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Abstract
PSMC estimates of Neanderthal eûective population size (Ne) exhibit a roughly 5-fold

decline across the most recent 20~ky before the death of each fossil. To explain this

pattern, this article develops new theory relating genetic variation to geographic pop-

ulation structure and local extinction. It argues that the observed pattern results from

subdivision and gene ýow. If two haploid genomes are sampled from the same subpop-

ulation, their recent ancestors are likely to be geographic neighbors and therefore coa-

lesce rapidly. By contrast, remote ancestors are likely to be far apart, and their coalescent

rate is lower. Consequently, Ne is larger in the distant past than in the recent past. New

theoretical results show that modest rates of extinction cause substantial reductions in

heterozygosity, Wright’s FST, and Ne.

1University of Utah



1. Introduction

A variety of statistical methods use genetic data to estimate the history of eûective popula-
tion size,Ne (Li and Durbin, 2011; Rogers, 2019, 2022; Schiûels andDurbin, 2014; Terhorst et al.,
2017). In a subdivided population, these estimates depend not only on the number of individu-
als but also on gene ýow between subdivisions (Nei and Takahata, 1993; Whitlock and Barton,
1997; Wright, 1943). Not only does Ne change in response to changes in gene ýow (Mazet et al.,
2016; Rodríguez et al., 2018; Wakeley, 1999), it may also exhibit a prolonged decline even when
there has been no change either in the number of individuals or in the rate or pattern of gene
ýow (Mazet and Noûs, 2023; Rodríguez et al., 2018).

With this in mind, consider the data in Fig. 1, which replots previously-published estimates
of archaic population histories (Mafessoni et al., 2020). This ügure zooms in on an interval of
30 ky before the death of each fossil. PSMC estimates are famously unreliable over this time
scale (Li and Durbin, 2011). It is therefore unsurprising that the Denisovan curve swings wildly
up and down, a pattern consistent with statistical error. On the other hand, the three Nean-
derthal curves seem to tell a consistent story4one of a roughly 5-fold decline in population size
across 20 thousand years. The consistency of the Neanderthal curves is surprising and demands
explanation.

In what follows, I ask whether this pattern may reýect geographic subdivision within the
Neanderthal population rather than either statistical noise or a real decline in the number of
Neanderthals.

2. Methods

2.1. Archaic PSMC data

The data in Fig. 1 were published by Mafessoni et al. (2020) and were provided by those
authors. I used psmcdata to extract data from PSMC output üles.

2.2. Coalescent hazard and eûective population size

The eûective population size,Ne(t), at time t is deüned in terms of the corresponding hazard,
h(t), of a coalescent event. To understand this latter quantity, suppose that we sample two genes
from a population at time 0 and trace the ancestry of each backwards in time. Eventually, the two
lineages will coalesce into a common ancestor (Hudson, 1990; Tavaré, 1984). The hazard, h(t),
of a coalescent event at time t is the conditional coalescent rate at t given that the two lineages

Figure 1 3 PSMC estimates of the recent history of population size based on three Nean-

derthals (Vindija33.19, Chagryskaya, and Altai) and a Denisovan (Mafessoni et al., 2020).

Horizontal axis measures time in thousands of years before the date of each fossil. Mu-

tation rate is 1.4 × 10−8 per base pair per generation; generation time is 29 y.
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did not coalesce between 0 and t (Kalbýeisch and Prentice, 1980, p. 6). In a randomly-mating
population of constant size N , this hazard is h = 1/2N per generation. In a population of more
complex structure, this formula doesn’t hold. Nonetheless, we can deüne an eûective population
size as half the reciprocal of the hazard (Laporte and Charlesworth, 2002; Rousset, 2004, p. 144).

(1) Ne(t) =
1

2h(t)

This quantity has also been called the inverse instantaneous coalescent rate (IICR) (Chikhi et al.,
2018; Mazet et al., 2016; Mazet and Noûs, 2023; Rodríguez et al., 2018). That alternative name
emphasizes that change in Ne (or IICR) need not imply change in the size of the population or
even in the rate or pattern of mobility within it. Furthermore, this quantity depends not only on
the characteristics of the population but also on those of the sample. Thus, the conventional
term4eûective population size4may be misleading. Nonetheless, I adhere to that convention in
this article.

