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Impact of microwave phase noise on diamond quantum sensing
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Precision optical measurements of the electron-spin precession of nitrogen-vacancy (NV) centers in diamond
form the basis of numerous applications. The most sensitivity-demanding applications, such as femtotesla
magnetometry, require the ability to measure changes in GHz spin transition frequencies at the sub-millihertz
level, corresponding to a fractional resolution of better than 10−12. Here we study the impact of microwave
(MW) phase noise on the response of an NV sensor. Fluctuations of the phase of the MW waveform cause
undesired rotations of the NV spin state. These fluctuations are imprinted in the optical readout signal and, left
unmitigated, are indistinguishable from magnetic-field noise. We show that the phase noise of several common
commercial MW generators results in an effective pT s1/2-range noise floor that varies with the MW carrier
frequency and the detection frequency of the pulse sequence. The data are described by a frequency-domain
model incorporating the MW phase-noise spectrum and the filter-function response of the sensing protocol. For
controlled injection of white and random-walk phase noise, the observed NV magnetic noise floor is described
by simple analytic expressions that accurately capture the scaling with pulse sequence length and the number
of π pulses. We outline several strategies to suppress the impact of MW phase noise and implement a version,
based on gradiometry, that realizes a >10-fold suppression. Our study highlights an important challenge in the
pursuit of sensitive diamond quantum sensors and is applicable to other qubit systems with a large transition
frequency.
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I. INTRODUCTION

Precision optical measurements of the electron-spin pre-
cession of nitrogen-vacancy (NV) centers in diamond form
the basis of numerous applications, ranging from imaging
biomagnetism [1–6] to nuclear magnetic resonance (NMR)
spectroscopy [7–10], gyroscopes [11–13], femtotesla magne-
tometry [14–17], and searches for new spin physics [18–20].
As solid-state electron-spin sensors, NV centers offer advan-
tages over alkali-metal vapor and superconducting quantum
interference device sensors in that a high density of immobile
spins form a tunable sensing voxel that can be tailored for
the application. Much attention has been devoted to the use
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of single or small ensembles of NV centers as nanoscale
sensors, leading to remarkable advances in materials and bi-
ological microscopy [21–24]. However, the development of
ultrasensitive bulk NV sensors, as needed for the most de-
manding metrology applications [25,26], presents additional
challenges.

One challenge is that NV electron-spin transition frequen-
cies are almost always large. Due to the zero-field splitting
arising from embedding electron-spin S = 1 defects in a
solid, the magnetic-dipole-allowed NV spin transitions are
≈3 GHz at low magnetic field. A femtotesla-level NV sensor
must measure changes in these spin transition frequencies
at the sub-mHz level, corresponding to a fractional resolu-
tion substantially better than 10−12. In any spin-precession
measurement, random-phase fluctuations of the microwave
(MW) control field lead to undesired rotations of the spin state
that are often indistinguishable from magnetic-field noise, see
Fig. 1(a). Phase noise is always present at some level, due to
the limited clock stability and Johnson noise in MW signal
generators [27,28], but it has only recently been a limiting
factor for NV precision measurements [9,15,17]. The mag-
nitude of this effect should not be understated–phase noise
from typical MW generators produces NV sensor noise at the
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FIG. 1. MW phase-noise detection: principle and experimental apparatus. (a) Graphical representation of the impact of MW phase noise
on a generic spin-1/2 sensor. MW phase errors lead to a rotation of the basis, with respect to the spin Bloch vector σ̂nv, that is indistinguishable
from spin precession due to a magnetic field. (b) Schematic of the NV magnetometer used for the measurements; detailed information can be
found in Appendix A 4. The bias field �B0 and calibrated test fields �Btest are aligned to one of the NV axes (Appendix A 3). (c) Synchronized
series of XY8-Nr pulse sequences used for AC magnetic-field measurements. (d) Typical magnetic spectra taken using MW generator G2. The
right vertical axis is the processed photodetector voltage spectral density, and the left vertical axis is converted to magnetic sensitivity units.

level of 0.1–100 pT s1/2, orders of magnitude above require-
ments for applications like magnetoencephalography [29–33].
Moreover, the impact of phase noise tends to grow with the
MW frequency, which has implications for high-field applica-
tions like NMR chemical analysis.

Here, we experimentally characterize the impact of MW
phase noise on the noise floor of an NV sensor. We show
how to predict the impact numerically, using a frequency-
domain model incorporating the MW phase-noise spectrum
and the filter-function response of the sensing protocol, and
also with simple analytic expressions for the cases of white
and random-walk phase noise. We discuss strategies to sup-
press the impact of MW phase noise and implement a version
based on gradiometry that realizes a >10-fold suppression.
Our results highlight a key factor in the design of sensitive
diamond quantum sensors and are broadly applicable to other
qubit systems.

II. EXPERIMENTAL SETUP

The principle behind the impact of MW phase noise is
depicted in Fig. 1(a). Consider a general Ramsey-type mea-
surement on a spin S = 1/2 qubit initially prepared in an Sz

eigenstate. A resonant MW π/2 pulse, with a well-defined
phase, rotates the spin state to lie along the y axis of the
Bloch sphere in the rotating frame. In the first case, a small
additional magnetic field is present, and the spin state pre-
cesses, accumulating a phase θ with respect to the y axis. A
final MW π/2 pulse is applied with the same frequency as
the initial π/2 pulse but with a 90◦ phase shift. This pulse
faithfully projects the phase accumulation onto the Sz basis,
and measurements of 〈Sz〉 can be used to determine θ . In the
second case, there is no additional magnetic field present, and
the spin state does not precess. However, if the phase of the
MW carrier of the final π/2 pulse has an error θ with respect
to the desired phase, then the state projection and readout
will produce the same result as in the first case. Thus, in this
common scenario, MW phase noise is indistinguishable from
magnetic-field noise. This general concept holds even when
there are additional MW pulses in the sequence, although the
exact phase errors depend on the properties of the MW source
and the pulse sequence.

Our experimental setup is depicted in Fig. 1(b) and
additional details are in Appendix A. A 120-µm-thick, (110)-
polished diamond membrane, with an NV density ≈0.5 ppm,
is adhered to a high-refractive-index (n = 2) half-ball lens.

043148-2



IMPACT OF MICROWAVE PHASE NOISE ON DIAMOND … PHYSICAL REVIEW RESEARCH 6, 043148 (2024)

TABLE I. Microwave generators used in measurements. The
final column is the manufacturer specifications of typical phase
noise for a 1 GHz carrier at 20 kHz offset with I/Q modulation
enabled [34,35]. Other information on phase-noise performance is
in Fig. 2(d) and Appendix C.

Name MW generator model Phase noise, 1 GHz

G1 SRS SG386 −114 dBc/Hz (20 kHz)
G2 R&S SMATE200A −134 dBc/Hz (20 kHz)
G3 R&S SMU200A-B22 −138 dBc/Hz (20 kHz)

Light from a 532-nm laser passes through an acousto-optic
modulator and is relayed by a 0.79-NA aspheric lens onto
the diamond membrane, resulting in an excitation beam waist
of 50–100 µm and a power of ≈0.4 W. NV center fluores-
cence is collected by the same aspheric lens, spectrally filtered
(passing 650–800 nm light), and focused onto one channel
of a balanced photodetector. A small portion of the green
excitation beam is directed to the second photodetector chan-
nel to suppress the impact of laser intensity fluctuations. The
diamond together with the half-ball is adhered to a micro-
scope slide that has a copper trace which delivers the MW
field to the NV centers. A variable bias magnetic field �B0,
produced by an electromagnet, is aligned along one of the
NV axes (Appendix A 3). The aligned NV centers have spin
transition frequencies f± = D ± γnvB0, where D = 2.87 GHz
is the NV zero-field splitting and γnv = 28.03 GHz/T is the
gyromagnetic ratio. A 55-mm-diameter wire loop is used to
deliver uniform, calibrated (Appendix B) oscillating (AC) test
magnetic fields along the NV axis. Three commercial MW
generators were studied, named G1, G2, and G3. Their model
numbers and typical phase-noise performance are shown in
Table I.

AC magnetometry is performed at room temperature using
a synchronized series of XY8-Nr pulse sequences [8,9,15],
see Fig. 1(c). Each XY8-Nr sequence (duration: τtot) begins
and ends with a MW π/2 pulse that is resonant with one of
the f± spin transitions. Between the π/2 pulses, a train of 8Nr

resonant π pulses (length: tπ ), spaced by 2τ = 1/(2 fxy8) − tπ ,
are applied in a pattern of alternating phase. The XY8-Nr

pulse sequences are frequency selective, in that NV centers are
primarily sensitive to AC magnetic-field frequencies within
a band, centered at fxy8, of width ≈ fxy8/(4Nr ). Following
each XY8-Nr sequence, a 12-µs laser pulse is applied for
NV optical readout and repolarization. The time between
XY8-Nr sequences, tdead ≈ 15 µs, accounts for this pulse as
well as small additional delays. The sequence is repeated
continuously, and the resulting time trace of NV fluorescence
readouts is approximately proportional to an aliased version
of an AC field that is sampled at the time of the first π/2
pulse of each XY8-Nr sequence, with a sample rate fsamp =
1/(τtot + tdead ). For an AC field of frequency f , that lies within
the passband of the XY8-Nr sequence, the NV fluorescence
signal oscillates at an alias frequency | f − fref |, where fref is
the integer multiple of fsamp that is closest to f [9].

Figure 1(d) shows typical magnetic spectra taken using
MW generator G2, with a 212 pTrms test field applied
at ftest = fxy8 = 457.9 kHz and fref = 459.3 kHz. Here,

B0 = 81 mT, so f+ = 5.13 GHz and f− = 0.61 GHz. To
acquire a spectrum, a synchronized XY8-8 pulse series is
applied continuously for ≈150 s, the NV fluorescence time
trace is split into 1-s intervals, and the root-mean-squared
average [36] of the absolute value of the Fourier transform
of each interval is computed (Appendix D). Three spectra
are shown: one with G2 tuned to the f+ transition, one with
G2 tuned to f−, and one with G2 detuned by +0.4 GHz
from f− for all MW pulses. The noise floor off resonance is
ηoff ≈ 6.0 pTrms s1/2, consistent with the expected noise floor
in the photoelectron-shot-noise limit, ηpsn ≈ 5.4 pTrms s1/2

(Appendix E). Measurements with G2 detuned by +0.4 GHz
from f+ have the same noise floor and are omitted for visual
clarity. However, the spectrum for G2 on resonance with f−
has a slightly higher noise floor, and the spectrum for G2 on
resonance with f+ has a more than twofold higher noise floor.
Assuming that the noise contributions are independent, we
compute an excess noise as ηex,± = (η2

± − η2
off )1/2, where η±

is the noise floor when MW are resonant with the f± tran-
sitions. The nonzero values, {ηex,− ≈ 4.7 pTrms s1/2, ηex,+ ≈
11.9 pTrms s1/2}, indicate additional noise that is only present
when G2 is tuned to resonance. This effect is reproducible
regardless of the order of acquiring the spectra, the use of
spectral filters in the MW chain, the type of MW amplifier
used, or the method of phase alternation (Appendix F).
However, the results change dramatically when using different
MW generators, as will be described in Sec. III. That the noise
floor would rise with increasing MW carrier frequency is an
early hint that MW phase noise, which also tends to increase
with carrier frequency [28], is responsible for the excess noise.

