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Rational homotopy type and nilpotency
of mapping spaces between projective
spaces

Tilahun Ababaw, Jean-Baptiste Gatsinzi, Smegnsh Demelash Yeruk

Abstract. The rational homotopy type of a mapping space is a way to de-
scribe the structure of the space using the algebra of its homotopy groups
and the differential graded algebra of its cochains. An Ly-model is a graded
Lie algebra with a family of higher-order brackets satisfying the generali-
zed Jacobi identity and antisymmetry. It can be used to study the rational
homotopy type of a space. The nilpotency index of an Lg-model is useful
in understanding a space’s algebraic structure. In this paper, we compute
the rational homotopy type of the component of some mapping spaces bet-
ween projective spaces and determine the nilpotency index of corresponding
Lo-models.

Amnorania. PamionanpHuit TOMOTOMIYHAN THIT TPOCTOPY BiM0OpazkeHb — 11e
cIoci6 onmcy CTPYKTYPH I[bOTO IPOCTOPY 3a JIOIOMOro0 ajredbpu #oro ro-
MOTOIIYHUX TPYyH Ta JudepeHIiajapHol rpaiyiioBaHol ajredbpu #oro KosaH-
mroriB. B cBoto wepry, Lo-Momens — 1ie Tpasyiioana anrebpa Jli, ocHamena
CiM’€10 [Iy?KOK BHIIIOTO MOPSAIKY, SKa 3aI0BOJIbHSIE y3araabHEeHy TOTOXKHICTD
Sko6i Ta amTHCEMeTpi0. i MOXKHA BHKODHCTOBYBATH SIK IHCTPYMEHT Jijisi
BUBYEHHS PAIIOHAJBLHOTO TOMOTOIIIYHOIO THILY IPOCTOPY, & 1HJEKC HiJIbIIO-
TeHTHOCTI Loo-MOIeN TakoK JoroMarae 3po3yMitu ajaredpaitiy CTPyKTypy
JaHoro mpocTopy. B mpejcrasieniit poboTi 069uCcIeHO paIlioHAJILHUN PTOMOTO-
MiYHUA TUI KOMIIOHEHT JIHIHHOT 3B’I3HOCTI JIESIKUX TPOCTOPIB Bio6parkeHb
Mi2K KBaTEPHIOHHIMY IPOEKTUBHIME IIPOCTOPAMHE Ta BU3HAYEHO iHIAEKC HiJIb-
IMOTEHTHOCTI BiAnmoBimuux Lop-MOmesieii.
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1. INTRODUCTION

Given a pair of topological spaces X and Y, the space of all continuous
maps from X to Y is denoted by map(X,Y’) and equipped with the compact
open topology. In general, the space map(X,Y’) is disconnected. For any
map f: X — Y, let map(X,Y; f) € map(X,Y) be the path component
that contains f. The goal is to classify, up to homotopy, the path component
that contains f.

The study of the rational homotopy type of mapping spaces was initiated
by Thom (in [11]), by considering an Eilenberg-MacLane as a codomain.
Haefliger (in [7]) gave the first description of a Sullivan model for map-
ping spaces. From the Haefliger model, Buijs et al. (in [2]) applied the
notion of Ly -algebra introduced by Lada in [8] to describe an Lq-model of
map(X;Y; f).

The rational homotopy type of mapping spaces into spheres and complex
projective spaces was determined by Mgller and Raussen (see [9]). Gatsinzi
in [6] gives another proof of Mgller and Raussen’s result for the rational
homotopy type of the mapping space of the component of the natural in-
clusion between complex projective spaces, i: CP"* < CP"**_ and showed
that it has the rational homotopy type of a product of odd dimensional
spheres and a complex projective space.