Because so little is known about subdivision and gene ýow within the Neanderthal popula-
tion, we cannot hope to build a realistic model. Instead, I use simple models to explore the eûect
of subdivision, gene ýow, and local extinction (or extirpation). Extinction is important because
although the Neanderthal population was widespread and shows evidence of geographic struc-
ture, it had low heterozygosity (Mafessoni et al., 2020). If demes never went extinct, population
structure would tend to inýate heterozygosity (Wright, 1943, p. 133; Nei and Takahata, 1993).
But the opposite happens when demes occasionally go extinct and are then replaced by immi-
grants from another deme (Wright, 1940, p. 244; Slatkin, 1977; Maruyama and Kimura, 1980;
Whitlock and McCauley, 1990; Whitlock and Barton, 1997). Thus, the low heterozygosity of
Neanderthals suggests that local extinctions may have been common.

2.3. The ünite island model with local extinction

Consider ürst the ünite island model, which assumes that demes of equal size exchange mi-
grants at equal rates (Carmelli and Cavalli-Sforza, 1976; Mazet et al., 2016; Rodríguez et al.,
2018). In reality, a gene beginning in one dememay need to traverse many intervening demes to
reach one that is far away. There is no such necessity under the island model: a gene can move
from one deme to any other in a single generation. Consequently, this model converges rapidly
toward its asymptote for any given level of gene ýow.

The ünite islandmodel assumes d demes of eûective sizeN . Pairs of lineages within the same
deme coalesce at rate 1/2N ; pairs in diûerent demes cannot coalesce. Migration occurs at rate
m per gene per generation. When a migration occurs, the gene moves to one of the d − 1 other
demes. In addition to these standard assumptions, I also assume that demes occasionally go
extinct and are then immediately replaced with immigrants from some other deme. In backwards
time, extinctions look likewholesalemigration: all lineageswithin the dememigrate together to a
diûerent deme, which is chosen at random. Extinctions occur at rate x per deme per generation.

As we trace the history of a pair of genes, we need only keep track of whether the two
lineages are colocal (in the same deme) or in diûerent demes. Extinction can be ignored for a pair
of colocal lineages. It is not that extinctions don’t happen. As we view a pair of colocal lineages
at the time of an extinction, they move together to another deme, but in that new deme they are
still colocal. The state of the system is thus unchanged. On the other hand, extinction does aûect
pairs in diûerent demes. At the time of the extinction, one lineage moves to a diûerent deme,
and this new deme may be the one occupied by the other lineage. Thus, extinction increases the
rate at which separated lineages become neighbors.

Other models of local extinction (e.g. Slatkin, 1977) have included temporary reductions in
population size (bottlenecks) at the time of recolonization, which reduce the eûective size of
each deme. Rather than modelling these explicitly, I absorb them into eûective deme size, N . If
bottlenecks are frequent, N will be smaller than the average size of a deme.

To study this model, let us formulate it as a Markov chain in continuous time. At a given
time in the past, the two sampled lineages will be in one of three states: S , they are in the same
deme; D , they are in diûerent demes; and C , they have coalesced into a single lineage. Once
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the process reaches state C , it never leaves, so the probability of this state increases through
time. Such states are said to be absorbing. States S and D , on the other hand, are transient; their
probabilities will eventually decline toward zero. Let qij denote the rate of transitions from state
i to state j . In other words, qij δt is approximately the probability that the process is in state j at
time t + δt given that it is in state i at time t , provided that δt is small. The matrix of transition
rates looks like