III. PHASE NOISE SPECTROSCOPY

To study the excess noise in more detail and verify its
origin, we measured the NV sensor noise floor as a function
of MW carrier frequency and detection frequency fxy8 for two
different MW generators—G1 and G2. Figure 2(a) plots the
NV sensor noise floor as a function of G1 carrier frequency
fG1 under an XY8-6 pulse series. To generate this plot, B0

is varied over the range 20–80 mT. For a given value of B0,
the noise floor is measured for G1 tuned to an f± resonance,
as well as the off-resonance case (detuning: 0.2 GHz), and
the excess noise ηex,± is inferred. Throughout, we observe
markedly larger values of ηex,± for G1 than those observed
with G2 [see Fig. 1(d)] at the same carrier frequency. This is
consistent with the higher phase noise of G1, as specified by
the manufacturer (Table I). Furthermore, we observe a roughly
monotonic increase in excess noise with increasing MW gen-
erator frequency. A similar trend is observed for generator G2
(Appendix A 4) when sweeping B0 and matching fG2 to the
f± resonances.

To isolate the MW carrier-frequency dependence, and
eliminate any effects due to magnetic field, we next fixed
the magnetic field at B0 = 81 mT. We mixed the output of
G1 with one of the output channels of (low-noise) G2 and
filtered for the difference frequency, fG1 − fG2. Since G2
has a much lower phase noise (Table I), we assume the
phase noise of the difference frequency is dominated by
the G1 phase noise (Appendix G). For MW-on-resonance
measurements, we set fG1 − fG2 = f− = 611 MHz, and for
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FIG. 2. Phase noise spectroscopy. (a) NV sensor noise floor for an XY8-6 pulse series with MW generator G1 tuned to a f± spin transition
at different magnetic fields. For G1 carrier frequency fG1 < 2.87 GHz, microwaves are tuned to the f− spin transition, and otherwise they are
tuned to f+. (b) NV sensor noise floor as a function of fG1. Here B0 = 81 mT is constant, and the final MW tone probes the f− = 611 MHz
transition. This tone is generated by jointly varying and mixing G1 and G2 carrier frequencies, while maintaining fG1 − fG2 = 611 MHz.
(c) NV sensor noise floor as a function of fG2. Here, two independent channels of G2 are varied and mixed, while maintaining fG2,1 − fG2,1 =
611 MHz. The lowest frequency represents fG2,1 + fG2,2 = 611 MHz (Appendix A 4). (d) G1 and G2 single-sideband (SSB) phase-noise power
spectra, L( f ), for different MW carrier frequencies. For G1, the spectra are measured using a phase-noise analyzer, Appendix C. For G2, they
are extracted from the manufacturer specification sheet [35]. (e) XY8-Nr filter functions, F ( f ), for Nr = {1, 4, 16}. Dashed gray lines are
aligned with the first harmonic, fXY8, of each function and are extended to (d) and (f) for comparison. (f) Excess noise, ηex,+, for G1 obtained
for different values of Nr . Here B0 = 76 mT, fG1 = f+ = 5.00 GHz, and τtot ≈ 70 µs (Appendixes D and H). Varying Nr also varies the filter
function’s first harmonic, fXY8. Green curves in panel (f) and gold points in panels (a)–(c) are calculated from the filter-function model using
Eqs. (1), (2) and curves in panels (d) and (e). For panels (a)–(c) and (f), error bars are the standard deviation of �10 identical measurements
(Appendix D).

the off-resonance case we set fG1 − fG2 = 811 MHz. This
allowed us to vary fG1 without altering the NV properties.
Figure 2(b) shows the measured NV sensor noise floors,
under an XY8-8 pulse series, as a function of fG1 in the
0.9–6 GHz range. The behavior is similar to that of Fig. 2(a),
reinforcing the monotonic dependence of ηex,± on MW carrier
frequency.

We used a similar method to probe the NV sensor noise
dependence on fG2, Fig. 2(c). In this case, two output channels
of G2 are mixed. We expect that the phase noise of each chan-
nel is uncorrelated, and thus the phase noise of the difference
frequency is ≈√

2 times larger than that of a single channel
(Appendix G). The measured excess noise increases roughly
monotonically with fG2,1, but it is ≈7 times lower than that
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observed in Fig. 2(b). This is qualitatively consistent with the
lower phase noise for G2 compared with G1.

To predict the impact of MW generator phase noise on
the NV sensor noise floor, we apply a frequency-domain,
filter-function method [27]. The method incorporates the
single-sideband power spectral density L( f ) for G1 and G2
at different carrier frequencies, as shown in Fig. 2(d) (see also
Appendix C). The standard deviation of the NV spin state’s
phase displacement, σφ , due to MW phase errors in a single
pulse sequence is given by (Appendix H)

σ 2
φ =

∫ ∞

0
Sφ ( f )F ( f )df ≈

∫ fc

0
Sφ ( f )F ( f )df , (1)

where Sφ ( f ) = 2 × 10
L( f )

10 , F ( f ) is the filter function of the
multipulse sequence, and fc ≈ 0.1 GHz is a cutoff frequency
that depends on the frequency response of the MW delivery
(Appendix H 2). Expressions for F ( f ) of an XY8-Nr se-
quence [37] are given in Appendix H, and the cases of Nr = 1,
4, and 16 are shown in Fig. 2(e).

The impact of MW phase-noise results in an equivalent
magnetic sensitivity given by

ηφ ≈ σφ

4γnv
√

τtot

√
1 + tdead/τtot. (2)

This noise contribution is uncorrelated with that due to pho-
toelectron shot noise and can thus be directly compared with
ηex,±. In Figs. 2(a)–2(c), the noise floors calculated from ηφ

[Eqs. (1) and (2)] are shown, using the same pulse sequence
parameters as in the experiment (see Appendixes D and H).
For higher MW carrier frequencies, the calculated and experi-
mental values differ slightly, perhaps due to 1–2 dB disparities
in L( f ). However, overall, the calculated values are largely in
agreement with the measurements, indicating that the source
of ηex is indeed from MW phase noise.

The filter-function model of Eqs. (1) and (2) implies that,
for a given MW signal generator, the NV sensor noise floor
depends on the choice of pulse sequence. To probe this effect,
we performed experiments where we fixed τtot ≈ 70 µs (the
experimental τtot values varied slightly, but for calculations
we used the median value τtot = 70 µs) and varied Nr (Ap-
pendixes D and H). Here B0 = 76 mT, and G1 probes the
f+ = 5 GHz transition.

Figure 2(f) shows the resulting measured values of ηex,+,
along with the noise floors calculated from ηφ [Eqs. (1) and
(2)] for different G1 carrier frequencies. While a comparison
under exactly the same carrier frequency was not possible,
the experimental and simulated curves have the same shape.
We can qualitatively understand the shape as follows. The G1
phase-noise spectrum Sφ ( f ) is approximately flat for carrier
offset frequencies between 50–500 kHz (white-noise band),
and then it falls sharply as ≈1/ f 2 for offset frequencies be-
tween 0.5 and 5 MHz (random-walk noise band). When the
NV sensor detection frequency falls within the white-noise
band ( fxy8 � 500 kHz, Nr � 9), the scaling of the NV sensor
excess noise with Nr is dominated by the scaling of the inte-
gral of F ( f ) within this band, see Eq. (1). For a sequence of
periodic π pulses, including XY8-Nr , the peak heights grow
as N2

r , while the number of harmonics that fall within the
band shrinks as 1/Nr . Thus, σ 2

φ grows approximately as Nr

and ηφ grows approximately as
√
Nr . However, when the NV

sensor detection frequency falls within the random-walk noise
band ( fxy8 � 500 kHz, Nr � 9), the N2

r increase in F ( f ) peak
heights is compensated for by the ≈1/ f 2 decrease in Sφ ( f ),
leading to a plateau in excess noise and even a slight decrease
when Nr � 14.

Based on these results, we conclude (i) noise spectroscopy
using a multipulse NV sensor carries information on the
MW generator phase-noise spectrum that can be inferred
through spectral decomposition methods [38–40], and (ii) the
choice of pulse sequence has a large impact on the phase-
noise-limited NV sensor noise floor and is thus an important
consideration in the design of NV precision experiments.

In Appendix I, we also analyze the phase-noise response
of a continuous-wave optically detected magnetic resonance
measurement. In this case, the phase-noise-limited equiv-
alent magnetic sensitivity tends to be better than that for
multipulse sequences, and it depends on the magnetome-
ter bandwidth. However, the impact of phase noise is still
important. For example, for a 1-kHz bandwidth magnetome-
ter, the phase-noise-limited equivalent magnetic sensitivity
is ≈1.4 pTrms s1/2 for G1 operated at fG1 = 2.5 GHz and
≈0.3 pTrms s1/2 for G2 operated at fG2 = 2.1 GHz.

IV. WHITE AND RANDOM-WALK PHASE NOISE

We next detail the response of an NV sensor under the
controlled injection of MW phase noise. We focus on the
common cases of white and random-walk phase noise, for
which we derive simple analytic formulas of their impact on
an NV pulsed sensor (Appendix J). Here, it is assumed that
the MW carrier phase of a given pulse is well defined, but the
relative phase changes from pulse to pulse due to phase noise.

For white phase noise, the standard deviation of the NV
spin state’s phase displacement due to MW phase errors in
a single XY8-Nr pulse sequence is σφ = 2σwh

√
N + 1/4 ≈

2σwh

√
N , where σwh is the standard deviation of the MW

phase error of each pulse, and N = 8Nr is the total number of
π pulses. Using Eq. (2), the equivalent NV sensor magnetic
sensitivity is then

ηwh ≈ σwh

γnv

√
fxy8

2

√
1 + tdead/τtot. (3)

We experimentally validated the behavior of the NV sen-
sor noise floor under white MW phase noise, by injecting
pseudowhite noise into the phase modulation port of G3 (Ap-
pendix A 5). Here, B0 = 81 mT and fG3 = f− = 0.61 GHz.
Figures 3(a)–3(c) show the NV sensor excess noise as a
function of σwh, fxy8, and τtot, respectively. In each case the ex-
perimental values of ηex agree well with those calculated from
Eq. (3). Interestingly, in the MW phase-noise limit, the noise
floor grows as a function of fxy8 (for fixed τtot). This scaling
is quite different from the scaling in the photoelectron-shot-
noise limit (Appendix E), where the NV noise floor decreases
due to improved contrast when the “dynamical decoupling”
property of the multipulse sequence improves the NV co-
herence time, T2. Furthermore, the MW-phase-noise-limited
noise floor hardly changes as τtot increases (for fixed fxy8).
This is also a departure from the photoelectron-shot-noise
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FIG. 3. White phase noise injection. Blue dots are measured values. Black curves are calculated from Eq. (3) using independently measured
parameters (Appendix D). (a) NV sensor excess noise as a function of the standard deviation of MW phase errors between π pulses, σwh.
(b) Excess noise versus Nr (and thus fxy8), holding τtot and σwh constant. (c) Excess noise versus Nr (and thus τtot), holding fxy8 and σwh

constant. In equivalent magnetic noise calculations, we used tdead = 17 µs. In panels (a)–(c), error bars are the standard deviation of �10
identical measurements. We used tdead = 17 µs for magnetic noise calculations.

limit, where an increase in τtot should decrease the noise floor
for τtot � T2.

