
Proceedings of the
International Geometry Center
Vol. 17, no. 2 (2024) pp. 143–157

Rational homotopy type and nilpotency
of mapping spaces between projective

spaces
Tilahun Ababaw, Jean-Baptiste Gatsinzi, Smegnsh Demelash Yeruk

Abstract. The rational homotopy type of a mapping space is a way to de-
scribe the structure of the space using the algebra of its homotopy groups
and the differential graded algebra of its cochains. An L8-model is a graded
Lie algebra with a family of higher-order brackets satisfying the generali-
zed Jacobi identity and antisymmetry. It can be used to study the rational
homotopy type of a space. The nilpotency index of an L8-model is useful
in understanding a space’s algebraic structure. In this paper, we compute
the rational homotopy type of the component of some mapping spaces bet-
ween projective spaces and determine the nilpotency index of corresponding
L8-models.

Анотація. Раціональний гомотопічний тип простору відображень— це
спосіб опису структури цього простору за допомогою алгебри його го-
мотопічних груп та диференціальної градуйованої алгебри його колан-
цюгів. В свою чергу, L8-модель— це градуйована алгебра Лі, оснащена
сім’єю дужок вищого порядку, яка задовольняє узагальнену тотожність
Якобі та антисиметрію. Її можна використовувати як інструмент для
вивчення раціонального гомотопічного типу простору, а індекс нільпо-
тентності L8-моделі також допомагає зрозуміти алгебраїчну структуру
даного простору. В представленій роботі обчислено раціональний гомото-
пічний тип компонент лінійної зв’язності деяких просторів відображень
між кватерніонними проективними просторами та визначено індекс ніль-
потентності відповідних L8-моделей.
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1. INTRODUCTiON
Given a pair of topological spaces X and Y , the space of all continuous

maps fromX to Y is denoted by map(X,Y ) and equipped with the compact
open topology. In general, the space map(X,Y ) is disconnected. For any
map f : X Ñ Y , let map(X,Y ; f) Ď map(X,Y ) be the path component
that contains f . The goal is to classify, up to homotopy, the path component
that contains f .

The study of the rational homotopy type of mapping spaces was initiated
by Thom (in [11]), by considering an Eilenberg-MacLane as a codomain.
Haefliger (in [7]) gave the first description of a Sullivan model for map-
ping spaces. From the Haefliger model, Buijs et al. (in [2]) applied the
notion of L8-algebra introduced by Lada in [8] to describe an L8-model of
map(X;Y ; f).

The rational homotopy type of mapping spaces into spheres and complex
projective spaces was determined by Møller and Raussen (see [9]). Gatsinzi
in [6] gives another proof of Møller and Raussen’s result for the rational
homotopy type of the mapping space of the component of the natural in-
clusion between complex projective spaces, i : CPn ãÑ CPn+k, and showed
that it has the rational homotopy type of a product of odd dimensional
spheres and a complex projective space.

In this paper, we consider projective spaces KPn over K for K = R or
H, and OPn for n = 1, 2. We give a different proof of Møller and Raussen
result in [9] for the quaternionic case. We also compute the rational homo-
topy type of the component of the inclusion between real and quaternionic
projective spaces using L8-models of mapping spaces. For octonionic pro-
jective spaces, we only consider the inclusion OP1 ãÑ OP2. In particular, we
show that the rational homotopy type of the component of the natural in-
clusion between quaternionic and octonionic projective spaces is a product
of a projective space and odd dimensional spheres. Moreover, we compute
the nilpotency index of the component of mapping spaces containing the
inclusion KPn ãÑ KPn+k, k ě 1, when K = R or H as well as the inclusion
i1,1 : OP1 ãÑ OP2.

