the general spectral features for a cylindrical lattice, ex-
amining the impact of gauge, boundary conditions and
inter-site coupling constants, and then the pertinent fea-

tures of the spectrum are correlated with the behavior of
the eigenstates in the Sec. V. The behavior of edge states
in small cylindrical lattices is examined in Sec. VI. We
then broaden our analysis to toroidal lattices in Sec. VII
and compare how the behavior is further altered by the
introduction of a periodic boundary condition in both
physical dimensions of a 2D lattice. Our main conclu-
sions and outlook are summarized in Sec. VIII.

II. PHYSICAL MODEL

We consider a quantum mechanical system of particles
in a finite 2D lattice potential, its x and y orientations
indexed by m ∈ {1, · · · ,M} and n ∈ {1, · · · , N} respec-
tively and described by a Hamiltonian, H(n,m):∑

m,n

[Jxe
−i2παf(n)ψn,m+1+Jye

−i2παg(m)ψn+1,m + h.c.](1)

where we allow for different nearest neighbor hopping
strengths Jx and Jy in the two relevant directions, with
lattice spacings ax and ay. In the presence of a mag-
netic field in the z-direction, we introduce the parameter
α = qBaxay/h. The factors f(n) and g(m) are then
associated with the vector potential and are gauge de-
pendent: for example f(n) = −n, g(m) = 0 and f(n) =
0, g(m) = m would both correspond to the Landau gauge
and f(n) = ∓ 1

2n, g(m) = ± 1
2m would correspond to

a symmetric gauge. In the continuum they would rep-

resent vector potentials of the form �A = (−By, 0, 0),
�A = (0, Bx, 0) and �A = (∓ 1

2By,± 1
2Bx, 0).

Cylindrical topology can be introduced by imposing
periodic boundary conditions along either orientation
such that N + 1 ≡ 1 or M + 1 ≡ 1, as illustrated in
Fig. 1. Insisting on both creates a torus topology. The
Landau gauge choices are particularly suitable for cylin-
drical symmetry, so our considerations will be framed in
terms of them, we will refer to f(n) = −n, g(m) = 0
as the Landau x gauge and f(n) = 0, g(m) = m as the
Landau y gauge; in the rest of the paper, we may simply
refer to them as the x gauge and the y gauge respec-
tively. Switching the signs on the gauge factors reverses
the direction of magnetic field. The periodic boundary
conditions break the [8] equivalency that is typically as-
sumed among these different gauges, when systems are
taken to be infinite or have box boundary conditions.

III. EFFECT OF GAUGE ON SPECTRUM

The breakdown of gauge equivalency in the presence
of a periodic boundary condition raises the obvious ques-
tion: Are there any values of α for which that equivalency
is restored? Assuming rational values of α = p/q, when
the number of sites along the periodic direction is com-
mensurate with the denominator q such that M ×α = k,
a natural number, then the spectrum in the two Lan-
dau gauges coincide. This can be also interpreted as the
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FIG. 2. (Color online) The periodic boundary condition of
a cylindrical lattice breaks the gauge equivalence illustrated
for the two Landau gauges x (thin red line) and y (thick blue
line) for a 4× 4 cylindrical lattice. The left panels show that
they match at specific values of the field where M × α = k,
a natural number, irrespective of the number of sites N in
the axial direction. The right panels illustrate that at those
values, here shown for α = 1/4, the spectrum is the same for
both gauges as a function of a phase ϕ representing an added
axial field. When N = M , gaps open in the lines that mark
edge states of the bands; one is marked by a red circle.

site number M being commensurate with the magnetic
period [34]. We illustrate this in Fig. 2, where we super-
impose the spectra for the two gauges for three differ-
ent cylindrical lattices having the same number of sites
M = 4 in the periodic direction, but with different num-
ber of parallel rings N = 3, 4 and 5 that comprise the
cylinder. In all cases, the spectra for the two gauges
match at α = 1/4, 2/4, 3/4, 4/4, when Mα leads to a
multiple of 2π in the total phase change acquired in a
circuit of each ring. This condition for gauge equivalency
can be understood The gauge equivalency at those values
of α remains when an extra axial field is introduced, like
in the well-known Laughlin model for the quantum Hall
effect [2]. Such a field presents itself as an added constant
phase along the periodic direction Jx → Jxe

iϕ. At one of
those values α = 1/4 where the eigenvalues for the two
Landau gauges coincide in the left panels of Fig. 2, we

also plot the eigenvalues as function of the added phase
ϕ in the corresponding right panels. We find that those
patterns remain identical for both Landau gauges.
However, this equivalency does not extend to all choice

of gauge, for example the spectrum for the symmet-
ric gauge differs even at those values of α listed above.
We can generalize the condition for gauge equivalence
that produces a uniform magnetic field in an infinite
2D lattice, of which the Landau and the symmetric
gauges are only the simplest possibilities. In general,
�A = (∓ r

