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ABSTRACT

Aperiodic substitution tilings provide popular models for quasicrystals, materials exhibiting aperiodic order.
We study thegraphLaplacianassociatedwith four tilings fromthemutual local derivability class of thePenrose
tiling, as well as the Ammann–Beenker tiling. In each casewe exhibit locally-supported eigenfunctions, which
necessarily cause jump discontinuities in the integrated density of states for these models. By bounding the
multiplicities of these locally-supported modes, in several cases we provide concrete lower bounds on this
jump. These results suggest a host of questions about spectral properties of the Laplacian on aperiodic tilings,
which we collect at the end of the paper.
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1. Introduction

1.1. Prologue

The structure of ordered materials such as crystals has long been a topic of fascination in mathematics and science. The discovery
of quasicrystals in the 1980s ushered in new techniques and motivations for investigating aperiodic structures with underlying
symmetries. Following this discovery, the study of electronic transport properties of particles in quasicrystalline media has become
a fundamental question in mathematics and physics.

Since their discovery in the 1980s by Shechtman et al. [29], quasicrystals have generated substantial interest in mathematical
physics. For a sample of the mathematical literature devoted to quasicrystals and the mathematics of aperiodic order, see [2–4, 14, 22,
27] and references therein. Given the physical origins of these models, there has naturally been interest in the analysis of quantum
mechanical systems associated with quasicrystals. As such, many researchers have studied spectral problems associated with self-
adjoint operators that inherit their structure from a mathematical model of a quasicrystal. From this perspective, one-dimensional
quasicrystal models have been discussed extensively, since those models enjoy the largest variety of tools in the spectral toolbox.
Particularly reoned results have been obtained for the Fibonacci Hamiltonian, the most prominent one-dimensional quasicrystal
model; see, e.g., [5, 17, 25, 30, 31] and references therein.

The Penrose tiling is a two-dimensional structure that shares many features with quasicrystals discovered in nature, such as ove-
fold rotational symmetry and the pure point nature of suitable difraction measures associated with the tiling [2, 8, 10, 13]. Despite a
substantial amount of interest from mathematics and physics, there are relatively few results about the spectral theory of Laplacians
on the Penrose tiling, due to the disappearance of some of the crucial tools used in the analysis of one-dimensional quasicrystals. One
surprising spectral phenomenon that these operators can exhibit is the presence of locally-supported eigenfunctions. It is known that
such locally-supported eigenfunctions can never occur for onite-range operators on �2(Zd).

One can construct Laplacians from tilings in two diferent ways: hopping between tiles and hopping between vertices. We
distinguish these paradigms as the <tile model= and the <vertex model,= respectively. For both the tile and the vertex model associated
with the rhombus tiling, the presence of locally-supported eigenfunctionswas observed in the 1980s [1, 9, 16]. Several other prominent
tilings (Robinson triangle, boat–star, and kite–dart) are equivalent to the Penrose tiling, in the sense of mutual local derivability
(MLD). On one hand, the presence of onitely supported eigenfunctions depends very sensitively on the local structure of the tiling
onwhich one studies the Laplacian, and hence onewould not expect the existence of such eigenfunctions to hold universally in a given
MLD class, since the MLD relation can alter the local structure of a tiling. Nevertheless, we study four tilings which are in the MLD
class of the Penrose tiling and show that all of them exhibit locally-supported eigenfunctions (and hence exhibit a discontinuous IDS).
More recently, vertex models associated with the Penrose and Ammann–Beenker tiling were studied in [21, 23, 24]. We study the tile
model for theAmmann–Beenker tiling (also called the octagonal tiling), showing that it too exhibits locally-supported eigenfunctions.
This is also closely related to the phenomenon of nat bands for translation-invariant operators on periodic graphs [32–34].

CONTACT David Damanik damanik@rice.edu Department of Mathematics, Rice University, Houston, TX 77005, USA.
© 2023 Taylor & Francis Group, LLC
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1.2. Setting and results

Let us now deone the relevant objects and state our results. We will work with Laplacians on graphs associated with tilings. A graph
� = (V , E) consists of a nonempty set V of vertices and a set E comprised of unordered pairs of elements of V . We write u ∼ v if
(u, v) ∈ E and say that u and v are connected by an edge. The degree of v is the number of neighbors of v: deg(v) = #{u : u ∼ v}.

The Laplacian on the graph � = (V , E) is the operator

� = �� : �2(V) → �2(V), [�ψ](v) =
∑

u∼v

(

ψ(v) − ψ(u)
)

.

Equivalently, one can deone � = D − A, whereD is the degree operator andA is the adjacency operator:

[Dψ](v) = deg(v)ψ(v)

[Aψ](v) =
∑

u∼v

ψ(u).

We are interested in inonite graphs that arise from substitution tilings of the plane by polygons. Namely (once a tiling of the plane
by polygons has been constructed), the associated graph has one vertex for each polygon of the tiling, and two vertices are connected
if the associated polygons share at least one edge.

One fruitful way to study such inonite graphs is to analyze onite truncations. Namely, one may consider onite subsets Vn ⊆ V and
En = {(u, v) : u, v ∈ Vn} with Vn ↑ V in a suitable sense, and let �n := ��n denote the Laplacian on the onite graph �n = (Vn, En).
The normalized eigenvalue counting measure is given by

νn(B) =
1

#Vn
TrχB(�n), B ⊆ Rmeasurable. (1.1)

Under suitable assumptions (which are met in all of the cases under consideration in the present work), νn converges in the weak∗

sense to a limiting measure

ν = ν� , (1.2)

which we call the density of states measure (DOSM) of the graph �, and the limit is indepedent on the choice of {Vn}∞n=1; this is
described in more detail in [18–20].

The integrated density of states of � is the accumulation function of the measure ν� :

k�(E) = ν�

(

(−∞,E]
)

. (1.3)

One is then naturally interested in regularity properties of this function: is it continuous on suitable intervals, and if so, what can
one say about the modulus of continuity there, and so on.

Here, we study questions of this kind for various versions of the Penrose tiling.

Notation 1.1. We use ��, ��, ��, �♠, �� to refer to the graphs of the boat–star tiling, the Robinson triangle tiling, the rhombus
tiling, the kite–dart tiling, and the Ammann–Beenker tiling respectively. For ease of notation, we drop the � when referring to the
corresponding integrated density of states as k�, k�, k�, k♠, and k�.

Theorem 1.2. If� ∈ {�,�,�,♠}, then the integrated density of states k� is discontinuous.

A similar result holds for the Ammann–Beenker tiling.

Theorem 1.3. The integrated density of states k� is discontinuous.

