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Abstract

Inspired by the 1995 paper of Baake–Grimm–Pisani, we aim to explain the empirical observation that

the distribution of Lee–Yang zeros corresponding to a one-dimensional Ising model appears to follow the

gap labelling theorem. This follows by combining two main ingredients: first, the relation between the

transfer matrix formalism for the 1D Ising model and an ostensibly unrelated matrix formalism generating

the Szegő recursion for orthogonal polynomials on the unit circle, and second, the gap labelling theorem

for CMV matrices.

© 2024 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights are reserved,

including those for text and data mining, AI training, and similar technologies.
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1. Introduction

1.1. Inspiration

Since their discovery, gap labelling theorems have been a useful tool in the analysis of

operators. In an abstract formulation, a gap labelling theorem says that if an operator family

is generated by an ergodic process by continuously sampling along orbits of the process,

then there is a countable subgroup of R that describes the distribution of eigenvalues of

the operators in the sense that the proportion of eigenvalues belonging to an open interval
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with endpoints in spectral gaps belongs to this group in the thermodynamic limits (compare

Theorem 1.1 for a precise version). Moreover, this group depends on the ergodic process, but

does not depend on the continuous function by which the operators are generated. The K -

theory formulation of the gap labelling theorem, due to Bellissard and coworkers, realizes this

subgroup as the range of a normalized trace on a suitable C∗ algebra [5,6]. This approach

is further elucidated for substitution models in [2,7]. The Johnson formulation realizes the

gap labels in terms of the range of the Schwartzman asymptotic cycle for one-dimensional

differential and finite difference operators [23,24]. For additional details and recent applications

of the Johnson–Schwartzman approach, see also [1,13,15,16,19] and references therein.

In some situations, distributions of zeros or eigenvalues appear to obey a law similar to the

one predicted by a gap labelling theorem, even if no operators seem to be present. In 1995,

Baake–Grimm–Pisani observed that the one-dimensional ferromagnetic Ising model appears

to be just such a model when the magnetic couplings are chosen according to the Fibonacci

substitution sequence [3]. The purpose of this note is to explain how certain unitary operators

(hence gap labelling theorems) enter the picture and to contextualize the observations of [3].

In short, the zeros of a Lee–Yang partition function can be identified with zeros of the trace

of a 2 × 2 matrix propagator for the Szegő recursion for orthogonal polynomials generated by

a measure on the unit circle [20,36]. In turn, these zeros can be shown to be eigenvalues of

unitary operators derived from such orthogonal polynomials. On the other hand, there exists a

gap labelling theory for such unitary operators, which is a result of Geronimo–Johnson [22].

The rest of the note will spell this out in more detail, and we conclude with a gallery of

examples.

1.2. Ferromagnetic Ising models on the line

Let us begin by defining objects associated with an Ising model on the line. This is not

meant to be an exhaustive overview; we just collect the objects and results that we need to

exhibit our main points. For additional background and history, we direct the reader to [4,10]

and references therein.

To specify a one-dimensional ferromagnetic Ising model, choose a sequence of magnetic

couplings {Jn}∞n=1 with Jn > 0 for all n.

For each N ∈ N, denote ΛN = {±1}N = {±}N . Both versions of ΛN are convenient

in certain formulas, so we freely pass between the two representations. On the lattice

{1, 2, . . . , N }, the nearest neighbour Ising model with constant field H is specified by the

energy functional

E(Ã ) := −
1

kBÄ

N∑

n=1

(JnÃnÃn+1 + HÃn) , Ã = (Ã1, . . . , ÃN ) ∈ ΛN , (1.1)

where H denotes the magnetic field, Ä > 0 is the temperature, kB > 0 is the Boltzmann

constant, and Ã satisfies the periodic boundary condition

ÃN+1 = Ã1. (1.2)

For convenience of notation, we introduce pn = Jn/(kBÄ ) and q = H/(kBÄ ) so that

E(Ã ) = E(Ã, q) := −
N∑

n=1

(pnÃnÃn+1 + qÃn) , Ã ∈ ΛN . (1.3)
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In physical applications, one is often interested in the Gibbs state in which P(Ã ), the probability

of the configuration Ã , is proportional to exp(−E(Ã )), since this is the probability distribution

on ΛN that maximizes the entropy −
∑

Ã P(Ã ) logP(Ã ). Naturally, the corresponding normal-

ization constant, known as the partition function, plays an important role. More precisely, the

partition function is defined by

Z N (q) :=
∑

Ã∈ΛN

e−E(Ã,q), N ∈ N. (1.4)

Introduce the variables

· = eq , ´n = epn (1.5)

so that Z N can be viewed as a function of the variable · :

ZN (· ) =
∑

Ã∈ΛN

N∏

n=1

´
ÃnÃn+1
n · Ãn . (1.6)

Due to the Lee–Yang theorem [26], zeros of ZN lie on the unit circle

∂D := {· ∈ C : |· | = 1}.

Later on, we will see that the zeros of ZN are the eigenvalues of a suitable unitary operator,

which gives another way to see that they lie on ∂D (compare Propositions 2.5 and 3.2).

1.3. The ergodic setting

The examples that we will study in the present work are generated by sampling along orbits

of ergodic topological dynamical systems. Let us make this more precise.

Suppose (Ω , T, µ) is an ergodic topological dynamical system (we will review definitions

and results from ergodic theory in Section 2), denote R+ = {x ∈ R : x > 0}, and consider

g ∈ C(Ω ,R+). For each É ∈ Ω , one obtains a realization of a ferromagnetic Ising model by

taking pn = pn(É) = g(T nÉ). We denote the dependence on É by writing, for example,

ZN (·, É) =
∑

Ã∈ΛN

N∏

n=1

eg(T nÉ)ÃnÃn+1· Ãn (1.7)

for the partition function. Let us say that · ∈ ∂D is in a spectral gap of the Ising model

if for some ε > 0, a.e. É, and sufficiently large N there are no zeros of ZN (·, É) in an

ε-neighbourhood of · .