In this paper, we consider projective spaces KP" over K for K = R or
H, and OP™ for n = 1,2. We give a different proof of Mgller and Raussen
result in [9] for the quaternionic case. We also compute the rational homo-
topy type of the component of the inclusion between real and quaternionic
projective spaces using Lo,-models of mapping spaces. For octonionic pro-
jective spaces, we only consider the inclusion OP' < QP2. In particular, we
show that the rational homotopy type of the component of the natural in-
clusion between quaternionic and octonionic projective spaces is a product
of a projective space and odd dimensional spheres. Moreover, we compute
the nilpotency index of the component of mapping spaces containing the
inclusion KP" < KP"** k> 1, when K = R or H as well as the inclusion
i1,1: @Pl — @]P)Q

The organization of this paper is as follows. In Section 2, we recall Sul-
livan models of simply connected spaces and define Lo,-models of function
spaces; in Section 3 we determine the rational homotopy type of mapping
spaces between projective spaces and in the fourth section the nilpotency
index of mapping spaces between projective spaces will be computed.
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2. SULLIVAN MINIMAL MODELS AND Lo-MODELS OF FUNCTION SPACES

In this section, some of the basic definitions and terms that will be used
in our discussions are given. The main references of the concepts are [2]
and [3].

Definition 2.1. A differential graded algebra (dga) is a graded algebra
A = @,>0A" together with a differential d: A™ — A"+! of degree +1 such
that d o d = 0 and d(ab) = (da)b + (—1)!%la(db) for a,b e A.

A dga satisfying ab = (—1)'“”b|ba, for all a,b € A is called a commutative
differential graded algebra (cdga).

Definition 2.2. If a chain of quasi-isomorphisms of commutative cochain
algebras connects two cdga’s (A,d) and (C,d), then they are said to have
the same homotopy type, i.e.

A Sullivan algebra (AV,d) is a free cdga spanned by a positively graded
vector space with an increasing sequence of graded subspaces:

V0)cV(1)cV(2)c-- -,

such that d =0 on V(0) and d: V(k) > AV (k —1), for £ > 1. A Sullivan
model for a simply connected space X is a quasi-isomorphism

(AV,d) = -APL(X)a

where Appx) is the cdga of piecewise linear forms on X (see [10]), and it is
called minimal if Im d = AZ2V. If (AV,d) is a Sullivan model of X, then
there is an isomorphism of algebras

H*(AV,d) =~ H*(X;Q).

Moreover, if (AV,d) is minimal and V is of finite type, then there is an
isomorphism of vector spaces V" =~ Homy(m,(X), Q).

A cdga model of X is a cdga (A, d) with the same rational homotopy
type as APL( x)- If f+ X — Y is a map between two simply connected
spaces of finite type, then there is a cdga map ¢: (AV,d) — (A, d), called
model of f, where (AV,d) and (A, d) are respective cdga’s models of Y and
X (see [6]).

Consider the minimal Sullivan model (AV, d) of a simply connected space
X. We say that X is a formal space if there is a quasi-isomorphism

(AV,d) = (H*(X,Q),0)

between its Sullivan model and its rational cohomology; where projective
spaces and spheres are some examples of formal spaces.
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The notion of Ly-algebra was first introduced by Lada (in [8]) and we
recall its definition below.

Definition 2.3. An Ly -algebra is a graded vector space L = @®,>1 L, with
a family of linear maps, £, : L® — L, of degree k — 2, for k > 1, satisfying:

(i) graded skew symmetry: £(Zy(1);-- - To(k)) = 5g0(0)eali(T1, - - -, Tp),
for o € Sk,

(ii) generalized Jacobi identity:

Z Z sgn(a)e(a)ﬁj (fi(xg(l), NN 7370(1'))7 $0(2-+1), e ,a:a(n)) = 0,
i+j=n+1 oceS(i,n—1)

where o € S, is an (i,n — ¢) shuffle and €(o) is the Koszul sign of o, which
is defined by the relation x1 A -+ Az = €(0)T5(1) A+ * A Tg(y) and depends
on degree of x;’s.

In the definition, if /1 = 0, then the L-algebra L is called minimal. The
definition above coincides with that of a differential graded Lie algebra if
l. =0, for k > 3, where ¢; is the differential and ¢5 is the Lie bracket. An
Ly-algebra L of finite type is said to be an Lo,-model of X if

C*(L) = (A(sL)",d)

is a Sullivan model of X (see [2]).
Definition 2.4. Given a morphism ¢: (A,d) — (B,d) of two cdga’s, a
¢-derivation of degree k is a linear map 0: A* — B*~* such that

O(zy) = 0(2)d(y) + (1) 6(2)0(y).