The organization of this paper is as follows. In Section 2, we recall Sul-
livan models of simply connected spaces and define L8-models of function
spaces; in Section 3 we determine the rational homotopy type of mapping
spaces between projective spaces and in the fourth section the nilpotency
index of mapping spaces between projective spaces will be computed.
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2. SULLiVAN MiNiMAL MODELS AND L8-MODELS OF FUNCTiON SPACES
In this section, some of the basic definitions and terms that will be used

in our discussions are given. The main references of the concepts are [2]
and [3].
Definition 2.1. A differential graded algebra (dga) is a graded algebra
A = ‘ně0A

n together with a differential d : An Ñ An+1 of degree +1 such
that d ˝ d = 0 and d(ab) = (da)b+ (´1)|a|a(db) for a, b P A.

A dga satisfying ab = (´1)|a||b|ba, for all a, b P A is called a commutative
differential graded algebra (cdga).
Definition 2.2. If a chain of quasi-isomorphisms of commutative cochain
algebras connects two cdga’s (A, d) and (C, d), then they are said to have
the same homotopy type, i.e.

(A, d)
–ÝÑ (B(0), d)

–ÐÝ ¨ ¨ ¨ –ÝÑ (B(k), d)
–ÐÝ (C, d).

A Sullivan algebra (^V, d) is a free cdga spanned by a positively graded
vector space with an increasing sequence of graded subspaces:

V (0) Ă V (1) Ă V (2) Ă ¨ ¨ ¨ ,
such that d = 0 on V (0) and d : V (k) Ñ ^V (k ´ 1), for k ě 1. A Sullivan
model for a simply connected space X is a quasi-isomorphism

(^V, d) –ÝÑ APL(X),

where APL(X) is the cdga of piecewise linear forms on X (see [10]), and it is
called minimal if Im d Ă ^ě2V . If (^V, d) is a Sullivan model of X, then
there is an isomorphism of algebras

H˚(^V, d) – H˚(X;Q).

Moreover, if (^V, d) is minimal and V is of finite type, then there is an
isomorphism of vector spaces V n – HomZ(πn(X),Q).

A cdga model of X is a cdga (A, d) with the same rational homotopy
type as APL(X). If f : X Ñ Y is a map between two simply connected
spaces of finite type, then there is a cdga map ϕ : (^V, d) Ñ (A, d), called
model of f , where (^V, d) and (A, d) are respective cdga’s models of Y and
X (see [6]).

Consider the minimal Sullivan model (^V, d) of a simply connected space
X. We say that X is a formal space if there is a quasi-isomorphism

(^V, d) »ÝÑ (H˚(X,Q), 0)

between its Sullivan model and its rational cohomology; where projective
spaces and spheres are some examples of formal spaces.
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The notion of L8-algebra was first introduced by Lada (in [8]) and we
recall its definition below.
Definition 2.3. An L8-algebra is a graded vector space L = ‘ně1Ln with
a family of linear maps, ℓk : Lbk Ñ L, of degree k´ 2, for k ě 1, satisfying:
(i) graded skew symmetry: ℓk(xσ(1), . . . , xσ(k)) = sgn(σ)ϵσℓk(x1, . . . , xk),

for σ P Sk,
(ii) generalized Jacobi identity:

ÿ

i+j=n+1

ÿ

σPS(i,n´i)

sgn(σ)ϵ(σ)ℓj(ℓi(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0,

where σ P Sn is an (i, n´ i) shuffle and ϵ(σ) is the Koszul sign of σ, which
is defined by the relation x1^¨ ¨ ¨^xn = ϵ(σ)xσ(1)^¨ ¨ ¨^xσ(n) and depends
on degree of xi’s.

In the definition, if ℓ1 = 0, then the L8-algebra L is called minimal. The
definition above coincides with that of a differential graded Lie algebra if
ℓk = 0, for k ě 3, where ℓ1 is the differential and ℓ2 is the Lie bracket. An
L8-algebra L of finite type is said to be an L8-model of X if

C8(L) = (^(sL)#, d)

is a Sullivan model of X (see [2]).
Definition 2.4. Given a morphism ϕ : (A, d) Ñ (B, d) of two cdga’s, a
ϕ-derivation of degree k is a linear map θ : A˚ Ñ B˚´k such that

θ(xy) = θ(x)ϕ(y) + (´1)k|x|ϕ(x)θ(y).

