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Abstract

Inspired by the 1995 paper of Baake—Grimm-Pisani, we aim to explain the empirical observation that
the distribution of Lee—Yang zeros corresponding to a one-dimensional Ising model appears to follow the
gap labelling theorem. This follows by combining two main ingredients: first, the relation between the
transfer matrix formalism for the 1D Ising model and an ostensibly unrelated matrix formalism generating
the Szeg6 recursion for orthogonal polynomials on the unit circle, and second, the gap labelling theorem
for CMV matrices.
© 2024 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights are reserved,
including those for text and data mining, Al training, and similar technologies.
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1. Introduction

1.1. Inspiration

Since their discovery, gap labelling theorems have been a useful tool in the analysis of
operators. In an abstract formulation, a gap labelling theorem says that if an operator family
is generated by an ergodic process by continuously sampling along orbits of the process,
then there is a countable subgroup of R that describes the distribution of eigenvalues of
the operators in the sense that the proportion of eigenvalues belonging to an open interval
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with endpoints in spectral gaps belongs to this group in the thermodynamic limits (compare
Theorem 1.1 for a precise version). Moreover, this group depends on the ergodic process, but
does not depend on the continuous function by which the operators are generated. The K-
theory formulation of the gap labelling theorem, due to Bellissard and coworkers, realizes this
subgroup as the range of a normalized trace on a suitable C* algebra [5,6]. This approach
is further elucidated for substitution models in [2,7]. The Johnson formulation realizes the
gap labels in terms of the range of the Schwartzman asymptotic cycle for one-dimensional
differential and finite difference operators [23,24]. For additional details and recent applications
of the Johnson—Schwartzman approach, see also [1,13,15,16,19] and references therein.

In some situations, distributions of zeros or eigenvalues appear to obey a law similar to the
one predicted by a gap labelling theorem, even if no operators seem to be present. In 1995,
Baake-Grimm-Pisani observed that the one-dimensional ferromagnetic Ising model appears
to be just such a model when the magnetic couplings are chosen according to the Fibonacci
substitution sequence [3]. The purpose of this note is to explain how certain unitary operators
(hence gap labelling theorems) enter the picture and to contextualize the observations of [3].

In short, the zeros of a Lee—Yang partition function can be identified with zeros of the trace
of a 2 x 2 matrix propagator for the Szegd recursion for orthogonal polynomials generated by
a measure on the unit circle [20,36]. In turn, these zeros can be shown to be eigenvalues of
unitary operators derived from such orthogonal polynomials. On the other hand, there exists a
gap labelling theory for such unitary operators, which is a result of Geronimo—Johnson [22].
The rest of the note will spell this out in more detail, and we conclude with a gallery of
examples.

1.2. Ferromagnetic Ising models on the line

Let us begin by defining objects associated with an Ising model on the line. This is not
meant to be an exhaustive overview; we just collect the objects and results that we need to
exhibit our main points. For additional background and history, we direct the reader to [4,10]
and references therein.

To specify a one-dimensional ferromagnetic Ising model, choose a sequence of magnetic
couplings {J,}°2, with J, > 0 for all n.

For each N € N, denote Ay = {1} = {£}". Both versions of Ay are convenient
in certain formulas, so we freely pass between the two representations. On the lattice
{1,2,..., N}, the nearest neighbour Ising model with constant field H is specified by the
energy functional

N
1
E(G) =T § (Jngn0n+]+HUﬂ)7 O—Z(O—lv-"aO—N)EAN’ (11)
kB‘L' o

where H denotes the magnetic field, T > 0 is the temperature, kg > 0 is the Boltzmann
constant, and o satisfies the periodic boundary condition

ON+1 = O]. (12)
For convenience of notation, we introduce p, = J,/(kgpt) and ¢ = H/(kgT) so that
N
E(0)=E(0.9) =~ _ (pa0u0us1 +q0n). o € Ay. (1.3)
n=1
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In physical applications, one is often interested in the Gibbs state in which P(o’), the probability
of the configuration o, is proportional to exp(—E (o)), since this is the probability distribution
on Ay that maximizes the entropy — Y P(0)logP(c). Naturally, the corresponding normal-
ization constant, known as the partition function, plays an important role. More precisely, the
partition function is defined by

Zy(q)= ) e "9 NeN (1.4)
UGAN

Introduce the variables

(=el, B,=e (1.5)
so that Zy can be viewed as a function of the variable ¢:
N
Zv@)= Y []Br "¢ (1.6)
oAy n=1

Due to the Lee—Yang theorem [26], zeros of Zy lie on the unit circle
D ={eC:|¢|=1}.