We direct the reader to later sections for precise deonitions of these tilings.
The tilings that we discuss are linearly repetitive (see, e.g., [2] for the deonition and a discussion of this concept): in particular,

any pattern that is observed once is observed inonitely oven with positive frequency. In view of (1.1), (1.2), and (1.3), a locally-
supported eigenfunction necessarily produces a discontinuity of the IDS at the corresponding eigenvalue.More precisely, if�� enjoys
an eigenvalueEwith an eigenfunction having local support, then (a one-tile neighborhood of) the support of the eigenfunction occurs
with positive frequency, and hence one observes a jump discontinuity in k� . In fact, it is known that (under suitable assumptions on
the underlying graph) a discontinuity of the IDS at energy E is equivalent to the presence of a locally-supported eigenfunction with
eigenvalue E [15].

Furthermore, with this picture, one can estimate the size of the jump discontinuity by estimating the frequency with which the
support of the eigenfunction occurs. Concretely, we can sharpen the conclusions of Theorem 1.2 in some individual cases. Here is a
representative selection of theorems that one can prove.

Theorem 1.4. If � is a graph associated with the boat–star tiling,

k�(4+) − k�(4−) ≥
65 − 29

√
5

10
≈ 0.01540 . . . . (1.4)
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Theorem 1.5. If � is a graph associated with the Robinson triangle tiling,

k�(E+) − k�(E−) ≥
65 − 29

√
5

20
≈ 0.007701 . . . , E ∈ {2, 4}. (1.5)

Theorem 1.6. If � is a graph associated with the Ammann–Beenker tiling,

k�(4+) − k�(4−) ≥ 1270 − 898
√
2 ≈ 0.036221 . . . , (1.6)

k�(6+) − k�(6−) ≥ 116 − 82
√
2 ≈ 0.0344879 . . . . (1.7)

Remark 1.7. Let us make some remarks about these theorems.

(a) Since the frequency calculations are somewhat similar in the diferent examples, we do not discuss quantitative estimates in all
cases, but rather focus on a representative subset of examples. An estimate for the lower bound on the jump in the IDS for the
rhombus tiling is discussed in [9]. The jump discontinuity for the kite–dart tiling may be estimated similarly to the others.

(b) One may naturally be interested in whether the bounds are sharp, that is, whether the jump in the IDS is precisely given by the
enumerated expressions. Let us comment on the dioculties associated with <the other direction.= The lower bounds are computed
by (1) identifying patterns in a given tiling that can support a onitely-supported eigenfunction and (2) onding combinatorial
mechanisms in the substitution structure generating the tiling that enable us to estimate the frequency with which the desired
pattern(s) occur. Thus, if one wishes to prove that the estimates are sharp, one must overcome two obstacles:

(1) One must show that one has identioed all pattern(s) in the tiling that permit a onitely-supported eigenfunction with the
desired energy.

(2) One must show that the pattern(s) that one has identioed can only arise via the combinatorial mechanisms that one used to
estimate the frequency.

The second obstacle can likely be overcome with a suociently careful analysis of suitably large supertiles. However, the orst
obstacle appears to be genuinely intractable with current technology. (Indeed, Figures 11 and 19 show eigenfunctions with large-
but-onite support that emerge on larger tilings, and cannot be expressed as linear combinations of our simpler eigenfunctions
supported on small patches.)

One crucial point that we want to emphasize is the synergy between the numerical and spectral analyses. The eigenfunctions
discussed in this paper were orst discovered via numerical spectral computations on onite graph Laplacians �n. Given the onite
nature of the sought-aver eigenfunctions, such numerical calculations (once carried out on a suociently large onite patch) suoce to
demonstrate the existence of onitely supported eigenfunctions and discontinuities of the IDS. Once found, simple locally-supported
modes can readily be verioed by hand. However for some tilings, larger graphs reveal additional eigenfunctions whose local support
extends to several hundred tiles, making manual calculations inadvisable.

In addition to suggesting theorems, numerics can also provide evidence for new conjectures. In that spirit, we will conclude the
paper with numerical plots of large onite-volume approximations of the integrated densities of states associated with these tilings,
and pose some interesting open problems suggested by this work.

2. Preliminaries

2.1. Tilings and associated Laplacians

To set the stage and ox notation, let us recall some notation, conventions, and deonitions largely following Baake–Grimm [2].

Deonition 2.1 (Patterns, Fragments, and Tiles). A pattern T = {Ti : i ∈ I} inR
2 is a nonempty set whose elements Ti are nonempty

subsets of R2. We write T � R
2 to denote that T is a pattern in R

2 and say T is a tiling if I is countable, the Ti are closed and
nonempty sets,

⋃

i∈Z Ti = R
2, and T◦

i ∩ T◦
j = ∅ for all i �= j. The elements Ti of T are called tiles or fragments of T .

In the sequel, we will occasionally want to distinguish tiles that are the same as subsets of R2 but that nevertheless have diferent
behavior under substitution rules. For instance, the reader may consider the example below in Deonition 2.4, in which there are two
basic tile shapes (acute and obtuse triangles), but two diferent colors of each shape (each of which behaves as the mirror image of the
other under substitutions). One oven uses colors or decorations to distinguish between diferent types of the same shape. By abuse
of notation, we will still refer to tilings with colors or decorations as tilings rather than decorated tilings.

For T � R
2 and K ⊆ R

2, T � K is the pattern consisting of all fragments of T that intersect K nontrivially:

T � K := {Ti : Ti ∈ T and Ti ∩ K �= ∅}.

Naturally, for T � R
2 and t ∈ R

2, the translation of T by t is given by

t + T = {t + Ti : Ti ∈ T }.
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We refer to the equivalence class of tiles up to translation as prototiles. Finally, given patterns T0 ⊆ T � R
2, an occurrence of T0 in T

is any translation of T0 that is also a subset of T ; in other words, an occurrence of T0 is any arrangement of tiles in T that looks the
same as T0, up to translation.

The pattern T ′
� R

2 is said to be locally derivable from T � R
2 (denoted T

LD
� T ′) if for some R > 0 one has

(−x + T ) � BR = (−y + T ) � BR �⇒ (−x + T
′) � {0} = (−y + T

′) � {0},

where BR denotes the open ball of radius R centered at the origin (note that equality of patterns includes equality of colors as well). If

T
LD
� T ′ and T ′ LD

� T , we say that T and T ′ aremutually locally derivable (MLD) and denote this by T
MLD
� T ′.

Deonition 2.2. From this point onward, all tiles are assumed to be polygons (not necessarily convex). Let T = {Ti : i ∈ I} be such a
tiling of R2. The induced graph � = �T = (V , E) has V = I and one has u ∼ v if and only if Tu and Tv share at least one edge. The
associated Laplace operator acts on the space H = �2(V) via

[�ψ](v) =
∑

u∼v

(ψ(u) − ψ(v)) ψ ∈ �2(V). (2.1)

2.2. Substitution tilings

Let us now describe the main setting in which we work: tilings that are generated by a substitution rule.