Let us denote the graded vector space of all ϕ-derivations of degree k by
Derk(A,B;ϕ). Then, there is a differential

δ : Derk(A,B;ϕ) Ñ Derk´1(A,B;ϕ)

of chain complexes given by δθ = dθ ´ (´1)|θ|θd and

Der(A,B;ϕ) =
à
kPZ

Derk(A,B;ϕ)

is a chain complex. In particular, if A = B, then Derk(A,A; IdA) is the
usual chain complex of derivations on A. If A = ^V , then there is an
isomorphism

Der(^V,B;ϕ)
–ÝÑ Hom(V,B)
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via an identification map θ ÞÑ θ|V . In particular, if A = ^V , where
tv1, . . . , vt, . . . u is a basis of V , then we denote by (vi, a) the unique ϕ-
derivation θ such that:

θ(vj) =

#
a, for i = j, a P B;

0, for i ‰ j.

Define the subspace of Der(^V,B;ϕ) of positive derivations, denoted by
ĄDer(^V,A;ϕ), as:

ĄDeri(^V,A;ϕ) =
#
Deri(^V,B;ϕ), for i ą 1,

Z Der1(^V,B;ϕ) = tθ P Der1(^V,B;ϕ) : δθ = 0u.
Let φ1, . . . , φi P ĄDer(^V,B;ϕ) be ϕ-derivations of degrees q1, . . . , qi respec-
tively. Then, their bracket operation of length i is defined by

[φ1, . . . , φi](v) =

= (´1)q1+¨¨¨+qi´1
ÿ( ÿ

j1,...,ji

ϵϕ(v1 ¨ ¨ ¨ v̂j1 ¨ ¨ ¨ v̂ji ¨ ¨ ¨ vk)φ1(vj1) ¨ ¨ ¨φi(vji)
)
,

where dv =
ř
v1 ¨ ¨ ¨ vk and ϵ is the Koszul sign. We may desuspend the

bracket operation to define a set of linear maps tℓjujě1 on s´1ĄDer(^V,B;ϕ),
each with degree j ´ 2.

For j = 1, ℓ1(s
´1φ) = ´s´1δφ and for j ě 2,

ℓj(s
´1φ1, . . . , s

´1φj) = (´1)ϵjs´1[φ1, . . . , φj ], where ϵj =
j´1ÿ

i=1

(j ´ i)|φi|.

This endows s´1ĄDer(^V,B;ϕ) with an L8 structure, which is a model of
map(X,Y ; f) [2, Lemma 3.3].

3. RATiONAL HOMOTOPY TYPE OF MAPPiNG SPACES BETWEEN
PROjECTiVE SPACES

Gatsinzi (in [6]) showed that the rational homotopy type of the compo-
nent of the natural inclusion between complex projective spaces is a product
of a complex projective space and odd dimensional spheres. Here, we con-
sider the component of the inclusion i : KPn ãÑ KPn+k for K = R or H and
of the inclusion OP 1 ãÑ OP 2. First let us consider the real projective space
RPn and we have the following result.

Theorem 3.1. Consider the inclusion i : RPm ãÑ RPm1 for m ă m1. Then,
the rational homotopy type of map(Rm,RPm1

; i) is:
(i) a product of odd dimensional spheres if m is even and m1 is odd;
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(ii) a product of an odd and an even dimensional sphere, and an Eilenberg-
MacLane space if both m and m1 are even;

(iii) a product of odd dimensional spheres if if both m and m1 are odd;
(iv) the total space of a non trivial fibration over a product of 2 spheres by

an Einleberg-MacLane space if m is odd and m1 even.
Proof. There is a covering projection Z2 Ñ Sn Ñ RPn and hence RPn has
the rational homotopy type of Sn, for n ą 1. Therefore, map(RPm,RPm1

; i)

and map(Sm, Sm1
; i) have the same rational homotopy type. Moreover, the

inclusions i : Sm ãÑ Sm1 are homotopy trivial as πi(Sm
1
) = 0 for i ă m1.