Later on, we will see that the zeros of Zy are the eigenvalues of a suitable unitary operator,
which gives another way to see that they lie on 0D (compare Propositions 2.5 and 3.2).

1.3. The ergodic setting

The examples that we will study in the present work are generated by sampling along orbits
of ergodic topological dynamical systems. Let us make this more precise.

Suppose ({2, T, ) is an ergodic topological dynamical system (we will review definitions
and results from ergodic theory in Section 2), denote R, = {x € R : x > 0}, and consider
g € C({2,R,). For each w € {2, one obtains a realization of a ferromagnetic Ising model by
taking p, = p,(w) = g(T"w). We denote the dependence on w by writing, for example,

N
ZN(;, (,()) = Z l_[ eg(T”a))o'nUn+lé.o'n (17)

oeAy n=1

for the partition function. Let us say that { € 9D is in a spectral gap of the Ising model
if for some ¢ > 0, a.e. w, and sufficiently large N there are no zeros of Zy(¢, w) in an
e-neighbourhood of ¢.

Theorem 1.1. Ler (2, T, u) denote an ergodic topological dynamical system such that
{2 = supp w. There is a countable group A = A((2, T, u) < R such that the following statement
holds true.

Given g € C(§2,R,), let Zy(, w) denote the associated partition functions. If ¢y, ¢, € 0D
both lie in spectral gaps of the associated Ising model, then

Nlim %#{{ €¢, 8] ZvC, w)=0} e A2, T, ), ae we, (1.8)

where [£1, £2] denotes the closed arc from ¢y to ¢, in the counterclockwise direction.

Remark 1.2. Let us make some comments.
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(a) The group 2A(f2, T, ) may be computed explicitly in many cases of interest. Since
it arises from the application of a homomorphism studied by Schwartzman [29], it is
sometimes called the Schwartzman group of (2, T, u). We will describe A(f2, T, n)
more precisely in Section 2. In Section 5, we will look at some specific examples in
which 2 can be computed.

(b) In the case in which ({2, T, n) is the strictly ergodic subshift generated by the Fi-
bonacci substitution, Baake—-Grimm-Pisani observed the conclusion of Theorem 1.1
empirically [3]. We will discuss this further in Section 5.

(c) Theorem 1.1 follows by combining some theorems and observations from a few different
papers that came about since the publication of [3].

The rest of the paper is laid out as follows. In Section 2, we discuss some background about
dynamical systems and CMV matrices. Section 3 explains how the partition function may be
related to a polynomial derived from a suitable CMV matrix, and then Section 4 explains
how to prove Theorem 1.1. We conclude with a discussion of specific classes of examples in
Section 5 as well as some relevant plots.

Uwe Grimm was an exceptionally generous and encouraging colleague who enjoyed finding
surprising connections between ostensibly different mathematical problems. We hope that Uwe
would have appreciated how recent developments in mathematical physics shed new light on
his earlier observations.

2. Background

Let us begin by reviewing some relevant background. Since Theorem 1.1 is proved by
connecting ideas from dynamical systems and CMV matrices to the Ising model, we introduce
the relevant notions from topological dynamics, the general theory of CMV matrices, and the
theory of CMV matrices with dynamically defined coefficients.

2.1. Odds and ends from dynamical systems

Let us briefly review some terminology and relevant results from dynamical systems.
For further reading, one may consult textbook treatments such as Brin—Stuck [9], Katok—
Hasselblatt [25], and Walters [34].

Definition 2.1. By a topological dynamical system, we mean an ordered pair ({2, T') in which
{2 is a compact metric space and T : {2 — (2 is a homeomorphism. A Borel probability
measure p on {2 is called T-invariant if w(T~'B) = u(B) for each Borel set B € 2. A
T -invariant Borel probability measure u is called ergodic (with respect to T) if w(E) € {0, 1}
whenever T~'E = E. In this case, we say that the triple ({2, T, u) is an ergodic topological
dynamical system.