Theorem 1.1. Let (Ω , T, µ) denote an ergodic topological dynamical system such that

Ω = suppµ. There is a countable group A = A(Ω , T, µ) ¦ R such that the following statement

holds true.

Given g ∈ C(Ω ,R+), let ZN (·, É) denote the associated partition functions. If ·1, ·2 ∈ ∂D
both lie in spectral gaps of the associated Ising model, then

lim
N→∞

1

N
#{· ∈ [·1, ·2] : ZN (·, É) = 0} ∈ A(Ω , T, µ), a.e. É ∈ Ω , (1.8)

where [·1, ·2] denotes the closed arc from ·1 to ·2 in the counterclockwise direction.

Remark 1.2. Let us make some comments.
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(a) The group A(Ω , T, µ) may be computed explicitly in many cases of interest. Since

it arises from the application of a homomorphism studied by Schwartzman [29], it is

sometimes called the Schwartzman group of (Ω , T, µ). We will describe A(Ω , T, µ)

more precisely in Section 2. In Section 5, we will look at some specific examples in

which A can be computed.

(b) In the case in which (Ω , T, µ) is the strictly ergodic subshift generated by the Fi-

bonacci substitution, Baake–Grimm–Pisani observed the conclusion of Theorem 1.1

empirically [3]. We will discuss this further in Section 5.

(c) Theorem 1.1 follows by combining some theorems and observations from a few different

papers that came about since the publication of [3].

The rest of the paper is laid out as follows. In Section 2, we discuss some background about

dynamical systems and CMV matrices. Section 3 explains how the partition function may be

related to a polynomial derived from a suitable CMV matrix, and then Section 4 explains

how to prove Theorem 1.1. We conclude with a discussion of specific classes of examples in

Section 5 as well as some relevant plots.

Uwe Grimm was an exceptionally generous and encouraging colleague who enjoyed finding

surprising connections between ostensibly different mathematical problems. We hope that Uwe

would have appreciated how recent developments in mathematical physics shed new light on

his earlier observations.

2. Background

Let us begin by reviewing some relevant background. Since Theorem 1.1 is proved by

connecting ideas from dynamical systems and CMV matrices to the Ising model, we introduce

the relevant notions from topological dynamics, the general theory of CMV matrices, and the

theory of CMV matrices with dynamically defined coefficients.

2.1. Odds and ends from dynamical systems

Let us briefly review some terminology and relevant results from dynamical systems.

For further reading, one may consult textbook treatments such as Brin–Stuck [9], Katok–

Hasselblatt [25], and Walters [34].

Definition 2.1. By a topological dynamical system, we mean an ordered pair (Ω , T ) in which

Ω is a compact metric space and T : Ω → Ω is a homeomorphism. A Borel probability

measure µ on Ω is called T -invariant if µ(T −1 B) = µ(B) for each Borel set B ¦ Ω . A

T -invariant Borel probability measure µ is called ergodic (with respect to T ) if µ(E) ∈ {0, 1}
whenever T −1 E = E . In this case, we say that the triple (Ω , T, µ) is an ergodic topological

dynamical system.

Definition 2.2. Suppose (Ω , T ) denotes a topological dynamical system. Given a continuous

map A : Ω → GL(2,C), the associated linear cocycle is the skew product

(T, A) : Ω × C
2 → Ω × C

2, (É, v) ↦→ (TÉ, A(É)v). (2.1)

The iterates of A are then defined by (T, A)n = (T n, An), which the reader can check implies

An(É) =

⎧
⎪⎨
⎪⎩

A(T n−1É) · · · A(TÉ)A(É), n g 1;
I, n = 0;
[A−n(T nÉ)]−1, n f −1.

(2.2)
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Definition 2.3. Consider a continuous cocycle (T, A) over a topological dynamical system

(Ω , T ).

(a) We say that (T, A) is uniformly hyperbolic if for constants c, ¼ > 0 one has

∥An(É)∥ g ce¼|n|, ∀É ∈ Ω , n ∈ Z. (2.3)

(b) We say that (T, A) enjoys an exponential dichotomy if there exist continuous maps

E−,E+ : Ω → CP
1 such that

A(É)E±(É) = E
±(TÉ), (2.4)

and constants C, ¼ > 0 such that

∥An(É)v+∥, ∥A−n(É)v−∥ f Ce−¼n, ∀n ∈ N, É ∈ Ω , (2.5)

for all unit vectors v± ∈ E±(É).

If | det A(É)| = 1, then (a) and (b) are equivalent. See [18] for proofs.

The Schwartzman homomorphism

As before, let (Ω , T, µ) denote an ergodic topological dynamical system. To define the

Schwartzman homomorphism and the associated groups, one needs a flow, that is, a continuous-

time dynamical system. The most natural way to produce a continuous-time dynamical system

that interpolates a discrete-time system such as (Ω , T ) is to form the suspension. To be more

specific, the suspension of (Ω , T, µ), denoted (X, Ä, ¿), is defined as follows. The space X is

given by

X = Ω × R/∼, where (É, t) ∼ (É′, t ′) ⇐⇒ t − t ′ ∈ Z and T t−t ′É = É′. (2.6)

We write [É, t] for the class of (É, t) in X . The flow on X , denoted by Ä , is the natural

projection of the translation action of R, that is,

Ä s([É, t]) = [É, t + s], [É, t] ∈ X. (2.7)

Finally, ¿ is the natural measure on X given by
∫

X

f d¿ =
∫

Ω

∫ 1

0

f ([É, t]) dµ(É) dt. (2.8)

Recall that Æ0, Æ1 ∈ C(X,T) are called homotopic, denoted Æ0 ∼ Æ1, if there exists a

continuous F : X×[0, 1] → T such that F(·, j) = Æ j for j = 0, 1. Let Cq(X,T) = C(X,T)/∼
denote the set of homotopy classes of continuous maps X → T. Given Æ ∈ C(X,T), x ∈ X ,

one can lift the map Æx : t ↦→ Æ(Ä t x) to Èx : R → R. From [29], there exists a real number

rot(Æ) ∈ R such that

rot(Æ) = lim
t→∞

Èx (t)

t
, ¿-a.e. x ∈ X.