Here, we mimic the Gatsinzi’s (presented in [6]) construction to get an
L8-model of the component of the inclusion i : Sm ãÑ Sm1 .

(1) Let m = 2n and m1 = 2n + 2k ´ 1, for k ě 1. Following the
construction given in [6], a model of the inclusion i is given by

ϕ : (^y2n+2k´1, 0) Ñ
(^(x2n)

/
(x22n), 0

)
, where ϕ(y2n+2k´1) = 0.

Then,
ĄDer

(
(^y2n+2k´1, 0), (^(x2n)

/
(x22n), 0);ϕ

)
= xα2n+2k´1, α2k´1y,

where α2n+2k´1 = (y2n+2k´1, 1) and α2k´1 = (y2n+2k´1, x2n). For degree
reason, every bracket is trivial. Thus map(S2n, S2n+2k´1; i) has the rational
homotopy of S2k´1 ˆ S2n+2k´1.

(2) Let m = 2n and m1 = 2n + 2k for k ě 1. Consider the inclusion
i : S2n ãÑ S2n+2k. Then, a model of i is given by

ϕ :
(^(y2(n+k), y4(n+k)´1), d

) Ñ (^(x2n)
/
(x22n), 0

)
,

where
dy2(n+k) = 0, dy4(n+k)´1 = y22(n+k),

and both ϕ(y2(n+k)) and ϕ(y4(n+k)´1) are equal to zero.
Note that

ĄDer
(
(^(y2(n+k), y4(n+k)´1), d), (^(x2n)

/
(x22n), 0);ϕ

)

is spanned by the set
␣
α2(n+k), α2k, α4(n+k)´1, α2n+4k´1

(
,

where
α2(n+k) = (y2(n+k), 1)

α2k = (y2(n+k), x2n)

α4(n+k)´1 = (y4(n+k)´1, 1)

α2n+4k´1 = (y4(n+k)´1, x2n)
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Here, the only nonzero bracket is [α2(n+k), α2(n+k)] = ´2α4(n+k)´1. The
L8-model (L, ℓi) of map(S2n, S2n+2k; i) is spanned by the set

␣
s´1α2(n+k), s

´1α2k, s
´1α4(n+k)´1, s

´1α2n+4k´1

(

and thus, a Sullivan model of map(S2n, S2n+2k; i) is:
C8(L) =

(^(z2(n+k), z4(n+k)´1), d
)b (^(z2k, z2n+4k´1), 0

)
,

where dz2(n+k) = 0, dz4(n+k)´1 = z22(n+k). Therefore, map(S2n, S2n+2k; i)

has the rational homotopy type of
S2n+2k ˆ S2n+4k´1 ˆK(Z, 2k).

(3) Let m = 2n + 1 and m1 = 2n + 2k + 1 for k ě 1. Following similar
work as above, we can obtain that

ĄDer
(
(^(y2n+2k+1), 0), (^(x2n+1), 0);ϕ

)

is spanned by the set tα2n+2k+1, α2ku, where α2n+2k+1 = (y2n+2k+1, 1),
α2k = (y2n+2k+1, x2n+1) and all brackets are trivial. Thus, a Sullivan model
of map(S2n+1, S2n+2k+1; i) is (^(z2n+2k+1, z2k), 0). Therefore,

map(S2n+1, S2n+2k+1; i) –Q S2n+2k+1 ˆK(Z, 2k).