Definition 2.2. Suppose ({2, T') denotes a topological dynamical system. Given a continuous
map A : {2 — GL(2, C), the associated linear cocycle is the skew product

(T,A): 2xC* = 2 xC? (0,0) > (Tw, A(w)v). 2.1)
The iterates of A are then defined by (7, A)" = (T", A"), which the reader can check implies
AT 'w)--- A(Tw)A(w), n > 1;
A (w) =11, n=0; 2.2)
[A™(T"w)]", n<-—1.
816
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Definition 2.3. Consider a continuous cocycle (7, A) over a topological dynamical system
2, 1).
(a) We say that (T, A) is uniformly hyperbolic if for constants ¢, A > 0 one has
[A" (@)l = ce’™, Vo e 2, neZ. (23)

(b) We say that (T, A) enjoys an exponential dichotomy if there exist continuous maps
E-,ET: 2 — CP' such that

A@E* () = E*(Tw), 2.4)
and constants C, A > 0 such that

A (@)vi], A (@)v_|| < Ce™, VneN, we 2, (2.5)
for all unit vectors vy € E¥(w).

If |det A(w)| = 1, then (a) and (b) are equivalent. See [18] for proofs.
The Schwartzman homomorphism

As before, let ({2, T, u) denote an ergodic topological dynamical system. To define the
Schwartzman homomorphism and the associated groups, one needs a flow, that is, a continuous-
time dynamical system. The most natural way to produce a continuous-time dynamical system
that interpolates a discrete-time system such as ({2, T) is to form the suspension. To be more
specific, the suspension of (§2, T, u), denoted (X, 7, v), is defined as follows. The space X is
given by

X=02xR/~, where (w,0)~(,t) & t—t cZand T " w=0w. (2.6)
We write [w, t] for the class of (w,t) in X. The flow on X, denoted by 7, is the natural
projection of the translation action of R, that is,

(o, t]) = o, t +5], [0,t]€X. 2.7)

Finally, v is the natural measure on X given by

1
/fdv:// f(w, t]) du(w)dt. 2.8)
X 2Jo

Recall that ¢g, ¢; € C(X,T) are called homotopic, denoted ¢pg ~ ¢, if there exists a
continuous F : X x[0, 1] — T such that F(-, j) = ¢; for j =0, 1. Let CY{X,T)=C(X,T)/~
denote the set of homotopy classes of continuous maps X — T. Given ¢ € C(X, T), x € X,
one can lift the map ¢, : r — ¢(z'x) to ¥, : R — R. From [29], there exists a real number
rot(¢p) € R such that
P (1)

t

v-a.e. x € X.

rot(¢) = lim

11— 00

The induced map §, : C*(X, T) — R given by
Sv([@]) =rot(¢p) v-ae. x € X,

is called the Schwartzman homomorphism. When working with linear cocycles over a dynam-
ical system, it is often convenient to work with maps into the projective line RP' instead of
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T. For such maps, one can define §, by identifying RP! with T via the map T > 6 >
span{(cos 76, sinm#) "} € RP'. Using this identification, if 4 € C(X, RP'), one has

1
F.(A) = Jim — AT A('x), v-ae. x € X, (2.9)

—ocomT are

where Aérg denotes the net change in the argument on the interval /. Since we have chosen to
define the Schwartzman homomorphism and group by considering maps into T = R/Z instead

of RPP!, notice the factor of 7 that appears in (2.9).

Definition 2.4. With notation as above, the Schwartzman group associated with (2, T, ),
denoted A({2, T, ), is the range of the Schwartzman homomorphism, that is,

AR, T, n) = F,(CHX, T)). (2.10)

It is known and not hard to check that 2(({2, T, 1) is a countable subgroup of R that contains
7. Indeed, one can check that C*(X, T) has at most countably many elements and the (class
of) the map [w, t] — t mod Z is mapped to 1 by §,. The reader may see [14,15] for details
and further discussion. In Section 5, we will discuss some specific examples and identify their
Schwartzman groups (without proofs, which can also be found in [15]).

2.2. CMV matrices

Let us briefly review some aspects of the general theory of CMV matrices and Floquet theory
for periodic CMV matrices. We refer the reader to the monographs [30,31] for additional details
and proofs.