The behavior of the NV sensor noise floor with white
phase noise is particularly important, since the white Johnson
noise of a MW oscillator sets a fundamental limit on a MW
generator’s phase-noise performance [28,41]. As discussed
in Appendix H, for a 0 dBm MW oscillator with a noise
temperature of 300 K, L ≈ −177 dBc/Hz, and the phase-
noise-limited equivalent magnetic sensitivity would be at the
≈100 fT s1/2 level. This is far above fundamental limits set
by photoelectron shot noise or spin projection noise [25]. In
Appendix I, we also analyze the phase-noise response of a
continuous-wave optically detected magnetic resonance mea-
surement. We find that the NV sensor equivalent magnetic
sensitivity in the oscillator Johnson noise limit is �10 fT s1/2

for a magnetometer bandwidth �100 kHz.
For random-walk phase noise, the standard deviation of the

NV spin state’s phase displacement due to MW phase errors in
a single XY8-Nr pulse sequence is σφ = σrw

√
τtotRsamp, where

σrw is the standard deviation of MW phase jumps and Rsamp is
the jump rate. In deriving this expression (Appendix J), we as-
sumed that Rsamp � 1/(2τ ) so the MW phase changes for each
π pulse. The equivalent NV sensor magnetic sensitivity is

ηrw ≈ σrw
√
Rsamp

4γnv

√
(1 + tdead/τtot ). (4)

We injected pseudorandom-walk phase noise using G3
(Appendix A 5) and observed the NV noise floor be-
havior experimentally (B0 = 81 mT, fG3 = f− = 0.61 GHz).
Figures 4(a)–4(d) show the NV sensor excess noise as a func-
tion of σrw, Rsamp, fxy8, and τtot, respectively. In each case,
the experimental values of ηex match those calculated from
Eq. (4), aside from minor deviations due to imperfect deliv-
ery of random-walk noise in the experiment (Appendix A 5).
Unlike the case of white phase noise, with random-walk noise,
ηex is independent of the number of π pulses or fxy8. However,
as with white noise (but unlike in the photoelectron-shot-noise
limit), ηex hardly changes with τtot. The case of random-walk
phase noise is especially relevant for qubit sensors with a
long coherence time, as MW generators are often limited by
random-walk phase noise at offset frequencies �10 kHz, see,
for example, the behavior of G2 in Fig. 2(d).

V. PHASE NOISE CANCELLATION

While MW phase noise represents an important technical
challenge for NV precision measurements, various common-
mode noise rejection methods can suppress its impact. Here,
we implement a simple way to minimize the impact of MW
phase noise using two-point gradiometry. The excitation laser
beam is split into two beams that are focused to separate spots
in the same diamond, located on opposite sides of the MW

FIG. 4. Random-walk phase-noise injection. Blue dots are measured values. Black curves are calculated from Eq. (4) using independently
measured parameters (Appendix D). (a) NV sensor excess noise versus the standard deviation of random-walk phase jumps σrw. (b) Excess
noise versus jump sample rate, Rsamp. (c) Excess noise versus Nr (and thus fxy8), holding τtot , Rsamp, and σrw constant. (d) Excess noise
versus Nr (and thus τtot), holding fxy8, Rsamp, and σrw constant. In panels (a)–(c), vertical error bars are the standard deviation of �5 identical
measurements, and we used tdead = 17 µs for magnetic noise calculations.
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trace (Appendixes A 2 and A 3). The emission from each spot
is directed to separate channels of the balanced photodetector.
The detection spots are close enough apart (≈0.2 mm) that
NV centers in each spot are subject to approximately the same
MW field (aside from an overall ≈180◦ phase difference), and
thus similar phase noise. In these experiments, the diamond
is rotated within the electromagnet to interrogate one of the
out-of-plane NV axes.

Magnetometer spectra were obtained using G1 with a
XY8-7 pulse series under two applied test field configura-
tions. In the first configuration, Fig. 5(a), a 394 kHz test field
is generated from a large coil (Appendix A), resulting in a
uniform test magnetic field over the two spots. The magnetic
spectra of each spot separately (emission from the other chan-
nel was blocked) feature a 6.3 nTrms test-signal peak, and
the MW-phase-noise-limited noise floor is ≈175 pTrms s1/2.
However when operating as a gradiometer (neither channel
is blocked), the test signal is highly suppressed to �0.2 nTrms.
Moreover, the noise floor drops to 15 pTrms s1/2, a factor of
≈12 suppression compared with the single-spot case.

In the second configuration, a 394 kHz gradient test field
is applied by sending the test signal through the same trace
on the chip as the MW radiation, Fig. 5(b). Here, magnetic
spectra of each spot separately exhibit a ≈7.5 nTrms test-
signal peak, with a MW-phase-noise-limited noise floor of
≈170 pTrms s1/2. However, when operating as a gradiometer
(neither channel is blocked), the test signal peak is approxi-
mately doubled to 15 nTrms, which is expected since the sign
of the test field is opposite between the two spots. Never-
theless, the gradiometer noise floor drops to 16 pTrms s1/2, an
≈11-fold suppression compared with the single-spot case.

We tested the stability of the gradiometer as a function
of acquisition time t over the course of 5000 s. The
noise floor exhibits a 14 pTrms s1/2/

√
t scaling for the

duration of the measurement, dropping below 200 fTrms

for t = 5000 s. Moreover, the gradient signal peak remains
at 14.7 ± 0.5 nTrms over the course of the measurement,
indicating a stable scale factor.

VI. DISCUSSION

Two-point gradiometry is a powerful method for phase-
noise suppression when detecting localized fields that vary
substantially over millimeter length scales. In cases where
fields vary less sharply, or when only a single detection
spot is desired, the use of multiple NV transitions can be
exploited.

For example, for a small applied field along the NV axis
(B0 	 D/γnv = 0.1 T), a double-quantum pulse sequence can
be applied to suppress the impact of MW phase noise (Ap-
pendix K). Two MW tones at f± can be generated by mixing
a large carrier frequency ( fcar = D) with a much lower fre-
quency local oscillator ( fLO = γnvB0) [42]. As derived in
Appendix K, the resulting NV sensor signal then depends only
on the phase noise of the local oscillator, and it is independent
of the phase noise of the fcar source. If the phase noise varies
linearly with carrier frequency, as is approximately the case
for the MW generators studied here, this scheme allows for
a suppression of the MW phase-noise impact by a factor
of fcar/ fLO.

FIG. 5. Phase noise cancellation by gradiometry. G1 is used
with a XY8-7 series at B0 = 76 mT, f+ = 5 GHz, ftest = 394 kHz
(Appendix D). (a) Magnetometer spectra obtained with a uniform
test signal. Blue and red curves are spectra for individual chan-
nels (ch 1 and ch 2), corresponding to emission from each spot
separately. The gradiometer difference signal is in yellow. The
MW-off-resonance noise for the gradiometer is in green. (b) Magne-
tometer spectra obtained for a gradient test signal. The gradiometer
signal shows a peak that is nearly twice that of individual chan-
nels. The noise floor is suppressed by a factor of ≈11 and is near
the MW-off-resonance limit. (c) Gradiometer integrated noise floor
as a function of acquisition time t . The data are well fit by a
14 pTrms s1/2/

√
t curve out to t = 5000 s. (inset) Stability of the

gradiometer test signal amplitude over 5000 s.

For a continuous-wave NV measurement, at low magnetic
field, the same mixer scheme can be used with a dual-
resonance technique [14,43] to realize comparable levels of
suppression of the MW phase impact (Appendix I 3).
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At very low applied field B0 � 	R/γnv, where 	R is the
MW Rabi frequency, a single MW tone can be used with a
double-quantum pulse sequence [44], potentially eliminating
the first-order impact of MW phase noise entirely.

In some applications, interrogating both NV resonances
may not be feasible or effective. In either case, pulse se-
quences may be improved by incorporating MW phase noise
into the optimization of pulse-sequence filter functions. The
dependence of the NV phase-noise-limited sensitivity on
the filter-function detection frequency, Fig. 2(f), points to the
possible efficacy of this strategy. Pulse sequences that take ad-
vantage of low-phase-noise regions of a generator’s spectrum
(for example, due to the behavior of the phase-locked loop), or
the use of composite, chirped, or aperiodic pulses, may offer
superior performance. When practical, ultralow phase noise
MW generators based on superconducting resonators [45],
dielectric cavities [46,47], ferrimagnetic oscillators [48,49],
and photonic microwave generators [50–52] may be helpful.
Finally, the use of magnetic-flux concentrators [14–16,53]
provides some relief from the impact of phase noise, as mag-
netic signals are amplified while the impact of phase noise is
unchanged.

In summary, we studied the impact of MW phase noise
on NV sensors and verified that it is an important limit-
ing factor for high-sensitivity experiments. We showed how
to quantitatively predict the impact of MW phase noise,
with knowledge of a generator’s phase-noise spectrum and
the pulse sequence filter function. We provided simple an-
alytic expressions for the case of white and random-walk
phase noise. Finally, we identified a number of methods to
suppress the impact of phase noise and implemented one,
based on two-point gradiometry, that provides a >10-fold
suppression. Our results inform on the design of preci-
sion measurements and spectroscopy experiments using NV
centers and other qubit systems with a large transition
frequency.
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APPENDIX A: EXPERIMENTAL SETUP DETAILS

Our diamond sensor is similar to those used in Refs. [9,15].
The diamond was grown by chemical vapor deposition,
yielding an initial nitrogen density of ≈5 ppm. The dia-
mond was irradiated with 2-MeV electrons at a dose of 3 ×
1017 cm−2 and was subsequently annealed at 800 and 1100 ◦C
using the recipe described in Ref. [54]. Based on fluorescence
brightness, we estimate the resulting NV− concentration
is ≈0.5 ppm. Finally, the diamond was cut into mem-
branes of dimensions ≈800 × 600 × 120 µm3 with a (110)
surface polish.

The diamond sensor is sandwiched between a glass slide
with a copper trace and a half-ball lens (8 mm diameter,
refractive index n = 2). A Norland Optical Adhesive 88 is
used at the interfaces to mechanically secure the diamond
in place and improve optical contact. Microwave fields are
delivered to the NV centers through the ≈2-µm-thick, litho-
graphically defined copper trace, which has a trace width of
≈200 µm in the region in contact with the diamond. The
laser light (532 nm, Lighthouse Photonics Sprout-G-10W)
passes through an acousto-optic modulator (Brimrose TEM-
110-25-532) to form 12 µs pulses with a peak power ≈0.4 W.
The light subsequently passes through an additional lens
[not shown in Fig. 1(a) of the main text] and is relayed
onto the diamond using a NA = 0.79 aspheric lens. The ar-
rangement of lenses (including the n = 2 half-ball lens) is
selected to provide wide-field illumination with an excitation
diameter in the range 50–100 µm. NV fluorescence is col-
lected by the same lens, is spectrally filtered by a dichroic
mirror (Thorlabs DMLP550L) and long-pass filter (Thorlabs
FELH0650), and is directed to one channel of a balanced
photodetector (Thorlabs PDB210A) with a transimpedance
gain of G = 175 kV/A = 2.8×10−14 V/(photoelectron/s) at
50 	 impedance.