Let us denote the graded vector space of all ¢-derivations of degree k by
Dery (A, B; ¢). Then, there is a differential

d: Derg(A, B;¢) — Deryg_1(A, B; ¢)
of chain complexes given by 66 = df — (—1)°16d and

Der(A, B; ¢) = @ Deri(A, B; ¢)
keZ

is a chain complex. In particular, if A = B, then Derg(A, A;Id,) is the
usual chain complex of derivations on A. If A = AV, then there is an
isomorphism

Der(AV, B; ¢) = Hom(V, B)
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via an identification map 6 — 6|y. In particular, if A = AV, where
{vi,...,v,...} is a basis of V, then we denote by (v;,a) the unique ¢-
derivation 6 such that:

0(v)) a, for i = j,a € B;
Vi) =
/ 0, for i # j.

Define the subspace of Der(AV, B;¢) of positive derivations, denoted by
Der(AV, A; ¢), as:

Der;(AV, B; ¢), fori > 1,

Deri(AV, 4;¢) = {ZDerl(/\V, B;¢) = {6 € Dery(AV, B; ¢) : 60 = 0}.

Let p1,...,0; € ]5\&(/\‘/, B; ¢) be ¢-derivations of degrees qi, . . ., ¢; respec-
tively. Then, their bracket operation of length ¢ is defined by

[p1,. . il (v) =
— (_1)Q1+"'+Qi*1 Z( Z ep(vy gy -0, vp) 1 (vg,) '%(vji)),
VARV
where dv = Y vy --- v and e is the Koszul sign. We may desuspend the
bracket operation to define a set of linear maps {/;};>1 on s_l[f)\e/r(/\V, B; ¢),
each with degree j — 2.
For j = 1,/1(s7'¢) = —s716¢p and for j = 2,
j—1
Ci(s™hor, o s ) = (=19 s e, ..., ], Where € = Z(] —1)|il.
i=1
This endows 5_1]/3\6}(/\‘/, B; ¢) with an Lo, structure, which is a model of
map(X,Y; f) [2, Lemma 3.3|.

3. RATIONAL HOMOTOPY TYPE OF MAPPING SPACES BETWEEN
PROJECTIVE SPACES

Gatsinzi (in [6]) showed that the rational homotopy type of the compo-
nent of the natural inclusion between complex projective spaces is a product
of a complex projective space and odd dimensional spheres. Here, we con-
sider the component of the inclusion i: KP" < KP"** for K = R or H and
of the inclusion QP! <> QP?2. First let us consider the real projective space
RP"™ and we have the following result.

Theorem 3.1. Consider the inclusion i: RP™ — RP™ form < m'. Then,
the rational homotopy type of map(Rm,RIP’m/; i) is:

i) a product of odd dimensional spheres if m is even and m’' is odd;
(i) ap p
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(ii) a product of an odd and an even dimensional sphere, and an Eilenberg-
MacLane space if both m and m’ are even;

(iii) a product of odd dimensional spheres if if both m and m’ are odd;
(iv) the total space of a non trivial fibration over a product of 2 spheres by
an Einleberg-MacLane space if m is odd and m’' even.

Proof. There is a covering projection Zy — S™ — RP" and hence RP" has
the rational homotopy type of S”, for n > 1. Therefore, map(RP", R]P’m/; i)
and map(S™, S i) have the same rational homotopy type. Moreover, the
inclusions i: S < S™ are homotopy trivial as m;(S™) = 0 for i < m/'.

Here, we mimic the Gatsinzi’s (presented in [6]) construction to get an
Le-model of the component of the inclusion i: $” < S™ .

(1) Let m = 2n and m’ = 2n 4+ 2k — 1, for k > 1. Following the
construction given in [6], a model of the inclusion i is given by

o1 (AYont2k-1,0) = (A(z20)/(23,),0), where ¢(y2ni2k-1) = 0.