Deonition 2.3 (Substitution tilings). Let P = {P1, . . . ,Pn} denote a onite protoset, or collection of prototiles in R
2. Denote by P∗

the collection of onite patterns T � R
2 whose elements are images of elements of P under translation and rotation. A substitution is

a map S : P → P∗. One can extend S to P∗ in a natural manner, so we can speak of iterates of S.
A substitution tiling associated with S is a polygonal tiling T such that any onite patch of T occurs in Sn(P) for some P ∈ P and

some n ∈ N. The collection XS of all such tilings is called the hull of S and is a compact set in a suitable tiling metric. Since it is not
central to our work, we will not specify the tiling metric precisely, but we simply say that two tilings are close in the tiling metric if
aver a small shiv they coincide on a large ball centered at the origin. ClearlyR2 acts onXS by translations. It is known that for suitable
substitutions, this translation action isminimal (i.e., the translation orbit of any element of XS is dense in XS).

Given a substitution S on a setP as above, the associated substitutionmatrix is the n×nmatrixM whose entry in row i and column
j is the number of occurrences of tile Pi in S(Pj).

In what follows, we will consider ove tilings generated by substitution rules. Let us start with an example.

Deonition 2.4. The Robinson triangle substitution has four basic tiles:

The substitution rules are (redrawing [7, Fig. 13]):

We denote this substitution by S�. Abusing notation somewhat, we write M� := MS� for its substitution matrix. Ordering the
tiles from lev-to-right as above,

M� =

£

¤

¤

¥

1 1 0 0
0 1 1 1
0 0 1 1
1 1 0 1

¦

§

§

¨

.
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Recall that the graph � = (V , E) associated with a tiling T = {Ti : i ∈ I} has vertex set V = {Ti : i ∈ I} and edges between two
vertices if and only if the corresponding tiles share an edge.

Let us now describe more precisely the mechanism that enables one to estimate the discontinuity in the IDS. The following result
is well known, but we make it explicit for the reader’s beneot. Throughout this discussion, ox a substitution tiling T and associated
graph � = (V , E). If V0 ⊆ V is a onite patch, we denote its boundary by ∂V0, which consists of all the tiles in V0 that share an edge
with a tile in V \ V0. A priori, one may be concerned that the degree of the tiles in ∂V0 are ill-deoned. In the specioc patches we
consider in this paper, one may verify directly that this is not the case.

Deonition 2.5. We say P ⊆ V is a good eigenfunction support at energy E if

1. P is onite;
2. there is a nontrivial eigenfunction ψ of �� with ��ψ = Eψ and supp(ψ) = P;
3. no proper subset of P enjoys the previous property;
4. every occurrence of P in V supports an eigenfunction.

Proposition 2.6. Suppose P ⊆ V is a good eigenfunction support at energy E. For any onite patch �0 = (V0, E0), V0 ⊆ V , the
multiplicity of E for ��0 is bounded from below by the largest cardinality of a set of occurrences of P in V0 with the following
properties: no occurrence intersects ∂V0 and no occurrence is contained in the union of other occurrences.

Proof. Choose a collection of occurrences of P having the enumerated properties. The deonitions ensure that each occurrence of P
yields an eigenfunction and that the collection of these eigenfunctions is linearly independent.

3. Boats and stars

3.1. Basics

Deonition 3.1. Following [13], the boat–star substitution has six basic tiles:

The substitution rules are:
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There are six tiles: stars, boats, diamonds, and three types of pentagons. Ordering the tiles as in Deonition 3.1, one can see that
the substitution matrix for the boat–star substitution is

M� =

£

¤

¤

¤

¤

¤

¤

¥

1 1 1 0 0 0
5 3 1 0 0 0
0 0 0 2 1 0
5 3 1 4 2 0
0 0 0 1 3 5
0 0 0 1 1 1

¦

§

§

§

§

§

§

¨

.

Let T �
0 denote the pattern consisting of a single star tile and T

�
n = Sn�(T

�
0 ). Denote the golden ratio by

ϕ =
√
5 + 1

2
.

Lemma 3.2. For each n ≥ 0, the total number of tiles in T
�
n is

P�(n) =
1

22
(25 + 9

√
5)ϕ4n −

5

33
4n+1 −

2

3
+

1

22
(25 − 9

√
5)ϕ−4n,

of which precisely

Ppent(n) =
1

22
(17 + 7

√
5)ϕ4n −

40

33
4n −

1

3
+

1

22
(17 − 7

√
5)ϕ−4n

are pentagons.

Proof. Observe that the substitution matrixM� has eigenvalues ϕ4, 4, 1,ϕ−4, 0, 0 with corresponding eigenfunctions (listed in the
same order)

v1 =
1

2

£

¤

¤

¤

¤

¤

¤

¥

3 −
√
5

−5 + 3
√
5

5 −
√
5

5 +
√
5

2
√
5

2

¦

§

§

§

§

§

§

¨

, v2 =

£

¤

¤

¤

¤

¤

¤

¥

−1
−4
1

−2
8
2

¦

§

§

§

§

§

§

¨

, v3 =

£

¤

¤

¤

¤

¤

¤

¥

1
−5
5
5

−5
1

¦

§

§

§

§

§

§

¨

,

v4 =
1

2

£

¤

¤

¤

¤

¤

¤

¥

3 +
√
5

−5 − 3
√
5

5 +
√
5

5 −
√
5

−2
√
5

2

¦

§

§

§

§

§

§

¨

, v5 =

£

¤

¤

¤

¤

¤

¤

¥

1
−2
1
0
0
0

¦

§

§

§

§

§

§

¨

, v6 =

£

¤

¤

¤

¤

¤

¤

¥

0
0
0
1

−2
1

¦

§

§

§

§

§

§

¨

.

Since the tiling begins with a single star, the total number of tiles at stage n is precisely 〈w,Mn
�e1〉wherew =

[

1 1 1 1 1 1
]�

.
Decomposing e1 in the basis of eigenfunctions ofM�, one observes

e1 =
1

22
(7 −

√
5)v1 −

5

33
v2 −

1

3
v3 +

1

22
(7 +

√
5)v4.

Calculate

〈w, v1〉 = 5 + 2
√
5, 〈w, v2〉 = 4, 〈w, v3〉 = 2, 〈w, v4〉 = 5 − 2

√
5.

Thus, the total number of tiles at stage n is

〈w,Mn
�e1〉 =

1

22
(7 −

√
5)(5 + 2

√
5)ϕ4n −

5

33
4n+1 −

2

3
+

1

22
(7 +

√
5)(5 − 2

√
5)ϕ−4n

=
1

22
(25 + 9

√
5)ϕ4n −

5

33
4n+1 −

2

3
+

1

22
(25 − 9

√
5)ϕ−4n.

Similarly, to count pentagons let u =
[

0 0 0 1 1 1
]�

and compute

〈u, v1〉 =
1

2
(7 + 3

√
5), 〈u, v2〉 = 8, 〈u, v3〉 = 1, 〈u, v4〉 = 7 − 3

√
5.