Given a sequence {&,},cz With o, € D for every n, the associated extended CMV matrix
& =&, is given by

aop-1 aipo  P1Po

£= PopP—1  —pPod—1 —Ug —P100 , @2.11)
QP —ohor  3p2 P32
Pp1 —p20]  —d30y  —P302

where p, = /1 — |ot,1|2 and we use a box to denote the matrix element (8o, £,80). It is well
known that £ enjoys a factorization £ = LM, where £ and M are block diagonal with 2 x 2
blocks. Namely,

L =P o) (2.12)
M =P O@n). (2.13)
where in both cases O(«;) acts on 2({j, j +1}) and O is given by

@ V1—la?
O(a) = 5 . (2.14)
Vv1—|af —a
If « is periodic of period N and N is even, then we consider the Floquet matrices Fy(0)
given by restricting to [0, N — 1] with the boundary condition u,+y = eu,.
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One can check that the LM factorization induces a corresponding factorization of the

Floquet operators. That is, with

[ O(xp)
O(a2)
Ly(®) = (2.15)
i O(ay_2)
[~y e on-
O(ay)
Mpy(0) = , (2.16)
' Oan-3)
| e oo N1
we have
Fn@) = Ly@)Mny(0). (2.17)

Since we are interested in computations, let us write out the exact form of Fy(0) for relevant

ranges of N € 2N. For N = 2,
Fn@®) = Ly@)My(0)

_|la po —a; e "p
= 0 _
Lpo —ao| [e7p1
= . o e
_ | @+ e pipo e prag + arpo 2.18)
= ‘0 0 -l . .
| —a1po — € prag e p1po — o
Similarly, for N = 4, we have
- o Cig—
—003 aipo  p1po e aops
— —if
— P03 —0jg  —pP1% e " PoP3
Fn@=| i o (2.19)
€ p302 201 —00] o302
i0
| —€"p302 p2p1 —ppon —Ozn
In general, for N > 6, these have the form
Fn©)
—a0aN—1 a@ipo P1PO e Pagpn_1
—poaN-1 —ajy  —prog e popn—1
P —o azp P3P2
P2P1 —p20y —o302 —p302
- (2.20)
AN_4PN-5 —ON_4UN-5 OUN_3PN—4 PN-3PN—4
PN—4PN-5 —PN—-4AN—5 —ON_30N—4 —PN-30N—4
ew. PN—1PN-2 UN_2PN-3 —ON_20N-3 AN_1PN-2
L—e py_1an_2 PN-2PN-3 —PN-20N-3  —ON—1ON-2
Let us also define the Szegd transfer matrices. For z € C and « € I, one defines
1 7 —a
S(a, z2) = | _ e (2.21)
V1—|a]? L7¥2

For our numerical calculations, we want to note the following fact, which relates zeros of the
trace of a product of Szegd matrices to eigenvalues of a suitable Floquet cutoff and follows

819



D. Damanik, M. Embree and J. Fillman Indagationes Mathematicae 35 (2024) 813-836

from the general theory of periodic CMV matrices. For completeness, we include the short
proof.

Proposition 2.5. Suppose {o,},cz is N-periodic, let Ay denote the associated discriminant
given by

Ay(z) = Tr(z " S(an, 2)S(ay-1.2) - - (e, 2), (2.22)
and consider the Floquet matrices as in (2.18), (2.19), and (2.20).

(a) If N is even, then z is a zero of Ay if and only if 7 is an eigenvalue of Fy(w/2).
(b) If N is odd, then z is a zero of Ay if and only if 7 is an eigenvalue of Fon (7).

Proof. Suppose N is even. Setting & = /2 in [31, Eq. (11.2.17)] (notice that 8 = ¢’ in
Simon’s notation) gives

N—1

det(z — Fy(/2)) = zV/? ]‘[ p; | An(2). (2.23)
j=0

In view of (2.22), this implies that the zeros of Ay(z) and det(z — Fn(r/2)) coincide, proving
(a). The proof of (b) follows in a similar fashion by using [31, Eq. (11.2.17)] with 6 = 7 to
get

2N-1

det(z — Fon(m) =2V | [ oj | (Aan2) +2) (224)
Jj=0

together with the identity
A2 =Tr(A)A -1
for A € SL(2, C), which implies A,y (z) = [AvDP? =2. O