Then,

%((Amm%—ho)a (A(m20)/(23,),0); ¢) = {Qan+2k—1, Q2k—1),

where aoniok-1 = (Yont2k—1,1) and agx—1 = (Yoni2k—1,720). For degree
reason, every bracket is trivial. Thus map(S??, S2"+2+=1,}) has the rational
homotopy of SZ+~1 x §2n+2k—1,

(2) Let m = 2n and m’ = 2n + 2k for k > 1. Consider the inclusion
i: S?" — §2"1t26 . Then, a model of i is given by

¢: (/\ (yQ(n+k)7 y4(n+k)—1)7 d) - (/\ (l'Qn)/(l'gn), 0)7
where
dy?(n—i—k) =0, dy4(n+k)—1 = yg(n—f—k)’

and both ¢(yYa(n+k)) and @(yan+k)—1) are equal to zero.
Note that

Der ((/\ (yQ(’rH—k) > y4(n+k)—1)? d)’ (/\ (xQn)/(x%n)v 0)7 (;b)
is spanned by the set
{a2(n+k)7 A2k, O4(ntk)—1> 042n+4k—1},

where

Q(ntk) = (Y2(ntk) 1)
@k = (Yo(ntk)» T2n)
QY (n+k)— <y4(n+k) 1)
= ( )

2ntak—1 = (Ya(ntk)—1> T2n)
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Here, the only nonzero bracket is [ag(4k), @2(ntk)] = —2(nsk)—1- The
Le-model (L, 4;) of map(S?”,S?"*2¥:4) is spanned by the set

— -1 -1 -1
{8 Qo(n+k), S Q2k, S  Q4(n+tk)—15 S a2n+4k—1}

and thus, a Sullivan model of map(S?", S?"+2*;

CP(L) = (A(22(ntk) 2antk)—1)> 4) @ (A (22, 22n44k-1),0),
where dZQ(n+k:) = 07d24(n+k)71 =
has the rational homotopy type of

S2n+2k % 82n+4k71 « K(Z 2k)
(3) Let m =2n+1 and m’ = 2n + 2k + 1 for k > 1. Following similar
work as above, we can obtain that
ls\e}((/\(an+2k+l)a 0), (A(w2n+1),0); 0)

is spanned by the set {aoniok+1, Qor}, where aopiopi1 = (Yonaokii, 1),
ok = (Yan+2k+1, Tant1) and all brackets are trivial. Thus, a Sullivan model

of map(S?"+1, §2+2k+1.4) is (A (2942811, 22k), 0). Therefore,

i) is:

Z§(n+k)' Therefore, map(S??,S?"+2F; 4)

map(82"+1,82"+2k+1; i) =g S2nt2k+l o K(Z,2k).
(4) Let m = 2n + 1 and m’ = 2n + 2k for k > 1. A Sullivan model of i
is given by
AN Y2(n4k) s Y4(ntk)-1), @) — (A T2n+1), V),
¢ (A( );d) = (A(2n41),0)

where dys (k) = 0, dYs(nin)—1 = yg(n+k) and ¢ is the zero map. The vector
space

Der (A (Y2n-t2ks Yatnok)-1)s d)s (A(@2041),0); @)
is spanned by

{a2(n+k)7 Q4(n+k)—1, ¥2k—1; a2n+4k72}7

where
2(n+k) = (y2(n+k)a )
QY (ntk)— (y4(n+k) 1,1)
Qok—1 = (Y2(n+k)s T2n+1)
Qntak—2 = (Ya(nik)—15 T2n+1)
and the only non zero brackets are [ao(,1k), ¥2(nik)] = 20u(nir)—1 and

[ (ntk)s Q2k—1] = 2002714k —2-
The Sullivan model of map(S?7+!, 27 +2k+1. ) is given by

(A (22(n+k)v Z4(n+k)—15 22k—1; Zont4k—2), d),
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where

dzo(pyk) = dzgg—1 =0, dzg(niry_1 = Z%(n+k)
and
dzon4ak—2 = Zon42k22k—1-
This is a model of the total space E of a fibration
K(Z,2n + 4k — 2) — E — S?~1 x §2n+2k,

It is classified by a map f: S?¢~1 x §2n+2k . §2n+4k—1 with a Sullivan
model

Vi (AZontab—1,0) = (AZok—1,0) @ (A(Tan2k) [ (230401),0),

where ¥ (xon 1 4k—1) = TopiokTok_1, which is not trivial. O

We now proceed to determine the rational homotopy type of mapping
spaces of maps between quaternionic projective spaces.