S D C

S −2m − 1/2N 2m 1/2N
D 2(m + x)/(d − 1) −2(m + x)/(d − 1) 0
C 0 0 0





Here, 2m is the rate of transition from S to D (because there are two lineages, each of which
migrates at rate m), and 1/2N is the rate of transition from S to C . In other words, it’s the rate
of coalescence for two lineages in the same deme. Note that x (the rate of extinction) does
not contribute to transitions from state S . On the other hand, extinction and migration both
contribute to the rate of transition from D to S . These transitions occur at rate 2(m+ x)/(d −1),
because although 2(m + x) is the combined rate of migrations and extinctions, only a fraction
1/(d −1) of these events results in one lineage joining the other in the same deme. The diagonal
entries in a transition rate matrix are the negative of the sum of the other entries in that row.
(See Sukhov and Kelbert (2008, sec. 2.1) for a discussion of transition rate matrices.) If x = 0,
this matrix is equivalent to that of Rodríguez et al. (2018, p. 668).

We can simplify this model in two ways. First, because the absorbing state, C , does not
contribute to the probabilities of the other states, we can delete the third row and column to
form a subintensity matrix (Bladt and Friis Nielsen, 2017, p. 125). Second, we can reexpress all
rates using 2N generations as the unit of time. This involves multiplying all entries of the matrix
above by 2N . The result is

Q =

(

S D

S −M − 1 M

D (M + X )/(d − 1) −(M + X )/(d − 1)

)

where M = 4Nm is the migration rate per pair of lineages per 2N generations, and X = 4Nx is
the corresponding rate of extinction. Let τ = t/2N represent time in units of 2N generations, and
let p(τ) = (p1(τ), p2(τ)) represent the row vector of probabilities that the process is in states S
and D at time τ . It equals

(2) p(τ) = p(0)eQτ

where p(0) is the vector of initial probabilities, and eQτ is a matrix exponential (Cox and Miller,
1965, p. 182). Because we have sampled two genes from the same deme, p(0) = (1, 0), and p(τ)
is the ürst row of eQτ .

As τ increases, both entries of p(τ) will eventually decline toward zero, because it becomes
increasingly unlikely that the two lineages have not yet coalesced. We are interested, however,
in the conditional probability that the two are in the same deme, given that they have not yet
coalesced. At time τ , this conditional probability is

s(τ) =
p1(τ)

∑

pi (τ)
,

where the sum is across the transient states, excluding state C . The coalescent hazard is the
product of s(τ) and the hazard for two lineages in the same deme. Returning now to a time unit
of one generation, that product is h(t) = s(t/2N)/2N , and eûective population size is

(3) Ne(t) = N/s(t/2N)

This diûers from previously published results on the IICR (Mazet et al., 2016, Eqn. 16; Rodríguez
et al., 2018, p. 669) only in that it adds the eûect of local extinctions.
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2.4. The circular stepping stone model with local extinction

One-dimensional stepping stone models describe a population whose demes are arranged in
a line and exchange genes only with their immediate neighbors (Kimura and Weiss, 1964). They
are abstractions of real-world situations in which demes are arrayed across a landscape, and
neighboring pairs of demes are less isolated from each other than are pairs separated by large
distances. I will follow the common practice of assuming that the ends of the line of demes are
joined to form a circle of d demes, each of eûective size N , and that each pair of neighboring
demes exchangesmigrants at the same rate (Carmelli and Cavalli-Sforza, 1976;Maruyama, 1970,
1977).When local extinctions occur, the lost deme is immediately replacedwith immigrants from
a single donor deme. The donor deme is equally likely to be either of the two adjacent demes.
The circular arrangement is for convenience only. It simpliües things, because it implies that no
deme is more central or peripheral than any other.

Each lineage migrates at rate m per generation in backwards time, and when it does so it
is equally likely to move one step clockwise or one step counterclockwise around the circle of
demes. Because we are studying the history of a pair of genes, the migration rate is 2m per
generation orM = 4Nm per unit of 2N generations, provided that the two lineages have not yet
coalesced. Similarly, if two lineages are in diûerent demes, 2x is the rate per generation at which
extinction aûects one of them or the other, and X = 4Nx is the rate per 2N generations.