sBy,± s−r
s Bx, 0), with r ∈ {0, 1, 2, · · · }, s ∈

{1, 2, · · · } would lead to a constant magnetic field B per-
pendicular to the lattice. In a discrete lattice, this would
correspond to f(n) = ∓ r

sn and g(m) = ± s−r
s m. If the

lattice is wrapped into a cylinder of M sites in the peri-
odic direction, then M×α×f(1) = k, a natural number,
will lead to invariance with respect to switching the x
and y components of the vector potential, and that will
remain true for any ratio Jy/Jx allowing for the change
in energy scale.
Next, we determine the influence of the number of

rings, or site number, N in the non-periodic (axial) di-
rection. As a function of α, the spectrum varies substan-
tially with increasing number of sites in either direction.
The basic pattern remains self-similar for a specific gauge
choice, but gets intricate with more spectral lines. But, if
we consider the spectrum as a function of ϕ, the number
of sites in the axial direction has a more interesting ef-
fect that is apparent in comparing N = 3, 4, 5 axial sites
in Fig. 2. When N and α are commensurate, such that
Nα = k a natural number, increasing Jy opens up gaps
in the crossing of the spectral lines that span the gaps
between the energy bands; we see those for N = M = 4
where one is marked by a circle, but not for N = 3 or
N = 5. This has an impact on the behavior of the states
at the band edge as we will discuss later in Sec. VI.

IV. ORIGINS OF SPECTRAL FEATURES

The physical behavior of a quantum system is reflected
in the spectrum, we will now examine the salient features
for a cylindrical lattice with regards to the two different
orientations of the Landau gauge. The spectra shown in
Fig. 2 are for Jx = Jy, which corresponds to the critical
case for the Hofstadter butterfly [3]. That case presents
the most complex spectral pattern. But, having identical
couplings does not carry any significance for cylindrical
configuration where the behavior in the x and y orien-
tations fundamentally differ anyway. We examine the
effect of varying the coupling ratio γ = Jy/Jx. The other

degree of freedom
√
J2
x + J2

y sets the energy scale. The

results are summarized in Fig. 3 in the context of an 4×4
lattice with N rings and M azimuthal sites.
It is instructive to examine the limiting cases. When

the coupling along the periodic direction vanishes, Jx =
0, we have M decoupled strips of 1D lattice, each with
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FIG. 3. (Color online) The spectrum of a 4 × 4 cylindri-
cal lattice showing effects of boundary conditions, gauge and
coupling: The three columns separated by dotted lines show:
(Left) isolated rings Jx = 1, Jy = 0,(Right) isolated strips
Jx = 0, Jy = 1, and (Center) the critical case Jx = 1, Jy = 1.
The four rows display: (First) box boundary condition insen-
sitive to the gauge; (Second) Landau y gauge comparing in the
center column the effects of g(m) = 1 with g(m) = m, as in
the gauge factor being independent/dependent on the lattice
index; (Third) Landau x gauge showing that the spectrum
depends on the field α even when the gauge factor f(n) = −1
has no dependence on the lattice index. (Fourth) Landau x
gauge with that dependence f(n) = −n.

box boundary condition and the eigenvalues are

Ek = 2Jycos

(
kπ

N + 1

)
, k = 1, 2 · · ·N (2)

These are shown in Fig. 3 on the extreme right panels
as N = 4 four flat lines as a function of α, each M = 4-
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FIG. 4. (Color online) The origin of the butterfly shape is
shown with the gauge dependence varying from f(n) = −nr,
with r ∈ [0, 1]. Upper panels show for 2 × 2 and lower for
4× 4 cylindrical lattice.

fold degenerate, and identical for all the cases shown,
even with a y gauge factor along each strip since the box
boundary condition makes it physically irrelevant. The
opposite limit of vanishing coupling in the open direction
Jy = 0 is more interesting. In this case we have a set of
N decoupled rings and the eigenvalues are

Ek = 2Jx cos

(
2πm

M
− 2παf(n)

)
, m = 1, 2 · · ·M(3)

For the y gauge, phase would then be in the open di-
rection, so the second argument of the cosine vanishes
(f(n) = 0) and there is no α dependence. Due to a dou-
bly degenerate null eigenvalue for each ring we see three
flat lines for this case, as shown on the extreme left of
the first two rows in the figure. The effect of x gauge can
be understood by first implementing a constant phase
f(n) = −1 which creates the same dependence on α
for all the rings and we get M = 4 phase-shifted si-
nusoidal curves, each N fold degenerate. The x gauge
f(n) = −n lifts that degeneracy by introducing different
α-dependent phase on each ring, creating N intertwined
sinusoidal curves with periods 1/n, n = 1, 2, 3, · · · .
Now, we turn to the critical case Jx = Jy, but first

