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ABSTRACT KEYWORDS
Aperiodic substitution tilings provide popular models for quasicrystals, materials exhibiting aperiodic order. Laplacians on aperiodic

We study the graph Laplacian associated with four tilings from the mutual local derivability class of the Penrose tilings; eigenvalue

tiling, as well as the Ammann-Beenker tiling. In each case we exhibit locally-supported eigenfunctions, which computations;

necessarily cause jump discontinuities in the integrated density of states for these models. By bounding the locally-supported
multiplicities of these locally-supported modes, in several cases we provide concrete lower bounds on this eigenfunctions; quasicrystals
jump. These results suggest a host of questions about spectral properties of the Laplacian on aperiodic tilings,

which we collect at the end of the paper.

1. Introduction
1.1. Prologue

The structure of ordered materials such as crystals has long been a topic of fascination in mathematics and science. The discovery
of quasicrystals in the 1980s ushered in new techniques and motivations for investigating aperiodic structures with underlying
symmetries. Following this discovery, the study of electronic transport properties of particles in quasicrystalline media has become
a fundamental question in mathematics and physics.

Since their discovery in the 1980s by Shechtman et al. [29], quasicrystals have generated substantial interest in mathematical
physics. For a sample of the mathematical literature devoted to quasicrystals and the mathematics of aperiodic order, see [2-4, 14, 22,
27] and references therein. Given the physical origins of these models, there has naturally been interest in the analysis of quantum
mechanical systems associated with quasicrystals. As such, many researchers have studied spectral problems associated with self-
adjoint operators that inherit their structure from a mathematical model of a quasicrystal. From this perspective, one-dimensional
quasicrystal models have been discussed extensively, since those models enjoy the largest variety of tools in the spectral toolbox.
Particularly refined results have been obtained for the Fibonacci Hamiltonian, the most prominent one-dimensional quasicrystal
model; see, e.g., [5, 17, 25, 30, 31] and references therein.

The Penrose tiling is a two-dimensional structure that shares many features with quasicrystals discovered in nature, such as five-
fold rotational symmetry and the pure point nature of suitable diffraction measures associated with the tiling [2, 8, 10, 13]. Despite a
substantial amount of interest from mathematics and physics, there are relatively few results about the spectral theory of Laplacians
on the Penrose tiling, due to the disappearance of some of the crucial tools used in the analysis of one-dimensional quasicrystals. One
surprising spectral phenomenon that these operators can exhibit is the presence of locally-supported eigenfunctions. It is known that
such locally-supported eigenfunctions can never occur for finite-range operators on £2(Z4).

One can construct Laplacians from tilings in two different ways: hopping between tiles and hopping between vertices. We
distinguish these paradigms as the “tile model” and the “vertex model,” respectively. For both the tile and the vertex model associated
with the rhombus tiling, the presence of locally-supported eigenfunctions was observed in the 1980s [1, 9, 16]. Several other prominent
tilings (Robinson triangle, boat-star, and kite-dart) are equivalent to the Penrose tiling, in the sense of mutual local derivability
(MLD). On one hand, the presence of finitely supported eigenfunctions depends very sensitively on the local structure of the tiling
on which one studies the Laplacian, and hence one would not expect the existence of such eigenfunctions to hold universally in a given
MLD class, since the MLD relation can alter the local structure of a tiling. Nevertheless, we study four tilings which are in the MLD
class of the Penrose tiling and show that all of them exhibit locally-supported eigenfunctions (and hence exhibit a discontinuous IDS).
More recently, vertex models associated with the Penrose and Ammann-Beenker tiling were studied in [21, 23, 24]. We study the tile
model for the Ammann-Beenker tiling (also called the octagonal tiling), showing that it too exhibits locally-supported eigenfunctions.
This is also closely related to the phenomenon of flat bands for translation-invariant operators on periodic graphs [32-34].

CONTACT David Damanik@ damanik@rice.edu e Department of Mathematics, Rice University, Houston, TX 77005, USA.
© 2023 Taylor & Francis Group, LLC
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1.2. Setting and results

Let us now define the relevant objects and state our results. We will work with Laplacians on graphs associated with tilings. A graph
' = (V, &) consists of a nonempty set V of vertices and a set £ comprised of unordered pairs of elements of V. We write u ~ v if
(u,v) € € and say that u and v are connected by an edge. The degree of v is the number of neighbors of v: deg(v) = #{u : u ~ v}.
The Laplacian on the graph I' = (V, £) is the operator
A=Ar: W) — W), [AYIm) =) (YO — W)
u~v
Equivalently, one can define A = D — A, where D is the degree operator and A is the adjacency operator:
[DY1(v) = deg(n) ¥ (v)

[AYI) =Y v (w).
u~v

We are interested in infinite graphs that arise from substitution tilings of the plane by polygons. Namely (once a tiling of the plane
by polygons has been constructed), the associated graph has one vertex for each polygon of the tiling, and two vertices are connected
if the associated polygons share at least one edge.

One fruitful way to study such infinite graphs is to analyze finite truncations. Namely, one may consider finite subsets ,, € V and
En = {(u,v) 1 u,v € V,} with V,, 1 V in a suitable sense, and let A, := Ar, denote the Laplacian on the finite graph I', = (V,,, £,).
The normalized eigenvalue counting measure is given by

1
#V,

Under suitable assumptions (which are met in all of the cases under consideration in the present work), v, converges in the weak*
sense to a limiting measure

Vu(B) = Tr xg(A,), B C R measurable. (1.1)

v =vr, (1.2)
which we call the density of states measure (DOSM) of the graph T, and the limit is indepedent on the choice of {V,}5° ; this is
described in more detail in [18-20].

The integrated density of states of I' is the accumulation function of the measure vr:
kr(E) = vr ((—OO,E]) (1.3)
One is then naturally interested in regularity properties of this function: is it continuous on suitable intervals, and if so, what can
one say about the modulus of continuity there, and so on.
Here, we study questions of this kind for various versions of the Penrose tiling.

Notation 1.1. We use 'y, 'y, Ty, ', I'm to refer to the graphs of the boat-star tiling, the Robinson triangle tiling, the rhombus
tiling, the kite—dart tiling, and the Ammann-Beenker tiling respectively. For ease of notation, we drop the I' when referring to the
corresponding integrated density of states as kx, ka, k¢, ke, and km.

Theorem 1.2. If[J € {3, A, ¢, ®}, then the integrated density of states k is discontinuous.
A similar result holds for the Ammann-Beenker tiling.
Theorem 1.3. The integrated density of states kg is discontinuous.

We direct the reader to later sections for precise definitions of these tilings.

The tilings that we discuss are linearly repetitive (see, e.g., [2] for the definition and a discussion of this concept): in particular,
any pattern that is observed once is observed infinitely often with positive frequency. In view of (1.1), (1.2), and (1.3), a locally-
supported eigenfunction necessarily produces a discontinuity of the IDS at the corresponding eigenvalue. More precisely, if Ar enjoys
an eigenvalue E with an eigenfunction having local support, then (a one-tile neighborhood of) the support of the eigenfunction occurs
with positive frequency, and hence one observes a jump discontinuity in kr. In fact, it is known that (under suitable assumptions on
the underlying graph) a discontinuity of the IDS at energy E is equivalent to the presence of a locally-supported eigenfunction with
eigenvalue E [15].