Considering the ≈50 µm excitation beam diameter, the
≈120 µm diamond membrane thickness, and the ≈0.5 ppm
NV density, we estimate that ≈2 × 1010 NV centers are op-
tically interrogated. Of these NV centers, ≈1/4 (≈5 × 109)
belong to the NV-axis subensemble with f± spin resonances
addressed by the microwaves.

An arbitrary waveform generator (Teledyne LeCroy
T3AFG80) is used to generate AC test magnetic fields via
an external loop surrounding the diamond sensor. The loop
is formed from copper magnet wire (diameter 1.3 mm) that is
wound three times in a circle of diameter 55 mm. In Fig. 5(a),
we used a modified loop that had two windings and an ellip-
tical shape with ≈55-mm-long major axis and ≈20-mm-long
minor axis.

A transistor-transistor logic (TTL) pulse card (SpinCore
PBESR-PRO-500) is used to generate and synchronize pulse
sequences and a data acquisition card (National Instruments
USB-3631) is used to digitize the photodetector signal.

1. Microwave components

The following microwave components were used (part
numbers are for Mini-Circuits unless otherwise noted):

When addressing the f− transition using MW carrier fre-
quencies below 2.5 GHz [Figs. 1(d) and 2(a)–2(c)], we used
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FIG. 6. Schematic of the gradiometry setup. The primary differ-
ence from Fig. 1(b) is that the excitation beam is split and focused to
two spots on the diamond. The fluorescence from each spot is sent to
different channels of the balanced photodetector.

ZHL-30W-252-S+ as the power amplifier. Otherwise, we
used ZVE-3W-83+ followed by RF-Lambda RP02G06GSPA.

For experiments presented in Figs. 2(b) and 2(c), we used
ZX05-42MH-S+ as the frequency mixer when both MW
carrier frequencies were �4 GHz and ZMX-7GHR otherwise.
In both cases, we used a combination of SHP-700+ and
VLFX-450+ on the mixer output as an effective bandpass
filter. To compensate for losses in the mixer and filters, we
used an additional pre-amplifier before the power amplifier:
ZX60-53LNB-S+ for MW carrier frequency �5 GHz, and
either ZVA-1S3WA-S+ or ZVA-183WA-S+ otherwise.

We conducted a number of control experiments to check
that the pre-amplifiers, power amplifiers, mixers, and fre-
quency filters did not add additional phase noise. We did
not observe additional NV sensor excess noise when swap-
ping out different components. For example, in Fig. 2(b),
there are two measured values for the fG1 = 3.9–4.2 GHz
frequency range. One set of values corresponds to the use
of the lower-frequency MW components, and the other used
the higher-frequency components. No systematic difference
in NV sensor excess noise is observed. A similar control is
presented in Fig. 2(c) for fG2,1 = 4.1 GHz.

For the experiment presented in Fig. 5(b), we used a
diplexer Marki Microwave DPXN-0R5 to combine the mi-
crowave field and test signal.

In all experiments, the microwave power was adjusted to
produce a π pulse length of around 40–60 ns, depending on
the carrier frequency. The normalized peak-to-peak amplitude
of the processed photodetector signal during Rabi oscillations
is typically ≈6%.

2. Gradiometry phase-noise cancellation

For the two-point gradiometry experiments presented in
Fig. 5, we used a modified experimental setup, Fig. 6. The
excitation laser beam is split into two beams, which are fo-
cused to separate spots on the diamond. The fluorescence
from each spot is collected and sent to different channels of
the balanced photodetector (“ch 1”, “ch 2”). The fluorescence
spots are close enough together (≈0.2 mm) that they experi-
ence approximately the same microwave field, meaning that
both channels also have the same MW phase properties. By
replacing the laser light with fluorescence from ch 2 on the
balanced photodetector, we still compensate for laser intensity

FIG. 7. NV sensor noise floor for MW generator G2 tuned to a f±
spin transition at different magnetic fields. For G2 carrier frequency
fG2 < 2.87 GHz, microwaves are tuned to the f− spin transition;
otherwise they are tuned to f+.

fluctuations, as both channels respond to the same laser inten-
sity fluctuations. This scheme allows us to subtract the impact
of MW phase noise by measuring the difference between the
two channels of the balanced photodiode.

For these experiments, we used one of the out-of-diamond-
plane NV axes. This was chosen because, in our setup, a test
signal applied through the MW trace [Fig. 5(b)] produces a
field that is orthogonal to the in-plane NV axes. Producing
a test field with a significant component along the NV axis
was only possible for the two out-of-plane NV axes. To align
�B0 with an out-of-plane NV axis, we rotated the diamond

in the electromagnet and modified the optical beam path
accordingly.

3. Magnetic-field geometry

The bias magnetic field �B0 is produced by an electromag-
net, and the direction of �B0 is aligned along one of the NV axes
by rotating the diamond. For all measurements in Figs. 1–4,
�B0 is aligned with an NV axis in the plane of the diamond

faces. For two-point gradiometry, Fig. 5, the magnetic field is
aligned with an out-of-plane NV axis.

For almost all the measurements, the test field is also
aligned along one of the NV axes. The exception is the ex-
periment presented in Fig. 5(b), where a gradient test field
is applied through the MW trace. The gradient test field is
approximately normal to the surface (at the location of the
fluorescence spots) and thus makes a ≈35◦ angle with respect
to the relevant out-of-plane NV axis for our (110) diamond.

4. Specifics of phase-noise spectroscopy measurements

In Fig. 2(a), we presented the NV sensor excess noise as
a function of G1 MW carrier frequency. The f± resonances
were swept by tuning B0. Figure 7 shows a similar measure-
ment using G2 under an XY8-6 pulse series. As in Fig. 2(a),
to generate this plot, B0 is varied in the range 20–80 mT. For
a given value of B0, the noise floor is measured for fG2 tuned
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to a f± resonance, as well as the off-resonance case, and the
excess noise ηex,± is inferred. In Fig. 7, the data are noisy, but
there are hints of the same general trend of an increase in NV
sensor noise with MW carrier frequency.

For the mixer experiments in Figs. 2(b) and 2(c), we hold
B0 = 80.7 mT constant. A frequency mixer is used to produce
a MW signal at the difference frequency between two inputs.
For Fig. 2(b), we use G1 and G2 as inputs, and for Fig. 2(c)
we use two channels of G2. The source generating the higher-
frequency input is the one that is I/Q phase modulated in the
XY8-Nr pulse series. The difference frequency is always set
to be 611 MHz. This configuration allows us to vary the MW
generator frequency without having to vary B0 or the NV tran-
sition frequencies. We can thus eliminate any effects due to the
frequency response of different MW components, as well as
the NV sensor’s dependence on magnetic field (e.g., the vicin-
ity of B0 = 0, fields corresponding to NV cross-relaxations
with other electron spins [55], and fields corresponding to
13C-induced NV echo envelope collapses [56]).

In Fig. 2(c), the measurement point at the lowest fre-
quency was obtained by using the mixer to create the
frequency sum ( fG2,1 + fG2,2 = 310.5 MHz + 300.0 MHz =
610.5 MHz). The reason why we did this is because
the lowest-frequency pair we were able to use to gener-
ate a clean 611 MHz difference signal was approximately
{0.3, 0.911} GHz. The additional sum-frequency point al-
lowed us to extend our observations to lower frequencies.
Note that the phase noise of the mixer output is always as-
sumed to be the quadrature sum of the phase noise of the
individual inputs, see Appendix G.

5. Specifics of injected phase noise

For the noise injection experiments of Figs. 3 and 4,
voltage noise was generated using an arbitrary waveform
generator and sent to the phase modulation port of G3. The
random walk waveform has ≈1.6×106 points and the wave-
form is repeated continuously in a loop. Each waveform is
the concatenation of 1000 random-walk sequences. Each se-
quence has a variable length of mean 1600 points and standard
deviation 100 points. The variable length is chosen to sup-
press any signatures of the sequence length in the frequency
domain. The choice of a 1600-point mean sequence length
was made to ensure that voltage extrema in any sequence did
not exceed the maximum input voltage of the phase modula-
tion port. Each phase jump (the difference between adjacent
points) is drawn from a normal distribution with a standard
deviation σrw specified for each experiment. Varying σrw is
realized by varying the G3 phase modulation port’s scale
factor. The first and last points of the waveform are set to zero
to accommodate the arbitrary waveform generator resetting
behavior.

The white-noise waveform comprises 1.6 million points
drawn from a zero-mean normal distribution. The first and last
points of the waveform are also set to zero, and the waveform
repeats in a continuous loop.

The noise generated in this manner is not truly random.
To verify that our injected noise protocol is still a good ap-
proximation to random-walk or white noise, we conducted

FIG. 8. Plot of the NV sensor test-signal peakVnv as a function of
the voltage amplitude of the test signal, Vtest . A fit to Eq. (B1) reveals
κ , the voltage-to-field conversion factor.

experiments with different waveforms that were generated in
the same manner. The results were consistent.

In all phase-noise-injection experiments, a 11 MHz
low-pass filter was used on the arbitrary waveform
generator output. The phase modulation port of G3
also has a pass band of DC to ≈10 MHz. The lim-
ited bandwidth had some implications on the effective
values of σrw and σwh. We independently measured the fre-
quency response by mixing two channels of G3, one of which
was phase modulated with the noise waveforms. From analy-
sis of the homodyne signal, we were able to directly measure
σwh. We found that this value was ≈20% lower than the
expected value if the noise injection had infinite bandwidth.
In all measurements in the paper, we report the slightly lower
value that was directly measured. For σrw, we find the lim-
ited bandwidth also leads to attenuation, but the exact value
depends on the sampling interval. However, for most exper-
iments in the text, the sampling interval is consistent with a
≈15% attenuation, so we use this value throughout.

APPENDIX B: CALIBRATED TEST FIELDS

To calibrate the AC test signals, we used a method similar
to that of Refs. [8,15]. A voltage signal, with amplitude Vtest

and frequency ftest , is applied to the test loop, producing a
homogenous AC test field within the diamond. The amplitude
Vtest is varied and the NV signal is recorded at each value
of Vtest . The magnitude of the NV fluorescence photodetector
signal due to the test field, Vnv, is given by

Vnv = Vmax| sin(4
√

2κVtestγnvτtot )|, (B1)

where Vmax is the maximum NV signal magnitude, κ =
Btest/Vtest is a fitted scaling factor, and τtot = 8(2τ + tπ )Nr

is the interval between π/2 pulses in the XY8-Nr sequence
(see Sec. II of the main text). The fitted calibration factor,
κ , allows us to convert the applied test signal amplitude to
magnetic-field units.