As in the island model, this process has one absorbing state, C , in which the ancestors of
the two sampled genes have coalesced. Two lineages are separated by 0 steps if they are in the
same deme, by 1 step if they’re in adjacent demes, and so on. The maximum separation is +d/2,,
the largest integer less than or equal to d/2. For example, +d/2, = 3 if d is either 6 or 7. The
transient states in the model correspond to these distances: 0, 1, ... , +d/2,. These states label
the rows and columns of the subintensity matrices below. The matrix is

Q =









0 1 2 3

0 −M − 1 M 0 0
1 (M + X )/2 −M − X (M + X )/2 0
2 0 (M + X )/2 −M − X (M + X )/2
3 0 0 M + X −M − X









for d = 6 and

Q =









0 1 2 3

0 −M − 1 M 0 0
1 (M + X )/2 −M − X (M + X )/2 0
2 0 (M + X )/2 −M − X (M + X )/2
3 0 0 (M + X )/2 −(M + X )/2









for d = 7. In each matrix, row 0 refers to the case in which the two lineages are in the same
deme. The only positive entry in that row equalsM , because extinction can be ignored, and any
migration in state 0 will move the process to state 1. The <31= in the left-most entry accounts for
coalescent events. In rows 1 and 2, the two positive entries equal (M+X )/2, because in states 1
and 2, migration and extinction are equally likely to increase by 1 or to reduce by 1 the distance
between lineages. The entries in row 3 depend on whether d is even or odd. If it is even, there
is only one deme that is +d/2, steps away from any given deme. Consequently, any migration or
extinctionmust reduce the distance by 1 step, and the transition rate isM+X . On the other hand,
if d is odd, there are two demes +d/2, steps away. Half of migration and extinction events will
move a lineage from one of these to the other without changing the distance between demes.
The other half reduce that distance by 1, so the transition rate is (M + X )/2. Ne(t) is calculated
from Q as before, using Eqns. 233.
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2.5. Genetic variation within and among groups

The <within-group heterozygosity,= HW , is the probability that two genes drawn at random
from the same deme diûer in state. The appendix shows that

(4) HW ≈ θ

(

Md + X

M + X

)

under either of the two models described above. If X is similar in magnitude to M or is larger,
extinction produces a substantial reduction in heterozygosity. When X = 0, this reduces to a
well-known result for models without extinction (Slatkin, 1987; Strobeck, 1987).

The appendix also derives formulas for Wright’s FST under each model. For the island model,

(5) FST ≈
1

(Md + X )d/(d − 1)2 + 1

When X = 0, this reduces to a well-known formula for FST under the island model (Slatkin,
1991). For the circular stepping-stone model,

(6) FST ≈
1

6(Md + X )/(d2 − 1) + 1

When X = 0, this result is equivalent to that of Wilkinson-Herbots (1998, p. 582), whose results
suggest a caveat. She presents two results. One (which Eqn. 6 generalizes) is an approximation for
weakmutation (Wilkinson-Herbots, 1998, p. 582). The other (Wilkinson-Herbots, 1998, Eqn. 34)
is a more accurate formula that includes a mutation rate. With a realistic mutation rate and a
modest number demes, her two formulas give nearly identical results. But as the number, d , of
demes increases, the two formulas diverge. For large d , the process apparently generates such
long coalescent times that the weak-mutation approximation breaks down. This is probably also
true of my Eqn. 6.

2.6. The magnitude of change in Ne(t)

For both of the models discussed above, Ne(t) increases toward an asymptote in backwards
time. The asymptotic value, Ne(∞), can be obtained from the left eigenvector of Q associated
with the largest eigenvalue. This eigenvector is proportional to the asymptotic value of p(τ), so
we can use it to calculate Ne(∞), just as we used p(τ) to calculate Ne(t). If p̃i is the i ’th entry

of this eigenvector, then the asymptotic value is Ne(∞) = N
p̃1/

∑

p̃i
, where p̃1 is the ürst entry of

the eigenvector and corresponds to state in which both lineages are in the same deme. Mazet
et al. (2016) derived an explicit formula for the asymptote under the island model. The maximum
proportional increase as we move backwards in time is

Ne(∞)/Ne(0) =
∑

p̃i/p̃1

2.7. Computer simulations

Computer simulations were done using Msprime (Baumdicker et al., 2021; Kelleher et al.,
2016). This software has no support for random extinctions, so my program runs its own sim-
ulation to generate a list of extinctions and recolonizations, which is then used to build the
demographic model of Msprime. Each run of Msprime uses a diûerent, randomly-generated list
of extinctions and recolonizations.