(4) Let m = 2n+ 1 and m1 = 2n+ 2k for k ě 1. A Sullivan model of i
is given by

ϕ : (^(y2(n+k), y4(n+k)´1), d) Ñ (^(x2n+1), 0),

where dy2(n+k) = 0, dy4(n+k)´1 = y22(n+k) and ϕ is the zero map. The vector
space

ĄDer
(
(^(y2n+2k, y4(n+k)´1), d), (^(x2n+1), 0);ϕ

)

is spanned by
␣
α2(n+k), α4(n+k)´1, α2k´1, α2n+4k´2

(
,

where
α2(n+k) = (y2(n+k), 1)

α4(n+k)´1 = (y4(n+k)´1, 1)

α2k´1 = (y2(n+k), x2n+1)

α2n+4k´2 = (y4(n+k)´1, x2n+1)

and the only non zero brackets are [α2(n+k), α2(n+k)] = 2α4(n+k)´1 and
[α2(n+k), α2k´1] = 2α2n+4k´2.

The Sullivan model of map(S2n+1, S2n+2k+1; i) is given by
(^(z2(n+k), z4(n+k)´1, z2k´1, z2n+4k´2), d

)
,
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where
dz2(n+k) = dz2k´1 = 0, dz4(n+k)´1 = z22(n+k)

and
dz2n+4k´2 = z2n+2kz2k´1.

This is a model of the total space E of a fibration
K(Z, 2n+ 4k ´ 2) Ñ E Ñ S2k´1 ˆ S2n+2k.

It is classified by a map f : S2k´1 ˆ S2n+2k Ñ S2n+4k´1 with a Sullivan
model

ψ :
(^x2n+4k´1, 0

) Ñ (^x2k´1, 0
)b (^(x2n+2k)

/
(x22n+2k), 0

)
,

where ψ(x2n+4k´1) = x2n+2kx2k´1, which is not trivial. □

We now proceed to determine the rational homotopy type of mapping
spaces of maps between quaternionic projective spaces.

As HPn is a homogeneous space, one can apply [4, Proposition 15.18]
to derive its minimal Sullivan model, which is given by (^(y4, y4n+3), d),
where dy4 = 0, and dy4n+3 = yn+1

4 . Moreover, there is a quasi-isomorphism

ψ :
(^(y4, y4n+3), d

) –ÝÑ (^(y4)
/
(yn+1

4 ), 0
)
.

Hence, HPn is formal.
The inclusion in,k : HPn Ñ HPn+k, k ě 0 has a Sullivan model

ϕ :
(^(x4, x4(n+k)+3), d

) Ñ (^(y4, y4n+3), d
)
,

where ϕ(x4) = y4 and ϕ(x4(n+k)+3) = α such that dα = yn+1
4 . Then, the

composition ϕ̃ = ψ ˝ ϕ is also a model of in,k.

Theorem 3.2. Denote the constant map and the identity map on HPn by
c and Id respectively. Then:
(i) the rational homotopy type of the mapping space map(HPn,HPn; c) is
a product of odd dimensional spheres and HPn,

(ii) the rational homotopy type of map(HPn,HPn; Id) is a product of odd
dimensional spheres.

Proof. (i) A model of c is given by
ϕ̃ :

(^(x4, x4n+3), d
) Ñ (^(y4)

/
(yn+1

4 ), 0
)
,

where ϕ̃(x4) = ϕ̃(x4n+3) = 0. The vector space of ϕ̃-derivations is spanned
by

θ4 = (x4, 1) and α4t´1 = (x4n+3, y
n´t+1
4 ),

for t = 1, . . . , n+ 1.
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Following the definition of ϕ̃, it is obvious that δθ4 = δα4t´1 = 0 for all
t. The only non-zero bracket is

[θ4, . . . , θ4]looooomooooon
n+1

= ´(n+ 1)!α4n+3.