Thus, the total number of pentagons at stage n is

〈u,Mn
�e1〉 =

1

22
(7 −

√
5)
1

2
(7 + 3

√
5)ϕ4n −

40

33
4n −

1

3
+

1

22
(7 +

√
5)
1

2
(7 − 3

√
5)ϕ−4n

=
1

22
(17 + 7

√
5)ϕ4n −

40

33
4n −

1

3
+

1

22
(17 − 7

√
5)ϕ−4n,

as desired.
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Figure 1. Pentagonal supertiles at level 2 (i.e., T κ
2 for each color κ).

Figure 2. A locally-supported eigenfunction for E = 4 on the boat–star tiling. The function takes the value+1 on blue tiles,−1 on red tiles, and zero elsewhere.

3.2. Ringmodes

Wenow explain how the locally-supported eigenfunctions arise and how to estimate their frequency. For each of the three colors κ , let
T κ
0 denote the pattern that consists of a single pentagon with color κ , let T κ

n = Sn�(T κ
0 ) denote the result of substituting n times, let

�κ
n denote the induced onite graph, and denote the corresponding graph Laplacian by�κ

n . We will refer to T κ
n as a level-n pentagonal

supertile. See Figure 1 for the three level-two pentagonal supertiles.
The crucial observation is that each level-two pentagonal supertile contains a pattern that supports a locally-supported eigenfunc-

tion. Namely, the ring of ten pentagons encircling the center is precisely the tile set that can be used to support a locally-supported
eigenfunction. One can locate ovy level-two pentagonal supertiles in the level-four supertile shown in Figure 3.

Lemma 3.3. For all κ , 4 is an eigenvalue of �κ
2 .

Proof. Let us begin by explaining how the eigenfunction arises. Consider Figure 1, which shows T κ
2 for each color κ . In each T κ

2 ,
one observes a ring of 10 pentagons encircling the center, highlighted in Figure 2. Denote this pattern by R. Deone a vector ψ by
assigning the value +1 to each red pentagon, −1 to each blue pentagon, and 0 to all other tiles.
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Figure 3. Boat–star tiling, level 4, E = 4. Fifty locally-supported ring modes: the colored tiles correspond to mode entries equal to±1. The red lines show the boundaries of
the ofty pentagonal supertiles (each of which is generated by a pentagon on the level 2 tiling).

A brief calculation shows �κ
2ψ = 4ψ . Indeed, when u corresponds to a face with combinatorial distance 2 fromR, then

[�κ
2ψ](u) = 0 = 4ψ(u).

Similarly, one checks [�κ
2ψ](u) = 4ψ(u) for any u coming from a face ofR. Each face with combinatorial distance one fromR has

precisely two neighbors inR, so, due to the alternating pattern, one observes

[�κ
2ψ](u) = 1 − 1 = 0 = 4ψ(u),

hence showing that ψ is an eigenfunction of eigenvalue 4, as desired.

Proof of Theorem 1.4. By Lemma 3.3, the number of occurrences of the pattern R at level n may be bounded from below by the
number of pentagons that appear in level n − 2.

For instance, in level 3, there are ove occurrences of the pattern, each of which is precipitated by a pentagon from T1; compare
Figure 3.

We now make two observations. First, each of these occurrences will be separated by all other occurrences by a tiling distance of
at least two.

Second, we need to address a minor technicality. Namely: some of the ring patterns from Lemma 3.3 may appear on the interior
of the tiling, while others may occur on the boundary. As can be seen from Figure 1, either occurrence leads to an eigenfunction.

Thus, we see that the multiplicity of the eigenvalue 4 at level n is bounded from below by the number of pentagons that occur in
level n − 2. Denoting the IDS by k�, Lemma 3.2 gives

k�(4+) − k�(4−) ≥ lim
n→∞

Ppent(n)

P(n + 2)

= lim
n→∞

1
22 (17 + 7

√
5)ϕ4n + O(4n)

1
22 (25 + 9

√
5)ϕ4(n+2) + O(4n)

=
17 + 7

√
5

(25 + 9
√
5)ϕ8

=
65 − 29

√
5

10
,

as claimed.
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Table 1. Boat–star tiling: Multiplicities of diferent eigenvalues at levels 2–8, with a comparison to the conjectured multiplicity of E = 4.

Level Tiles E = 1/ϕ2 E = ϕ2 E = 4 m(n) k�,n(4+) − k�,n(4−)

1 16 0 0 0 0 0.0000000…
2 86 10 10 1 1 0.0116279…
3 621 30 30 5 5 0.0080515…
4 4 371 110 110 50 50 0.0114390…
5 30 406 430 430 400 400 0.0131552…
6 210 181 1 710 1 710 2 965 2 965 0.0141068…
7 1 447 691 6 830 6 830 21 210 21 210 0.0146509…
8 9 950 966 27 310 27 310 148 920 148 920 0.0149653…

The onal column shows the numerical approximation to the IDS jump at E = 4. The theoretically obtained lower bound on k�(4+) − k�(4−) from Theorem 1.4 is

(65 − 29
√
5)/10 ≈ 0.01540286525 . . ..

Figure 4. Locally-supported boundary eigenfunctions for the boat–star tiling for E = 1/ϕ2 (left) and E = ϕ2 (right) at level 3. Each plot shows nine linearly independent
eigenfunctions, each supported on four tiles. The nonzero entries of the eigenfunctions are±1 (dark blue and red) and±1/ϕ (light blue and red).

One might naturally question whether this estimate on the multiplicity is sharp.

Question 3.4. For n = 1, 2, . . . , 8, the multiplicity of the eigenvalue 4 for Tn is given by

m(n) =

⎧

⎪

«

⎪

¬

0, n = 0, 1;

1, n = 2;
1
22 (17 + 7

√
5)ϕ4(n−2) − 40

334
n−2 − 1

3 + 1
22 (17 − 7

√
5)ϕ−4(n−2), n ≥ 3.

(3.1)

Does this pattern persist? That is, is it true that the multiplicity of E = 4 at level n is given bym(n) for all n ≥ 1?

Remark 3.5. Question 3.4 has been answered in the aormative (numerically) for alln ≤ 8; compareTable 1. (The single eigenfunction
that appears at energy 4 at level 2 is not a ring consisting of ten pentagons, but is qualitatively diferent; its support comprises thirty
tiles, all on the boundary; in contrast to the ring modes, this pattern does not extend to a locally-supported eigenfunction of larger
patches of the tiling.)

Table 1 summarizes some results of our computations. In addition to the ring modes at E = 4, Table 1 also contains counts for
high-multiplicity eigenvalues at E = 1/ϕ2 and E = ϕ2 associated with modes that are locally-supported, but only on the boundary

of the onite patch T
�
n . Figure 4 shows a few of these boundary modes. Denote by k�,n the IDS associated with T

�
n . The boundary

modes outnumber the ring modes at early levels, and will cause a jump in k�,n at E = 1/ϕ2 and E = ϕ2 that diminishes as the level
increases; The jump at E = 4 grows with the level, as quantioed in Table 1. (Peek ahead to Figure 20 for an illustration.)