The induced map F¿ : Cq(X,T) → R given by

F¿([Æ]) = rot(Æ) ¿-a.e. x ∈ X,

is called the Schwartzman homomorphism. When working with linear cocycles over a dynam-

ical system, it is often convenient to work with maps into the projective line RP
1 instead of
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T. For such maps, one can define F¿ by identifying RP
1 with T via the map T ∋ ¹ ↦→

span{(cosÃ¹, sinÃ¹ )¦} ∈ RP
1. Using this identification, if Λ ∈ C(X,RP1), one has

F¿([Λ]) = lim
T →∞

1

ÃT
∆

[0,T ]
arg Λ(Ä t x), ¿-a.e. x ∈ X, (2.9)

where ∆I
arg denotes the net change in the argument on the interval I . Since we have chosen to

define the Schwartzman homomorphism and group by considering maps into T = R/Z instead

of RP1, notice the factor of Ã that appears in (2.9).

Definition 2.4. With notation as above, the Schwartzman group associated with (Ω , T, µ),

denoted A(Ω , T, µ), is the range of the Schwartzman homomorphism, that is,

A(Ω , T, µ) = F¿(C
q(X,T)). (2.10)

It is known and not hard to check that A(Ω , T, µ) is a countable subgroup of R that contains

Z. Indeed, one can check that Cq(X,T) has at most countably many elements and the (class

of) the map [É, t] ↦→ t mod Z is mapped to 1 by F¿ . The reader may see [14,15] for details

and further discussion. In Section 5, we will discuss some specific examples and identify their

Schwartzman groups (without proofs, which can also be found in [15]).

2.2. CMV matrices

Let us briefly review some aspects of the general theory of CMV matrices and Floquet theory

for periodic CMV matrices. We refer the reader to the monographs [30,31] for additional details

and proofs.

Given a sequence {³n}n∈Z with ³n ∈ D for every n, the associated extended CMV matrix

E = E³ is given by

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

³0Ä−1 −³0³−1 ³1Ä0 Ä1Ä0

Ä0Ä−1 −Ä0³−1 −³1³0 −Ä1³0

³2Ä1 −³2³1 ³3Ä2 Ä3Ä2

Ä2Ä1 −Ä2³1 −³3³2 −Ä3³2

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.11)

where Än =
√

1 − |³n|2 and we use a box to denote the matrix element ï¶0, E³¶0ð. It is well

known that E enjoys a factorization E = LM, where L and M are block diagonal with 2 × 2

blocks. Namely,

L =
+

Θ(³2n) (2.12)

M =
+

Θ(³2n+1), (2.13)

where in both cases Θ(³ j ) acts on ℓ2({ j, j + 1}) and Θ is given by

Θ(³) =

[
³

√
1 − |³|2√

1 − |³|2 −³

]
. (2.14)

If ³ is periodic of period N and N is even, then we consider the Floquet matrices FN (¹ )

given by restricting to [0, N − 1] with the boundary condition un+N = ei¹un .
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One can check that the LM factorization induces a corresponding factorization of the

Floquet operators. That is, with

LN (¹ ) =

⎡
⎢⎢⎢⎣

Θ(³0)

Θ(³2)

. . .

Θ(³N−2)

⎤
⎥⎥⎥⎦ (2.15)

MN (¹ ) =

⎡
⎢⎢⎢⎢⎢⎣

−³N−1 e−i¹ÄN−1

Θ(³1)

. . .

Θ(³N−3)

ei¹ÄN−1 ³N−1

⎤
⎥⎥⎥⎥⎥⎦
, (2.16)

we have

FN (¹ ) = LN (¹ )MN (¹ ). (2.17)

Since we are interested in computations, let us write out the exact form of FN (¹ ) for relevant

ranges of N ∈ 2N. For N = 2,

FN (¹ ) = LN (¹ )MN (¹ )

=
[
³0 Ä0

Ä0 −³0

] [
−³1 e−i¹Ä1

ei¹Ä1 ³1

]

=
[
−³1³0 + ei¹Ä1Ä0 e−i¹Ä1³0 + ³1Ä0

−³1Ä0 − ei¹Ä1³0 e−i¹Ä1Ä0 − ³1³0

]
. (2.18)

Similarly, for N = 4, we have

FN (¹ ) =

⎡
⎢⎢⎣

−³0³3 ³1Ä0 Ä1Ä0 e−i¹³0Ä3

−Ä0³3 −³1³0 −Ä1³0 e−i¹Ä0Ä3

ei¹Ä3Ä2 ³2Ä1 −³2³1 ³3Ä2

−ei¹Ä3³2 Ä2Ä1 −Ä2³1 −³3³2

⎤
⎥⎥⎦ . (2.19)

In general, for N g 6, these have the form

FN (¹ )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−³0³N−1 ³1Ä0 Ä1Ä0 e−i¹³0ÄN−1

−Ä0³N−1 −³1³0 −Ä1³0 e−i¹Ä0ÄN−1

³2Ä1 −³2³1 ³3Ä2 Ä3Ä2

Ä2Ä1 −Ä2³1 −³3³2 −Ä3³2

.
.
.