We mention this connection for two reasons. First, the results that one brings together to
connect the Ising partition function to gap labels naturally relate to the two sides of (2.23).
More specifically, the gap labelling theorem that we will formulate in Theorem 4.2 concerns
the density of states measure, which is related to normalized eigenvalue counting measures
associated with cutoff operators in a natural way, and hence connects to the left hand side
of (2.23), whereas Proposition 3.2 gives a connection between Ay(z), which appears on the
right hand side of (2.23), and the partition function of an associated Ising model. Secondly,
finding roots of polynomials can be numerically delicate (depending on the basis in which the
polynomials are expressed, the magnitude of the coefficients, and the algorithm for finding
roots), whereas computing eigenvalues of unitary matrices is robust. Indeed, a common way
to compute roots of polynomials expressed in the monomial basis is to find eigenvalues of the
associated companion matrix, which can yield poor results [32].

2.3. Ergodic CMV matrices

Definition 2.6. Let ({2, T, ) denote an ergodic topological dynamical system as in Section 2.1,
that is, {2 is a compact metric space, T : {2 — {2 is a homeomorphism, and p is a T-ergodic
probability measure. Given a continuous function f : {2 — D, the associated ergodic family
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of CMV matrices is {€(w)}wen, Where E(w) is defined by the coefficients
a(w)=f(T"w), weNR, nel. (2.25)

Definition 2.7. For each N € N, w € 2, we define the measure «,, 5 to be the normalized
eigenvalue counting measure of £(w)xo n—1], that is,

1
/ fdkon = ﬁTr FE()xo,n-1)- (2.26)
We also define the density of states (DOS) measure k by
/ gdr = / (80, 8(E(@))d0) dp(w), (2.27)
D [0

and note that x, y — k weakly as N — oo for pu-a.e. @ € 2 by arguments using
ergodicity [31, Theorem 10.5.21].

Let us see that one can recover the DOS from the zeros of the discriminants associated with
periodic operators defined by the ergodic family. Given £(w) as above, define

Dy(z, ) = Tr[S(ay(®), 2) - - - S(a1(@), 2)] .

It is known that Dy(-, w) has N distinct zeros &(w), ..., Ey(w) that lie on 9D [31]. We denote
by v, n the normalized zero-counting measure, that is,

1 N
dvy Ny = — (). 2.28
/mf Vo N Ngf(é(w)) (2.28)

Proposition 2.8. With notation as above, one has v, n — «k weakly for a.e. w € (2.

Proof. From [31, Theorem 10.5.21], we know «, y — k, so it suffices to show that v, y
has the same weak limit as «,, y. Using Proposition 2.5, we see that v, y is the normalized
eigenvalue counting measure of a suitable Floquet cutoff of £(w), so the desired conclusion
holds by a direct calculation. [

3. From Ising, Lee, and Yang to Cantero, Moral, and Velazquez

Let us explain how the relationship between Lee—Yang zeros and discriminants of CMV
matrices arises. The first observation is that one can characterize the partition function Zy(¢)
as the trace of a suitable matrix product. This matrix formalism is well-known to experts,
but we include a detailed discussion for ease of reading. To define the aforementioned matrix
product, write

_ | B¢ 1/B
M(ﬂ,i)—[l/ﬂ ﬂ/g_} 3.1)

for B,¢ € C\ {0}.

Proposition 3.1. Let p, > 0 be given for 1 < n < N, define B, as in (1.5), and let Zy
denote the associated partition function. One has

ZN@) =TeM(Bn, HIM(Bn-1,8)--- M(B1, §)] (3.2)
for all ¢ # 0, where M is given by (3.1).
821
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Proof. The proof of this result can be found in most standard textbooks on solvable models
in statistical mechanics, e.g., [4]. We reproduce the proof of [4] here to keep the paper more
self-contained.

Write the entries of a 2 x 2 matrix as

A= [AH A*v—} ) (3.3)

In particular, combining (3.1) and (3.3) gives

M(B, ) = B £+, (3.4)

Consequently, using (1.6) and (1.2), we have

N
Zve) =Y [[sren

(IEAN n=1

N
5 [Tpemgoonn

oeAy n=1

N
Z 1_[ M(ﬁns {)0,1,0n+l :

oeAy n=1

Now split the sum and use the periodic boundary condition again to get

N
Zv@) = Y [TMBr Oonon

(YEAN n=1

N
o> TIMGBe Do

0]6/11 (09,..., UN)EAN—I n=1

D IMBLE) - MBN, oy

U]EA]

=Tr[M(B1,¢)---M(Bn, O]

The result follows by noting that 8, > 0, so M is symmetric and thus one can reverse the
order of the factors by taking the transpose. [

With Proposition 3.1 proved, let us now connect back to CMV matrices, by way of the
Szeg6 transfer matrices introduced in (2.21).