Furthermore, with this picture, one can estimate the size of the jump discontinuity by estimating the frequency with which the
support of the eigenfunction occurs. Concretely, we can sharpen the conclusions of Theorem 1.2 in some individual cases. Here is a
representative selection of theorems that one can prove.

Theorem 1.4. If T is a graph associated with the boat-star tiling,

65 — 294/5

kg (4+) — kg (4—) > —g ~001540... . (1.4)
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Theorem 1.5. If I' is a graph associated with the Robinson triangle tiling,

65 — 29/5
ka(E+) — ka(E—) > T\/— ~ 0.007701..., E e {2,4). (1.5)

Theorem 1.6. If I' is a graph associated with the Ammann-Beenker tiling,

km(4+) — km(4—) > 1270 — 898+/2 ~ 0.036221 ... . , (1.6)

km(6+) — km(6—) > 116 — 8242~ 0.0344879... . (1.7)

Remark 1.7. Let us make some remarks about these theorems.

(a) Since the frequency calculations are somewhat similar in the different examples, we do not discuss quantitative estimates in all
cases, but rather focus on a representative subset of examples. An estimate for the lower bound on the jump in the IDS for the
rhombus tiling is discussed in [9]. The jump discontinuity for the kite-dart tiling may be estimated similarly to the others.

(b) One may naturally be interested in whether the bounds are sharp, that is, whether the jump in the IDS is precisely given by the
enumerated expressions. Let us comment on the difficulties associated with “the other direction” The lower bounds are computed
by (1) identifying patterns in a given tiling that can support a finitely-supported eigenfunction and (2) finding combinatorial
mechanisms in the substitution structure generating the tiling that enable us to estimate the frequency with which the desired
pattern(s) occur. Thus, if one wishes to prove that the estimates are sharp, one must overcome two obstacles:

(1) One must show that one has identified all pattern(s) in the tiling that permit a finitely-supported eigenfunction with the
desired energy.

(2) One must show that the pattern(s) that one has identified can only arise via the combinatorial mechanisms that one used to
estimate the frequency.

The second obstacle can likely be overcome with a sufficiently careful analysis of suitably large supertiles. However, the first
obstacle appears to be genuinely intractable with current technology. (Indeed, Figures 11 and 19 show eigenfunctions with large-
but-finite support that emerge on larger tilings, and cannot be expressed as linear combinations of our simpler eigenfunctions
supported on small patches.)

One crucial point that we want to emphasize is the synergy between the numerical and spectral analyses. The eigenfunctions
discussed in this paper were first discovered via numerical spectral computations on finite graph Laplacians A,. Given the finite
nature of the sought-after eigenfunctions, such numerical calculations (once carried out on a sufficiently large finite patch) suffice to
demonstrate the existence of finitely supported eigenfunctions and discontinuities of the IDS. Once found, simple locally-supported
modes can readily be verified by hand. However for some tilings, larger graphs reveal additional eigenfunctions whose local support
extends to several hundred tiles, making manual calculations inadvisable.

In addition to suggesting theorems, numerics can also provide evidence for new conjectures. In that spirit, we will conclude the
paper with numerical plots of large finite-volume approximations of the integrated densities of states associated with these tilings,
and pose some interesting open problems suggested by this work.

2. Preliminaries
2.1. Tilings and associated Laplacians

To set the stage and fix notation, let us recall some notation, conventions, and definitions largely following Baake-Grimm [2].

Definition 2.1 (Patterns, Fragments, and Tiles). A pattern T = {T; : i € I} in R? is a nonempty set whose elements T; are nonempty
subsets of R2. We write 7 T R? to denote that 7 is a pattern in R? and say 7 is a tiling if I is countable, the T; are closed and
nonempty sets, | ;. Ti = R?, and T? N T7 = @ for all i # j. The elements T; of 7" are called tiles or fragments of T

In the sequel, we will occasionally want to distinguish tiles that are the same as subsets of R? but that nevertheless have different
behavior under substitution rules. For instance, the reader may consider the example below in Definition 2.4, in which there are two
basic tile shapes (acute and obtuse triangles), but two different colors of each shape (each of which behaves as the mirror image of the
other under substitutions). One often uses colors or decorations to distinguish between different types of the same shape. By abuse
of notation, we will still refer to tilings with colors or decorations as tilings rather than decorated tilings.

For 7 = R? and K € R?, T M K is the pattern consisting of all fragments of 7 that intersect K nontrivially:

TNK:={T;: T; € T and T; N K # @}.
Naturally, for 7 = R? and t € R?, the translation of T by t is given by
t+T ={t+T:TieT}
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We refer to the equivalence class of tiles up to translation as prototiles. Finally, given patterns 7o € 7 = R?, an occurrence of Ty in T~
is any translation of 7y that is also a subset of 7; in other words, an occurrence of 7 is any arrangement of tiles in 7 that looks the
same as 7o, up to translation.

The pattern 7’ = R? is said to be locally derivable from T  R? (denoted T~ R ) if for some R > 0 one has
(—x+T)NBr=(—y+T)NBg = (—x+T)N{0} = (—y+T)H {0},

where Br denotes the open ball of radius R centered at the origin (note that equality of patterns includes equality of colors as well). If
TRT and T 2 T, we say that 7 and 7 are mutually locally derivable (MLD) and denote this by T2 7

Definition 2.2. From this point onward, all tiles are assumed to be polygons (not necessarily convex). Let 7 = {T; : i € I} be such a
tiling of R%. The induced graph ' = I't = (V,£) has V = I and one has u ~ v if and only if T,, and T, share at least one edge. The
associated Laplace operator acts on the space J# = £*(V) via

[AYID) =) Ww —y ) ¥ e V). 2.1)

u~v

2.2. Substitution tilings

Let us now describe the main setting in which we work: tilings that are generated by a substitution rule.

Definition 2.3 (Substitution tilings). Let P = {Py,...,P,} denote a finite protoset, or collection of prototiles in R?. Denote by P*
the collection of finite patterns 7 R? whose elements are images of elements of P under translation and rotation. A substitution is
amap S: P — P*. One can extend S to P* in a natural manner, so we can speak of iterates of S.

A substitution tiling associated with S is a polygonal tiling 7 such that any finite patch of 7 occurs in §"(P) for some P € P and
some #n € N. The collection X of all such tilings is called the hull of S and is a compact set in a suitable tiling metric. Since it is not
central to our work, we will not specify the tiling metric precisely, but we simply say that two tilings are close in the tiling metric if
after a small shift they coincide on a large ball centered at the origin. Clearly R? acts on Xg by translations. It is known that for suitable
substitutions, this translation action is minimal (i.e., the translation orbit of any element of Xg is dense in Xg).

Given a substitution S on a set P as above, the associated substitution matrix is the n x n matrix M whose entry in row i and column
j is the number of occurrences of tile P; in S(P)).

In what follows, we will consider five tilings generated by substitution rules. Let us start with an example.

Definition 2.4. The Robinson triangle substitution has four basic tiles:

A V &

The substitution rules are (redrawing [7, Fig. 13])
A - A ” A
We denote this substitution by S,. Abusing notation somewhat, we write M, := Ms, for its substitution matrix. Ordering the
tiles from left-to-right as above,

M, =

O = = O
—_— = O

_ o O =
—_— O =
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Recall that the graph I' = (V, £) associated with a tiling 7 = {T; : i € I} has vertex set V = {T; : i € I} and edges between two
vertices if and only if the corresponding tiles share an edge.