Figure 8 shows an example plot of Vnv(Vtest ) along with a
fit to Eq. (B1) used to calibrate the test signal in Fig. 1(d). We
typically repeat the calibration process before and/or after ac-
quiring a dataset to account for drifts of the test loop position
or NV collection region.
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APPENDIX C: INDEPENDENT MICROWAVE
PHASE-NOISE MEASUREMENTS

The phase-noise spectra L( f ) of the G1 and G3 MW
generators were measured directly with a Berkeley Nucleon-
ics 7000 Phase Noise Tester. Further direct G1 phase noise
spectra were acquired with a Rohde & Schwarz FSWP26
[see Fig. 2(d)]. The G1L( f ) curves obtained with the two
instruments were similar and also comparable to the man-
ufacturer’s specifications. We did not measure L( f ) curves
of G2 directly. However, we found that the directly mea-
sured L( f ) curves for G3 (a similar model from the same
manufacturer) matched closely those reported as “typical”
by the manufacturer. This lends confidence that our use of
the manufacturer-specified L( f ) curves for G2 is a decent
approximation.

All direct L( f ) measurements were performed in a
continuous-wave mode, without pulsing, but with I/Q modula-
tion enabled. When the MW power input to the amplifier was
low (� − 10 dBm), the single-sideband (SSB) phase-noise
values were higher than specifications at higher offset fre-
quencies (
1 kHz); this effect is negligible at the high input
powers used in our experiments for the frequency bands of
interest. When adding a MW switch, and/or using a power
amplifier and attenuators, there was no significant effect on the
measured L( f ) curves aside from minor variations at offset
frequencies >10 MHz.

APPENDIX D: DATA ACQUISITION AND PROCESSING

NV sensor noise signals were acquired in two modes. In the
first mode, used for most experiments including Figs. 2(a)–
2(c), 2(f), 3, and 4, a synchronized XY8-Nr pulse series of
length ≈30 ms is applied, and the test signal is synchronized
with the start of the series using the burst mode of a function
generator. We repeat the pulse series Navg ≈ 35 times, and the
photodetector time trace of each series is averaged in the time
domain. The absolute value of the Fourier transform of the
averaged data is computed, and the noise floor is extracted
as described in Appendix D. The above process takes ≈1 s,
and it is repeated for �5 runs to gather statistics. The me-
dian and standard deviation of the noise floors is computed,
serving as, respectively, the point estimate and uncertainty in
the figures.

The second mode is used for data presented in Figs. 1(d)
and 5. Here, a synchronized XY8-Nr pulse series is applied
continuously for ≈150 s. The photodetector time trace is
split into 1-s intervals, and the absolute-value-squared of the
Fourier transform (power spectral density) of each interval is
computed. The square root of the mean of the power spectral
density is obtained, producing a final “smoothed” spectrum.
In Sec. II of the main text, we call this spectrum “the root-
mean-squared average [36] of the absolute value of the Fourier
transform of each interval.”

Experimental parameters used to generate Figs. 1, 2, and
5 are shown in Table II. Experimental parameters used to
generate Figs. 3 and 4 are shown in Table III. Some param-
eters used in the analytic calculations in these figures are
the median of experimental values, as indicated in their
insets.

TABLE II. Experimental parameters used in the measurements
presented in Figs. 1, 2, and 5.

Fig. Nr tπ (ns) τ (ns) τtot (µs) tdead (µs) fxy8 (kHz)

1(d) 8 48 522 69.9 15.0 458
2(a) 6 48 622 62.0 14.9 387
2(b) 8 48 522 69.9 14.7 458
2(c) 8 48 522 69.9 14.7 458
2(f) 1 58 3844 62.0 27.5 64.5
2(f) 2 58 2046 66.4 23.1 120
2(f) 3 58 1388 68.1 21.4 176
2(f) 4 58 1100 72.3 17.1 221
2(f) 5 58 872 72.2 17.2 277
2(f) 6 58 720 72.0 17.3 333
2(f) 7 58 612 71.9 17.4 389
2(f) 8 58 532 71.9 17.5 445
2(f) 9 58 468 71.7 17.5 502
2(f) 10 58 418 71.7 17.5 558
2(f) 11 58 378 71.8 17.6 613
2(f) 12 58 344 71.8 17.6 668
2(f) 16 58 250 71.7 17.7 893
2(f) 17 58 232 71.3 17.6 954
5(a)–5(c) 7 46 612 71.1 17.1 394

Noise floor estimation

The NV sensor noise floor is computed as the median of
the absolute value of the Fourier transform in “spike-free”
regions. The noise floor can be verified visually, as seen in
Fig. 1(d). For experiments requiring the estimation of multiple
noise floors, the process of defining spike-free regions is au-
tomated. First, the frequency range of 0–1 kHz and a ≈1 kHz
band about the test signal frequency are excluded. Next, the
median and standard deviation of the remaining spectrum,
excluding the highest 10% of spectral points, is computed.
Spectral points that are more than four standard deviations
larger than the median are identified as spikes and excluded.
The noise floor is then given by the median of the remaining
spectrum.

This automated process to calculate the noise floor was
tuned and routinely checked for accuracy based on visual
inspection of the spectrum. In some datasets, this procedure
is replaced by visually locating a spike-free region near the
test signal frequency and computing the median of the noise
floor in this region.

APPENDIX E: PHOTOELECTRON-SHOT
-NOISE-LIMITED SENSITIVITY

The minimum detectable magnetic field due to photoelec-
tron shot noise for a single XY8-Nr readout is given by [15,25]

�Bsingle ≈ ξ

4γnvCτtot
√
Nph

. (E1)

Here ξ = √
2(1 + tr/tn) accounts for the extra photoelectron

noise due to the balanced detection and normalization proce-
dure, where tr is the readout duration at the start of the laser
pulse, tn is the duration of normalization at the end of the laser
pulse, C is the effective contrast of the XY8-Nr sequence, and
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TABLE III. Experimental parameters used for measurements
presented in Figs. 4 and 3.

Fig. Nr tπ (ns) τ (ns) τtot (µs) tdead (µs) fxy8 (kHz)

4(a) 8 48 522 69.9 14.7 458
4(b), 3(a) 8 48 522 69.9 14.7 458
4(c), 3(b) 1 44 3768 60.6 27.7 66.0
4(c), 3(b) 2 44 2015 65.2 23.0 124
4(c), 3(b) 3 44 1372 66.9 21.3 179
4(c), 3(b) 4 44 1090 71.2 17.0 225
4(c), 3(b) 5 44 866 71.0 17.1 282
4(c), 3(b) 6 44 718 71.0 17.2 338
4(c), 3(b) 7 44 610 70.8 17.3 396
4(c), 3(b) 8 44 532 70.9 17.3 451
4(c), 3(b) 9 44 470 70.9 17.3 508
4(c), 3(b) 10 44 420 70.7 17.4 566
4(c), 3(b) 11 44 380 70.8 17.4 622
4(c), 3(b) 12 44 346 70.7 17.4 679
4(c), 3(b) 13 44 318 70.7 17.4 735
4(c), 3(b) 16 44 254 70.7 17.5 906
4(c), 3(b) 17 44 238 70.7 17.5 962
4(d), 3(c) 1 44 610 10.1 17.6 396
4(d), 3(c) 2 44 610 20.2 17.5 396
4(d), 3(c) 3 44 610 30.3 17.5 396
4(d), 3(c) 4 44 610 40.5 17.4 396
4(d), 3(c) 5 44 610 50.6 17.4 396
4(d), 3(c) 6 44 610 60.7 17.3 396
4(d), 3(c) 7 44 610 70.8 17.3 396
4(d), 3(c) 8 44 610 80.9 17.2 396
4(d), 3(c) 9 44 610 91.0 17.2 396
4(d), 3(c) 10 44 610 101.1 17.1 396
4(d), 3(c) 11 44 610 111.2 17.1 396
4(d), 3(c) 12 44 610 121.3 17.0 396
4(d), 3(c) 13 44 610 131.5 17.0 396
4(d), 3(c) 14 44 610 141.6 16.9 396
4(d), 3(c) 15 44 610 151.7 16.9 396
4(d), 3(c) 16 44 610 161.8 19.3 396

Nph is the number of photoelectrons detected in the readout
phase.

The theoretical limit for the magnetometer sensitivity due
to photoelectron shot noise is defined as

ηpsn = �Bsingle
√

τtot + tdead ≈ ξ√
δ

1

4γnvC
√

τtotNph
, (E2)

where δ = τtot/(τtot + tdead ) is the measurement duty cycle.
Using the experimental parameters of Fig. 1(d) (tn = 4 µs,
tr = 1.5 µs, τtot = 69.9 µs, tdead = 15 µs, C = 0.013, Nph =
1.23×109), we estimate ηpsn ≈ 4.3 pTrms s1/2. To convert to a
noise floor in the absolute value of the Fourier transform, this
quantity is multiplied by a factor

√
π/2 ≈ 1.253, resulting in

ηpsn ≈ 5.4 pTrms s1/2. The latter is the value that is directly
comparable to our experimental noise-floor measurements.

In Eqs. (E1) and (E2), the estimation of Nph is made by
recording the peak voltage of the photodetector fluorescence-
channel’s monitor port. While this level varied somewhat from
experiment to experiment, for the data in Fig. 1(d) it was
Vmon ≈ 0.39 V at 50 	 impedance. Taking into account the
difference in gain between the two ports inferred from the

manufacturer specifications, this is equivalent to an effective
voltage in the RF difference port (at 50 	 impedance) of
V0 ≈ 23 V. We could not use the RF port to measure V0

directly because it saturates at ≈3.5 V. The estimation of C is
obtained by taking the peak value Vmax = 0.2 Vrms in Fig. 8.
From Eq. (B1) (see also Ref. [15]), the contrast is given by
C ≈ Vmax

√
2/V0 ≈ 0.013.

APPENDIX F: EARLY ATTEMPTS TO UNDERSTAND
THE EXCESS NOISE

As mentioned in the main text, when we first observed the
presence of excess noise, ηex,±, we did several tests to confirm
its nature. Things that did not change the noise behavior
included

(1) swapping amplifiers. Instead of an RF-Lambda
RP02G06GSPA, we used a Mini-Circuits ZHL-25W-63+. A
small increase in the contrast C of the magnetometer was ob-
served, but ηex,± was unchanged. We believe the improvement
in C is due to the higher output power of the Mini-Circuits
amplifier improving the microwave pulse fidelity.

(2) modifying our method of I/Q modulation. Instead of
using switches to apply DC voltages to the I/Q modulation
ports of the signal generators, we used a single switch toggling
between two out-of-phase 300 MHz signals from a function
generator. No perceptible change in noise floor was observed.

(3) reducing the MW Rabi frequency, increasing the pulse
lengths. We observed a small reduction inC, but ηex,± was un-
changed. Further reduction in MW Rabi frequency degraded
the sensitivity to the point where the ηex,± could no longer be
distinguished from the photoelectron shot-noise.

(4) changing the lengths of the cables carrying TTL sig-
nals to the I/Q modulation ports of the signal generators. Cable
lengths were adjusted such that the phase toggling for the MW
pulses happened exactly between any two pulses firing. We
observed a small improvement inC, but ηex,± was unchanged.

APPENDIX G: PHASE NOISE WHEN
MIXING TWO FREQUENCIES

As discussed in Sec. III of the main text, a mixer was
used to probe the impact of phase noise on the NV sensor
noise floor as a function of microwave carrier frequency. For
pedagogical reasons, we derive the well-known operation of
an ideal mixer here.