Proposition 3.2. With notation as in Proposition 3.1, the zeros of Zyn({) are the same as the
zeros of Dy(¢?), where

Dy(2) :=Tr[S(By* 2) -+ S(B; 2. 2)] - (3.5)
Equivalently, the zeros of Zn(¢) coincide with those of 51\/(; ), where

Dy (z) = Tr[S(By* 2)S(0, 2)S(By2,, 2)S(0, 2) - - S(B %, 2)5(0, 2)] - (3.6)
822
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Proof. For ¢ # 0 and 8 > 1, notice that

-1 0 -1 0 -1 0]|(8¢
o o gd=[% c}[

| =

= §¢1 —B2S(B ).

Thus, S(ﬂj;z, ST S(,sz, £?) is similar to a nonzero multiple of M(Bn,¢)--- M(B1,¢) and
the first claim follows from Proposition 3.1. The second follows from noting that

S(a, 2)8(0, 2) = S(a, 2%)

foranya €D, ze C. O

4. From Szegé to Schwartzman a la Geronimo and Johnson

In the previous section, we saw how to relate the partition functions of a ferromagnetic Ising
model to discriminants associated with a family of periodic CMV matrices. Next, we want to
explain how to relate zeros of the discriminant to the rotation number of the Szeg6 cocycle
and hence to the range of the Schwartzman homomorphism. Throughout this section we fix
an ergodic topological dynamical system ({2, T', u), a continuous f : 2 — D, and let {E(w)}
denote the associated family of CMV matrices defined by (2.25). We assume supp u = (2.

By general arguments, there exists a compact set X' € 9D such that o (E(w)) = X for p-a.e.
w € £2. Moreover, o(E(w)) = X for any o with a dense T-orbit.

Given this setup, we define

Al@) =2 'S(f(Tw), )S(f(@),2), @€ 2, zeCT\{0},
where S is given by (2.21). We can then characterize the almost-sure spectrum X' as the

complement of the set where (T2, A;) is uniformly hyperbolic.

Theorem 4.1 (Johnson’s Theorem for CMV Matrices). Assume ({2,T,u) is an ergodic
topological dynamical system such that suppu = 2, f € C(2,D), and let X denote the
associated almost-sure spectrum associated with the family {E(w)}pen. We have

D\ X =UH = {z € D : (T?, A.) is uniformly hyperbolic}. 4.1

See [18] for additional details and a proof. One major application of Theorem 4.1 is the gap
labelling theorem for ergodic CMV matrices, which we formulate presently.

Theorem 4.2. Let (2, T, ) denote an ergodic topological dynamical system such that
2 =suppup, f € C(12,D), and {E(w)}pen the associated ergodic family of extended CMV
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matrices. Let k and X' denote the density of states measure and almost-sure spectrum associated
with this family. For any 71,2, € 0D\ X, one has

K([Zl? ZZ]) € Q[(‘Qv Ts I'l/)s (42)

where [z1, 23] denotes the closed arc from z; to 7 in the counterclockwise direction.

Proof. This result is a consequence of [22,30]. Let p denote the rotation number associated
with the family {€(w)}, as defined in [22, Section 4]; notice that this comes with a factor %
(cf. [22, Eqg. (4.9)]). On the one hand, [22, Theorem 5.6] asserts that p takes values in (2w
times) the Schwartzman group in the gaps of Y, that is, on connected components of dD \ X.
Notice that the Schwartzman group in [22] differs from ours by a factor of 277; compare the first
displayed equation on [22, p. 171]. On the other hand, p is related to the Lyapunov exponent
via [22, Theorem 4.7]. Namely, there is an analytic function w(z) such that the boundary values
of Re w give the Lyapunov exponent and the boundary values of Im w give p. By combining
this with [31, Theorems 10.5.8 and 10.5.21], we are done. [

The main result follows by combining all of these pieces.