3. Results

This section asks whether geographic population structure can account for the Neanderthal
pattern in Fig. 1. To this end, it üts each of the models described above to four observations.
The ürst two of these come from Fig. 1: (1) a decline in Ne over a period of about 20 ky, end-
ing at the time of the Neanderthal fossil; and (2) the ratio of early to late Ne is roughly 5 or 6.
In addition: (3) Neanderthals had very low heterozygosity, as discussed below; and (4) FST in
vertebrate species is usually less than 0.5 (Sexton et al., 2014). Having shown that all of these
observations can be explained by population structure, I then ask whether the pattern in Fig. 1
can be explained as an artifact of sampling or as a real decline in the number of Neanderthals.
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Figure 2 3 Time path of Ne in models with extinction, assuming that two genes are sam-

pled from the same deme and that the generation time is 29 y. The horizontal gray line

shows the metapopulation size, Nd .

To constrain the models, let us begin with heterozygosity. Mafessoni et al. (2020, table S8.2)
list values between 1.5 × 10−4 and 2 × 10−4 for four archaic genomes. I take the upper end
of this range as representative of Neanderthal heterozygosity. I also assume a mutation rate of
1.4 × 10−8 per nucleotide site per generation. If local demes never went extinct (i.e., if X = 0),
we could plug these assumptions into Eqn. 4 and ünd that the sum of eûective sizes of Nean-
derthal subpopulations was only about 3600. This value seems implausibly low for a population
as widespread as Neanderthals, so I will assume that X equals the migration rate,M . This value
is large enough to roughly double the implied size of the metapopulation. Nonetheless, it is still
a modest rate of extinction, as discussed below. With these assumptions, one can set HW equal
to observed heterozygosity and solve for d , the number of demes, as a function of deme size, N .

For any choice of N and d , we can make graphs like those in Fig. 2. These graphs (and many
others not shown) all exhibit declines in Ne , which do not reýect any real decline in the number
of individuals. Instead, they are the eûect of sampling two haploid genomes from a single deme
within a structured population. The rate of decline depends onM , and within each graph we will
be interested in the value ofM that most closely matches the 20-ky decline seen in Neanderthal
data (Fig. 1). This suggestsM = 6 for the island model andM = 20 for the stepping-stone model.
These choices generate declines in Ne over the right interval. These declines also have roughly
the right magnitude: Ne(∞)/Ne(0) ≈ 7 for the island model and 6 for the circular stepping-
stone model. Finally, they imply reasonable FST values: 0.11 for the island model and 0.08 for
the circular stepping-stone model.

Let us re-express the inferred rates of migration and extinction in terms that are easier to
interpret. For the island model, M = 6 means that each deme receives M/4 = 1.5 immigrants
per generation. Because N = 600 in these models, X = 6 means that the extinction rate is
X/4N = 1/400 per deme per generation and that the mean interval between extinction events
is 400 generations. For the circular stepping-stone model, the corresponding values are 5 immi-
grants per deme per generation and 120 generations between extinction events. These are mod-
est rates of extinction, and the true rate may have been larger. If so, the Neanderthal metapop-
ulation would have been larger than the value implied here. It would have been larger still if
local groups experienced frequent bottlenecks, perhaps associated with recolonization events.
Such bottlenecks would make eûective deme size, N , smaller than census size. Consequently,
the census size of the metapopulation would be larger than Nd .