If a mixer is assumed to be perfect, two input sig-
nals v1(t ) = v01 sin(ω1t + α1) and v2(t ) = v02 sin(ω2t + α2)
in the input would yield an output signal:

v3 = v03 sin (ω1t + α1) sin (ω2t + α2). (G1)

By applying the product-to-sum identity the above expression
can be rewritten as

v3 = v03

2
{cos [(ω2 − ω1)t + (α2 − α1)]

+ cos [(ω2 + ω1)t + (α2 + α1)]}. (G2)

In the experiments depicted in Figs. 2(b) and 2(c) a filter
is used to keep only the difference-frequency term. The ex-
ception is the lowest-frequency point of Fig. 2(c), where only
the sum-frequency term is kept. In either case, applying the
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filtering process to Eq. (G2) leaves

ṽ3 = v03

2
cos (�ωt + �α), (G3)

where �ω = ω2 ± ω1 and �α = α2 ± α1.
In the presence of phase noise, the α1 and α2 phases of the

signals fluctuate in time. If the two signals are generated inde-
pendently, then α1 and α2 are uncorrelated, and the standard
deviation of the output phase �α is

σ�α =
√

σ 2
α1

+ σ 2
α2

, (G4)

where σα1 and σα2 are the standard deviations of the input
phases, α1 and α1, respectively.

From equation (G4) it can be seen that if σα1 
 σα2 then
σ�α ≈ σα1 . This is the approximation applied for the mea-
surements in Fig. 1(b), where the phase noise of G1 is much
higher than that of G2. If σα1 ≈ σα2 then σ�α ≈ √

2σα1 . This is
the approximation applied for the measurements in Fig. 2(c),
where two independent channels of the same generator, G2,
are used. The assumption that σα1 ≈ σα2 starts to break down
if the ratio of the carrier frequencies ω1/ω2 deviates substan-
tially from unity. In Fig. 2(c), this is the region fG2,1 � 1 GHz
where we did not acquire data using the difference frequency.
However, the approximation still holds when using the sum
frequency, as long as the two carrier frequencies are compa-
rable, as was the case for our lowest-frequency measurement
in Fig. 2(c). We thus were able to apply the approximation
uniformly to all the data in Fig. 2(c).

APPENDIX H: FREQUENCY-DOMAIN MODEL USING
FILTER-FUNCTION APPROACH

The phase-noise-limited equivalent magnetic sensitivity
can be calculated for arbitrary phase-noise character, as long
as the MW phase-noise spectrum is known. For this, we use
the independently measured phase-noise spectrum of the MW
signal generator [see Fig. 2(d)] and the frequency-domain
filter function of the pulse sequence (identical for the Carr-
Purcell-Meiboom-Gill [CPMG] sequence or XY8-Nr). The
single-sideband power spectral density of the local oscillator’s
phase fluctuations in a MW signal generator, Sφ ( f ) (in units
of rad2/Hz), can be written as [28]

Sφ ( f ) = 2 × 10
L( f )

10 , (H1)

where L( f ) is the single-sideband power spectral density of
the phase noise expressed in logarithmic units of dBc/Hz, and
f is the carrier offset frequency.

The standard deviation of the NV spin state’s phase dis-
placement σφ due to MW phase errors is given by

σ 2
φ =

∫ ∞

0
Sφ ( f )F ( f )df ≈

∫ fc

0
Sφ ( f )F ( f )df , (H2)

where F ( f ) is the frequency-domain filter function of the
measurement sequence and fc is a cutoff frequency above
which Sφ ( f )F ( f ) ≈ 0. In practice, the value of fc is influ-
enced by low-pass filtering of MW phase noise due to the
MW circuit spectral response, any bandpass filters in the MW
chain, and dissipation from the various MW components and
coaxial cables (Appendix H 2). The filter function for a pulse

TABLE IV. Parameters used to calculate ηφ , using Eqs. (H2),
(H3), and (H5). The resulting ηφ values are shown in Tables V and
VI and plotted in Fig. 2.

Fig. Nr tπ (ns) τ (ns) τtot (µs) tdead (µs) fxy8 (kHz)

2(a) 6 48 622 62.0 14.85 390
2(b) 8 48 522 69.9 14.85 461
2(c) 8 48 522 69.9 14.85 461
2(f) − 60 − 71.9 17.1 −

sequence with equally spaced π pulses (including CPMG and
XY8-Nr) is given by [37]

F ( f ) =
∣∣∣∣∣1 + (−1)N+1ei2π f τtot

+ 2
N∑
j=1

(−1) jei
j−1/2
N 2π f τtotG(tπ )

∣∣∣∣∣
2

, (H3)

where G(tπ ) is a term that modifies the filter function to
take into account the finite length of the π pulses, tπ . In
the limit tπ → 0, the NV total phase accumulation time is
τtot = 2Nτ and G(tπ ) = 1. If tπ cannot be neglected, we take
τtot = N (2τ + tπ ) and G(tπ ) = cos (π f tπ ) [37].

TABLE V. Calculated phase-noise-limited equivalent magnetic
sensitivity values for G1, using the filter function model, as presented
in Figs. 2(a) and 2(b). * denotes L( f ) was measured independently
using a phase-noise analyzer. “spec” denotes L( f ) was extracted
from the manufacturer’s specifications sheet [34], shown for com-
parison purposes. The values of ηex shown in Fig. 2 used finite pulse
duration (tπ = 48 ns) and the measured L( f ) spectra. In Fig. 2(a)
and 2(b), each of the ηφ values in this table are multiplied by a factor
of

√
π/2 = 1.253 to compare with the experimental noise floor, ηex.

Here, the maximum frequency offset is taken to be fc = 0.1 GHz.

Fig. fG1 (GHz) tπ (ns) ηφ (pTrms s1/2)

2(a) 0.61∗ 0 24.9
2(a) 0.61∗ 48 23.0
2(a) 1.00 (spec) 0 30.2
2(a) 1.00 (spec) 48 27.5
2(a) 1.00∗ 48 28.2
2(a) 2.50∗ 0 56.0
2(a) 2.50∗ 48 54.1
2(a) 6.00 (spec) 0 107.0
2(a) 6.00 (spec) 48 104.9
2(a) 6.00∗ 48 123.0
2(b) 0.61∗ 0 26.7
2(b) 0.61∗ 48 24.7
2(b) 1.00 (spec) 0 32.5
2(b) 1.00 (spec) 48 29.7
2(b) 1.00∗ 0 32.4
2(b) 1.00∗ 48 30.2
2(b) 2.50∗ 0 60.1
2(b) 2.50∗ 48 58.0
2(b) 6.00 (spec) 0 113.5
2(b) 6.00 (spec) 48 111.2
2(b) 6.00∗ 48 129.9
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TABLE VI. Calculated phase-noise-limited sensitivity values
values for G2, using the filter function model, as presented in
Fig. 2(c). In all cases, L( f ) was extracted from the manufacturer’s
specifications sheet [35]. The values of ηex shown in Fig. 2(c) used
finite pulse duration (tπ = 48 ns). In Fig. 2(c), each of the ηφ values
in this table are first multiplied by a factor of

√
2 to account for

the mixer addition (Appendix G) and then multiplied by a factor of√
π/2 = 1.253 to compare with the experimental noise floor, ηex.

Here, the maximum frequency offset is taken to be fc = 0.1 GHz.

Fig. fG2 (GHz) tπ (ns) ηφ (pTrms s1/2)

2(c) 0.85 0 5.4
2(c) 0.85 48 4.1
2(c) 2.10 0 9.4
2(c) 2.10 48 7.4
2(c) 5.70 0 15.9
2(c) 5.70 48 13.9

Fluctuations in the phase of the NV spin state, Eq. (H2),
result in an equivalent magnetic noise. For a single readout
of a pulse sequence, the equivalent magnetic noise standard
deviation is given as [25]

�Bsingle ≈ σφ

4γnvτtot
, (H4)

where γnv is the NV gyromagnetic ratio and τtot is the NV
total phase accumulation (or sensing) time. When averaging
multiple-pulse sequences, each of duration τtot + tdead, for a
total acquisition time T , there are T/(τtot + tdead ) independent
measurements. In this case, the equivalent magnetic noise
standard deviation becomes

�Bφ = �Bsingle√
T/(τtot + tdead )

. (H5)

Using Eqs. (H4) and (H5), the MW-phase-noise limited equiv-
alent magnetic sensitivity is given by

ηφ = �Bφ

√
T ≈ σφ

4γnv
√

τtot

√
1 + tdead/τtot. (H6)

The NV sensor noise floor calculations shown in Fig. 2
were computed using Eqs. (H6), (H2), and (H3). The param-
eters used in the calculations are shown in Table IV. The
resulting calculated values of ηex are listed in Tables V and
VI, using two approximations for G(tπ ) in Eq. (H3). In the
first, we assume infinitesimal pulses tπ = 0 and thus G = 1. In
the second, we assume finite pulses (tπ = 48 ns) and G(tπ ) =
cos (π f tπ ). We use the finite-pulse approximation for values
in Fig. 2 of the main text, but the differences are small. Note
that the magnetic noise floor of the absolute value of a Fourier
transform (ηex) is defined slightly differently from the equiva-
lent magnetic sensitivity (ηφ) in Eq. (H6). To convert, we take
ηex = ηφ

√
π/2 ≈ 1.253ηφ .

1. Oscillator Johnson phase-noise limit: Pulsed

A fundamental source of phase noise in any practical MW
generator is that due to Johnson noise, which is frequency-
independent (white) and only depends on temperature. If the
local oscillator of a signal generator is driven by 1 mW
(0 dBm) power near room temperature, the minimum MW

FIG. 9. Oscillator Johnson phase-noise limit: pulsed. Equivalent
magnetic sensitivity in the oscillator-Johnson-phase-noise limit for
a CPMG or XY8 multipulse sequence, ηφ,J (N ), calculated using
Eq. (H9), with τtot = 50 µs and fc = 10 MHz (red) or 100 MHz
(blue). The first harmonic of the pulse sequence’s filter function,
fxy8 = N/(2τtot ) is shown in the top horizontal axis.

phase noise of the output carrier in 1 Hz bandwidth is L( f ) =
Lmin ≈ −177 dBc/Hz [28,41].

The variance in the NV spin’s phase displacement,
Eq. (H2), due to the MW Johnson phase errors can be
written as

σ 2
φ,J ≈ 2 × 10

Lmin
10

∫ fc

0
F ( f )df . (H7)

For the multipulse filter function in Eq. (H3), the integral on
the right-hand side of Eq. (H7) is independent of the pulse
length τπ and spacing between the pulses (τ ) if fc � 1/(2τπ ),
and it can be approximated as [27]∫ fc

0
F ( f )df ≈

{
(4N + 2) × 2π fc, τπ → 0

(2N + 2) × 2π fc, τπ 
= 0.
(H8)

Using Eqs. (H6), (H7), and (H8), the equivalent magnetic sen-
sitivity due to oscillator Johnson phase noise in a multipulse
NV sensor with τπ 
= 0 and τtot 
 tdead is

ηφ,J ≈ 1

γnv

√
π fc(N + 1) × 10Lmin/10

2τtot
. (H9)

Figure 9 shows ηφ,J as a function of the number N of π

pulses calculated using Eq. (H9), with τtot = 50 µs and fc =
10 MHz or 100 MHz.