4. Triangles

This section discusses the Robinson triangle substitution, including proofs of the relevant portion of Theorem 1.2, as well as
Theorem 1.5. The Robinson triangle part of Theorem 1.2 follows immediately from the observation of a single locally-supported
eigenfunction [15]. The bulk of this section is then concerned with the proof of Theorem 1.5, the estimate from below of the
discontinuity in the integrated density of states at energies E = 4 and E = 6.

4.1. Basics

The Robinson triangle substitution, denoted S�, was specioed in Deonition 2.4.

Notation 4.1. We will refer to the acute and obtuse triangles as A and O tiles, respectively.



EXPERIMENTAL MATHEMATICS 597

Figure 5. The orst ove levels of the tiling generated by the triangular substitution rule: T �
0 , T �

1 , . . . , T �
4 .

Let T �
0 denote the pattern consisting of 10 O tiles of oscillating color arranged in a star. We will refer to T �

n := Sn�(T �
0 ) as the

level-n tiling; see Figure 5.
Forα ∈ {A,O}, letαn denote the number ofα-type tiles inT �

n . Additionally, let {Fn}∞n=0 denote the sequence of Fibonacci numbers,
given as

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1, n ≥ 1. (4.1)

Proposition 4.2. For every n ≥ 0,

On+1 = 2On + An, An+1 = On + An (4.2)

and

On = 10F2n+1, An = 10F2n. (4.3)

The total number of tiles at level n is then

On + An = 10F2n+2. (4.4)

Proof. The recursion (4.2) follows immediately from the substitutions in Deonition 2.4. One can check that (4.3) holds for n = 0
and n = 1 by inspection. Assuming it holds for all k ≤ n with n ≥ 1 (4.2) yields

On+1 = 2On + An = 10(2F2n+1 + F2n) = 10F2n+3,

where we have applied the recursion of (4.1) twice in the onal step. Similarly,

An+1 = On + An = 10(F2n+1 + F2n) = 10F2n+2,

which proves (4.3) by induction. Combining (4.3) and (4.1) gives (4.4).

4.2. Ringmodes

Proposition 4.3. Let � denote the graph associated with the polygonal tiling shown in Figure 6 and let � denote the corresponding
Laplace operator. Deone a vector ψ by

ψ(T) =

⎧

⎪

«

⎪

¬

1, T is blue;

−1, T is red;

0, otherwise.

(4.5)

Then �ψ = 2ψ .

Proof. The proof follows from a direct calculation.

LetR denote the 20-tile pattern corresponding to the ring mode.

Proposition 4.4. Let n ≥ 5 be given. The total number of occurrences ofR in Tn is bounded from below by

Mn =
∑

� n−5
2 �≥k≥0

On−5−2k +
1

2
An−5−2k (4.6)
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Figure 6. Locally-supported eigenfunctions for the Robinson triangle substitution, with E = 2 and E = 4. The nonzero entries of these modes take the values+1 (blue) and
−1 (red).

Figure7. Localizedmodes for level 5 of the Robinson triangle substitution: for both eigenvalues there are 10 <ringmodes,=each supportedon20 tiles; for E = 2, ove additional
modes, each supported on four tiles, are made possible by the boundary.

The overall approach is similar to the corresponding calculation for the boat–star tiling, but the combinatorics are more
complicated since the supports of the eigenfunctions may overlap with multiple supertiles.

Proof of Theorem 1.5. With the help of Propositions 4.2, 4.3, and 4.4, we get

k�(2+) − k�(2−) ≥ lim
n→∞

(On−5 + On−7 + · · · ) + 1
2 (An−5 + An−7 + · · · )

On + An

= lim
n→∞

(F2n−9 + F2n−13 + · · · ) + 1
2 (F2n−10 + F2n−14 + · · · )

F2n+2

=
(

ϕ−11 +
1

2
ϕ−12

)

(

1 − ϕ−4)−1

=
65 − 29

√
5

20
,

as desired. Since the same patterns produce the eigenfunctions at energy E = 4, the same argument works for that energy as
well.

Figure 7 shows the locally-supported eigenfunctions at E = 2 and E = 4 for the level 5 tiling. Each of these energies correspond
to ten ring modes; however, E = 2 has greater multiplicity as an eigenvalue of �5 because of boundary modes supported on four
tiles. The discrepancy of multiplicities between E = 2 and E = 4 grows at additional levels, as evident in the numerical calculations
presented in Table 2. The convergence of the jump in the IDS at E = 2 and E = 4 is painfully slow. The largest tiling for which we
have data contains 390,881,690 tiles, yet the IDS jump at E = 4 only agrees with the theoretically computed lower bound to about
four decimal places.
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Table 2. Robinson triangle tiling: the level of the tiling, the number of tiles, the multiplicity of E = 2, the multiplicity of E = 4, the number of boundary eigenfunctions for
E = 2, and the jump in the approximant of the IDS at E = 4.

Level Tiles E = 2 E = 4 Boundary k�,n(4+) − k�,n(4−)

1 30 0 1 0 0.03333333…
2 80 1 1 0 0.01250000…
3 210 5 0 5 0.00000000…
4 550 6 1 5 0.00181818…
5 1 440 15 10 5 0.00694444…
6 3 770 36 21 15 0.00557029…
7 9 870 90 65 25 0.00658561…
8 25 840 216 181 35 0.00700464…
9 67 650 550 495 55 0.00731707…
10 177 110 1 411 1 316 95 0.00743041…
11 463 680 3 650 3 495 155 0.00753752…
12 1 213 930 9 471 9 226 245 0.00760010…
13 3 178 110 24 675 24 280 395 0.00763976…
14 8 320 400 64 401 63 756 645 0.00766261…
15 21 783 090 168 285 167 240 1 045 0.00767751…
16 57 028 870 440 046 438 361 1 685 0.00768665…
17 149 303 520 1 151 215 1 148 490 2 725 0.00769231…
18 390 881 690 3 012 556 3 008 141 4 415 0.00769578…

The theoretically obtained lower bound from Theorem 1.5 is (65 − 29
√
5)/20 ≈ 0.007701432625.

5. Rhombi

Deonition 5.1. The rhombus substitution1 is given by

In keeping with the star-shaped patterns generated by Deonitions 2.4 and 3.1, we proceed as in Figure 8, alternating between
applications of the substitution rule and trimming to a star shape. We obtain the eigenfunctions in Figures 9–11, and numerically
compute the values in Table 3.

In contrast with the locally-supported eigenfunctions identioed for the boat–star and Robinson triangle cases in the last two
sections, for the rhombus tiling a variety of distinct locally-supported eigenfunction conogurations with overlapping local support
emerge at low levels, associated with energy E = 6. Figure 9 shows four such mode shapes at level 5. The eigenfunctions take values
+1 on blue tiles and −1 on red tiles (with intermediate values indicated by a diference in shading) and are zero on the uncolored
tiles. We classify these mode shapes as:

• olled circle, supported on 25 tiles;
• big star, supported on 50 tiles;
• two star, supported on 15 tiles;
• diamond ring, supported on 18 tiles.