.
.
.

.
.
.

.
.
.

³N−4ÄN−5 −³N−4³N−5 ³N−3ÄN−4 ÄN−3ÄN−4

ÄN−4ÄN−5 −ÄN−4³N−5 −³N−3³N−4 −ÄN−3³N−4

ei¹ÄN−1ÄN−2 ³N−2ÄN−3 −³N−2³N−3 ³N−1ÄN−2

−ei¹ÄN−1³N−2 ÄN−2ÄN−3 −ÄN−2³N−3 −³N−1³N−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.20)

Let us also define the Szegő transfer matrices. For z ∈ C and ³ ∈ D, one defines

S(³, z) =
1√

1 − |³|2

[
z −³

−³z 1

]
. (2.21)

For our numerical calculations, we want to note the following fact, which relates zeros of the

trace of a product of Szegő matrices to eigenvalues of a suitable Floquet cutoff and follows
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from the general theory of periodic CMV matrices. For completeness, we include the short

proof.

Proposition 2.5. Suppose {³n}n∈Z is N-periodic, let ∆N denote the associated discriminant

given by

∆N (z) = Tr(z−N/2S(³N , z)S(³N−1, z) · · · S(³1, z)), (2.22)

and consider the Floquet matrices as in (2.18), (2.19), and (2.20).

(a) If N is even, then z is a zero of ∆N if and only if z is an eigenvalue of FN (Ã/2).

(b) If N is odd, then z is a zero of ∆N if and only if z is an eigenvalue of F2N (Ã ).

Proof. Suppose N is even. Setting ¹ = Ã/2 in [31, Eq. (11.2.17)] (notice that ´ = ei¹ in

Simon’s notation) gives

det(z − FN (Ã/2)) = zN/2

⎡
⎣

N−1∏

j=0

Ä j

⎤
⎦∆N (z). (2.23)

In view of (2.22), this implies that the zeros of ∆N (z) and det(z −FN (Ã/2)) coincide, proving

(a). The proof of (b) follows in a similar fashion by using [31, Eq. (11.2.17)] with ¹ = Ã to

get

det(z − F2N (Ã )) = zN

⎡
⎣

2N−1∏

j=0

Ä j

⎤
⎦ (∆2N (z) + 2) (2.24)

together with the identity

A2 = Tr(A)A − I

for A ∈ SL(2,C), which implies ∆2N (z) = [∆N (z)]2 − 2. □

We mention this connection for two reasons. First, the results that one brings together to

connect the Ising partition function to gap labels naturally relate to the two sides of (2.23).

More specifically, the gap labelling theorem that we will formulate in Theorem 4.2 concerns

the density of states measure, which is related to normalized eigenvalue counting measures

associated with cutoff operators in a natural way, and hence connects to the left hand side

of (2.23), whereas Proposition 3.2 gives a connection between ∆N (z), which appears on the

right hand side of (2.23), and the partition function of an associated Ising model. Secondly,

finding roots of polynomials can be numerically delicate (depending on the basis in which the

polynomials are expressed, the magnitude of the coefficients, and the algorithm for finding

roots), whereas computing eigenvalues of unitary matrices is robust. Indeed, a common way

to compute roots of polynomials expressed in the monomial basis is to find eigenvalues of the

associated companion matrix, which can yield poor results [32].

2.3. Ergodic CMV matrices

Definition 2.6. Let (Ω , T, µ) denote an ergodic topological dynamical system as in Section 2.1,

that is, Ω is a compact metric space, T : Ω → Ω is a homeomorphism, and µ is a T -ergodic

probability measure. Given a continuous function f : Ω → D, the associated ergodic family
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of CMV matrices is {E(É)}É∈Ω , where E(É) is defined by the coefficients

³n(É) = f (T nÉ), É ∈ Ω , n ∈ Z. (2.25)

Definition 2.7. For each N ∈ N, É ∈ Ω , we define the measure »É,N to be the normalized

eigenvalue counting measure of E(É)Ç[0,N−1], that is,
∫

f d»É,N =
1

N
Tr f (E(É)Ç[0,N−1]). (2.26)

We also define the density of states (DOS) measure » by
∫

∂D

g d» =
∫

Ω

ï¶0, g(E(É))¶0ð dµ(É), (2.27)

and note that »É,N → » weakly as N → ∞ for µ-a.e. É ∈ Ω by arguments using

ergodicity [31, Theorem 10.5.21].

Let us see that one can recover the DOS from the zeros of the discriminants associated with

periodic operators defined by the ergodic family. Given E(É) as above, define

DN (z, É) = Tr [S(³N (É), z) · · · S(³1(É), z)] .

It is known that DN (·, É) has N distinct zeros À1(É), . . . , ÀN (É) that lie on ∂D [31]. We denote

by ¿É,N the normalized zero-counting measure, that is,

∫

∂D

f d¿É,N =
1

N

N∑

n=1

f (Àn(É)). (2.28)

Proposition 2.8. With notation as above, one has ¿É,N → » weakly for a.e. É ∈ Ω .

Proof. From [31, Theorem 10.5.21], we know »É,N → » , so it suffices to show that ¿É,N
has the same weak limit as »É,N . Using Proposition 2.5, we see that ¿É,N is the normalized

eigenvalue counting measure of a suitable Floquet cutoff of E(É), so the desired conclusion

holds by a direct calculation. □

3. From Ising, Lee, and Yang to Cantero, Moral, and Velázquez

Let us explain how the relationship between Lee–Yang zeros and discriminants of CMV

matrices arises. The first observation is that one can characterize the partition function ZN (· )

as the trace of a suitable matrix product. This matrix formalism is well-known to experts,

but we include a detailed discussion for ease of reading. To define the aforementioned matrix

product, write

M(´, · ) =
[
´· 1/´

1/´ ´/·

]
(3.1)

for ´, · ∈ C \ {0}.