Let us now describe more precisely the mechanism that enables one to estimate the discontinuity in the IDS. The following result
is well known, but we make it explicit for the reader’s benefit. Throughout this discussion, fix a substitution tiling 7 and associated
graph I' = (V,€). If Vy C V is a finite patch, we denote its boundary by 0V, which consists of all the tiles in V that share an edge
with a tile in V' \ V. A priori, one may be concerned that the degree of the tiles in 9} are ill-defined. In the specific patches we
consider in this paper, one may verify directly that this is not the case.

Definition 2.5. We say P C V is a good eigenfunction support at energy E if

1. Pis finite;

2. there is a nontrivial eigenfunction v of Ar with Aryr = Ey and supp(yy) = P
3. no proper subset of P enjoys the previous property;

4. every occurrence of P in V supports an eigenfunction.

Proposition 2.6. Suppose P C V is a good eigenfunction support at energy E. For any finite patch T'y = (M, &), Vo € V, the
multiplicity of E for Ar, is bounded from below by the largest cardinality of a set of occurrences of P in V) with the following
properties: no occurrence intersects 9}y and no occurrence is contained in the union of other occurrences.

Proof. Choose a collection of occurrences of P having the enumerated properties. The definitions ensure that each occurrence of P
yields an eigenfunction and that the collection of these eigenfunctions is linearly independent. O

3. Boats and stars
3.1. Basics

Definition 3.1. Following [13], the boat-star substitution has six basic tiles:

The substitution rules are:

;
®

— —

*
;
o

~b ek
o o=
® %
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There are six tiles: stars, boats, diamonds, and three types of pentagons. Ordering the tiles as in Definition 3.1, one can see that
the substitution matrix for the boat-star substitution is

1 1.1 0 0 0
531000
00 0 2 1 0

Mx=15 31420
0 001 35
00 0 1 11

Let 76* denote the pattern consisting of a single star tile and X = S (76*). Denote the golden ratio by
V5+1

=

Lemma 3.2. For each n > 0, the total number of tiles in 7;* is

1 5 2 1
P = — (254 9V5)p* — —4"tl _ 2 4 (25 — 9/5)p ",
*(n) =205+ Vo 33 3T Vo)
of which precisely
40 1 1
—4" — — 4 — (17 — 7)™
3T 5 NG

1
Poent(n) = — (17 + 7+/5)0*" —
pent (1) = ——( +7v/5)¢ 3

are pentagons.

Proof. Observe that the substitution matrix My has eigenvalues ¢*, 4, 1,¢0%,0, 0 with corresponding eigenfunctions (listed in the
same order)

T35 1] C1]
—54 345 —4 -5

1| 5—-4/5 1 5
V1—2 5+ﬁ > VZ— _2’ V3— 5 b
2.4/5 8 -5

| 2 | _2_ 1
3445 7] 1] 0
—5-345 -2 0

1| 544/5 1 0
V4_E 5_\/5 > Vs = O 5 Ve = 1
—24/5 0 -2

L 2 L 0 ] L1

Since the tiling begins with a single star, the total number of tiles at stage n is precisely (w, M, e1) where w = [1 11 11 I]T.
Decomposing e; in the basis of eigenfunctions of My, one observes

1 5 1 1
e1= — (7 —5v — —v, — —v — (7 5)vq4.
1 22( NG 33" 33-|-22(-|-~/_)4

Calculate
(w,v1) =5+ 24/5, w,v) =4, (W) =2, (W) =5— 24/5.
Thus, the total number of tiles at stage n is

n _i _ 4n_in+l_% i _ —4n
(w, Mier) = - (7 V5)(5 + 24/5)¢ 52 st 50+ V3)(5 — 24/5)p

1 5 2 1
= — (254 9V5)p* — —4" 24— (25 — 9/5)p .
525+ NG 3 S+ 55 V5

Similarly, to count pentagonsletu =0 0 0 1 1 l]T and compute

(u,vy) = %(7 +3v5), (ww) =8 (wvi)=1, (uvs)=7—35.

Thus, the total number of pentagons at stage # is
1 1 40 11 1
M) = —(7 =5 =(7+3V5)p" — —4" — — + —(7+/5)=(7 —3/5)¢ "
(1, Myer) = — (7 = /5)2(7+3v/5)p" = 24" — 24 — (7 +V5)5(7 = 35)¢

1 40 11

= — 174+ 75" — —4" — - + —(17 = 7/5)p~ ",
27+ 7Y — " — 2 4 (7= 75
as desired. O
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Figure 1. Pentagonal supertiles at level 2 (i.e., 7 for each color «).

Figure 2. A locally-supported eigenfunction for £ = 4 on the boat-star tiling. The function takes the value +1 on blue tiles, —1 on red tiles, and zero elsewhere.

3.2. Ring modes

We now explain how the locally-supported eigenfunctions arise and how to estimate their frequency. For each of the three colors «, let
Ty denote the pattern that consists of a single pentagon with color «, let 7, = S}, (7°) denote the result of substituting n times, let
I'% denote the induced finite graph, and denote the corresponding graph Laplacian by A%. We will refer to 7, as a level-n pentagonal
supertile. See Figure 1 for the three level-two pentagonal supertiles.

The crucial observation is that each level-two pentagonal supertile contains a pattern that supports a locally-supported eigenfunc-
tion. Namely, the ring of ten pentagons encircling the center is precisely the tile set that can be used to support a locally-supported
eigenfunction. One can locate fifty level-two pentagonal supertiles in the level-four supertile shown in Figure 3.

Lemma 3.3. For all «, 4 is an eigenvalue of A%.

Proof. Let us begin by explaining how the eigenfunction arises. Consider Figure 1, which shows 7, for each color «. In each 75",
one observes a ring of 10 pentagons encircling the center, highlighted in Figure 2. Denote this pattern by R. Define a vector ¥ by
assigning the value +1 to each red pentagon, —1 to each blue pentagon, and 0 to all other tiles.
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Figure 3. Boat-star tiling, level 4, E = 4. Fifty locally-supported ring modes: the colored tiles correspond to mode entries equal to +1. The red lines show the boundaries of
the fifty pentagonal supertiles (each of which is generated by a pentagon on the level 2 tiling).

A brief calculation shows A% = 44 . Indeed, when u corresponds to a face with combinatorial distance 2 from R, then

[ASY 1) =0 =49y ().

Similarly, one checks [A%v](u) = 4v (u) for any u coming from a face of R. Each face with combinatorial distance one from R has
precisely two neighbors in R, so, due to the alternating pattern, one observes

[AY]I(w) =1—-1=0=4y(w),

hence showing that v is an eigenfunction of eigenvalue 4, as desired. O

Proof of Theorem 1.4. By Lemma 3.3, the number of occurrences of the pattern R at level n may be bounded from below by the
number of pentagons that appear in level n — 2.

For instance, in level 3, there are five occurrences of the pattern, each of which is precipitated by a pentagon from 77; compare
Figure 3.

We now make two observations. First, each of these occurrences will be separated by all other occurrences by a tiling distance of
at least two.

Second, we need to address a minor technicality. Namely: some of the ring patterns from Lemma 3.3 may appear on the interior
of the tiling, while others may occur on the boundary. As can be seen from Figure 1, either occurrence leads to an eigenfunction.