Locally-supported eigenfunctions of the Laplacian on the rhombus tiling have been studied before, notably by Fujiwara, Arai,
Tokihiro, and Kohmoto in [9]. (It bears mentioning that Equation (2.1) in [9] difers from our Equation (2.1) in the orst term, so
energy E = 2 in [9] corresponds to E = 6 in Table 3.) Indeed, Fujiwara et al. describe ove eigenfunctions named A1, A2, B, C, and D,
and ond a cumulative frequency of 0.068189. In Figure 9, we refer to their B state as a two star mode, and their D state as a diamond
ring mode. Figure 10 shows instances where the modes A1, A2, and C can be constructed as linear combinations of the primitive
mode shapes in Figure 9. The construction of C reveals a subtlety that complicates the counting of linearly independent modes: in
some cases a diamond ring mode can be realized as the combination of a diferent diamond ring and a two star mode.

The rhombus tiling exhibits another intriguing property: the emergence of more complicated locally-supported modes on larger
tilings. At level 6 the eigenvalue E = 6 hasmultiplicity 102. One can identify 10 olled circlemodes, 10 big starmodes, 20 diamond ring
modes, and 60 two star modes, accounting for 100 linearly independent eigenfunctions. One can then ond two additional linearly
independent eigenfunctions, still having local support away from the boundary, but now involving many more tiles. Figure 11 shows
these two modes, one supported on 200 tiles, the other on 245 tiles. (It does not appear that the modes in Figure 11 were identioed
in [9].) Like the simpler modes in Figure 9, these shapes must recur at higher levels; moreover, yet more sophisticated locally-
supported modes could also manifest at higher levels. The emergence of such modes illustrates the challenge in explicitly calculating

1Illustration following https://tilings.math.uni-bielefeld.de/substitution/penrose-rhomb/
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Figure 8. Rhombus rules applied to ove rhombi at level 0, trimming to the original star shape at each iteration.

Figure 9. For the rhombus tiling, four linearly independent eigenfunctions at energy E = 6 at level 5. We refer to these conogurations as the olled circle, big star, two star, and
diamond ring. (Dark blue and dark red correspond to values±1; light blue and light red correspond to±1/2.) Level 5 exhibits 1 olled circlemode, 1 big starmode, 10 diamond
ring modes, and 15 two star modes, giving a total of 27 linearly independent eigenfunctions.

the jump in the integrated density of states at E = 6;moreover, the rarity of suchmodes (in comparisonwith themore abundantmode
shapes in Figure 9) indicates the challenge of precisely estimating this jump numerically. Table 3 shows numerical computations for
this jump up through level 14 (4,162,085 tiles).
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Figure 10. Construction of eigenfunctions A1, A2, and C of Fujiwara–Arai–Rokihiro–Kohmoto [9] for the rhombus substitution as linear combinations of our basis of locally-
supported eigenfunctions.

Figure 11. Two linearly independent eigenfunctions for E = 6 at level 6. Though locally supported, neither is a linear combination of the other 100modes of the types shown
in Figure 9. (The vector on the left is supported on 200 tiles, with nonzero entries±1,±2/3, and±1/3; the vector on the right is supported on 245 tiles, with nonzero entries
1,±3/4,±1/2, and±1/4.)

6. Kites and darts

Deonition 6.1. The kite–dart substitution2 is given by

Analogous to the rhombus tiling, we start at level 0 with a star-shaped conoguration (comprising ove darts), and then alternate
between applications of the substitution rule and trimming back to maintain the star-shaped pattern. Figure 13 shows the orst four
steps of this process.

2Illustration following https://tilings.math.uni-bielefeld.de/substitution/penrose-kite--dart/
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Table 3. Rhombus tiling: the level of the tiling, the number of tiles, and the multiplicity of eigenvalue E = 6 at levels 1–14.

Level Tiles E = 6 k�,n(6+) − k�,n(6−)

1 20 0 0.00000000…
2 45 0 0.00000000…
3 115 2 0.01739130…
4 290 5 0.01724137…
5 745 27 0.03624161…
6 1 925 102 0.05298701…
7 5 000 287 0.05740000…
8 13 025 797 0.06119001…
9 33 995 2 164 0.06365642…
10 88 830 5 792 0.06520319…
11 232 285 15 409 0.06633661…
12 607 685 40 744 0.06704789…
13 1 590 220 107 289 0.06746802…
14 4 162 085 281 939 0.06773984…

The onal column shows the numerical approximation to the IDS jump.

Figure 12. Locally-supported eigenfunctions for the kite–dart substitution, corresponding to E = 6−ϕ = 4.381966 . . . and E = 5+ϕ = 6.618033 . . .. The nonzero entries
of these ring modes take the values+1 (dark blue),+1/ϕ (light blue),−1/ϕ (light red), and−1 (dark red).

In contrast to the previous examples, this tiling supports locally supported eigenfunctions supported away from the boundary
at irrational energies. At level 5, such eigenfunctions emerge at E = 6 − ϕ = 4.381966 . . . and E = 5 + ϕ = 6.618033 . . . . (In
contrast to the other tilings we consider, this latter energy appears to be at the top of the spectrum.) These eigenfunctions can be
represented as rings of 40 tiles (20 kites and 20 darts) taking the values ±1 and ±1/ϕ, as illustrated in Figure 12. While these ring
modes may superocially resemble those obtained for the Robinson triangle (see Figure 6), counting the frequency of these kite–dart
modes is signiocantly complicated by their overlapping support. Figure 14 shows the sum of the ove ring modes that emerge at level 5
at E = 6− ϕ and E = 5+ ϕ. (Contrast Figure 14 to the analogous illustration for the Robinson triangle tiling in Figure 7.) Figure 15
shows the support of the eigenfunctions for these two energies at level 9, each of which hasmultiplicity 435. The support covers 13,535
of the 21,025 tiles. The complement of this support exhibits interesting patterns, including many <short bow ties= [10, 13].

Our numerical computations suggest that E = 6−ϕ and E = 5+ϕ have the samemultiplicity (a multiple of 5) up through level 14
(2,572,510 tiles). Table 4 reports these frequencies, along with the jump each induces in the integrated density of states.

7. Ammann–Beenker

Thus farwe have investigated four versions of the Penrose tiling. In this sectionwe explore related questions for theAmmann–Beenker
tiling. We begin by recalling the substitution rule.

Deonition 7.1. The Ammann–Beenker substitution3 is given by

As in previous sections, we generate a tiling by beginning with an initial seed and iteratively applying the substitution rule. Let T �
0

denote the pattern consisting of eight thin rhombi arranged in an eight-point star shape as in Figure 16. Analogous to the kite–dart

3Illustration following https://tilings.math.uni-bielefeld.de/substitution/ammann-beenker/
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Figure 13. Kite–dart rules applied to a starting conoguration of ove darts at level 0.