consider a constant hopping phase, f(n) = −1, g(m) = 0
or f(n) = 0, g(m) = 1. For the box boundary as well as
for a cylinder with the y gauge, shown in the first two
rows of Fig. 3, even with a phase along the axial direc-
tion there is no α dependence and the degeneracies are
only partially lifted by the added coupling. This shows
that bidirectional coupling and the α dependent phase
are trumped by the box-boundary conditions. However,
when we use f(n) = −1, g(m) = 0, we see in the third
row of Fig. 3 that the degeneracy is completely lifted,
the α dependence reflects the sinusoidal pattern for the
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FIG. 5. (Color online) The schematic uses a 2 × 4 cylindrical lattice with f(n) = −n, g(m) = 0 to illustrate how we plot the
eigenstates, by mapping the 2D lattice sites to a 1D sequence. The spectra shown at Jx = 1 for two separate inter-ring coupling
Jy trace avoided crossings (solid blue circles), intersections that slide by (dotted green circles) and persistent degeneracies (solid
red dots, also tracked with vertical red line). The lowest four eigenstates are shown at α = 1/6 and its neighborhood, where
avoided crossings and persistent degeneracies are both present. In this and other plots we will use the legend having increasing
energy (black circles, blue horizontal bar, green vertical bar, and red dots). At low coupling Jy = 0.5 (top row) the avoided
crossings mark blending of the corresponding states in initially isolated rings, while at persistent degeneracies states remain
localized in individual rings. Higher Jy (bottom row) forces stronger blending of the states. At the degeneracy point itself,
oscillations (lower middle panel) indicate a linear combination of degenerate states.

1D ring in Eq. 3 with the degenerate lines simply spread-
ing apart uniformly. Notably, the butterfly pattern is
still absent. The dependence of the phase on the trans-
verse lattice index, associated with the curl is essential
to creating the signature butterfly shape. This is borne
out by the fact that it is present in the lattice with box
boundary conditions in both directions. The phase on
Jx needs to depend on the y coordinate and vice-versa.
Thus, when f(n) = −1, g(m) = 0 that shape is absent,
but appears when f(n) = −n, g(m) = 0. The origin of
this characteristic shape can be demonstrated by varying
between these limits setting f(n) = −nr with r ∈ [0, 1]
(Note r cannot be a multiplicative factor, in which case
it would simply rescale α). For the simplest case of a
2× 2 cylinder, the four eigenstates are given by

E = ±
√
J2
x + J2

y ± 2JxJy cos[(−1 + 2r)απ] (4)

Plotting them versus α for r = 0, 1/4, 2/4, 3/4, 1 we see
the gradual morphing of the spectrum from having no
dependence on α to the emergence of a skeletal butterfly
shape in the upper row of Fig. 4. The expression shows
that the spectral lines have a period of 2/(−1+2r), which
ranges from no period for r = 0 to a period of 2 for r = 1
that corresponds to the usual butterfly shape. Thus over
the range α ∈ [0, 1], the spectrum undergoes a half pe-
riod of oscillation and the central cinch of the butterfly
corresponds to where the cosine has a zero. With more
sites, in the r = 1 limit we have multitude of terms with
cos(kαπ) with natural numbers k, having a common ex-
tremum at the midpoint, resulting in the emergence of
the central cinch as illustrated in the lower row of Fig. 4.

V. SPECTRAL FEATURES AND EFFECTS ON
EIGENSTATES

We now identify distinctive spectral features and their
impact on the eigenstates. We represent the eigenstates
by lining up the rings that comprise a cylindrical lattice
side by side according to M× (n−1)+m with ring index
n ∈ 1 · · ·N and site index on each ring m ∈ 1 · · ·M .
This is illustrated in Fig. 5(a). We will assume Landau
gauges, but in a cyldinder x and y gauges lead to different
features, which we discuss in turn.

A. Landau x gauge

We consider the Landau x gauge first, also assumed in
Fig. 5. Our analysis is based on the origin and evolution
of intersections of the various spectral lines. This is par-
ticularly convenient for this gauge, because in the limit
Jy = 0 of decoupled rings, the spectrum still depends on
the field variable α due to the periodic boundary condi-
tion as seen on the left column of the last row of Fig. 3. In
that limit it is possible to uniquely associate each spectral
line with a specific state m ∈ 1, 2, · · ·M of a specific ring
n ∈ 1, 2, · · ·N , as captured by the expression in Eq. (3).
Starting from that limit, as Jy is increased coupling the
rings to create a true cylinder, we trace the evolution of
those intersections and the associated eigenstates.

We observe three primary types of behavior based on
the type of intersections in the limit of Jy = 0 when the
rings are decoupled: (I) Same state (m) from different
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rings (n): Gaps open up creating avoided crossings as Jy
is turned on and increased; (II) Different states (m) from
the same ring (n): These intersections slide past each
other, intersecting at different values of α as Jy changes
and (III) Different states (m) from different rings (n):
These intersections persist at exactly the same value of
α for any value of Jy/Jx. All three cases are illustrated
in Fig. 5. In the limit of Jy � Jx the states approach the
limit of Eq. (2) the spectral lines rearrange intoM bands,
with each band having a spectral ‘line’ from each of the
N values at α = 0 when Jy = 0. Thus, the intersecting
lines in cases I and II end up in different bands but those
in case III end up in the same band.