An L8-model (L, ℓi) of map(HPn,HPn; c) is spanned by
␣
s´1θ4, s

´1α4t´1, t = 1, . . . , n+ 1
(
,

where
ℓn+1(s

´1θ4, . . . , s
´1θ4) = ´(n+ 1)!s´1α4n+3

and all other brackets are zero. Thus,
C8(L) – (^(z4, z4n+3), d

)b (^(z3, z7, . . . , z4n´1), 0
)
,

where dz4 = 0 and dz4n+3 = zn+1
4 .

Therefore, the rational homotopy type of map(HPn,HPn; c) is of a prod-
uct of odd dimensional spheres and an n-dimensional quaternionic projec-
tive space: that is, HPn ˆ S3 ˆ S7 ˆ ¨ ¨ ¨ ˆ S4n+3.

(ii) A model of the identity map is given by
ϕ̃ :

(^(x4, x4n+3), d
) Ñ (^(x4)

/
(xn+1

4 ), 0
)
,

where ϕ̃(x4) = x4 and ϕ̃(x4n+3) = 0.
The vector space of ϕ̃-derivations is spanned by

␣
θ4 = (x4, 1), α4j´1 = (x4n+3, x

n´j+1
4 ), for j = 1, . . . , n+ 1

(
.

A straightforward computation gives us nonzero brackets
δθ4 = ´(n+ 1)α3 and [θ4, . . . , θ4]looooomooooon

j

= ´(n+ 1)!α4j´1,

for 2 ď j ď n + 1. An L8-model (L, ℓj) of map(HPn,HPn; Id) is spanned
by ␣

s´1θ4, s
´1α3, s

´1α7, . . . , s
´1α4n+3

(
.

Moreover,
ℓj(s

´1θ4, . . . , s
´1θ4) = s´1 [θ4, . . . , θ4]looooomooooon

j

= ´(n+ 1)!s´1α4j´1,

for j = 1, . . . , n+1, and all other brackets are zero. Thus, a Sullivan model
for map(HPn,HPn; Id) is given by

C8(L) =
(^(z4, z3, z7, . . . , z4n+3), d

)
,

where dz4 = 0 and dz3 = z4, dz7 = z24 , . . . , dz4n+3 = zn+1
4 . Moreover, the

ideal generated by tz3, z4u is acyclic, hence
(^(z4, z3, z7, . . . , z4n+3), d

) – (^(z3, z4), d
)b (^(z7, . . . , z4n+3), 0

)
,
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where dz3 = z4, which is quasi-isomorphism to (^(z7, . . . , z4n+3), 0).
Therefore, the component of the identity has the rational homotopy type

of S7 ˆ S11 ˆ ¨ ¨ ¨ ˆ S4n+3. □

Theorem 3.3. Consider the natural inclusion in,k : HPn ãÑ HPn+k, for
k ě 1. The mapping space map(HPn,HPn+k; in,k) has the rational homo-
topy type of a product of a k-dimensional quaternionic projective space and
odd dimensional spheres.
Proof. A model of the inclusion in,k is given by

ϕ̃ :
(^(x4, x4(n+k)+3), d

) Ñ (^(y4)
/
(yn+1

4 ), 0
)
,

where ϕ̃(x4) = y4, and ϕ̃(x4(n+k)+3) = 0.
The vector space of ϕ̃-derivations is spanned by

tθ4, α4k+3, α4k+7, α4(n+k)+3u
where

θ4 = (x4, 1),

α4k+3 = (x4(n+k)+3, y
n
4 ),

α4k+7 = (x4(n+k)+3, y
n´1
4 ),

...
α4(n+k)+3 = (x4(n+k)+3, 1).