Figure 14. Sum of ove <ring modes= for level 5 of the kite–dart substitution for E = 6 − ϕ and E = 5 + ϕ, illustrating the overlapping support of these modes.

substitution (see Figure 13), we alternate between applications of the substitution rule and trimming back to an octagon. We let T �
n

denote n steps of this process.

Theorem 7.2. The Ammann–Beenker tiling has eigenfunctions at energies E� = 4, 6. Denoting λ =
√
2 − 1, we have

k�(4+) − k�(4−) ≥ λ4 + λ6 + 2λ8 = 1270 − 898
√
2 = 0.0362209 . . . ,

k�(6+) − k�(6−) ≥ λ4 + λ6 = 116 − 82
√
2 = 0.0344878 . . . .
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Figure 15. The gray tiles show the support of the eigenfunctions at E = 5 + ϕ and E = 6 − ϕ for the kite–dart tiling at level 9.

Table 4. Kite–dart tiling: The level of the tiling, the number of tiles, the multiplicities of E = 5 + ϕ and E = 6 − ϕ, and the jump in the corresponding approximant of the
IDS at each of these energies.

Level Tiles E = 6 − ϕ E = 5 + ϕ k♠,n(E♠+) − k♠,n(E♠+)

1 10 0 0 0.00000000 . . .

2 30 0 0 0.00000000 . . .

3 75 0 0 0.00000000 . . .

4 180 0 0 0.00000000 . . .

5 460 5 5 0.01086956 . . .

6 1 195 10 10 0.00836820 . . .

7 3 100 50 50 0.01612903 . . .

8 8 060 135 135 0.01674938 . . .

9 21 025 435 435 0.02068965 . . .

10 54 930 1 185 1 185 0.02157291 . . .

11 143 610 3 305 3 305 0.02301371 . . .

12 375 645 8 875 8 875 0.02362603 . . .

13 982 930 23 735 23 735 0.02414719 . . .

14 2 572 510 62 820 62 820 0.02441973 . . .

Proof. As can be seen from Figures 16–19, each occurrence of the eightfold vertex star produces an eigenfunction at both energies,
each once-substituted version also gives an eigenfunction at both energies, and each twice-substituted vertex star produces an
additional pair of eigenfunctions at energy E = 4. One can check visually that the support of each eigenfunction is not contained in
the union of the supports of the other eigenfunctions, and hence each occurrence of each patch contributes a linearly independent
vector to the corresponding eigenspace.

Thus, the estimates contain three pieces that correspond to the frequencies of the eightfold vertex star, and the result of substituting
it once and twice. The frequency of the eight-fold star is λ4, as computed in [2]. The frequencies of the other patches can be seen to
be bounded from below by λ2 · λ4 = λ6 (for the once-substituted eightfold vertex star) and λ4 · λ4 = λ8 (for the twice-substituted
version), which can be seen by the multi-dimensional analog of the relevant material in Sections 5.3 and 5.4 of [28]. To work out this
analog, one needs to invoke uniform existence results for the limits deoning the frequencies in question, which are contained, for
example, in [6] and [11].

In Figures 17 and 18 we present ten locally-supported eigenfunctions that correspond to energies E = 4 and E = 6, respectively.
Table 5 reports the numerically computed multiplicities of these eigenvalues up through level 8 (9,096,784 tiles). An observant reader
may notice that the level 2 row of Table 5 indicates the existence of an eleventh eigenfunction not shown in Figures 17 and 18. This
extra mode lies on the boundary and thus is an artifact of the onite-volume truncation.

Theorem 7.2 gives diferent lower bounds on the jump in the integrated density of states for E = 4 and E = 6. The discrepancy
in the multiplicity of these eigenvalues emerges at level 3, where E = 4 admits two additional eigenfunctions that are not in the span
of the simple mode shapes in Figure 17. While still locally supported, these two modes involve many more tiles: the eigenfunctions
in Figure 19, supported on 104 tiles and 328 tiles, provide a basis for this extra two-dimensional eigenspace. Accounting for the
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Figure 16. Three iterations of the Ammann–Beenker rules applied to an initial seed of eight thin rhombi: T �
0 , . . . ,T �

3 .

Figure 17. Ten linearly independent eigenfunctions at energy E = 4 (nine on the left, each supported on 8 tiles; one on the right, supported on 64 tiles) at level 2.

Figure 18. Ten linearly independent eigenfunctions at energy E = 6 (nine on the left, each supported on 8 tiles; one on the right, supported on 64 tiles) at level 2.

recurrence of such mode shapes at higher levels explains the discrepancy of the bounds for E = 4 and E = 6 in Theorem 7.2. The
situation is analogous to the rhombus tiling, where apparently new mode shapes emerged at higher levels (see Figure 11). Whether
modes with additional complexity emerge at still higher levels is an open question; the presence of such modes is diocult to tease
out from numerical approximations to the jump in the integrated density of states, given the relative rarity of those modes and the
additional complication of modes supported on the boundary.
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Table 5. Ammann–Beenker tiling: The level of tiling, number of tiles, multiplicities of eigenvalues E = 4 and E = 6, and the jump in the IDS at E = 6.

Level Tiles E = 4 E = 6 k�,n(4+) − k�,n(4−) k�,n(6+) − k�,n(6−)

1 48 3 1 0.062500… 0.020833…
2 256 11 11 0.042969… 0.042969…
3 1 392 44 42 0.031609… 0.030172…
4 7 984 276 258 0.034726… 0.032315…
5 46 160 1 604 1 538 0.034749… 0.033319…
6 268 256 9 556 9 106 0.035622… 0.033945…
7 1 561 552 56 116 53 490 0.036256… 0.034254…
8 9 096 784 328 420 312 834 0.036102… 0.034389…

Figure 19. Two locally-supported eigenfunctions at level 3 for energy E = 4 that did not appear on lower levels of the substitution; the one on the left is supported on
104 tiles with nonzero values±1; the one on the right is supported on 328 tiles with nonzero values±1 and±1/2.

8. Questions and open problems

Let us conclude by showing numerically-computed approximations to the integrated density of states (IDS) for the ove tilings we
have discussed, and posing some questions these plots suggest. On one hand, the IDS is a fundamental spectral quantity. On the
other hand, the shape of the graph of the IDS naturally suggests several possibilities. Concretely:

1. A sharp vertical jump suggests the presence of an eigenvalue corresponding to an eigenfunction. Indeed, this is precisely how
many of the examples from the present work were observed. Of course, one must be careful here, since one is looking at eigenvalue
counting functions associated to onite tilings, so every jump is sharp. A simple eigenvalue causes a jump of size 1/(# tiles); higher
multiplicities give bigger jumps. One is looking for a jump that is stable, i.e., the size of the jump stays bounded from below as the
level of the tiling is increased.