Persistent Degeneracies : These are degeneracies that
persist at the same value of α, insensitive to the coupling
constants, that is for any ratio Jy/Jx. These are marked
by red dots in Fig. 5. Since gaps never open up at any
point of intersection between these spectral lines, these
pairs of lines remain braided in exactly the same way
even though their individual shapes change drastically,
as seen in Fig. 5. In the opposite limit, Jy � Jx or
equivalently Jx → 0, such pairs inevitably end up in the
same band, but with the lines having new identities as
arising from the same state but from different weakly
coupled strips. We have shown elsewhere [8] that these
occur at α that satisfy αM(N + 1) = k with natural
number k. For Jy → 0 the state associated with each
line retains the same form across the intersection, for
example in Fig. 5 the upward slanting spectral line marks
the state localized on ring 1 for α both below and above
the intersection, although the markers swap based on the
energy ordering. Notably the same behavior continues
even at very different coupling ratios.

Avoided Crossings: As the inter-ring coupling Jy is
switched on and increased, gaps open up at erstwhile in-
tersections between spectral lines for the corresponding
states (same m) from different rings (different n). These
take the form of avoid crossings marked by blue circles
in Fig. 5. The eigenstates confirm the characteristic fea-
ture of avoided crossings, a blending of states that were
isolated in different rings. This is analogous to what hap-
pens when gaps open up in a periodic lattice as the cou-
pling between the sites is strengthened; here each ring
behaves like a site in the axial orientation of the cylin-
der. At low coupling Jy = 0.5 in the figure, there is
complete blending of the states at the α value of clos-
est approach, while away from it the states become more
localized. At high inter-ring coupling Jy = 5, the gaps
widen to eventually create different bands.

In order to understand these avoided crossings better,
we compare them with the case where the phase factor
is the same for all the rings f(n) = −1, in Fig. 6. For
this case, when Jy = 0, the spectral lines of each state
is degenerate for all the rings for any α. As soon as we
have any coupling between the rings Jy > 0, the degen-
erate lines separate uniformly, and the gaps have no de-
pendence on α, even though the spectral lines themselves
clearly vary with it. This can be contrasted with the case
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FIG. 6. (Color online) The effect of the phase variation among
the rings is shown by contrasting the case of f(n) = −1 (top
rows) with f(n) = −n bottom rows. (Row 1 ) As the inter-ring
coupling is increased from the left to right, for f(n) = −1, the
degeneracies are lifted independent of α, and the spectral lines
separate uniformly. (Row 3 ) For f(n) = −n the relative phase
between the rings causes strong dependence on α, causing
gaps to open up at specific values leading to avoided crossings.
(Row 2 ) In the absence of phase difference between rings, even
a small coupling Jy causes the eigenstates to mix; (Row 4 )
the phase difference resists mixing, which occurs selectively
around avoided crossings only, shown here for one at α =
0.0715; mixing is more pronounced at stronger Jy.

f(n) = −n, where the degeneracies occur only at certain
values of α and gaps open up prominently at those val-
ues leading to avoided crossings. The behavior of the
eigenstates underscores this difference. For f(n) = −1
with identical phase variation in the rings, even a very
small inter-ring coupling is enough to instantly blend all
the states at any value of α. This is contrasted with the
case of f(n) = −n where such blending occurs gradually
and is most pronounced at α values where the avoided
crossings occur.

Thus, the phase difference between the rings presents
resistance to the blending of corresponding eigenstates
across the rings, and the ring dependence of the phase is
essential for avoided crossings to occur. Implicit here is a
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FIG. 7. (Color online) (Row 1 ) For y gauge there is mix-
ing of states among rings even at weak coupling Jy between
rings for fixed Jx = 1. The left two panels are identical for
both f(n) = 0, g(m) = 1 and f(n) = 0, g(m) = m; differences
emerge at stronger coupling in the right panel, the phase vari-
ation g(m) = m creates modulation within each ring. (Row 2 )
Degeneracies can appear in the spectrum transiently as the
coupling ratio Jy/Jx is varied, here at α = 0.345, then part-
ing to create gaps that resemble avoided crossings. (Row 3 )
Across that degeneracy point there is a switching of the states
corresponding to the energies above and below the gap.

hierarchy of avoided crossings based upon the separation
of the rings. Larger coupling Jy is required to open up
significant gaps at intersections of spectral lines associ-
ated with initially decoupled rings that are farther apart.
Furthermore with increasing Jy/Jx the blending between
states occurs at α values farther from the avoided cross-
ing, eventually merging the same states in different rings
to transition to the limit of decoupled strips.