Thus, we see that the multiplicity of the eigenvalue 4 at level # is bounded from below by the number of pentagons that occur in
level n — 2. Denoting the IDS by kg, Lemma 3.2 gives

; Ppent(n)
n—o00 P(n + 2)
5 (17 + 74/5)p*" + 0(4™)
S é(25 + 94/5)p4(2) 1 O(4m)
17+ 7/5
(25 + 9V/5) "

65 — 294/5
0

as claimed. O

kg (44) — kg (4—) >




596 (&) D.DAMANIKETAL.

Table 1. Boat-star tiling: Multiplicities of different eigenvalues at levels 2-8, with a comparison to the conjectured multiplicity of £ = 4.

Level Tiles E=1/¢? E=¢? E=4 m(n) Ko n(44) — kg n(4—)
1 16 0 0 0 0 0.0000000...
2 86 10 10 1 1 0.0116279...
3 621 30 30 5 5 0.0080515...
4 4371 110 110 50 50 0.0114390...
5 30406 430 430 400 400 0.0131552...
6 210181 1710 1710 2965 2965 0.0141068...
7 1447691 6830 6830 21210 21210 0.0146509...
8 9950966 27310 27310 148920 148920 0.0149653...

The final column shows the numerical approximation to the IDS jump at £ = 4. The theoretically obtained lower bound on ky (4+) — kg (4—) from Theorem 1.4 is
(65 — 29+/5)/10 ~ 0.01540286525 . . ..

Figure 4. Locally-supported boundary eigenfunctions for the boat-star tiling for E = 1/¢? (left) and E = ¢? (right) at level 3. Each plot shows nine linearly independent
eigenfunctions, each supported on four tiles. The nonzero entries of the eigenfunctions are +1 (dark blue and red) and £1/¢ (light blue and red).

One might naturally question whether this estimate on the multiplicity is sharp.
Question 3.4. Forn = 1,2,..., 8, the multiplicity of the eigenvalue 4 for 7, is given by

0, n=0,1;
5 n=2 (3.1)
(17 + 7/5)p* =2 — Byn=2 _ 1 4 L (17 = 73/5)p 72, n >3,

—

m(n) =

Does this pattern persist? That is, is it true that the multiplicity of E = 4 at level n is given by m(n) for all n > 1?

Remark 3.5. Question 3.4 has been answered in the affirmative (numerically) for all n < 8; compare Table 1. (The single eigenfunction
that appears at energy 4 at level 2 is not a ring consisting of ten pentagons, but is qualitatively different; its support comprises thirty
tiles, all on the boundary; in contrast to the ring modes, this pattern does not extend to a locally-supported eigenfunction of larger
patches of the tiling.)

Table 1 summarizes some results of our computations. In addition to the ring modes at E = 4, Table 1 also contains counts for
high-multiplicity eigenvalues at E = 1/¢? and E = ¢ associated with modes that are locally-supported, but only on the boundary

of the finite patch X Figure 4 shows a few of these boundary modes. Denote by ks, the IDS associated with T.X. The boundary
modes outnumber the ring modes at early levels, and will cause a jump in ky , at E = 1/¢? and E = ¢? that diminishes as the level
increases; The jump at E = 4 grows with the level, as quantified in Table 1. (Peek ahead to Figure 20 for an illustration.)

4. Triangles

This section discusses the Robinson triangle substitution, including proofs of the relevant portion of Theorem 1.2, as well as
Theorem 1.5. The Robinson triangle part of Theorem 1.2 follows immediately from the observation of a single locally-supported
eigenfunction [15]. The bulk of this section is then concerned with the proof of Theorem 1.5, the estimate from below of the
discontinuity in the integrated density of states at energies E = 4 and E = 6.

4.1. Basics

The Robinson triangle substitution, denoted S, , was specified in Definition 2.4.

Notation 4.1. We will refer to the acute and obtuse triangles as A and O tiles, respectively.
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Figure 5. The first five levels of the tiling generated by the triangular substitution rule: 76‘ , 7]‘, el 7:“ .

Let 7,* denote the pattern consisting of 10 O tiles of oscillating color arranged in a star. We will refer to 7,4 := S} (T;*) as the
level-n tiling; see Figure 5.

Fora € {A, O}, let o, denote the number of a-type tiles in 7;‘ . Additionally, let {F,,}° , denote the sequence of Fibonacci numbers,
given as

Fo=0F =1, Fpy=F,+F,_1,n>1 (4.1)
Proposition 4.2. For every n > 0,
Ont1 =20y + Ap, Apt1 = O+ Ay (4.2)
and
Oy = 10F11, A = 10Fy,. (4.3)
The total number of tiles at level # is then
O 4 Ay = 10Fs45. (4.4)

Proof. The recursion (4.2) follows immediately from the substitutions in Definition 2.4. One can check that (4.3) holds for n = 0
and n = 1 by inspection. Assuming it holds for all k < n with n > 1 (4.2) yields

Ont1 =204 + Ap = 10Q2F2041 + Fon) = 10F2443,
where we have applied the recursion of (4.1) twice in the final step. Similarly,
An+1 = On + Ay = 10(F2n41 + Fon) = 10F2442,
which proves (4.3) by induction. Combining (4.3) and (4.1) gives (4.4). O

4.2. Ring modes

Proposition 4.3. Let I" denote the graph associated with the polygonal tiling shown in Figure 6 and let A denote the corresponding
Laplace operator. Define a vector ¥ by

1, Tisblue;
Y(T) = {—1, Tisred, (4.5)
0, otherwise.
Then Ay = 2.
Proof. The proof follows from a direct calculation. O

Let R denote the 20-tile pattern corresponding to the ring mode.

Proposition 4.4. Let n > 5 be given. The total number of occurrences of R in 7, is bounded from below by

1
M, = Z On—s-2k + JAn-5-2% (4.6)

1552 |=k>0
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Figure 6. Locally-supported eigenfunctions for the Robinson triangle substitution, with £ = 2 and E = 4. The nonzero entries of these modes take the values +1 (blue) and
—1 (red).
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Figure7. Localized modes for level 5 of the Robinson triangle substitution: for both eigenvalues there are 10 “ring modes,” each supported on 20 tiles; for £ = 2, five additional
modes, each supported on four tiles, are made possible by the boundary.

The overall approach is similar to the corresponding calculation for the boat-star tiling, but the combinatorics are more
complicated since the supports of the eigenfunctions may overlap with multiple supertiles.

Proof of Theorem 1.5. With the help of Propositions 4.2, 4.3, and 4.4, we get

(On—s+ Oz 4+ )+ 3(An—s+ A7 +-*)

ka@+) —ka(2—) > lim
421 —ka(2—) =z lim. O, T A,
— lim (Fan-9 4 Fan-13+ ) + 5(Fan_10+ Fan-1a + -+ -)

n—00 Fanya

_ 1 —gy—1
=<<p H+E(p 12)(1 o)
_65—295
20
as desired. Since the same patterns produce the eigenfunctions at energy E = 4, the same argument works for that energy as

well. O

Figure 7 shows the locally-supported eigenfunctions at E = 2 and E = 4 for the level 5 tiling. Each of these energies correspond
to ten ring modes; however, E = 2 has greater multiplicity as an eigenvalue of As because of boundary modes supported on four
tiles. The discrepancy of multiplicities between E = 2 and E = 4 grows at additional levels, as evident in the numerical calculations
presented in Table 2. The convergence of the jump in the IDS at E = 2 and E = 4 is painfully slow. The largest tiling for which we
have data contains 390,881,690 tiles, yet the IDS jump at E = 4 only agrees with the theoretically computed lower bound to about

four decimal places.
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Table 2. Robinson triangle tiling: the level of the tiling, the number of tiles, the multiplicity of £ = 2, the multiplicity of £ = 4, the number of boundary eigenfunctions for
E = 2,and the jump in the approximant of the IDS at £ = 4.