2. Since the IDS is constant on each connected component of the complement of the spectrum, a nat section in the plot of the
approximations of the IDS that is stable upon iterating the substitution rule suggests the presence of a spectral gap.

3. Conversely, the spectrum is given by the set of points of increase of the IDS, so an interval onwhich the IDS is everywhere increasing
corresponds to an interval that is completely contained in the spectrum.

Figure 20 shows several onite-patch approximations to the IDS associated with the boat–star tiling. To produce this plot (and the
other IDS plots that follow), we prefer to compute all eigenvalues of �n numerically (using eig in MATLAB). While expensive, this
calculation allows one to evaluate the multiplicity of eigenvalues (subject to rounding errors that are well understood for symmetric
eigenvalue calculations). In Figure 20, this eig approach is feasible up through level 5 (30,406 tiles). For level 6 (210,181 tiles) and
level 7 (1,447,691 tiles), we use a diferent strategy inspired by spectrum slicing [26, section 3.3]). The spectral interval is onely
discretized with points {Ej}. For each Ej, we use MATLAB’s ldl command to compute a factorization L − Ej = LjDjL

T
j , where Lj

is a permuted unit lower-triangular matrix and Dj is block-diagonal, having 1-by-1 and 2-by-2 diagonal blocks [12, section 4.4]. By
Sylvester’s Law of Inertia, the congruent matrices L − Ej and Dj have the same number of negative eigenvalues; the block diagonal
form of Dj makes that number easy to count. Since the negative eigenvalues of L − Ej reveal the number of eigenvalues of L smaller
than Ej, these counts collectively give an approximation to the IDS. (Indeed, we also use this approach to count the multiplicity
of special energies known to have locally-supported eigenfunctions, as presented in the tables throughout this paper. For these
counts, we take slices just above and below the target energy; in most cases we vary the slice size to gain conodence in the presented
numbers.)

One observes some interesting features that prompt the following questions. First, one is interested in the topological structure of
the spectrum.
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Figure 20. Computed integrated density of states for the boat–star tiling, levels 2 through 7. Notice the (diminishing) jumps at 1/ϕ2 ≈ 0.381966 and ϕ2 ≈ 2.618034 due
to the boundary modes shown in Figure 4; the jump at E = 4 is due to ring modes of the form shown in Figure 2.

Figure 21. Computed integrated density of states for the Robinson triangle tiling, levels 3 through 8. Note the jumps at E = 2 and E = 4.

Question 8.1. Let 
� denote the spectrum associated with the boat–star tiling. Is the interior of 
� nonempty? If the interior is
nonempty, is it dense in 
�?

We expect that establishing the presence, let alone density, of intervals in the spectrum to be quite challenging. The plots of the
approximants to the IDS suggest that one may start looking for nonempty intervals near the extrema of the spectrum. Thus, we pose
separately the following question, which may be approachable via perturbative methods.

Question 8.2. Does there exist δ > 0 such that

[0, δ) ∪ (max
� − δ, max
�] ⊆ 
�? (8.1)

The estimation and computation of extrema of the spectrum is a separately interesting question. The bottom is given by E = 0 by
elementary arguments, but the top of the spectrum is not always trivial to compute, so we also ask:

Question 8.3. Can one compute max
� in closed form?

It is clear from [15] that one may <insert= a locally-supported eigenfunction into a Laplacian on anyMLD class. Namely, the MLD
class of any tiling contains a tiling whose nearest neighbor Laplacian has locally-supported eigenfunctions.

Question 8.4. Can one always remove a locally-supported eigenfunction from a Laplacian on any MLD class? Is it even true that for
every MLD class, there exists a tiling in that class whose associated Laplacian does not have any locally-supported eigenfunctions?

On the one hand, as we just mentioned, one can always ensure the presence of some locally supported eigenfunction for a suitable
choice of tiling in an MLD class, and then, assuming the model in question is linearly repetitive, this will always lead to a jump in the
IDS. On the other hand, as we have seen in this paper, the IDS may in fact have multiple jumps in some cases. This naturally leads to
the following question.
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Figure 22. The spectra of onite-patch approximations of the Robinson triangle tiling exhibit gaps that apparently persist as the level is increased, corresponding to plateaus
in the integrated density of states. This image shows numerically computed interior bounds for six gaps (blue regions) as the level k increases. For lower levels, we also show
all computed eigenvalues as black dots. Several additional gaps are apparent. (We suspect there are inonitely many such gaps.)

Figure 23. Computed integrated density of states for the rhombus tiling, levels 4 through 8. Note the jump at E = 6.

Figure 24. Computed integrated density of states for the kite–dart tiling, levels 5 through 9. Note the jumps at E = 6 − ϕ = 4.381966 . . . and E = 5 + ϕ = 6.618033 . . .

(at the top of the spectrum).

Question 8.5. Is the number of jumps in the IDS always onite? Is there an efective way of bounding this number for a given linearly
repetitive tiling?

Note that if the previous question has an aormative answer, the IDS will be piecewise continuous, and then it is natural to ask for
stronger regularity properties on these pieces. Speciocally, based on the shape of the IDS plots we have exhibited, we ask the following:

Question 8.6. Near the top or bottom of the spectrum, is the IDS α-Hölder continuous? Lipschitz continuous?
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Figure 25. Computed integrated density of states for the Ammann–Beenker tiling, levels 2 through 6. Note the jumps at E = 4 and E = 6.

Figure 21 shows several onite-patch approximations to the IDS associatedwith the Robinson triangle tiling. The reader can observe
the jumps at energies E = 2 and E = 4. As mentioned before, the spectrum is given by the set of points of increase of the IDS. As
such, the parts of this IDS plot that correspond to the bottom and top of the spectrum are somewhat suggestive.

Question 8.7. Investigate the analogs of Questions 8.1, 8.2, and 8.6 for the Robinson triangle tiling.

Notice an intriguing feature of the graph of the approximants to the IDS of the Robinson tiling in Figure 21: the emergence of what
appear to be relatively stable spectral gaps (e.g., a bit to the lev and right of E = 3). Figure 22 examines this possibility in oner detail:
we compare onitely computed eigenvalues of �n as n grows, looking for persistent gaps. Beyond the level at which we can compute
all eigenvalues of �n, we use spectrum slicing to locate eigenvalues that deone the edge of the intervals that were suggested at lower
levels. Figure 22 shows six such gaps in blue; several other potential gaps (e.g., to the right of the second blue gap, near E = 3, and to
the lev of the ovh blue gap) are also apparent. It would be interesting to verify this phenomenon rigorously.

Question 8.8. Show that 
� has a nontrivial spectral gap. Are there inonitely many?

We conclude with approximations to the IDS for the rhombus, kite–dart, and Ammann–Beenker tilings in Figures 23–25. These
plots have similar features to the orst two, and hence one may ask similar questions to Questions 8.1–8.8. For related computations
of the Lebesgue measure of the spectrum for the vertex-based graph Laplacian on the rhombus tiling, see [35, Figure 6].
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