A direct computation shows that the only nonzero brackets are
[θ4, . . . , θ4]looooomooooon

k+j

= cjα4(k+j)´1 for j = 1, 2, . . . , n+ 1,

where cj = (n+ k + 1)(n+ k) ¨ ¨ ¨ (n+ k ´ j).
Hence, an L8-model (L, ℓj) of map(HPn,HPn+k; in,k) is spanned by

ts´1θ4, s
´1α4k+3, s

´1α4k+7, . . . , s
´1α4(n+k)+3u,

where ℓk+j(s
´1θ4, . . . , s

´1θ4) = cjs
´1α4(k+j)´1, for j = 1, . . . , n+ 1.

Thus, its Sullivan model is given by
C8(L) =

(^(z4, z4k+3, z4k+7, . . . , z4(n+k)+3), d
)
,

where dz4 = 0, dz4k+4j´1 = bjz
k+j
4 and bj = ´cj , for j = 1, 2, . . . , n + 1.

However, we may assume that all bj = 1 by making a suitable change of
variables.

A subsequent change of variables
u4k+7 = z4k+7 ´ z4z4k+3,,
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u4k+11 = z4k+11 ´ z24z4k+3,

u4k+15 = z4k+15 ´ z34z4k+3,

...
u4k+4n+3 = z4(n+k)+3 ´ zn4 z4k+3,

yields an isomorphic model
(^(z4, z4k+3), d

)b (^(u4k+7, . . . , u4(n+k)+3), 0
)
,

where dz4 = 0 and dz4k+3 = zk+1
4 . Therefore, the rational homotopy type

of map(HPn,HPn+k; in,k) is HPk ˆ S4k+7 ˆ ¨ ¨ ¨ ˆ S4n+4k+3. □

One could also perform similar computations for the natural inclusion

i1,1 : S8 – OP1 ãÑ OP2 = S8 Yσ e
16

for the Hopf map σ : S15 Ñ S8, between Cayley projective spaces. A Sulli-
van model of i1,1 is given by

ϕ :
(^(x8, x23), d

) Ñ (^(y8)
/
(y28), 0

)
,

where dx8 = 0, dx23 = x38, ϕ(x8) = y8 and ϕ(x23) = 0.
The vector space

ĄDer
(
(^(x8, x23), d), (^(y8)/(y

2
8), 0);ϕ)

)

is spanned by tβ8, α15, α23u, where

β8 = (x8, 1), α23 = (x23, 1), α15 = (x23, y8).

Here the only nonzero brackets are

ℓ2(β8, β8) = α15 and ℓ3(β8, β8, β8) = α23.

So, a Sullivan model of map(S8,OP2; i1,1) is given by

(^(z8, z15, z23), d),

where dz8 = 0, dz15 = z28 and dz23 = z38 .
By a change of variable u23 = z23 ´ z8z15, one obtains an isomorphic

model (^(z8, z15), d
)b (^u23, 0

)
,

where dz8 = 0, dz15 = z28 .
Thus, map(S8,OP2; i1,1) has the rational homotopy type of OP1 ˆ S23.
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4. NiLPOTENCY OF MAPPiNG SPACES BETWEEN PROjECTiVE SPACES
The nilpotency index of a ring R, denoted by nilR, is the least positive

integer n such that Rn = 0. Let L be an L8-algebra. Consider the lower
central descending series F 1L = L Ě F 2L Ě ¨ ¨ ¨ , where F iL is spanned by
all possible bracket expressions one can form using at least i elements from
L, that is,

F iL =
ÿ

i1+i2+¨¨¨+ikěi

[F i1L, . . . , F ikL],

(see [1, 2]).
Definition 4.1. An L8-algebra L is said to be nilpotent if there exists a
positive integer i such that F iL = 0. If L is a nilpotent L8-algebra, the
nilpotency index of L, denoted by nilL, is the positive integer i0 such that
F iL = 0 for i ą i0 and F i0 ‰ 0.