As HP" is a homogeneous space, one can apply [4, Proposition 15.18§]
to derive its minimal Sullivan model, which is given by (A(y4, Yan+3),d),
where dys = 0, and dygn4+3 = yZH. Moreover, there is a quasi-isomorphism

~

Tﬂf (A(Z/4,y4n+3)7d) - (/\(y4)/(yff+1),0).

Hence, HP" is formal.
The inclusion 4y, ;: HP" — HP"** k > 0 has a Sullivan model

¢: (A($47$4(n+k)+3)7d) - (/\(y4ay4n+3)7d)’

where ¢(74) = y4 and ¢(T4(n4k)+3) = @ such that da = yZH. Then, the
composition gB =1 o ¢ is also a model of i, 1.

Theorem 3.2. Denote the constant map and the identity map on HP"™ by
c and Id respectively. Then:
(i) the rational homotopy type of the mapping space map(HP™, HP"; ¢) is
a product of odd dimensional spheres and HP",
(ii) the rational homotopy type of map(HP"™, HP";1d) is a product of odd
dimensional spheres.

Proof. (1) A model of ¢ is given by
(52 (/\ (IIZ’4, .'E4n+3)7 d) - (/\(y4)/(y2+1)7 0)7

where ¢(z4) = &(x4n+3) = (0. The vector space of ¢-derivations is spanned
by
04 = (z4,1)  and  og—1 = (Tangs, ¥y ),

fort=1,...,n+1.
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Following the definition of (B, it is obvious that 64 = dayy—1 = 0 for all

t. The only non-zero bracket is

[04) L) 04] = —(’I’l + 1)!0[4n+3.

|\,

n+1
An Ly-model (L, ¢;) of map(HP", HP"; ¢) is spanned by
{3_1947 3_1a4t—1a t=1,...,n+ 1}7
where
U1 (s 04, ..o s7104) = —(n 4+ 1)!s™  aupys
and all other brackets are zero. Thus,
CP(L) = (A (24, 2an+3), d) @ (A (23, 27, .., 24n—1),0),

where dzy = 0 and dz4p+3 = sz“.

Therefore, the rational homotopy type of map(HIP", HP"; ¢) is of a prod-
uct of odd dimensional spheres and an n-dimensional quaternionic projec-
tive space: that is, HP" x S3 x S7 x .. x §4+3,

(ii) A model of the identity map is given by

&: (A (@4, Tanis) d) — (A(2a)/ (@0, 0),
where ¢(z4) = x4 and (é(x4n+3) =0.
The vector space of ¢-derivations is spanned by
{(94 = (1‘4, 1), 0451 = ($4n+3,1‘2_j+1), for ] = 1, o, n+ 1}.
A straightforward computation gives us nonzero brackets
00y = —(n + 1)0&3 and [94, Ce 94] = —(n + 1)!Oz4j_1,
M
J
for 2<j <n+1 An Ly-model (L,¢;) of map(HP", HP";1d) is spanned
by

{5_194, stas, s7lag, ..., s_1a4n+3},
Moreover,
ej(s_194, ceey 3—164) =g ! [04,...,04] = —(n+ 1)!3_1Oé4j_1,
J
for j =1,...,n+1, and all other brackets are zero. Thus, a Sullivan model

for map(HP", HP"; Id) is given by
COO(L) = (/\(247 B3y Ry Z4n+3)a d),

where dzy = 0 and dz3 = 24, dz7 = 23, ..., dzgns3 = ZZH. Moreover, the
ideal generated by {z3, z4} is acyclic, hence

(/\(Z47Z37Z77 .. ‘7Z4n+3)7d) = (/\(ZS)Z4)ad) ® (/\(Z77 .. '5Z4n+3)70)7
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where dz3 = z4, which is quasi-isomorphism to (A(z7,. .., 24n+3),0).
Therefore, the component of the identity has the rational homotopy type
of ST x S x ... x S +3, O

Theorem 3.3. Consider the natural inclusion i, j: HP" — HP" -, for

k = 1. The mapping space map(HP”,HP”Jrk;imk) has the rational homo-

topy type of a product of a k-dimensional quaternionic projective space and
odd dimensional spheres.