2. Comment on choice of cutoff frequencies

The use of a hard cutoff frequency fc for integrals in the
filter function model, for example Eq. (1) of the main text,
is an approximation. For calculations in Fig. 2 in the main
text, we select fc = 0.1 GHz. We found that the exact choice
of fc did not have much impact on our estimates of ηφ in
Fig. 2(a)–2(c), 2(f), as long as we chose fc � 10 MHz. This
can be attributed to the strong roll-off of L( f ) at offset
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frequencies f � 1 MHz for the generators studied here, see
Fig. 2(d).

For calculations of the equivalent magnetic sensitivity in
the oscillator Johnson phase-noise limit in a pulsed experi-
ment, Appendix H 1, the results depend strongly on the choice
of fc, as ηφ,J ∝ √

fc, see Eq. (H9). In Fig. 9, we plot ηφ,J (N )
for two feasible values fc = 10 MHz and fc = 100 MHz.
These cutoff frequencies could be due to the limited passband
realized with a MW cavity. Lower values of fc may also be
realized with even higher-quality-factor MW cavities, but this
may come with additional challenges in pulse fidelity as the
MW passband becomes comparable to the NV spin-resonance
spectral width.

A similar trend is found in the calculations for a
continuous-wave magnetometer presented in Appendix I. The
estimations of ηf based on L( f ) curves of G1 and G2 depend
only weakly on the choice of fc (at least for fc � 10 kHz).
However, for calculations of the equivalent magnetic sensi-
tivity in the oscillator Johnson phase-noise limit the choice
is important, as η f ,J ∝ √

fc, see Eq. (I5). In Appendix I 1,
we plot η f ,J (τ ) for fc = 1 MHz. This choice of fc may be
justified by the assumed NV response to frequency-detuning
fluctuations, but a more accurate value of fc will depend on
specific experimental conditions.

3. Comment on the use of magnetic-flux concentrators

In the main text, we point out that the use of magnetic-flux
concentrators offers some relief from the impact of phase
noise for magnetometry at appropriately low bias fields. The
reason is that magnetic signals are amplified while the impact
of microwave phase noise is unchanged. A magnetic-flux con-
centrator is a ferromagnetic material that collects magnetic
flux from a larger area and concentrates it into a microscale
diamond sensor [14–16,53]. The enhancement factor ε is
the ratio of the concentrated field inside the diamond to the
unperturbed external field, ε = Bint/Bext. When limited by
noise sources fundamental to the diamond detector (such as
photon shot noise or phase noise), the sensitivity of a flux-
concentrator diamond sensor to external magnetic fields is
given by ηext = ηint/ε, where ηint is the magnetic sensitivity
of the diamond without concentrators.

In Ref. [15], a similar diamond and pulse sequence as
those in this work were used, in addition to a magnetic-flux
concentrator that provided ε ≈ 300. Also, the same gener-
ator G3 was used at carrier frequencies of 2.7-3 GHz. The
internal magnetic sensitivity was measured to be in the range
ηint = 18–22 pT s1/2 for detection frequencies in the range
fxy8 = 0.2–1.5 GHz. The equivalent noise floor when MW
were detuned was slightly lower, more consistent with the
photon-shot-noise-limited prediction of ≈12 pT s1/2. Using
the filter-function model of Eqs. (1) and (2) for G3 under
these pulse sequences, the equivalent magnetic sensitivity due
to phase noise is at the level of ≈5–10 pT s1/2. This level
of noise is consistent with the quadrature difference between
on-resonance and off-resonance noise floors observed in
Ref. [15]. However, with flux concentrators, the overall sensor
sensitivity is expected to be ηext = ηint/ε ≈ 20 pT s1/2/300 =
70 fT s1/2, which is comparable to what was observed. Thus,
Ref. [15] provides evidence that, when the diamond sensor

is limited by phase noise, the use of magnetic-flux concen-
trators can still improve magnetic sensitivity down to the
femtotesla level.

APPENDIX I: PHASE NOISE IN A CONTINUOUS
-WAVE EXPERIMENT

It is instructive to briefly look at how phase noise limits
the sensitivity in a continuous-wave (cw) NV magnetometer,
where both the green laser and microwave radiation are ap-
plied continuously. The microwave frequency is chosen such
that a small change in spin-resonance frequency corresponds
to the maximum, linear change in the fluorescence rate. As-
suming a Lorentzian lineshape, the fluorescence as a function
of MW frequency detuning, � f (t ), can be written as

F (t ) ≈ F0

(
1 −C

3
√

3

4

� f (t )

�

)
, (I1)

where F0 is the fluorescence level,C is the resonance contrast,
and � is the full-width-at-half-maximum resonance linewidth.
Here, � f (t ) can be caused either by a small magnetic field
or by a time-dependent fluctuation in frequency due to phase
noise, � f (t ) = γnvB + δ f (t ).

The frequency fluctuations δ f (t ) are assumed to be zero
mean, with a variance that depends on the sampling interval
τ , given by [28]

σ 2
f (τ ) ≈

∫ fc

0
f 2Sφ ( f )

sin2 (π f τ )

(π f τ )2 . (I2)

Here we have approximated the NV response as having a hard
high-frequency cutoff at fc, where the value of fc is influenced
by experimental parameters such as laser intensity, microwave
field strength, and the NV spin coherence times and level
dynamics. The final (sinc2) term in the integrand of Eq. (I2) is
the filter function of the operation of averaging δ f (t ) over the
sampling interval τ .

Since MW frequency fluctuations affect the fluorescence
signal in the same way as magnetic-field noise, we can define
an equivalent magnetic noise standard deviation for a single
measurement over a sampling interval τ as

σB(τ ) = σ f (τ )

γnv
. (I3)

Using Eq. (I3), we define a sampling-interval-dependent
equivalent magnetic sensitivity as

η f (τ ) = σB(τ )
√

τ . (I4)

We can use Eqs. (I2), (I3), and (I4), along with a known
MW generator phase-noise spectrum Sφ ( f ), to estimate σB(τ )
and η f (τ ) in a cw experiment. Figure 10(a) shows the sam-
pling rate dependence of σB(τ ) for generators G1 and G2
using the phase-noise spectra shown in Fig. 2(d) for fG1 =
2.5 GHz, fG2 = 2.1 GHz, and fc = 1 MHz. Figure 10(b)
shows η f (τ ) as a function of the maximum detectable fre-
quency (i.e., the magnetometer bandwidth), 1/(2τ ). In the cw
case, the phase-noise-limited equivalent magnetic sensitivity
tends to be lower than that for multipulse sequences, and it
depends on the magnetometer bandwidth. However, the im-
pact of phase noise is still important. For example, for a 1-kHz
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FIG. 10. Magnetic noise in a cw experiment. (a) Estimates for
equivalent magnetic noise standard deviation σB as a function of
sampling interval τ , for generators G1 and G2 at fG1 = 2.5 GHz
and fG2 = 2.1 GHz, respectively [see Fig. 2(d) for the L( f ) curves
used]. (b) Estimated equivalent magnetic sensitivity η f as a function
of magnetometer bandwidth 1/(2τ ).

bandwidth magnetometer, the equivalent magnetic sensitivity
is 1.4 pTrms s1/2 for G1 and 0.3 pTrms s1/2 for G2.

1. Oscillator Johnson phase-noise limit: Continuous wave

For white phase noise, such as that due to oscillator John-
son phase noise, Sφ ( f ) = Swh

φ . The integral in Eq. (I2) can
be done explicitly, resulting in a frequency-noise standard
deviation

σ f (τ ) ≈
√

2Swh
φ fc

2πτ
. (I5)

Inserting Eq. (I2) into Eq. (I3), the equivalent magnetic-noise
standard deviation for a single sampling interval τ is given by

σwh
B (τ ) ≈

√
2Swh

φ fc

2πγnvτ
. (I6)

Figure 11(a) shows plots of σB(τ ), using either Eq. (I6)
(“analytic”) or by directly propagating numerically simulated
phase noise with Eq. (I1) (“simulated”). In either case, we

FIG. 11. Oscillator Johnson phase-noise limit: cw. (a) Equiv-
alent magnetic noise standard deviation due to room-temperature
oscillator Johnson phase noise, σwh

B , versus sampling interval τ .
(b) Equivalent magnetic sensitivity due to room-temperature os-
cillator Johnson phase noise, ηwh

f , as a function of magnetometer
bandwidth, 1/(2τ ).

assume a room-temperature Johnson-noise-limited, 0 dBm
oscillator phase noise, Swh

φ = 2 × 10−17.7 rad2/Hz, and fc =
1 MHz. The linear dependence of σB(τ ) on τ for white phase
noise implies that longer sampling intervals offer superior
sensitivity. However, the maximum detectable magnetic-field
frequency is 1/(2τ ), so long sampling intervals restrict the
bandwidth of the magnetometer.

Incorporating Eq. (I6) in Eq. (I4), the equivalent magnetic
sensitivity in the room-temperature, oscillator-Johnson-phase-
noise limit is

ηwh
f (τ ) = σB(τ )

√
τ ≈ 1

πγnv

√
Swh

φ fc

2τ
. (I7)

Figure 11(b) shows a plot of ηwh
f (τ ) as a function of the

maximum detectable frequency, 1/(2τ ). The numerically sim-
ulated values are formed by taking 1-s intervals of simulated
noise, resampling by averaging over consecutive intervals of
τ � 0.5 s, and taking the maximum frequency component.
The noise is then the standard deviation of 50 of these 1-s
intervals. At low frequencies, the equivalent magnetic sen-
sitivity due to Johnson phase noise is negligible, but for
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frequencies �100 kHz the noise is �10 fTrms s1/2, which is
above fundamental limits [25].

2. Lock-in measurements

We anticipate that the above analysis should also hold
for experiments using a lock-in amplifier. Our primary as-
sumption is a linear relationship between the fluorescence
signal and the MW carrier frequency detuning, Eq. (I1),
which should also hold true for a lock-in measurement. One
caveat is that, when filtering is done in a lock-in experiment,
there is a minimum effective sampling interval τmin given by
1/(2τmin) ≈ fenbw � fmod, where fenbw is the effective noise
bandwidth and fmod is the modulation frequency of the lock-in
experiment.

3. Suppressing the impact of microwave phase noise
in a continuous-wave experiment

As mentioned in Sec. VI of the main text, we expect
that the dual-resonance scheme, first described in Ref. [43]
(see also Ref. [14]), should be effective at suppressing fre-
quency noise in cw optically detected magnetic resonance
measurements. Consider the MW mixer schematic presented
in Appendix K with the “V” level diagram. The MW Rabi fre-
quency and optical pump rate are assumed to be weak enough,
relative to the spin-resonance linewidth, to avoid populating
coherent dark states [57]. If the output frequencies of the
mixer are tuned to drive opposing sides of the f± resonances,
the impact of the frequency noise of the main oscillator, with
carrier frequency D = 2.87 GHz, on the NV signal should
cancel. The remaining frequency noise from the local oscilla-
tor does not cancel, but its carrier frequency is much smaller,
≈γnvB0 	 D. If the frequency noise scales linearly with car-
rier frequency, the result should be an improvement in the
frequency-noise-limited sensitivity by a factor ≈D/(γnvB0).