Proposition 3.1. Let pn > 0 be given for 1 f n f N, define ´n as in (1.5), and let ZN

denote the associated partition function. One has

ZN (· ) = Tr[M(´N , · )M(´N−1, · ) · · · M(´1, · )] (3.2)

for all · ̸= 0, where M is given by (3.1).
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Proof. The proof of this result can be found in most standard textbooks on solvable models

in statistical mechanics, e.g., [4]. We reproduce the proof of [4] here to keep the paper more

self-contained.

Write the entries of a 2 × 2 matrix as

A =
[

A+,+ A+,−
A−,+ A−,−

]
. (3.3)

In particular, combining (3.1) and (3.3) gives

M(´, · )Ã,Ã ′ = ´ÃÃ
′
· (Ã+Ã ′)/2. (3.4)

Consequently, using (1.6) and (1.2), we have

ZN (· ) =
∑

Ã∈ΛN

N∏

n=1

´
ÃnÃn+1
n · Ãn

=
∑

Ã∈ΛN

N∏

n=1

´
ÃnÃn+1
n · (Ãn+Ãn+1)/2

=
∑

Ã∈ΛN

N∏

n=1

M(´n, · )Ãn ,Ãn+1
.

Now split the sum and use the periodic boundary condition again to get

ZN (· ) =
∑

Ã∈ΛN

N∏

n=1

M(´n, · )Ãn ,Ãn+1

=
∑

Ã1∈Λ1

∑

(Ã2,...,ÃN )∈ΛN−1

N∏

n=1

M(´n, · )Ãn ,Ãn+1

=
∑

Ã1∈Λ1

[M(´1, · ) · · · M(´N , · )]Ã1,Ã1

= Tr[M(´1, · ) · · · M(´N , · )].

The result follows by noting that ´n > 0, so M is symmetric and thus one can reverse the

order of the factors by taking the transpose. □

With Proposition 3.1 proved, let us now connect back to CMV matrices, by way of the

Szegő transfer matrices introduced in (2.21).

Proposition 3.2. With notation as in Proposition 3.1, the zeros of ZN (· ) are the same as the

zeros of DN (· 2), where

DN (z) := Tr
[
S(´−2

N , z) · · · S(´−2
1 , z)

]
. (3.5)

Equivalently, the zeros of ZN (· ) coincide with those of D̃N (· ), where

D̃N (z) := Tr
[
S(´−2

N , z)S(0, z)S(´−2
N−1, z)S(0, z) · · · S(´−2

1 , z)S(0, z)
]
. (3.6)
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Proof. For · ̸= 0 and ´ > 1, notice that

[
−1 0

0 ·

]
M(´, · )

[
−1 0

0 1/·

]
=

[
−1 0

0 ·

] [
´· 1

´

1
´

´

·

] [
−1 0

0 1/·

]

=

[
´· − 1

´·

− ·

´

´

·

]

=
´

·

[
· 2 − 1

´2

− · 2

´2 1

]

=
´

·

√
1 − ´−2 S(´−2, · 2).

Thus, S(´−2
N , · 2) · · · S(´−2

1 , · 2) is similar to a nonzero multiple of M(´N , · ) · · · M(´1, · ) and

the first claim follows from Proposition 3.1. The second follows from noting that

S(³, z)S(0, z) = S(³, z2)

for any ³ ∈ D, z ∈ C. □

4. From Szegő to Schwartzman à la Geronimo and Johnson

In the previous section, we saw how to relate the partition functions of a ferromagnetic Ising

model to discriminants associated with a family of periodic CMV matrices. Next, we want to

explain how to relate zeros of the discriminant to the rotation number of the Szegő cocycle

and hence to the range of the Schwartzman homomorphism. Throughout this section we fix

an ergodic topological dynamical system (Ω , T, µ), a continuous f : Ω → D, and let {E(É)}
denote the associated family of CMV matrices defined by (2.25). We assume suppµ = Ω .

By general arguments, there exists a compact set Σ ¦ ∂D such that Ã (E(É)) = Σ for µ-a.e.

É ∈ Ω . Moreover, Ã (E(É)) = Σ for any É with a dense T -orbit.

Given this setup, we define

Az(É) = z−1S( f (TÉ), z)S( f (É), z), É ∈ Ω , z ∈ C \ {0},

where S is given by (2.21). We can then characterize the almost-sure spectrum Σ as the

complement of the set where (T 2, Az) is uniformly hyperbolic.

Theorem 4.1 (Johnson’s Theorem for CMV Matrices). Assume (Ω , T, µ) is an ergodic

topological dynamical system such that suppµ = Ω , f ∈ C(Ω ,D), and let Σ denote the

associated almost-sure spectrum associated with the family {E(É)}É∈Ω . We have

∂D \ Σ = UH := {z ∈ ∂D : (T 2, Az) is uniformly hyperbolic}. (4.1)

See [18] for additional details and a proof. One major application of Theorem 4.1 is the gap

labelling theorem for ergodic CMV matrices, which we formulate presently.

Theorem 4.2. Let (Ω , T, µ) denote an ergodic topological dynamical system such that

Ω = suppµ, f ∈ C(Ω ,D), and {E(É)}É∈Ω the associated ergodic family of extended CMV
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matrices. Let » and Σ denote the density of states measure and almost-sure spectrum associated

with this family. For any z1, z2 ∈ ∂D \ Σ , one has

»([z1, z2]) ∈ A(Ω , T, µ), (4.2)

where [z1, z2] denotes the closed arc from z1 to z2 in the counterclockwise direction.