Proof. A model of the inclusion i, is given by

¢ (A (24, Ta(nsn)13), d) — (A(ya)/(yith),0),
where é(.ﬁb’z}) = Y4, and Eg(x4(n+k)+3) =0.

The vector space of ¢-derivations is spanned by

{04, Qupys, Quprr, Qungr)+3t
where
94 - (IE4, 1)7
_ n
Q43 = ($4(n+k)+3,y4),

n—1
Agp+7 = ('1"4(n+k)+37 Yy )a

Q(nik)+3 = (Ta(nrk)+3, 1)-

A direct computation shows that the only nonzero brackets are
[04,...,04] = cjaygjy—1 for j=1,2,...,n+1,
|\ ——,

k+j

where ¢; = (n+k+1)(n+k)---(n+k—j).
Hence, an Ly-model (L, ¢;) of map(HP", HP" k. ink) is spanned by

{5704, s Taupes, s aupgrs - 371044(n+k)+3}7
where (j1 (57104, ..., 570y) = cjs_loz4(k+j)_1, forj=1,...,n+1.
Thus, its Sullivan model is given by
CP(L) = (A (24, 24k435 Zak475 - - - » Za(n+k)+3)> )
where dzy = 0,dzp44j—1 = bjszﬂ and b; = —¢j, for j = 1,2,...,n+ 1.

However, we may assume that all b; = 1 by making a suitable change of
variables.
A subsequent change of variables

Udk47 = Z4k+7 — ZAZ4k+3,
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2
Udk+11 = R4k+11 — R4 R4k+3,

3
U4k+15 = 24k+15 — 24 24k+3,

n
Udk+4n+3 = Z4(n+k)+3 — #4 #4k+3;

yields an isomorphic model
(A (24, 2ak43), d) ® (A(Uahgr, - - - s Us(ntk)+3): 0),

where dzgs = 0 and dzypy3 = sz“. Therefore, the rational homotopy type

of map(HP"™, HP"*; i, 1) is HIPF x S¥+7 x ... x §tntdk+3, O
One could also perform similar computations for the natural inclusion
URE S* ~ OP! - QP2 =S% U, e'®
for the Hopf map o: S’ — S®, between Cayley projective spaces. A Sulli-
van model of i1 1 is given by

o1 (A(ws,z23),d) = (A(ys)/(¥3),0),

where drg = 0, drog = azg, d(xg) = ys and ¢(x23) = 0.
The vector space
Der (A (w5, w23), ), (A(ys)/(43), 0); 6))

is spanned by {fs, @15, aa3}, where

Bs = (zs, 1), o3 = (223, 1), 15 = (723,Y8)-
Here the only nonzero brackets are

la(Bs, ) = a5 and

So, a Sullivan model of map(S®, OP?;4; 1) is given by

(3(fs, Bs, B3) = cra3.

(A (28, 215, 223), d),

where dzg = 0,dz15 = zg and dzo3 = zg.
By a change of variable uos = 203 — 28215, one obtains an isomorphic

model
(A (28, 215),d) ® (Au23,0),

where dzg = 0,dz15 = zg.
Thus, map(S®, OP?; i1,1) has the rational homotopy type of OP! x §%.
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4. NILPOTENCY OF MAPPING SPACES BETWEEN PROJECTIVE SPACES

The nilpotency index of a ring R, denoted by nilR, is the least positive
integer n such that R™ = 0. Let L be an Lo-algebra. Consider the lower
central descending series F'L = L 2 F?L 2 --- , where F"'L is spanned by
all possible bracket expressions one can form using at least ¢ elements from
L, that is,

F'L = Z [FUL,... F*L],
i1 ioe i >i
(see [1,2]).
Definition 4.1. An L-algebra L is said to be nilpotent if there exists a
positive integer ¢ such that F*L = 0. If L is a nilpotent L.-algebra, the

nilpotency index of L, denoted by nilL, is the positive integer 7o such that
F'L =0 for i > ip and F* # 0.