Level Tiles E=2 E=4 Boundary kan(4+) —kan(4—)
1 30 0 1 0 0.03333333...
2 80 1 1 0 0.01250000...
3 210 5 0 5 0.00000000...
4 550 6 1 5 0.00181818...
5 1440 15 10 5 0.00694444...
6 3770 36 21 15 0.00557029...
7 9870 90 65 25 0.00658561...
8 25840 216 181 35 0.00700464...
9 67 650 550 495 55 0.00731707...
10 177110 1411 1316 95 0.00743041...
11 463 680 3650 3495 155 0.00753752...
12 1213930 9471 9226 245 0.00760010...
13 3178110 24675 24280 395 0.00763976...
14 8320400 64401 63756 645 0.00766261...
15 21783090 168 285 167 240 1045 0.00767751...
16 57028870 440 046 438361 1685 0.00768665...
17 149303520 1151215 1148490 2725 0.00769231...
18 390881690 3012556 3008 141 4415 0.00769578...

The theoretically obtained lower bound from Theorem 1.5 is (65 — 29+/5)/20 ~ 0.007701432625.

5. Rhombi

Definition 5.1. The rhombus substitution' is given by

N - M

In keeping with the star-shaped patterns generated by Definitions 2.4 and 3.1, we proceed as in Figure 8, alternating between
applications of the substitution rule and trimming to a star shape. We obtain the eigenfunctions in Figures 9-11, and numerically
compute the values in Table 3.

In contrast with the locally-supported eigenfunctions identified for the boat-star and Robinson triangle cases in the last two
sections, for the rhombus tiling a variety of distinct locally-supported eigenfunction configurations with overlapping local support
emerge at low levels, associated with energy E = 6. Figure 9 shows four such mode shapes at level 5. The eigenfunctions take values
+1 on blue tiles and —1 on red tiles (with intermediate values indicated by a difference in shading) and are zero on the uncolored
tiles. We classify these mode shapes as:

o filled circle, supported on 25 tiles;

o big star, supported on 50 tiles;
 two star, supported on 15 tiles;

o diamond ring, supported on 18 tiles.

Locally-supported eigenfunctions of the Laplacian on the rhombus tiling have been studied before, notably by Fujiwara, Arai,
Tokihiro, and Kohmoto in [9]. (It bears mentioning that Equation (2.1) in [9] differs from our Equation (2.1) in the first term, so
energy E = 2 in [9] corresponds to E = 6 in Table 3.) Indeed, Fujiwara et al. describe five eigenfunctions named Al, A2, B, C, and D,
and find a cumulative frequency of 0.068189. In Figure 9, we refer to their B state as a two star mode, and their D state as a diamond
ring mode. Figure 10 shows instances where the modes A1, A2, and C can be constructed as linear combinations of the primitive
mode shapes in Figure 9. The construction of C reveals a subtlety that complicates the counting of linearly independent modes: in
some cases a diamond ring mode can be realized as the combination of a different diamond ring and a two star mode.

The rhombus tiling exhibits another intriguing property: the emergence of more complicated locally-supported modes on larger
tilings. At level 6 the eigenvalue E = 6 has multiplicity 102. One can identify 10 filled circle modes, 10 big star modes, 20 diamond ring
modes, and 60 two star modes, accounting for 100 linearly independent eigenfunctions. One can then find two additional linearly
independent eigenfunctions, still having local support away from the boundary, but now involving many more tiles. Figure 11 shows
these two modes, one supported on 200 tiles, the other on 245 tiles. (It does not appear that the modes in Figure 11 were identified
in [9].) Like the simpler modes in Figure 9, these shapes must recur at higher levels; moreover, yet more sophisticated locally-
supported modes could also manifest at higher levels. The emergence of such modes illustrates the challenge in explicitly calculating

Ullustration following https://tilings.math.uni- bielefeld.de/substitution/penrose-rhomb/
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Level 2 (trimmed)
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Figure 8. Rhombus rules applied to five rhombi at level 0, trimming to the original star shape at each iteration.
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Figure 9. For the rhombus tiling, four linearly independent eigenfunctions at energy £ = 6 at level 5. We refer to these configurations as the filled circle, big star, two star, and
diamond ring. (Dark blue and dark red correspond to values £1; light blue and light red correspond to -1/2.) Level 5 exhibits 1 filled circle mode, 1 big star mode, 10 diamond
ring modes, and 15 two star modes, giving a total of 27 linearly independent eigenfunctions.

the jump in the integrated density of states at E = 6; moreover, the rarity of such modes (in comparison with the more abundant mode
shapes in Figure 9) indicates the challenge of precisely estimating this jump numerically. Table 3 shows numerical computations for
this jump up through level 14 (4,162,085 tiles).
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Figure 10. Construction of eigenfunctions A1, A2, and C of Fujiwara—Arai-Rokihiro—Kohmoto [9] for the rhombus substitution as linear combinations of our basis of locally-
supported eigenfunctions.

Figure 11. Two linearly independent eigenfunctions for £ = 6 at level 6. Though locally supported, neither is a linear combination of the other 100 modes of the types shown
in Figure 9. (The vector on the left is supported on 200 tiles, with nonzero entries £1, £2/3, and £1/3; the vector on the right is supported on 245 tiles, with nonzero entries
1,£3/4,41/2,and +1/4)
6. Kites and darts

Definition 6.1. The kite-dart substitution? is given by

Vv

Analogous to the rhombus tiling, we start at level 0 with a star-shaped configuration (comprising five darts), and then alternate
between applications of the substitution rule and trimming back to maintain the star-shaped pattern. Figure 13 shows the first four
steps of this process.

2||lustration following https://tilings.math.uni-bielefeld.de/substitution/penrose-kite- - dart/



602 D. DAMANIK ET AL.

Table 3. Rhombus tiling: the level of the tiling, the number of tiles, and the multiplicity of eigenvalue £ = 6 at levels 1-14.

Level Tiles E=6 ke n6+) —ken(6—)
1 20 0 0.00000000...
2 45 0 0.00000000...
3 115 2 0.01739130...
4 290 5 0.01724137...
5 745 27 0.03624161...
6 1925 102 0.05298701...
7 5000 287 0.05740000...
8 13025 797 0.06119001...
9 33995 2164 0.06365642...
10 88830 5792 0.06520319...
11 232285 15409 0.06633661...
12 607 685 40744 0.06704789...
13 1590220 107 289 0.06746802...
14 4162085 281939 0.06773984...

The final column shows the numerical approximation to the IDS jump.
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Figure 12. Locally-supported eigenfunctions for the kite—dart substitution, correspondingto £ = 6 — ¢ = 4.381966 . ..and £ = 5+ ¢ = 6.618033.. . .. The nonzero entries
of these ring modes take the values +1 (dark blue), +1/¢ (light blue), —1/¢ (light red), and —1 (dark red).