B. Landau y gauge

When the gauge is along the open direction, depen-
dence on α requires nonvanishing coupling in both Jx
and Jy as seen from Fig. 3. Starting from the limit of
isolated rings Jy = 0, as soon as coupling Jy = 0.001 is
introduced, even for such small inter-ring coupling, there
is immediate blending of the eigenstates, regardless of
whether g(m) = 1 or g(m) = m, meaning that this oc-
curs whether or not the phase factor associated with the
y gauge varies from one open strip to the next. This can
be seen in the upper row of Fig. 7. However, as the cou-
pling between rings is increased, to Jy = 1 in the figure,
the presence of phase variation g(m) = m among the

strips associated with the y gauge creates modulation of
the eigenstates within each ring. This coincides with α
dependence in the spectrum becoming more pronounced.
Faux Avoided Crossings: In the y gauge, we see spec-

tral features that appear to be avoided crossings, with
multiple examples in Fig. 3. However, in both limits
Jy = 0, Jx �= 0 and Jy �= 0, Jx = 0, the dependence on
α is lost, so there are no ‘crossings’ to start with un-
like in the x gauge. Thus, true avoided crossings do not
occur in the y gauge, as supported by the behavior of
the states at gaps that resemble avoided crossings of two
lines. The eigenstates at and around those gaps show
complete blending even when one of the couplings is ex-
tremely small, as can seen in the upper row of Fig. 7;
this clearly does not depend on α in that limit. This is
very different from the behavior at true avoided crossings
where the blending gets less pronounced away from the
point of closest approach of the relevant spectral lines
as we saw in Fig. 5. Rather the behavior is analogous
to that for f(n) = −1, g(m) = 0 limit of the x gauge
when all the rings have the same phase: In the limit of
either coupling vanishing, the relevant spectral lines are
degenerate with identical (and here, no) dependence on
α, so that even small coupling that lifts the degeneracy
will blend the states uniformly across all values of α.
Coupling dependent Degeneracies: We observe another

phenomenon with y gauge not apparent with the x gauge:
degeneracies that occur at specific values of the cou-
pling constants Jy/Jx manifest as transient intersections
of pairs of spectral lines at a certain values of α as the
coupling ratio is varied. One such degeneracy shown in
Fig. 7, occurs at α = 0.345 and we see that the degener-
acy lifts above and below the specific Jy = 2.316 keeping
Jx = 1 fixed. In the lowest row we plot the states above
and below the gap for the α with the degeneracy, as we
vary the coupling across the degeneracy point. There is a
switching of the states associated with the energy above
and below the gap, but with no fundamental change in
behavior in the relevant states. This behavior occurs also
with box boundary conditions for both gauges, hence is
not due to periodic boundary condition. Furthermore,
at fixed coupling ratio such at Jx = Jy = 1 plotted in
Fig. 3, some of the ‘faux’ avoided crossings can become
transiently degenerate as the coupling ratio is varied.

VI. EDGE STATES OF CYLINDRICAL
LATTICES

We now examine the features of edge states that have
played a significant role in the understanding of the quan-
tum Hall effect [2, 35]. Properties of edge states have
been studied exhaustively in the context of macroscopic
conductors, necessarily cylinders with large number of
azimuthal sites. Even with ultracold atoms, studies have
focussed on large cylinders [17]. Here, we discuss certain
behavior that emerge in cylindrical lattices of a few sites,
in the context of Figs. 8 and 9.
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FIG. 8. (Color online) The spectrum of a cylindrical lattice is
plotted as a function of an added axial field parameterized by
ϕ shown for the critical case Jx = Jy = 1 and α = 1/4. Sites
per ring M = 4 is commensurate with α while number of rings
N is variable. With a few rings, when N is commensurate
with α, visible avoided crossings appear in the intersections
of spectral lines (thick black line and red dotted) that span the
band gaps; N = 4 and N = 5 are contrasted. That behavior
persists at large ring numbers, illustrated with N = 44 and
45, but with smaller width seen only on zooming in. On
the right, the eigenstates (black open circles and red dots,
representing the lower and higher energy states respectively)
that correspond to those spectral lines are plotted for a set
of ϕ centered about such an intersection marked by a box in
the spectrum plots. They are localized on the edge of the
cylinder; for the larger system in the bottom rows, only the
edge rings are shown. Avoided crossings lead to a blending of
edge states at the point of closest approach as seen in rows 1
and 3 ; which does not happen otherwise rows 2 and 4.

A. Gaps in the Edge spectrum

In this context, it is better to represent the spectrum
as a function of the phase factor along the closed orien-
tation of the cylinder, Jx → Jxe

iϕ that corresponds to
an extra axial field, the essential feature of the Laughlin
model for the quantum Hall effect [2]. We will refer to
that axial magnetic field to include both real or synthetic
kind. In the spectrum plotted in Fig. 8 as a function of
this axial field ϕ the edge states appear as spectral lines
that traverse the gap between bulk bands; that is the fea-
ture that gives them their essential role in quantum Hall
physics. Plots of the corresponding eigenstates show that

those states are indeed mostly localized on the edge rings
of the cylinder particularly at the ϕ values near the in-
tersections of the edge state spectral curves.