If X is a simply connected CW-complex of finite type with minimal
Lo-model L, then the rational nilpotency index of X, denoted by nilg(X),
is defined as nilL |2, Definition 4.1]. It is shown in [2, Corrollary 4.3| that
if c: X — Y is the constant map and X is a formal finite CW-complex,
then

nilg (map(X,Y:;¢)) < nilg(Y).

In this section, we show that a similar result holds for the inclusion
ing: HP™ s HP"F for k > 1.
Proposition 4.2. The mapping space map(HP", HP" ingk), for k=1,
is nilpotent with nilpotency index n + k + 1.
Proof. Tt follows from the Ly-model L of map(HP", HP"*; ink),

lpint1#0 and ¢, =0 for j>n+k+1. O
Theorem 4.3. The rational nilpotency index of map(HP", HP" . ink) 1S
equal to the nilpotency indezes of H* (map(HP", HP" ink), Q).

Proof. The cohomology algebra H* (map(HP",HP"“‘k;in’k),@) is isomor-
phic to
Aza)/(Z5TH ® (@1 (A Za(ks14i)—1))-
Hence,
H*(map(HP", HP"™: i, 1), Q)
has the nilpotency index of k + 1 4+ n. O
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Corollary 4.4. The rational nilpotency indexes of map(HP", HP" k. ink)
and HP"* are equal.

Proof. Note that, HP" has minimal Ly-model L = (y3, y4n+2), where the
only nonzero bracket is 5, 11(y3, - - ., Y3) = Yan+2-
Therefore, nilg(HP") = n + 1, and so

nilg (map(HP", HP"*; 4, 1)) = nilg(HP" %) = n + k + 1. O

In the proof of Proposition 10 in [5], similar computations for the com-
ponent of the inclusion iy, 3 : CP" — CP™** shows that

nilg(map(CP", CP"*: 4, 1)) = nilg(CP"™*) = n + k + 1.

As S" is coformal, 7, (2S") ® Q = (L(zp—1),0) is a minimal Le-model
for S, when endowed with the Samelson product.
Therefore

1, if n is odd,

2, if n is even.

nilg(S") = {

From the computation of the L,-model of map(RP™, RP™'; i) in the proof
of Theorem 3.2, one can deduce the following result.

Corollary 4.5. The rational nilpotency indez,
nilg (map(S™, S™';4)) = nilg(S™).

In a similar way, from the computation of the Ly-model of map(S®, OP?; i)
in Section 3, we conclude that:

Corollary 4.6. The rational nilpotency index nilg(map(S®, OP?); i1 1) and
nily (OP?) are equal.

Then, we finally summarize all the above cases in the following Theorem.
Theorem 4.7. The rational nilpotency indexes
nilg(map(KP", KP" %4, 1)) and  nilg(KP"F)
are equal for K=R, C, H or O.
We conclude our work with the following example.

Example 4.8. Consider i32: HP? — HP°. The minimal Sullivan model of
the mapping space map(HP?, HP; i32) is

(A (24,211),d) ® (A (215, 219, 223), 0)
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where dzy = 0,d11 = zi’ and its cohomology is

A= A(21)/(23) ® A(215, 219, 223)

for which nil(4>!) = 6. Indeed the highest non-zero cohomology class is
[Zi * 215 * 219 * 223] and (A+)6 =0.

5. CONCLUSION

In this work, we computed the rational homotopy type of mapping spaces
between projective spaces. In the case of an inclusion i,, 5, : HP" — HP" -,
for £ = 1, we showed that the mapping space has the rational homotopy
type of a product of a k-dimensional projective space and odd dimen-
sional spheres. We also showed that the rational nilpotency indexes of
map (KP", KP"+E; in,k) and KP"* are equal.
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