If X is a simply connected CW-complex of finite type with minimal
L8-model L, then the rational nilpotency index of X, denoted by nilQ(X),
is defined as nilL [2, Definition 4.1]. It is shown in [2, Corrollary 4.3] that
if c : X Ñ Y is the constant map and X is a formal finite CW -complex,
then

nilQ(map(X,Y ; c)) ď nilQ(Y ).

In this section, we show that a similar result holds for the inclusion

in,k : HPn ãÑ HPn+k for k ě 1.

Proposition 4.2. The mapping space map(HPn,HPn+k; in,k), for k ě 1,
is nilpotent with nilpotency index n+ k + 1.
Proof. It follows from the L8-model L of map(HPn,HPn+k; in,k),

ℓk+n+1 ‰ 0 and ℓj = 0 for j ą n+ k + 1. □

Theorem 4.3. The rational nilpotency index of map(HPn,HPn+k; in,k) is
equal to the nilpotency indexes of H˚(map(HPn,HPn+k; in,k),Q).

Proof. The cohomology algebra H˚(map(HPn,HPn+k; in,k),Q) is isomor-
phic to

^(z4)/(z
k+1
4 )b (bn

i=1(^z4(k+1+i)´1)).

Hence,
H˚(map(HPn,HPn+k; in,k),Q)

has the nilpotency index of k + 1 + n. □
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Corollary 4.4. The rational nilpotency indexes of map(HPn,HPn+k; in,k)

and HPn+k are equal.
Proof. Note that, HPn has minimal L8-model L = xy3, y4n+2y, where the
only nonzero bracket is ℓn+1(y3, . . . , y3) = y4n+2.

Therefore, nilQ(HPn) = n+ 1, and so

nilQ(map(HPn,HPn+k; in,k)) = nilQ(HPn+k) = n+ k + 1. □

In the proof of Proposition 10 in [5], similar computations for the com-
ponent of the inclusion in,k : CPn ãÑ CPn+k shows that

nilQ(map(CPn,CPn+k; in,k)) = nilQ(CPn+k) = n+ k + 1.

As Sn is coformal, π˚(ΩSn) b Q = (L(xn´1), 0) is a minimal L8-model
for Sn, when endowed with the Samelson product.

Therefore

nilQ(Sn) =
#
1, if n is odd,
2, if n is even.

From the computation of the L8-model of map(RPm,RPm1
; i) in the proof

of Theorem 3.2, one can deduce the following result.

Corollary 4.5. The rational nilpotency index,

nilQ(map(Sm, Sm1
; i)) = nilQ(Sm

1
).

In a similar way, from the computation of the L8-model of map(S8,OP2; i)
in Section 3, we conclude that:

Corollary 4.6. The rational nilpotency index nilQ(map(S8,OP2); i1,1) and
nilQ(OP2) are equal.

Then, we finally summarize all the above cases in the following Theorem.

Theorem 4.7. The rational nilpotency indexes

nilQ(map(KPn,KPn+k; in,k)) and nilQ(KPn+k)

are equal for K = R, C, H or O.
We conclude our work with the following example.

Example 4.8. Consider i3,2 : HP3 Ñ HP5. The minimal Sullivan model of
the mapping space map(HP3,HP5; i3,2) is

(^(z4, z11), d)b (^(z15, z19, z23), 0)
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where dz4 = 0, d11 = z34 and its cohomology is
A = ^(z4)/(z

3
4)b^(z15, z19, z23)

for which nil(Aě1) = 6. Indeed the highest non-zero cohomology class is
[z24 ¨ z15 ¨ z19 ¨ z23] and (A+)6 = 0.

5. CONCLUSiON
In this work, we computed the rational homotopy type of mapping spaces

between projective spaces. In the case of an inclusion in,k : HPn ãÑ HPn+k,
for k ě 1, we showed that the mapping space has the rational homotopy
type of a product of a k-dimensional projective space and odd dimen-
sional spheres. We also showed that the rational nilpotency indexes of
map(KPn,KPn+k; in,k) and KPn+k are equal.
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