With a few azimuthal sites M = 4, we notice in Fig. 8
that the intersections of the edge state curves can become
avoided crossings. We find that this occurs when N and
α are commensurate, as in Nα = k ∈ {1, 2, · · · }. Thus
for α = 1/4 used in the figure, avoided crossings appear
for N = 4 but not for N = 5; and they persist even with
larger number of rings, appearing for N = 44 but not
N = 45. This sensitivity to the number of axial sites is
among the features that distinguish this form some other
gaps in the spectrum reported in some recent works on
Hall ladder configurations [25, 27, 28]. However, when
all other parameters are fixed, the width of those avoided
crossings progressively shrinks with increasing number of
rings, although still present as seen by zooming in at the
crossings. These gaps will therefore be physically relevant
only for a small number of rings.

There are other restricting considerations for these
avoided crossings to appear and be relevant. Fig. 8 con-
siders Mα = 1. This choice generally assures that there
are only two spectral lines in the lowest band gap for
any ϕ. Additionally, as implicit in Fig. 3 and related
discussion in Sec. IV, the band structure changes as the
ratio Jy/Jx varies. At low values, we have weakly cou-
pled rings and there are M bands, whereas at high val-
ues, we have a set of weakly coupled strips and there are
N bands. This means a meaningful interpretation as a
cylinder with edge states requires a low Jy/Jx. When
Mα = 1 the edge states in the lowest gap correspond
to the N th and (N + 1)th states. Thus when N and α
are commensurate, the band gaps appear between those
states creating the avoided crossings in the edge states.

The width of the avoided crossings can be widened by
increasing Jy/Jx. But for larger number of rings, that
needs to be progressively larger. This is illustrated in
Fig. 9 where, keeping all else fixed, increasing the number
of rings from N = 4 to N = 16, suppresses the avoided
crossing, although it still exists if one zooms in since Nα
remains a positive integer with α = 1/4. However, mak-
ing Jy/Jx larger places the system in the limit of weakly
coupled vertical strips rather than a cylinder, and the
edge states carry less meaning. If α is reduced, creat-
ing the avoided crossings require proportionately larger
number of rings N and hence the width of the avoided
crossing will shrink, requiring large Jy/Jx. This means
larger magnetic fields are preferable.

Keeping α fixed, if we increase the number of sites in
the ring, such that Mα > 1 and commensurate, then
more spectral lines appear in the band gap with more
frequent intersections and even multiple intersections oc-
curring at the same ϕ value. This complicates the iden-
tity of the edge states, but the avoided crossings still
appear only on specific intersections of the spectral lines
in the band gap, but now at lines numbered NMα and
NMα+ 1. The size of the width of the avoided crossing
remains unaffected by the number of azimuthal sites.
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B. Effect on the states

The appearance of the gaps implies a change in be-
havior of the system. Edge states which traverse the
space between bulk bands is a characteristic of the integer
quantum Hall effect, an example of topological insulators.
When avoided crossing open up between these states then
the band gap always remains open, and this becomes
a trivial insulator. Thus the emergence of the avoided
crossing can be a signature of a change in the topological
properties of the system [30]. In systems with a large
number of lattice sites, where the thermodynamic limit
can be assumed, change of topological properties can be
captured by a change of the quantized Chern numbers
for the bands involved. However, for small finite periodic
lattices that we study here, Chern numbers cannot be
computed accurately and are not necessarily quantized
[36, 37]. Generally, sharp phase transitions are charac-
teristic of thermodynamic limit, and transitions can be
gradual in finite systems [38].

The avoided crossings that appear in the spectral lines
spanning the gaps haave interesting implications on the
corresponding edge states. In Fig. 8 for each spectrum
shown, we plot the states corresponding to the spectral
lines that traverse the gaps, around one of the marked
intersections/avoided crossings. In the case of large num-
ber of rings, N = 44, 45, only the edge rings are shown.
Regardless of the number rings, we can see that the
behavior of the spectrum directly influences the states.
These states are localized on the edges.

The two relevant spectral lines are differentiated by
the energy, lower (dotted red) and higher (thick black),
regardless of the presence or absence of a gap. The corre-
sponding eigenstates are marked with red dots and black
circles respectively. What stands out is that the state lo-
calized on a particular edge follows a specific edge state
line across the intersection, and even when it becomes an
avoided crossing. This is underscored by the switching of
red dots → black circles in Fig. 8 between the edge rings
due to the reordering of the energy across the intersection
or avoided crossings. Similar behavior for avoid crossing
is seen in Fig. 5.