In contrast to the previous examples, this tiling supports locally supported eigenfunctions supported away from the boundary
at irrational energies. At level 5, such eigenfunctions emerge at E = 6 — ¢ = 4.381966...and E = 5+ ¢ = 6.618033.... (In
contrast to the other tilings we consider, this latter energy appears to be at the top of the spectrum.) These eigenfunctions can be
represented as rings of 40 tiles (20 kites and 20 darts) taking the values £1 and £1/¢, as illustrated in Figure 12. While these ring
modes may superficially resemble those obtained for the Robinson triangle (see Figure 6), counting the frequency of these kite—dart
modes is significantly complicated by their overlapping support. Figure 14 shows the sum of the five ring modes that emerge at level 5
at E= 6 — ¢ and E = 5 + ¢. (Contrast Figure 14 to the analogous illustration for the Robinson triangle tiling in Figure 7.) Figure 15
shows the support of the eigenfunctions for these two energies at level 9, each of which has multiplicity 435. The support covers 13,535
of the 21,025 tiles. The complement of this support exhibits interesting patterns, including many “short bow ties” [10, 13].

Our numerical computations suggest that E = 6 —¢ and E = 5+ ¢ have the same multiplicity (a multiple of 5) up through level 14
(2,572,510 tiles). Table 4 reports these frequencies, along with the jump each induces in the integrated density of states.

7. Ammann-Beenker

Thus far we have investigated four versions of the Penrose tiling. In this section we explore related questions for the Ammann-Beenker
tiling. We begin by recalling the substitution rule.

Definition 7.1. The Ammann-Beenker substitution® is given by

§ O &

As in previous sections, we generate a tiling by beginning with an initial seed and iteratively applying the substitution rule. Let 7,8
denote the pattern consisting of eight thin rhombi arranged in an eight-point star shape as in Figure 16. Analogous to the kite-dart

3Illustration following https://tilings.math.uni-bielefeld.de/substitution/ammann-beenker/
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Figure 13. Kite—dart rules applied to a starting configuration of five darts at level 0.
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Figure 14. Sum of five “ring modes” for level 5 of the kite—dart substitution for E = 6 — ¢ and E = 5 + g, illustrating the overlapping support of these modes.

substitution (see Figure 13), we alternate between applications of the substitution rule and trimming back to an octagon. We let 7,8
denote 7 steps of this process.

Theorem 7.2. The Ammann-Beenker tiling has eigenfunctions at energies Em = 4, 6. Denoting A = +/2 — 1, we have
km(4+) — km(4—) > A%+ 1% 4228 = 1270 — 898v/2 = 0.0362209.. ..,

km(6+) — km(6—) > A1t +A® =116 —82+/2 =0.0344878....
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Figure 15. The gray tiles show the support of the eigenfunctions at E = 5 + ¢ and E = 6 — ¢ for the kite—dart tiling at level 9.

Table 4. Kite—dart tiling: The level of the tiling, the number of tiles, the multiplicities of E = 5 + ¢ and E = 6 — ¢, and the jump in the corresponding approximant of the
IDS at each of these energies.

Level Tiles E=6—¢ E=5+¢ kan(Ea+) — kan(Eq+)
1 10 0 0 0.00000000. . .
2 30 0 0 0.00000000. ..
3 75 0 0 0.00000000. . .
4 180 0 0 0.00000000. . .
5 460 5 5 0.01086956. ..
6 1195 10 10 0.00836820. ..
7 3100 50 50 0.01612903. ..
8 8060 135 135 0.01674938....
9 21025 435 435 0.02068965 . ..
10 54930 1185 1185 0.02157291 . ..
1 143610 3305 3305 0.02301371...
12 375645 8875 8875 0.02362603 . ..
13 982930 23735 23735 0.02414719. ..
14 2572510 623820 62820 0.02441973 ...

Proof. As can be seen from Figures 16-19, each occurrence of the eightfold vertex star produces an eigenfunction at both energies,
each once-substituted version also gives an eigenfunction at both energies, and each twice-substituted vertex star produces an
additional pair of eigenfunctions at energy E = 4. One can check visually that the support of each eigenfunction is not contained in
the union of the supports of the other eigenfunctions, and hence each occurrence of each patch contributes a linearly independent
vector to the corresponding eigenspace.

Thus, the estimates contain three pieces that correspond to the frequencies of the eightfold vertex star, and the result of substituting
it once and twice. The frequency of the eight-fold star is A%, as computed in [2]. The frequencies of the other patches can be seen to
be bounded from below by A2 - A* = A% (for the once-substituted eightfold vertex star) and A* - A* = A8 (for the twice-substituted
version), which can be seen by the multi-dimensional analog of the relevant material in Sections 5.3 and 5.4 of [28]. To work out this
analog, one needs to invoke uniform existence results for the limits defining the frequencies in question, which are contained, for
example, in [6] and [11]. O

In Figures 17 and 18 we present ten locally-supported eigenfunctions that correspond to energies E = 4 and E = 6, respectively.
Table 5 reports the numerically computed multiplicities of these eigenvalues up through level 8 (9,096,784 tiles). An observant reader
may notice that the level 2 row of Table 5 indicates the existence of an eleventh eigenfunction not shown in Figures 17 and 18. This
extra mode lies on the boundary and thus is an artifact of the finite-volume truncation.

Theorem 7.2 gives different lower bounds on the jump in the integrated density of states for E = 4 and E = 6. The discrepancy
in the multiplicity of these eigenvalues emerges at level 3, where E = 4 admits two additional eigenfunctions that are not in the span
of the simple mode shapes in Figure 17. While still locally supported, these two modes involve many more tiles: the eigenfunctions
in Figure 19, supported on 104 tiles and 328 tiles, provide a basis for this extra two-dimensional eigenspace. Accounting for the
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Figure 16. Three iterations of the Ammann-Beenker rules applied to an initial seed of eight thin rhombi: 76- ..... 7’3. .
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Figure 18. Ten linearly independent eigenfunctions at energy £ = 6 (nine on the left, each supported on 8 tiles; one on the right, supported on 64 tiles) at level 2.

recurrence of such mode shapes at higher levels explains the discrepancy of the bounds for E = 4 and E = 6 in Theorem 7.2. The
situation is analogous to the rhombus tiling, where apparently new mode shapes emerged at higher levels (see Figure 11). Whether
modes with additional complexity emerge at still higher levels is an open question; the presence of such modes is difficult to tease
out from numerical approximations to the jump in the integrated density of states, given the relative rarity of those modes and the
additional complication of modes supported on the boundary.
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Table 5. Ammann-Beenker tiling: The level of tiling, number of tiles, multiplicities of eigenvalues £ = 4 and E = 6, and the jump in the IDS at £ = 6.

Level Tiles E=4 E=6 km ,(4+) — km ,(4-) km ,(6+) — kg ,(6-)
1 48 3 1 0.062500... 0.020833...
2 256 1 1 0.042969... 0.042969...
3 1392 44 42 0.031609... 0.030172...
4 7984 276 258 0.034726... 0.032315....
5 46160 1604 1538 0.034749... 0.033319...
6 268256 9556 9106 0.035622... 0.033945....
7 1561552 56116 53490 0.036256... 0.034254...
8 9096784 328420 312834 0.036102... 0.034389...
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Figure 19. Two locally-supported eigenfunctions at level 3 for energy E = 4 that did not appear on lower levels of the substitution; the one on the left is supported on
104 tiles with nonzero values £-1; the one on the right is supported on 328 tiles with nonzero values -1 and £1/2.