There are many other choices of parameter values that also üt the data. For example, Fig. 3
looks at two versions of the island model, one with no extinction (X = 0) and the other with
a high rate (X = 10M ). Both üt the data best if we assumue that M = 6, but the two models
have drastically diûerent implications for the total size, Nd , of the metapopulation: that size is
3600 if we assume no extinction but 33,000 if we assume a high rate of extinction. Even with an
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Figure 3 3 Island model with low (X = 0) and high (X = 10M ) rates of extinction. For

M = 6, FST is 0.10 on the left and 0.12 on the right. Ne(∞)/Ne(0) is 6.7 on the left and

7.4 on the right. The sum, Nd , of eûective deme sizes is 3600 on the left and 33,000 on

the right. The horizontal line in the left panel is the sum, Nd , of eûective deme sizes.

Figure 4 3 PSMC estimates of Ne based on simulated data. Simulations used Msprime

(Baumdicker et al., 2021; Kelleher et al., 2016) and assumed 11 demes of size 600.

Genomes comprised 10 pairs of chromosomes, each 107 base pairs in length. Rates of

migration and extinction (M = X = 6 for island model and M = X = 20 for stepping

stone) were chosen using Fig. 2 to produce a decline in Ne over about 20 ky.

extinction rate this high, the interval between extinction events is still 40 generations4slightly
more than 1000 y4and does not seem implausible. Thus, the low Neanderthal heterozygosity
does not imply that their global population was small.

There is nothing special about the island and circular stepping-stonemodels. These represent
very diûerent assumptions about isolation by distance4one in which it is absent and another in
which it takes an extreme form. Because both models are consistent with the data, it seems
likely that others would also work. The present results tell us only that the Neanderthal data are
consistent with geographic population structure.

What other mechanisms might explain the data?We should worry ürst about statistical error.
PSMC is notoriously unreliable (Li and Durbin, 2011) over the short time scale graphed in Fig. 1.
Perhaps the data are a statistical ýuke. This hypothesis is hard to reconcile with the consistency
of the three Neanderthal curves. On the other hand, consistency is to be expected under the
hypothesis of population structure. Each panel of Fig. 4 shows three simulated replicates, which
are quite similar to each other, and also to the curves in Fig. 1.

On the other hand, perhaps the pattern in Fig. 1 reýects a real decline in Neanderthal popula-
tion size. The problem with this hypothesis is that the three Neanderthal fossils lived at diûerent
times. The youngest (Vindija) lived 60 ky after the oldest (Altai) (Mafessoni et al., 2020, p. 1532).

8 Alan R. Rogers
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If these PSMC curves were recording the same decline in the size of the Neanderthal metapopu-
lation, the declines should not appear simultaneous in Fig. 1; they should be separated by 60 ky.
This is obviously not the case, so it seems unlikely that the observed pattern reýects a real de-
cline in the Neanderthal metapopulation. The synchrony of these curves is not a problem under
the hypothesis of population structure. That hypothesis implies thatNe will increase gradually in
backwards time, beginning at the date of each fossil. The similar rates of increase suggest that
similar rates of gene ýow prevailed for all three Neanderthal fossils.

4. Discussion

Other authors (Chikhi et al., 2018; Mazet et al., 2016; Mazet and Noûs, 2023; Rodríguez
et al., 2018) have emphasized that a decline in eûective population size, Ne , may result from
geographic population structure, even without any change in census population size or in the
rate or pattern of gene ýow. Figs. 2 and 3 show how this works in the context of two theoretical
models. The declines in Ne reýect the fact that we have sampled two genes from a single deme.
In the recent past, it is likely that the two ancestors of these genes are still neighbors. Coalescent
hazard is therefore high andNe is small. As wemove farther into the past, ancestors are less likely
to be neighbors, coalescent hazard declines, and Ne increases toward an asymptote.