The appearance of the avoided crossing in the edge
state spectral lines has another interesting effect. Adi-
abatic time evolution along the lower energy (red dot-
ted) line, transfers the density localized on one edge to
the other; and likewise, if one followed the upper energy
(thick black line). That seems rather like Laughlin’s ar-
gument for the charge transfer between the edges due
to a variable flux through the cylinder, except of course,
that this is the situation where the system would be a
trivial insulator. That is because there is no net trans-
fer on averaging over all the states in the lowest band.
However, with ultracold atoms in cylindrical lattices, one
could engineer a system where all the atoms are on the
edge state of the lower band, and then a variation of the
flux can adiabatically pump the atoms from one edge to
the other.
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FIG. 9. (Color online) The avoided crossings that occur in
the edge state spectral lines widen by increasing the inter-
ring coupling Jy, but the effect diminishes significantly for a
taller cylinder with larger number of rings N ; comparison is
made between N = 4 and N = 16.

VII. A TOROIDAL LATTICE

We will now apply and extend our results for a cylin-
drical lattice to a lattice with a torus configuration. This
can be done by connecting the open ends of the cylinder.
We disregard distortions or stretching that could occur
in a real torus in doing so, and model it simply as having
periodic boundary condition in both x and y directions.
Most of the considerations for the cylinder have coun-
terparts for a torus. Therefore, we will only discuss the
principal features and focus on the differences.
Spectrum: In analogy to Fig. 3, we examine the fea-

tures of the energy spectrum for a torus. As for the cylin-
der we vary the gauge between Landau x and y gauges
as well as the coupling strength in the two directions,
and the results are plotted in Fig. 10. With periodic
boundary condition in both directions, different number
of sites along the two axes, N = 4 and M = 3, are used
to discern differential behavior.
The characteristic butterfly pattern is present for the

torus as well as seen in panels (b) and (e), when the
coupling constants are the same or comparable in both
orientations, and the same explanation applies as for the
cylindrical configuration discussed earlier in the context
of Fig. 4. Due to the periodic boundary conditions in
both directions, the butterfly pattern is similar for both
Landau gauges, the differences are mostly due to the dif-
ferent number of lattice sites, N �= M .
Other differences appear in the limit of relatively high

coupling in either orientation. In the Landau x gauge, in
the limit of Jx = 0, Jy = 1 there are less energy bands,
with three instead of four in panel (c), due to additional
degeneracies. For the Landau x gauge, in that limit,
there was no dependence on the field α for the cylinder,
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FIG. 10. (Color online) The plots are a counterpart of Fig. 3
for a torus that compares Landau x and y gauges, but with
asymmetric site number N × M = 4 × 3. Qualitatively, the
critical case of Jx = Jy = 1 in the central column are similar
to that for a cylinder. Due to periodic boundary conditions
in both orientations, the two gauges display similar behav-
ior; particularly in the limiting cases, where one of the cou-
pling vanishes, the spectrum shows dependence on α when
the phase associated with the gauge is along the coupled di-
rection, and the eigenvalues are given by Eq. (3).

but with a periodic boundary condition in the y-direction
as well, there is dependence on α in that limit as can be
seen in panel (f).

Persistent Degeneracies : Unlike for cylinders, persis-
tent degeneracies appear for both x and y gauges under-
scoring the essential role of periodic boundary condition
present in both directions now [8], but with an interest-
ing distinction between the gauges. For x gauge, if we
convert a cylinder to a torus by introducing a periodic
boundary condition in the open orientation, the persis-
tent degeneracies continue to reside at the same values
of α even though the spectrum itself changes. For the y
gauge, new persistent degeneracies are emergent at val-
ues of α set by the same expression as for the x gauge,
but with M ↔ N switched, αN(M +1) = k. This is tied
to the emergence of α dependence in the Jx = 0, Jy = 1
limit in Fig. 10. Therefore, for persistent degeneracies
to appear, the gauge needs to be along a direction with
periodic boundary condition. A cylinder with y gauge
display cinches tied to the butterfly shape as addressed
in Fig. 4, and in the spectrum for its torus counterpart,
they continue to define the envelope as new intersections
emerge including those corresponding to persistent de-
generacies.

Torus ‘edge’ states: A torus by construction has no
edge, so it may seem meaningless to talk of ‘edge’ states.
But we find that there are certain parallels in the spec-
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FIG. 11. (Color online) With the same convention assumed
for cylinders, assuming x gauge, the spectrum is plotted ver-
sus an additional phase along the axis in the x direction.
When site number N in the y direction without the gauge
factor, is commensurate with α, there are no continuous inter-
band spectral lines (upper row) but when incommensurate,
intersecting pairs of such lines appear (lower row). This is
similar to the behavior seen for edge states in cylinder in
Fig. 8. States corresponding to these ‘edge’ spectral lines are
plotted for some of the phase values around where such in-
tersections happen, using the same format as for cylinders
noting that first and last rings are adjacent and coupled in
a torus. Commensurate/incommensurate cases correspond to
delocalized/localized behavior of the states.