8. Questions and open problems

Let us conclude by showing numerically-computed approximations to the integrated density of states (IDS) for the five tilings we
have discussed, and posing some questions these plots suggest. On one hand, the IDS is a fundamental spectral quantity. On the
other hand, the shape of the graph of the IDS naturally suggests several possibilities. Concretely:

1. A sharp vertical jump suggests the presence of an eigenvalue corresponding to an eigenfunction. Indeed, this is precisely how
many of the examples from the present work were observed. Of course, one must be careful here, since one is looking at eigenvalue
counting functions associated to finite tilings, so every jump is sharp. A simple eigenvalue causes a jump of size 1/(# tiles); higher
multiplicities give bigger jumps. One is looking for a jump that is stable, i.e., the size of the jump stays bounded from below as the
level of the tiling is increased.

2. Since the IDS is constant on each connected component of the complement of the spectrum, a flat section in the plot of the
approximations of the IDS that is stable upon iterating the substitution rule suggests the presence of a spectral gap.

3. Conversely, the spectrum is given by the set of points of increase of the IDS, so an interval on which the IDS is everywhere increasing
corresponds to an interval that is completely contained in the spectrum.

Figure 20 shows several finite-patch approximations to the IDS associated with the boat-star tiling. To produce this plot (and the
other IDS plots that follow), we prefer to compute all eigenvalues of A, numerically (using eig in MATLAB). While expensive, this
calculation allows one to evaluate the multiplicity of eigenvalues (subject to rounding errors that are well understood for symmetric
eigenvalue calculations). In Figure 20, this eig approach is feasible up through level 5 (30,406 tiles). For level 6 (210,181 tiles) and
level 7 (1,447,691 tiles), we use a different strategy inspired by spectrum slicing [26, section 3.3]). The spectral interval is finely
discretized with points {E;}. For each E;j, we use MATLAB’s 1d1 command to compute a factorization L — E; = LijLjT, where L;

is a permuted unit lower-triangular matrix and D; is block-diagonal, having 1-by-1 and 2-by-2 diagonal blocks [12, section 4.4]. By
Sylvester’s Law of Inertia, the congruent matrices L — E; and D; have the same number of negative eigenvalues; the block diagonal
form of D; makes that number easy to count. Since the negative eigenvalues of L — E; reveal the number of eigenvalues of L smaller
than Ej, these counts collectively give an approximation to the IDS. (Indeed, we also use this approach to count the multiplicity
of special energies known to have locally-supported eigenfunctions, as presented in the tables throughout this paper. For these
counts, we take slices just above and below the target energy; in most cases we vary the slice size to gain confidence in the presented
numbers.)

One observes some interesting features that prompt the following questions. First, one is interested in the topological structure of
the spectrum.
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Figure 20. Computed integrated density of states for the boat-star tiling, levels 2 through 7. Notice the (diminishing) jumps at 1/¢2 = 0.381966 and ¢? ~ 2.618034 due
to the boundary modes shown in Figure 4; the jump at £ = 4 is due to ring modes of the form shown in Figure 2.
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Figure 21. Computed integrated density of states for the Robinson triangle tiling, levels 3 through 8. Note the jumps at £ = 2 and £ = 4.

Question 8.1. Let X4 denote the spectrum associated with the boat-star tiling. Is the interior of X4 nonempty? If the interior is
nonempty, is it dense in Xy ?

We expect that establishing the presence, let alone density, of intervals in the spectrum to be quite challenging. The plots of the
approximants to the IDS suggest that one may start looking for nonempty intervals near the extrema of the spectrum. Thus, we pose
separately the following question, which may be approachable via perturbative methods.

Question 8.2. Does there exist § > 0 such that
[0,6) U(max ¥y — 5, max Ty ] € Ep? (8.1)

The estimation and computation of extrema of the spectrum is a separately interesting question. The bottom is given by E = 0 by
elementary arguments, but the top of the spectrum is not always trivial to compute, so we also ask:

Question 8.3. Can one compute max X4 in closed form?

It is clear from [15] that one may “insert” a locally-supported eigenfunction into a Laplacian on any MLD class. Namely, the MLD
class of any tiling contains a tiling whose nearest neighbor Laplacian has locally-supported eigenfunctions.

Question 8.4. Can one always remove a locally-supported eigenfunction from a Laplacian on any MLD class? Is it even true that for
every MLD class, there exists a tiling in that class whose associated Laplacian does not have any locally-supported eigenfunctions?

On the one hand, as we just mentioned, one can always ensure the presence of some locally supported eigenfunction for a suitable
choice of tiling in an MLD class, and then, assuming the model in question is linearly repetitive, this will always lead to a jump in the
IDS. On the other hand, as we have seen in this paper, the IDS may in fact have multiple jumps in some cases. This naturally leads to
the following question.
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level

Figure 22. The spectra of finite-patch approximations of the Robinson triangle tiling exhibit gaps that apparently persist as the level is increased, corresponding to plateaus
in the integrated density of states. This image shows numerically computed interior bounds for six gaps (blue regions) as the level k increases. For lower levels, we also show
all computed eigenvalues as black dots. Several additional gaps are apparent. (We suspect there are infinitely many such gaps.)
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Figure 24. Computed integrated density of states for the kite—dart tiling, levels 5 through 9. Note the jumps at E = 6 — ¢ = 4.381966...andE =5+ ¢ = 6.618033...
(at the top of the spectrum).

Question 8.5. Is the number of jumps in the IDS always finite? Is there an effective way of bounding this number for a given linearly
repetitive tiling?

Note that if the previous question has an affirmative answer, the IDS will be piecewise continuous, and then it is natural to ask for
stronger regularity properties on these pieces. Specifically, based on the shape of the IDS plots we have exhibited, we ask the following:

Question 8.6. Near the top or bottom of the spectrum, is the IDS «-Holder continuous? Lipschitz continuous?
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Figure 25. Computed integrated density of states for the Ammann-Beenker tiling, levels 2 through 6. Note the jumps at £ = 4and £ = 6.

Figure 21 shows several finite-patch approximations to the IDS associated with the Robinson triangle tiling. The reader can observe
the jumps at energies E = 2 and E = 4. As mentioned before, the spectrum is given by the set of points of increase of the IDS. As
such, the parts of this IDS plot that correspond to the bottom and top of the spectrum are somewhat suggestive.

Question 8.7. Investigate the analogs of Questions 8.1, 8.2, and 8.6 for the Robinson triangle tiling.

Notice an intriguing feature of the graph of the approximants to the IDS of the Robinson tiling in Figure 21: the emergence of what
appear to be relatively stable spectral gaps (e.g., a bit to the left and right of E = 3). Figure 22 examines this possibility in finer detail:
we compare finitely computed eigenvalues of A, as n grows, looking for persistent gaps. Beyond the level at which we can compute
all eigenvalues of A, we use spectrum slicing to locate eigenvalues that define the edge of the intervals that were suggested at lower
levels. Figure 22 shows six such gaps in blue; several other potential gaps (e.g., to the right of the second blue gap, near E = 3, and to
the left of the fifth blue gap) are also apparent. It would be interesting to verify this phenomenon rigorously.

Question 8.8. Show that X, has a nontrivial spectral gap. Are there infinitely many?