Proof. This result is a consequence of [22,30]. Let Ä denote the rotation number associated

with the family {E(É)}, as defined in [22, Section 4]; notice that this comes with a factor 1
2

(cf. [22, Eq. (4.9)]). On the one hand, [22, Theorem 5.6] asserts that Ä takes values in (2Ã

times) the Schwartzman group in the gaps of Σ , that is, on connected components of ∂D \Σ .

Notice that the Schwartzman group in [22] differs from ours by a factor of 2Ã ; compare the first

displayed equation on [22, p. 171]. On the other hand, Ä is related to the Lyapunov exponent

via [22, Theorem 4.7]. Namely, there is an analytic function w(z) such that the boundary values

of Rew give the Lyapunov exponent and the boundary values of Imw give Ä. By combining

this with [31, Theorems 10.5.8 and 10.5.21], we are done. □

The main result follows by combining all of these pieces.

Proof of Theorem 1.1. This follows by combining Propositions 2.8, 3.2 and Theorem 4.2.

More specifically, Propositions 2.8 and 3.2 show that the left-hand side of (1.8) is »([z1, z2])

and Theorem 4.2 shows that this quantity belongs to A. □

5. A Gallery of Lee–Yang and CMV Zeros

Let us conclude with a discussion of several examples, including some plots of the

distributions of the relevant zeros. By combining Propositions 2.5 and 3.2, the zeros of ZN

may be computed by finding eigenvalues of FN (Ã/2), where FN denotes the Floquet matrices

associated with a suitable extended CMV matrix, which is the approach employed in the

numerics below.

Before embarking on these computations, we note one potential opportunity for acceleration

of the eigenvalue calculation for large-scale problems. The corner entries in (2.20) cause the

matrices FN (¹ ) to have full bandwidth. In the case of Jacobi matrices, a simple reordering

described in [28] results in Hermitian matrices of bandwidth 5, allowing for efficient numerical

eigenvalue computations. An analogous reordering is possible here, though the CMV structure

makes this reordering a bit more intricate; the result is a matrix having bandwidth 9. Such

structure is less clearly exploitable in non-Hermitian eigenvalue computations, but QR-related

algorithms for CMV matrices (see [11,33]) could potentially be adapted and extended to this

case.

We consider a CMV matrix of even period N , and define a permutation p : {1, . . . , N } →
{1, . . . , N } by

p( j) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2 j − 1, j odd and 1 f j f N/2;

2N + 1 − 2 j, j odd and N/2 < j < N ;

2 j, j even and 1 < j f N/2;

2N + 2 − 2 j, j even and N/2 < j f N .

(5.1)

Let P denote the associated permutation matrix, which is given by Pe j = ep( j). Equivalently,

Pi, j = ¶i,p( j). (5.2)
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The bandwidth of the reordered matrix PFN (¹ )P∗ is at most 9.

Proposition 5.1. Suppose N g 2 is even. The bandwidth of F̃N (¹ ) := PFN (¹ )P∗ is at most

9. More precisely,

ïe j , F̃N (¹ )ekð = 0 (5.3)

whenever | j − k| > 4.

Proof. If N = 2 or 4, the claim holds vacuously, so assume N g 6. Write dN ( j, k) =
min{| j − k|, N − | j − k|}, and notice that ïe j ,FN (¹ )ekð = 0 if dN ( j, k) > 2. Since

ïe j , F̃N (¹ )ekð = ïep−1( j),FN (¹ )ep−1(k)ð, (5.4)

it suffices to demonstrate

| j − k| > 4 H⇒ dN (p−1( j), p−1(k)) > 2. (5.5)

Equivalently, we may show

dN (ℓ,m) f 2 H⇒ |p(ℓ) − p(m)| f 4. (5.6)

It is straightforward (albeit a little tedious) to verify (5.6) from the definition of p. Indeed, if

ℓ = m + 1, we have (using N + 1 = 1)

p(m + 1) − p(m)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(m + 1) − (2 m − 1) = 3, m odd and m < N/2;

2(m + 1) − 1 − 2 m = 1, m even and m < N/2;

(N − 1) − N = −1, m = N/2 and N/2 is odd;

2N + 2 − 2(m + 1) − (2N + 1 − 2 m) = −1, m odd and N/2 < m < N ;

2N + 1 − 2(m + 1) − (2N + 2 − 2 m) = −3, m even and N/2 f m < N ;

1 − 2 = −1, m = N .

The results are similar, but slightly more laborious for p(m + 2) − p(m). □

For inspiration and context, here is a picture of the permutation when N = 24.
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The graph on the left shows the adjacency relations for FN (¹ ), having an edge from i to

j if i ̸= j and [FN (¹ )]i j ̸= 0 (for a generic CMV matrix). The graph on the right shows the

same scheme for F̃N (¹ ). From this perspective, the conclusion of Proposition 5.1 is easy to

check visually: one simply verifies that the indices of connected nodes can differ by no more

than four in the adjacency graph for F̃N (¹ ).

The figures below show the corresponding nonzero pattern of the matrix FN (¹ ) (left) and

its reordered version F̃N (¹ ) (right).

Let us conclude with some plots of zeros and numerical approximations of the density of

zeros. We begin with the Fibonacci case, which supplied the original motivation for the present

work.

Example 5.2 (Fibonacci). Consider an alphabet A = {a,b} with two letters, and let A∗

denote the free monoid over A (that is, the set of finite words written with the letters in A).

The Fibonacci substitution is defined by S(a) = ab and S(b) = a, and extended to A∗ by

concatenation. Thus, beginning with the seed u0 = a, one forms the sequence uk = Sk(w0):

u1 = ab

u2 = aba

u3 = abaab

u4 = abaababa,

and so on. As one can see, the initial letters stabilize once they appear, so one can define the

word u∞ = limk→∞ uk = abaababa . . ., where the limit may be understood in the sense of

the product topology on AN (and in which A has the discrete topology).