The position of this asymptote depends on rates of migration and extinction. If demes never
go extinct, the asymptote, Ne(∞), is even larger than Nd , the size of the metapopulation. (See
the horizontal gray line in the left panel of Fig. 3.) Why should the asymptote be so large? Among
all possible histories of a pair of genes, the subset that has not yet coalesced at time t will be
enriched with histories in which the two lineages haven’t spent much time together in the same
deme. This implies that when t is large, the two lineages are less likely to be in the same deme
than are two genes drawn at random from the population as a whole. Consequently, coalescent
hazard is less than 1/2Nd , and Ne(∞) > Nd . This excess is pronounced if the migration rate,M ,
is small but disappears asM grows large. On the other hand, if demes do occasionally go extinct,
the asymptote is smaller, and Ne(∞) may be smaller that Nd , as seen in Fig. 2. In this ügure, the
extinction rates are such that demes persist for hundreds of generations. In the right panel of
Fig. 3, the extinction rate is higher so that demes persist only for 40 generations. In such cases,
the metapopulation is dramatically larger than the Ne that we estimate.

It seems likely that population structure underlies the apparent decline in Neanderthal Ne

shown in Fig. 1. Alternative explanations are unable to account for the consistency of the three
Neanderthal curves or for the fact that they all begin at the same point on the horizontal axis.
This conclusion supports that of Mafessoni et al. (2020), who use runs of homozygosity to argue
that the Neanderthal population was geographically structured.

Although the Denisovan curve in Fig. 1 does not exhibit the decline characteristic of popula-
tion structure, I would not argue that this population lacked structure. In spite of the consistency
of the curves in Fig. 4, such simulations do generate aberrant curves reasonably often.We should
not read too much into a single empirical curve. Furthermore, there is convincing evidence that
the Denisovan population was structured (Jacobs et al., 2019).

5. Conclusions

PSMC estimates of Neanderthal population size exhibit a consistent roughly 5-fold decline
during the most recent 20 kyr. The consistency of these estimates is surprising, both because
PSMC is thought to be unreliable on this time scale and also because we are measuring time
backwards from three fossils that lived at very diûerent times. The observed pattern does not
seem to be an artifact of sampling, nor is it likely to reýect a real decline in the size of the Nean-
derthal metapopulation. Instead, it supports a hypothesis of geographic population structure.

This article presents mathematical theory describing the eûect of geographic population
structure and local extinctions on Ne , FST , and heterozygosity. This theory shows that if ex-
tinction rates were such that local Neanderthal populations persisted for only 1000 y or so, the
global Neanderthal population would have been dramatically larger than its eûective size.
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Appendix A. Two models of geographic population structure

This section studies two models of geographic population structure: the ünite island model
and the circular stepping stone model. Both assume a metapopulation of d demes, each of ef-
fective size N . Time is measured in units of 2N generations. On this time scale, pairs of lineages
in the same deme coalesce at rate 1. If each lineage mutates at rate u per generation, then 2Nu
is the rate per 2N generations. When we trace the history of a pair of lineages in continuous
time, we can ignore the possibility that both lineages mutate in the same instant. When muta-
tion occurs, one lineage or the other is aûected, and this happens at rate θ = 4Nu4twice the
rate of an individual lineage. Similarly, if m is the rate of migration per lineage per generation,
then M = 4Nm is the rate per 2N generations for a pair of lineages. If x is the extinction rate
per deme per generation, then X = 4Nx is the rate per 2N generations for a pair of lineages in
separate demes.

To explore the two models below, I use Slatkin’s approximation (Slatkin, 1991), which ex-
presses heterozygosity or gene diversity in terms of mean coalescence time. This approximation
is based on the following idea. If f (t) is the probability density that two genes coalesce at time
t , then they are identical in state with probability

G =

∫

∞

0

e−θt f (t)dt

where t is time in units of 2N generations, and e−θt is the probability that neither lineage mu-
tates in the interval between 0 and t . If θ is small, then e−θt ≈ 1 − θt , and G ≈ 1 − θt̄ , where
t̄ =

∫

∞

0
tf (t)dt is the mean coalescence time. Under this approximation, heterozygosity within

demes4the probability that two genes sampled from the same deme diûer in state4is