We conclude with approximations to the IDS for the rhombus, kite-dart, and Ammann-Beenker tilings in Figures 23-25. These
plots have similar features to the first two, and hence one may ask similar questions to Questions 8.1-8.8. For related computations
of the Lebesgue measure of the spectrum for the vertex-based graph Laplacian on the rhombus tiling, see [35, Figure 6].

Acknowledgments

The authors thank Michael Baake, Semyon Dyatlov, and Anton Gorodetski for many helpful conversations and the American Institute of Mathematics for
hospitality and support through the SQuaRE program during a remote meeting in January 2021 and a January 2022 visit, during which part of this work was
completed.

Funding

D.D. was supported in part by NSF grants DMS-1700131 and DMS-2054752, and Simons Fellowship #669836. M.E. was supported in part by NSF grant
DMS-1720257. J.F. was supported in part by NSF grant DMS-2213196 and Simons Foundation Collaboration grant #711663.

References

[1] Arai, M., Tokihiro, T., Fujiwara, T., Kohmoto, M. (1988). Strictly localized states on a two-dimensional Penrose lattice. Phys. Rev. B (3) 38(3): 1621-1626.

[2] Baake, M., Grimm, U. (2013). Aperiodic Order. Vol. 1, volume 149 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge
University Press. A mathematical invitation, With a foreword by Roger Penrose.

[3] Baake, M., Grimm, U. (2017). Aperiodic Order. Vol. 2, volume 166 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge
University Press.

[4] Baake, M., Moody, R. V., ed. (2000). Directions in Mathematical Quasicrystals, volume 13 of CRM Monograph Series. Providence, RI: American
Mathematical Society.

[5] Damanik, D., Gorodetski, A., Yessen, W. (2016). The Fibonacci Hamiltonian. Invent. Math. 206(3): 629-692.

[6] Damanik, D., Lenz, D. (2001). Linear repetitivity. I. Uniform subadditive ergodic theorems and applications. Discrete Comput. Geom. 26(3): 411-428.

[7] Frank, N.P. (2008). A primer of substitution tilings of the Euclidean plane. Expo. Math. 26(4): 295-326.

[8] Frettloh, D., Harriss, E., Géhler, E Tilings encyclopedia. https://tilings.math.uni-bielefeld.de.

[9] Fujiwara, T., Arai, M., Tokihiro, T., Kohmoto, M. (1988). Localized states and self-similar states of electrons on a two-dimensional Penrose lattice. Phys.
Rev. B (3) 37(6): 2797-2804.



610

~
o

)
)

(&) D.DAMANIKETAL.

Gardner, M. (1997). Penrose Tiles to Trapdoor Ciphers, revised ed. Washington, DC: Mathematical Association of America.

Geerse, C. P. M., Hof, A. (1991). Lattice gas models on self-similar aperiodic tilings. Rev. Math. Phys. 3(2): 163-221.

Golub, G. H., Van Loan, C. E. (2012). Matrix Computations, 4th ed. Baltimore: Johns Hopkins University Press.

Griinbaum, B., Shephard, G. C. (1987). Tilings and Patterns. New York: W. H. Freeman and Company.

Kellendonk, J., Lenz, D., Savinien, J., ed. (2015). Mathematics of Aperiodic Order, volume 309 of Progress in Mathematics. Basel: Birkhauser/Springer.

Klassert, S., Lenz, D., Stollmann, P. (2003). Discontinuities of the integrated density of states for random operators on Delone sets. Commun. Math.
Phys. 241(2-3): 235-243.

Kohmoto, M., Sutherland, B. (1986). Electronic states on a Penrose lattice. Phys. Rev. Lett. 56: 2740-2743.

Kohmoto, M., Sutherland, B., Tang, C. (1987). Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys. Rev.
B (3) 35(3): 1020-1033.

Lenz, D,, Stollmann, P. (2003). Algebras of random operators associated to Delone dynamical systems. Math. Phys. Anal. Geom. 6(3): 269-290.

Lenz, D, Stollmann, P. (2003). Delone dynamical systems and associated random operators. In: Operator Algebras and Mathematical Physics (Constanta,
2001). Bucharest: Theta, pp. 267-285.

Lenz, D,, Stollmann, P. (2005). An ergodic theorem for Delone dynamical systems and existence of the integrated density of states. J. Anal. Math.
97:1-24.

Mirzhalilov, M., Oktel, M. O. (2020). Perpendicular space accounting of localized states in a quasicrystal. Phys. Rev. B, 102: 064213.

Moody, R. V,, ed. (1997). The Mathematics of Long-Range Aperiodic Order, volume 489 of NATO Advanced Science Institutes Series C: Mathematical
and Physical Sciences. Dordrecht: Kluwer Academic Publishers Group.

Oktel, M. O. (2021). Strictly localized states in the octagonal Ammann-Beenker quasicrystal. Phys. Rev. B 104: 014204,

Oktel, M. O. (2022). Localized states in local isomorphism classes of pentagonal quasicrystals. preprint: arXiv:2203.09899, 2022.

Ostlund, S., Pandit, R, Rand, D., Schellnhuber, H. J., Siggia, E. D. (1983). One-dimensional Schrodinger equation with an almost periodic potential.
Phys. Rev. Lett. 50(23): 1873-1876.

Parlett, B. N. (1998). The Symmetric Eigenvalue Problem, SIAM Classics ed. Philadelphia: SIAM.

Patera, J., ed. (1998). Quasicrystals and Discrete Geometry, volume 10 of Fields Institute Monographs. Providence, RI: American Mathematical Society.

Queffélec, M. (2010). Substitution Dynamical Systems—Spectral Analysis, volume 1294 of Lecture Notes in Mathematics, 2nd ed. Berlin: Springer-
Verlag.

Shechtman, D., Blech, I., Gratias, D., and Cahn, J. V. (1984). Metallic phase with long-range orientational order and no tranlational symmetry. Phys.
Rev. Lett. 53: 1951-1953.

Siit6, A. (1987). The spectrum of a quasiperiodic Schrédinger operator. Commun. Math. Phys. 111(3): 409-415.

Siitd, A. (1989). Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56(3-4): 525-531.

Kollar, A. J., Fitzpatrick, M., Sarnak, P, Houck, A. A. (2020). Line-graph lattices: Euclidean and non-Euclidean flat bands, and implementations in
circuit quantum electrodynamics. Commun. Math. Phys. 376(3): 1909-1956. DOI: 10.1007/s00220-019-03645-8.

Korotyaev, E., Saburova, N. (2014). Schrodinger operators on periodic discrete graphs. J. Math. Anal. Appl. 420(1): 576-611. DOI: 10.1016/
j.jmaa.2014.05.088.

Sabri, M., Youssef, P. (2023). Flat bands of periodic graphs. arXiv:2304.06465.

Colbrook, M. J. (2022). On the computation of geometric features of spectra of linear operators on Hilbert spaces. Found. Comput. Math. 82 pages.



	Abstract
	1.  Introduction
	1.1.  Prologue
	1.2.  Setting and results

	2.  Preliminaries
	2.1.  Tilings and associated Laplacians
	2.2.  Substitution tilings

	3.  Boats and stars
	3.1.  Basics
	3.2.  Ring modes

	4.  Triangles
	4.1.  Basics
	4.2.  Ring modes

	5.  Rhombi
	6.  Kites and darts
	7.  Ammann–Beenker
	8.  Questions and open problems
	Acknowledgments
	Funding
	References