One can specify a ferromagnetic Ising model by choosing pa, pb > 0 and defining the

sequence of normalized magnetic couplings via

pn =

{
pa, u∞(n) = a;
pb, u∞(n) = b.

(5.7)

There are several equivalent ways to imbed this example into an ergodic context. The

Fibonacci subshift, ΩF ¦ AZ is the set of all sequences whose local structure coincides with

that of u∞. More precisely, if v = v1 · · · vℓ ∈ A∗ and u is a finite word or infinite sequence,

we write v ◁ u if for some j , v = u( j)u( j + 1) · · · u( j + ℓ− 1) (and we say v is a subword of
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u). One then defines

ΩF = {É = (Én)n∈Z : ∀ℓ ∈ N, n ∈ Z, Én · · ·Én+ℓ−1 ◁ u∞}. (5.8)

One can check that ΩF is a compact subset of AZ that is invariant under the action of the shift

[TÉ]n = Én+1. It is furthermore known that (ΩF, T ) enjoys a unique T -invariant measure µ

satisfying suppµ = ΩF.

For this system, the set of labels can be computed explicitly:

A(ΩF, T, µ) = Z + ³Z = {n + m³ : n,m ∈ Z}, (5.9)

where ³ = (
√

5 − 1)/2 denotes the inverse of the golden mean; see, e.g., [7,15] for details.

Let us show some plots for this model. Following [3], we take pa = 2/3 and pb = 1/100.

First, we show the zeros of the partition function for the Ising model corresponding to k = 10

and k = 17 iterations of the Fibonacci substitution. (The k = 10 plot replicates the analogous

plot in [3, Fig. 1].)

Next, let us inspect the corresponding IDS, plotted as function of ¹ = −i log z/2Ã , that is,

we compute »([1, e2Ã i¹ ]) for ¹ ∈ [0, 1]. (The IDS for k = 10 is shown in [3, Fig. 2].) The

fractal nature of the distribution of the zeros becomes more apparent from this perspective,

and indeed can be seen to be a consequence of the Cantor structure of the spectrum of the

CMV operator having coefficients generated by the Fibonacci sequence [20]. It is known that

the density of states measure assigns no weight to gaps of the spectrum, so each flat portion

in the graph of the IDS corresponds to a gap in the spectrum. The height of the graph of the

IDS in the gap then corresponds to the gap label.
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To get another perspective on the structure of gaps, let us look at the distribution of gap

lengths. The histograms below show the proportion of gaps between successive zeros of various

lengths.

Example 5.3 (General Subshifts). The previous example is a special case of a general type

of dynamical system, called a subshift. To formulate the general setting, consider a finite set

A (the alphabet) with the discrete topology, and X = AZ with the product topology. This

topology makes X a compact metrizable space with, e.g.,

d(É,É′) = 2− min{|n|:Én ̸=É′
n}, É ̸= É′ (5.10)

an example of a metric giving the topology on X. The shift on X is given by [T x]n = xn+1

for x ∈ X. A subshift is any T -invariant compact subset of X. If Ω ¦ X is a subshift, one

abuses notation and writes T for the restriction of the shift to Ω . If µ is a T -ergodic measure

on Ω , it is known that

A(Ω , T, µ) =
{∫

f dµ : f ∈ C(Ω ,Z)

}
. (5.11)

Equivalently, A(Ω , T, µ) can be characterized by measures of cylinder sets. More precisely,

given a word u ∈ A∗, the associated cylinder set is

Ξu = {É ∈ Ω : É j = u j , ∀1 f j f n}.

Then A(Ω , T, µ) is precisely the group generated by {µ(Ξu) : u ∈ A∗}.
One particularly interesting class of subshifts is supplied by so-called subshifts of finite-type.

Given a matrix M ∈ R
A×A such that Ma,b ∈ {0, 1} for every a,b ∈ A, the associated subshift

of finite type is given by

ΩM = {É ∈ A
Z : MÉn ,Én+1

= 1 ∀n ∈ Z}. (5.12)

One also assumes that M is primitive in the sense that for some n ∈ N, (Mn)a,b > 0 for all

a,b ∈ A.

There is a plethora of invariant measures on ΩM . Suppose P ∈ R
A×A is such that every

entry of P is nonnegative, Pa,b > 0 ⇐⇒ Ma,b = 1, and

∑

b∈A

Pa,b = 1, ∀a ∈ A.
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By the primitivity assumption on M and the Perron–Frobenius theorem, there is a unique

invariant probability vector, that is, a vector (pa)a∈A such that
∑

a∈A

pa Pa,b = pb, ∀b ∈ A. (5.13)

The induced measure µ on ΩM is given by

µ(Ξu) = pu1

n−1∏

j=1

Pu j ,u j+1
. (5.14)

In view of the previous discussion, one can use this to compute A(Ω , T, µ) in terms of the

entries of P and p, namely, A(Ω , T, µ) is the Z-module generated by the numbers in (5.14).

Example 5.4 (Cat Map). We begin with the base space Ω = T
2 := R

2/Z2. The cat map is the

transformation T = Tcat : Ω → Ω given by

Tcat(x, y) = (2x + y, x + y), (x, y) ∈ T
2. (5.15)

This example is known to have many invariant measures. One can check that µ = Leb, the

normalized Lebesgue measure on T
2, is Tcat-ergodic. It was shown in [15] that

A(Ω , Tcat, µ) = Z. (5.16)

For the sampling function, we take f (x, y) = 1/2 + cos(2Ãy)/3. The corresponding

Verblunsky coefficients are

³n(x, y) = f (T n(x, y)), (x, y) ∈ T
2. (5.17)

In view of the relationship we have discussed previously, this corresponds to an Ising model

with couplings

pn = pn(x, y) = −
1

2
log f (T n(x, y)).