trum and the associated states of a torus that are the
counterparts of the corresponding cylindrical lattice. For
a torus, with periodic boundary conditions in both direc-
tions, there is no qualitative difference between the two
Landau gauges. We label N and M analogously to the
x gauge for a cylinder, so that M is the number of sites
along the direction of the gauge, and we will refer to N
as the number of rings for easy comparison although now
rings occur in both orientations.
We illustrate our main findings in Fig. 11 where we

plot the spectrum as a function of an added field along
the axis in the x direction creating an added phase Jx →
Jxe

iϕ in analogy with Fig. 8 for the cylinder. As we did
for the cylinder in Fig. 9, we increase the coupling ratio
Jy/Jx but stay at relatively low values. Intersections
present when Jy/Jx = 0 lead to avoided crossings, but of
comparable widths at noticeably smaller values than for
a cylinder; hence we consider a smaller value Jy/Jx = 0.2
for the torus. We use M = 3 and α = 1/3 so that they
are commensurate, Mα = 1, and then edge states in
a cylindrical latttice would correspond to states N and
N + 1. We can see that as with the cylinder when Nα
is commensurate with N = 9, these ‘edge’ states present
avoided crossings, whereas when Nα is incommensurate
with N = 8, there is no such gap and the two relevant
spectral lines intersect and traverse the band gap.
In the case of a torus, considering that there are no
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actual edges, we look for other implications of this dif-
ference in behavior by plotting the states. We keep the
same format as for the cylinder, we described in Fig. 5,
except that we need to keep in mind that the first ring
and the last ring are adjacent. We find an interesting dif-
ference in behavior between the commensurate and the
incommensurate cases described above: When Nα is in-
commensurate the states are strongly localized in that
direction, as seen in the lower row of Fig. 11. With Nα
commensurate, as shown in the upper row of that figure,
the states N and the N + 1 are delocalized and show
certain periodic behavior in the direction indexed by n,
particularly in the neighborhood of the avoided crossing.
The delocalization is actually present in all the states,
pronounced by the near degeneracy of the states in each
band. This delocalization and periodicity can be under-
stood as a manifestation of lattice periodicity matching
the magnetic translation period [34].

VIII. OUTLOOK AND CONCLUSIONS

We conducted a comparative study of the spectrum
and states of small 2D lattices having cylindrical and
toroidal topologies subject to an effective gauge field or-
thongonal to the lattice. Our considerations although
more generally applicable, are motivated by synthetic
gauge fields in ultracold atoms, where such configurations
are now being actively examined in experiments. For
cylindrical lattices, by considering the commonly used
Landau gauge, we demonstrate how the orientation of
the gauge relative to the periodic boundary condition
fundamentally alters the behavior of the system. The
equivalence is restored at the values of the field parame-
ter α that are commensurate with the number of lattice
sites in the periodic direction. By comparing the spec-
tra with and without periodic boundary conditions and
for limiting cases of vanishing inter-site coupling in one
or the other orientation, we could isolate the impact of
various competing factors that lead to the well-known
butterfly like spectrum.

Focusing on small lattices enabled classifications of the
various degeneracies in the spectra manifest as intersec-
tions of spectral lines plotted as functions of the field
parameter α or an additional axial field parameterized
by ϕ. Key among these are degeneracies that evolve into

avoided crossings, as well as persistent degeneracies that
remain invariant in several ways with respect to changes
in the coupling constants of the lattice. We discuss the
behavior of the associated eigenstates, which in turn show
that the very presence of these features depend on the
synthetic gauge chosen.
For small size cylindrical lattices, we could identify the

spectral lines that span the band gaps as states that are
indeed localized on the edges, and hence their nomencla-
ture as edge states. These have been shown to play a cru-
cial role in the quantum Hall effect [2, 35]. Here we found
that as a function of the added axial field ϕ, degenerate
points in pairs of such spectral lines can develop avoided
crossings when the number of coupled rings that comprise
the cylinder is commensurate with the field variable α.
This in effect means that a band-spanning spectral line
that leads to the characteristic features associated with
the integer quantum Hall effect [31] would be lost. Such
effects are sensitive to system size and are particularly
prominent in small lattices.
A small toroidal lattice displays many of the same qual-

itative behavior as a cylindrical one. Specifically, when
the gauge is along the periodic direction of a cylinder,
closing it to a torus does not alter the number and ap-
pearance of persistent degeneracies; however such degen-
eracies emerge in a torus while absent in a cylinder when
the gauge is in the other orientation. Notably, when we
apply the same conditions that for a cylinder caused edge
state spectral lines to transition from toplogical to triv-
ial insulating behavior, we find that there is a transition
between localization and delocalization of the relevant
eigenstates in a torus.
The results in this paper can provide guidance in an-

alyzing the behavior of cylindrical and toroidal lattice
structures with synthetic gauge fields that are gaining
interest in experiments with ultracold atoms. The behav-
ior of the spectrum and the quantum states as a function
of various system parameters and factors, directly im-
pact the dynamical behavior of these systems. Exam-
ining such time-dependent behavior particularly in the
adiabatic regime will be part of our continuing research.
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