APPENDIX J: TIME-DOMAIN MODEL
OF PHASE-NOISE-LIMITED SENSITIVITY

In this section, formulas are derived for the equivalent
magnetic-field noise resulting from MW pulse sequences with
white and random-walk phase noise. We focus on pulse se-
quences using a series of N resonant MW π pulses with
uniform spacing, such as CPMG and XY pulse sequences.
However, a similar analysis can be applied to a wide variety of
pulse sequences. The MW pulses are in resonance with only
one of the NV f± spin transitions such that the spin dynamics
can be described by an effective spin-1/2 system. We assume
all pulses are instantaneous, resonant pulses and there are no
additional time-varying fields.

Figure 12 shows an example CPMG pulse sequence along
with the associated phase of the NV spin state on the equator
of the Bloch sphere. NV centers are initially polarized along
the z axis of the Bloch sphere. A MW π/2 pulse along the x
axis rotates the NV electron spin to lie along the y axis. The
phase of this first π/2 pulse defines the coordinates of the
Bloch sphere for all subsequent pulses. At this point, the NV
phase is defined to be φ0 = 0 with respect to the y axis, and
subsequent errors in the microwave phase are defined relative
to this axis. Next, N resonant π pulses, spaced a time 2τ apart,

FIG. 12. Propagation of spin state rotations due to MW phase
errors. A graphical representation of the model for a spin-1/2 qubit
under a multipulse (N π pulses) sequence in the absence of time-
varying magnetic fields. All pulses are assumed to be ideal, resonant
pulses of negligible length. The first MW π/2 pulse rotates the NV
spin to lie along the y axis (Bloch vector angle: φ0 = 0), where
the x and y axes are defined by the MW carrier’s phase during this
pulse. For subsequent MW π pulses, the spin state is reflected about
a rotated axis of angle αi with respect to the y axis, where αi is
the MW phase error. The spin state’s phase after the ith pulse is
φi = 2αi − φi−1, see Eq. (J1).

are applied. While the π pulses are applied approximately
along the y axis, each pulse has a small phase error, αi, with
respect to the y axis. The effect of each π pulse is to apply
a π rotation of the NV spin state about the axis defined by
the MW phase error αi. In the absence of external magnetic
signals, the phase of the NV spin state φi after the ith π pulse
can be written as

φi = 2(αi − φi−1) + φi−1 = 2αi − φi−1, (J1)

where φi−1 is the phase of the spin state prior to the pulse. The
total phase accumulated by the NV spin state, φtot, at the end
of the pulse sequence (Fig. 12) is given by

φtot = −α f + φN = −α f +
N∑
i=1

(−1)N−i2αi, (J2)

where α f is the MW phase error of the final π/2 pulse.

1. White microwave phase noise

Equation (J2) shows how MW phase errors lead to an
error in the NV spin state’s phase. We now consider the case
when the MW phase errors, αi, are normally distributed, as
is the case for white noise. White phase noise is especially
prominent at higher MW carrier offset, as seen in Fig. 2(d).
A fundamental constraint on the phase-noise performance of
MW generators is due to Johnson noise in the MW oscillator
which has a white-noise character.

The variance of the NV total phase error, Var(φtot), is the
sum of the variances of each term on the right side of Eq. (J2):

Var(φtot ) = Var(α f ) +
N∑
i=1

Var(2αi ). (J3)

In the case of white noise, the variance of the MW phase
errors, Var(α f ,i ), is independent of the temporal spacing be-
tween the pulses and only depends on the standard deviation
σwh of the MW phase error in each pulse. In other words,

Var(αi ) = Var(α f ) = σ 2
wh. (J4)
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Inserting Eq. (J4) in Eq. (J3), the total variance becomes

Var(φtot ) = 4σ 2
wh(N + 1/4), (J5)

and the standard deviation of the total phase error of the NV
spin state, σφ , is

σφ =
√

Var(φtot ) = 2σwh

√
N + 1/4. (J6)

Inserting Eq. (J6) in Eq. (2), using τtot = 2Nτ and assuming
N 
 1, the white-phase-noise-limited equivalent magnetic
sensitivity can be written as

ηwh ≈ σwh
√
N (1 + tdead/τtot )

2γnv
√

τtot
= σwh

γnv

√
fxy8

2δ
, (J7)

where fxy8 = 1/(4τ ) is the central frequency of the pulse
sequence’s filter function (we use the subscript xy8 here,
but the same definition applies for CPMG sequences) and
δ = τtot/(τtot + tdead ) is the duty cycle of the NV readouts.

2. Random-walk microwave phase noise

If the MW phase errors (αi) are dominated by random-walk
noise, the relative MW phase error accumulates. The phase
error of the ith pulse is given by

αi = αi−1 + �i, (J8)

where �i is the MW phase displacement accrued during the
time interval between pulses i − 1 and i. Similar to the white-
noise case, we suppose that the first π/2 pulse in Fig. 12 is
perfect, α0 = 0. Inserting Eq. (J8) into Eq. (J2), the total phase
error of the NV spin state for even and odd numbers of the
applied π pulses can be written as

φtot =
{

−α f + ∑N/2
i=1 2�2i, N even

−α f + ∑(N+1)/2
i=1 2�2i−1, N odd.

(J9)

This can be further reduced to

φtot = −� f +
N∑
i=1

(−1)N−i�i. (J10)

In Eq. (J10), �1 and � f are special cases where the phase
displacement is accrued over an interval τ (all other �i accrue
over an interval 2τ ), and their variances can be assumed to be
the same. Specifically,

Var(�1) = Var(� f ) = σ 2
rwRsampτ. (J11)

Here we have modeled the random-walk MW phase evolution
as a set of discrete jumps in MW phase, where σrw is the
standard deviation of the phase jumps and Rsamp � 1/(2τ ) is
the jump sampling rate.

Because the π pulses are evenly spaced in time by 2τ

(see Fig. 12), the variance of the random-walk MW phase
displacement of all other �i (i = 2, 3, . . .N) is two times
larger than those in Eq. (J11):

Var(�2) = Var(�3) = · · · = Var(�N ) = σ 2
rwRsamp2τ. (J12)

Using Eqs. (J11) and Eq. (J12) with Eq. (J10), the variance
of the phase of the NV spin state due to MW random-walk
phase noise becomes

Var(φtot ) = σ 2
rw2NτRsamp, (J13)

and its standard deviation is

σφ = σrw

√
2NτRsamp = σrw

√
τtotRsamp. (J14)

Inserting Eq. (J14) into Eq. (2) of the main text, the random-
walk-phase-noise-limited equivalent magnetic sensitivity is
given by

ηrw ≈ σrw

4γnv

√
Rsamp

δ
. (J15)

3. Extension to XY8-Nr pulse sequences

In the case of the XY8-Nr pulse sequence used in this study,
the total number of the applied π pulses is N = 8Nr . The total
NV spin-state phase accumulation due to MW phase errors is
given by

φtot = −α f +
N∑
i=1

(−1)i2αi, (J16)

which is identical to the expression for N even derived for
the CPMG sequence, Eq. (J1). Here the MW phase errors αi

are with respect to the desired phase. For XY8 sequences,
the desired phase alternates between 0◦ and 90◦, but it does
so in such a way that there is no final phase accumulation
in the absence of spin precession or phase errors. Thus the
expressions derived above for σφ [Eqs. (J6) and (J14)], and ηφ

[Eqs. (J7) and (J15)] are also valid for the XY8-Nr sequence.

APPENDIX K: PHASE NOISE
IN DOUBLE-QUANTUMMEASUREMENT

In the case of double-quantum measurements, two mi-
crowave fields with the same amplitude are simultaneously
applied at both f± transition frequencies. Here we assume the
bias magnetic field is small, B0 	 D/γnv.

Figure 13 depicts a double-quantum Ramsey pulse se-
quence. The first two-tone resonant MW pulse transfers the
NV population from |ms = 0〉 state to the “bright” coherent
superposition state |�B〉 given by [58,59]

|�B〉 = 1√
2
e−i α1+α2

2 [ei
�α
2 | − 1〉 + e−i �α

2 | + 1〉]. (K1)

In Eq. (K1), α1 and α2 are the phases of the two resonant MW
tones, and �α = α2 − α1.

If the second two-tone pulse, with MW phases α′
1 and α′

2,
is applied in a time interval τ (Fig. 13), it will project the NV

FIG. 13. Double-quantum Ramsey sequence. Microwave pulses
are formed from two tones resonant with both f± transitions. The first
MW pulse transfers the NV population from |ms = 0〉 state to the
“bright” coherent superposition state |�B〉, Eq. (K1). The state then
freely evolves under a small magnetic field bz for a time τ . A second
MW pulse transfers the bright state |B′〉 back to |ms = 0〉 state. Note
that |B〉 
= |B′〉 if the relative phase of the MW tones changes, see
Eqs. (K2) and (K1).
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population back into the |0〉 state with a probability given by

|〈� ′
B|−i2πγnvbzτ Ŝz |�B〉|2 = cos2

(
�α′−�α

2
−2πγnvbzτ

)
,

(K2)

where �α′ = α′
2 − α′

1. In Eq. (K2), bz 	 	R/γnv is a small
magnetic field to be detected that has a negligible effect on
the NV coherent bright states, Eq. (K1). If this magnetic field
is very small, 2πγnvbzτ 	 1, then �α′ can be offset by 90◦ to
ensure the probability in Eq. (K2) depends linearly on bz.

Figure 14(a) shows a method to generate the two MW
tones that minimizes the impact of phase noise [14,42].
Figure 14(b) shows the associated NV level diagrams in the
low-field regime. By mixing a lower-frequency signal genera-
tor as the local oscillator [ fLO = ( f+ − f−)/2 ≈ γnvB0] and a
higher-frequency signal generator as the carrier [ fcar = ( f+ +
f−)/2 ≈ D], both the NV spin transitions with frequencies f±
can be driven simultaneously. Moreover, the phase noise of the
higher-frequency fcar tone has no impact on the magnetometer
signal [see Eq. (K2) and Appendix G], leaving only the phase
noise due to fLO. If the phase noise scales linearly with MW
carrier frequency, this scheme can suppress the impact of MW
phase noise by a factor ≈D/γnvB0 in low fields (γnvB0 	 D).

This measurement protocol is analogous to how high-
precision atomic spectroscopy of three-level atoms is con-

FIG. 14. Double-quantum and dual-resonance schemes. (a) Elec-
tronic schematic for generating dual-tone MW frequencies in
resonant with NV spin transitions f± [14,42]. fLO: frequency of local
oscillator, fcar: frequency of carrier generator. (b) Ground-state NV
spin level diagram for the “V” scheme (B0 	 D/γnv).

ducted in the optical regime with noisy lasers [60]. At very
low applied field B0 � 	R/γnv, where 	R is the MW Rabi
frequency, a single MW tone can be used with a double-
quantum pulse sequence [44], potentially eliminating the
first-order impact of MW phase noise entirely. At high mag-
netic field, B0 > D/γnv, this method does not appear to lead
to a phase-noise cancellation, and alternative methods should
be pursued.
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