(7) HW ≈ θt̄0

where t̄0 is the mean coalescence time for pairs of genes sampled within a single deme. Wright’s
FST , a measure of diûerentiation among demes, is (Slatkin, 1991, p. 169)

(8) FST ≈
t̄ − t̄0

t̄

where t̄ is the mean coalescence time for two genes drawn from the population as a whole.
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A.1. The ünite island model with extinction

In this section, t̄0 represents the expected coalescence time, in units of 2N generations, for
a pair of genes sampled from the same deme. For pairs sampled from diûerent demes, the anal-
ogous quantity is t̄1. Pairs in the same deme coalesce at rate 1 and migrate at rateM per unit of
2N generations. Extinction can be ignored for pairs in the same deme. Thus,

t̄0 =
1

1 +M
+

M

1 +M
t̄1

The ürst term on the right is the expected time until an event of either type. If that event is
a coalescence, then we are done: there are no further contributions to t̄0. But with probability
M/(1 + M), the event is a migration, the two lineages are now in separate demes, and their
expected coalescence time becomes t̄1.

Pairs in diûerent demes cannot coalesce but are aûected bymigration (rateM ) and extinction
(rate X ). When either of these events occur, the two lineages end up in the same deme with
probability 1/(d − 1). Thus, two separated lineages join each other in the same deme at rate
(M + X )/(d − 1) and

t̄1 =
d − 1

M + X
+ t̄0

Here, the ürst term is the expected time until a pair in diûerent demes moves into the same
deme. Substitute the formula for t̄0 into this expression and solve for t̄1. The result is

t̄1 =
d − 1

M + X
+

Md + X

M + X

Comparison of the two expressions for t̄1 shows that t̄0 = (Md +X )/(M +X ). Substituting this
into (7) gives Eqn. 4. The mean coalescence time of two genes drawn at random from the entire
metapopulation is

t̄ = t̄0/d + (1 − 1/d)t̄1 =
Md + X

M + X
+

(d − 1)2

d(M + X )

Substituting into (8) gives Eqn. 5.

A.2. Circular stepping-stone model with extinction

If two lineages are i steps apart around the circle of demes, (d − i)i/(M +X ) is the expected
time, in units of 2N generations, until they are in the same deme (Slatkin, 1991, p. 170). Thus,
the mean coalescence time for a pair of lineages i steps apart is

(9) t̄i = t̄0 +
(d − i)i

M + X

A pair in the same deme is not aûected by extinction but can coalesce. Their expected coales-
cence time is

t̄0 =
1

1 +M
+

M

1 +M
t̄1

=
1

1 +M
+

M

1 +M

(

t̄0 +
d − 1

M + X

)

Solving for t̄0 gives

t̄0 =
Md + X

M + X

just as in the island model.

To calculate FST , we need t̄ = E [t̄i ], which depends on E [(d − i)i ], where i is the distance
between two genes drawn at random from the entire population. Suppose the ürst gene is from
deme 0. The second is equally likely to come from demes 1, 2, ... , d , where the demes are num-
bered clockwise around the circle, and deme d is the same as deme 0. If i represents the <clock-
wise distance= between demes, then the shortest distance fromdeme i to deme 0 is theminimum
of i and d − i . Because we are averaging (d − i)i , it doesn’t matter whether we interpret i as
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the clockwise distance or the shortest distance: (d − i)i will be the same in either case. For
convenience, I take i as the clockwise distance. The expectation of (d − i)i is

E [(d − i)i ] =
1

d

d
∑

i=1

(d − i)i

=
d

∑

i=1

i −
1

d

d
∑

i=1

i2

=
d(d + 1)

2
−

(d + 1)(2d + 1)

6

= (d2 − 1)/6

Substitute this for (d − i)i in Eqn. 9 to obtain

t̄ = t̄0 +
d2 − 1

6(M + X )

Now Eqn. 8 gives

FST ≈
(d2 − 1)/6

Md + X + (d2 − 1)/6

which is equivalent to Eqn. 6 above.
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