By induction, one can check that

T n
cat(x, y) = (F2n+1x + F2n y, F2n x + F2n−1 y),

where Fn denotes the nth Fibonacci number, normalized by F0 = 0, F1 = 1, and Fn+1 =
Fn + Fn−1 for n g 1.

For the cat map, we produce plots similar to those from previous example. We note that

the numerical calculations in the illustrations that follow require more care than might first be

apparent. The rapid growth of the entries in T n
cat(x, y) means that, in standard double-precision

floating point arithmetic [27], the argument y in cos(2Ãy) in the calculation of ³n(x, y) lacks

sufficient precision for the Verblunsky coefficients to be computed accurately. Indeed, double

precision calculations produce ³n(x, y) with errors of O(1) when n g 40, rendering subsequent

numerically computed eigenvalue statistics essentially meaningless. To avoid this pitfall, we

compute these coefficients using high-precision arithmetic in Mathematica, then render them in

full double-precision accuracy for the subsequent eigenvalue calculation. (We use MATLAB’s

standard dense nonsymmetric eigensolver eig to compute the eigenvalues of the unitary matrix

FN (Ã/2).)
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We start with the zeros, generated with x = 1/
√

2 and y = 1/
√

3. In the plots below, the

red arc [e−iÆ, eiÆ] for Æ = 2 sin−1(1/6) denotes an inner bound on the spectral gap proved

in [17].

As the reader can see, the zeros densely fill an arc of the circle, which is expected given

results obtained rigorously from the gap labelling theorem. Below, we show the IDS as a

function of ¹ = −i log z/2Ã as before.

As one can see, the graph comports with the general picture of an absence of gaps, since it

appears (as it must) that the IDS is everywhere increasing on a suitable arc.

Finally, we conclude with the distribution of gap lengths.
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Here, one observes something rather curious: the lengths of the gaps seem to be more

uniform than one might expect. Concretely, from existing work on Schrödinger operators [8],

one would expect CMV matrices with coefficients generated by the cat map to exhibit Anderson

localization, that is, pure point spectrum with exponentially decaying eigenfunctions. Then,

based on the same reasoning that one pursues for Schrödinger operators, one would expect the

distribution of eigenvalues to exhibit less repulsion.

Let us note that the cat map has a natural Markov partition and hence is a factor of a subshift

of finite type in a natural way. Concretely, taking A = {1, 2, 3, 4, 5} and

Mcat =

⎡
⎢⎢⎢⎢⎣

1 0 1 1 0

1 0 1 1 0

1 0 1 1 0

0 1 0 0 1

0 1 0 0 1

⎤
⎥⎥⎥⎥⎦
, (5.18)

there is a continuous factor map Φ : ΩM → T
2 such that Φ ◦ T = Tcat ◦ Φ, where T denotes

the shift on ΩM . See Brin–Stuck [9, pp. 135–137] or Katok–Hasselblatt [25, Section 20] for

more discussion and details.

What is notable about this example is the disparity between the label sets. For the subshift

ΩM with invariant measure µ, the label set is a dense subgroup of R. However, the label set for

the cat map itself is Z, which leads to the conclusion that the almost-sure spectrum associated

with a cat map model is connected.

Example 5.5 (Skew Shift). The base space is T
2 = R

2/Z2 and the transformation T = Tss is

given by

Tss(x, y) = (x + µ, x + y) (5.19)

where µ ∈ R is a fixed irrational number. For this example, the label set can be shown to be

Z + µZ = {n + mµ : n,m ∈ Z}, (5.20)

which is a dense subgroup of R.

For the sampling function, we take f (x, y) = 1/2 + cos(2Ãy)/3 as before. The Verblunsky

coefficients are

³n(x, y) = f (T n(x, y)), (x, y) ∈ T
2. (5.21)

As before, one can use induction to write T n
ss explicitly for n ∈ N as

T n
ss(x, y) =

(
x + nµ, y + nx +

n(n − 1)

2
µ

)
. (5.22)

Taking (x, y) = (µ /2, 0) for the starting point leads to

³n(µ /2, 0) = 1/2 + cos(n2Ãµ )/3, n ∈ N. (5.23)
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As in the case of the cat map, we show the zeros for truncations of order N = 400 and

N = 3200 for the case µ = 1/
√

2, together with a red arc showing an inner bound on the

main spectral gap about z = 1 (indeed the same inner bound as in the cat map example). As

before, we also show the integrated density of states and a histogram showing the distribution

of gap lengths.

While the application to Ising necessitates choosing strictly positive Verblunsky coefficients,

it is also of interest to look at sign-indefinite models from the CMV perspective. A notably

interesting example is given by using the sampling function f (x, y) = ¼ cos(2Ãy) for some

0 < ¼ < 1. The corresponding figures appear below. (Both skew shift examples give a

numerically computed gap of width zero for N = 3200, not shown on the histograms.)
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Example 5.6 (Unitary Almost-Mathieu Operator). We conclude with the unitary almost-

Matheiu operator, which was investigated in [12,21,35]. The coefficients are given by choosing

µ irrational, and constants 0 < ¼1, ¼2 < 1, and defining

³2n(x) =
√

1 − ¼2
2, ³2n−1(x) = ¼1 cos(2Ã (nµ + x)) (5.24)

for x ∈ T. The plots below use ¼1 = 9/10 and ¼2 = µ = 1/
√

2.
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These plots suggest many interesting problems. We hope this work inspires some readers

to study these questions in more detail, with the goal of proving some rigorous results. For

instance, it would be very interesting to confirm that the spectra of the skew-shift models

proposed above are connected subsets of the circle.
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