Proof of Theorem 1.1. This follows by combining Propositions 2.8, 3.2 and Theorem 4.2.
More specifically, Propositions 2.8 and 3.2 show that the left-hand side of (1.8) is «([z1, z2])
and Theorem 4.2 shows that this quantity belongs to 2. [J

5. A Gallery of Lee-Yang and CMV Zeros

Let us conclude with a discussion of several examples, including some plots of the
distributions of the relevant zeros. By combining Propositions 2.5 and 3.2, the zeros of Zy
may be computed by finding eigenvalues of Fy (7 /2), where Fy denotes the Floquet matrices
associated with a suitable extended CMV matrix, which is the approach employed in the
numerics below.

Before embarking on these computations, we note one potential opportunity for acceleration
of the eigenvalue calculation for large-scale problems. The corner entries in (2.20) cause the
matrices Fy(0) to have full bandwidth. In the case of Jacobi matrices, a simple reordering
described in [28] results in Hermitian matrices of bandwidth 5, allowing for efficient numerical
eigenvalue computations. An analogous reordering is possible here, though the CMV structure
makes this reordering a bit more intricate; the result is a matrix having bandwidth 9. Such
structure is less clearly exploitable in non-Hermitian eigenvalue computations, but QR-related
algorithms for CMV matrices (see [11,33]) could potentially be adapted and extended to this
case.

We consider a CMV matrix of even period N, and define a permutation p : {1,..., N} —
{1,..., N} by
2j —1, joddand 1 < j < N/2;
. 2N+1-2j, joddand N/2 < j < N;
r()=1,. : . (5.1
27, jevenand 1 < j < N/2;

2N +2—-2j, jevenand N/2 < j <N.
Let P denote the associated permutation matrix, which is given by Pe; = e, ;). Equivalently,
Pij = i pi)- (5.2)
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The bandwidth of the reordered matrix PFy(0)P* is at most 9.

Proposition 5.1. Suppose N > 2 is even. The bandwidth of ]?N(G) = PFn(O)P* is at most
9. More precisely,

(ej, Fn(@)er) =0 (5.3)

whenever |j — k| > 4.

Proof. If N = 2 or 4, the claim holds vacuously, so assume N > 6. Write dy(j, k) =
min{|j — k|, N — |j — k|}, and notice that (e;, Fy(@)ex) = 0 if dy(j, k) > 2. Since

(ej, Fn(@)er) = (€11 Fn(O@)e, 1), (5.4)
it suffices to demonstrate

lj =kl >4 = dy(p™' (). p~ (k) > 2. (5.5)
Equivalently, we may show

dy(t,m) <2 = [p(f) — p(m)| < 4. (5.6)

It is straightforward (albeit a little tedious) to verify (5.6) from the definition of p. Indeed, if
¢{=m+ 1, we have (using N +1=1)

p(m+1) — p(m)

2m+1)—2m—1) =3, m odd and m < N/2;
2m+1)—1—-2m=1, m even and m < N/2;
(N—-1)=—N=-1, m = N/2 and N/2 is odd;

2N+2-2m+1)—2N+1—-2m)=—1, moddand N/2 <m < N;
2N+1-2m+1)—2N+2—-2m)=-3, mevenand N/2 <m < N;
1—-2=-1, m=N.

The results are similar, but slightly more laborious for p(m + 2) — p(m). O

For inspiration and context, here is a picture of the permutation when N = 24.

Adjacency graph for Fy(0) Adjacency graph for F N(©)
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The graph on the left shows the adjacency relations for Fy(6), having an edge from i to
Jifi # j and [Fy(0)];; # O (for a generic CMV matrix). The graph on the right shows the
same scheme for Fy(#). From this perspective, the conclusion of Proposition 5.1 is easy to
check visually: one simply verifies that the indices of connected nodes can differ by no more
than four in the adjacency graph for Fy(6).

The figures below ihow the corresponding nonzero pattern of the matrix Fy(6) (left) and
its reordered version Fy(0) (right).

1| mmm 1l mm mm
L 1] (1] ]
L L]
EE EE
] ] [ ] ]
6 6 n m
[ ] [ ] ] u
[ ] ] [ ] |
[ ] ] L] ]
] [ ] | ]
u m u
12 12 EE EE
[ ] ]
L] ]| L]
[ ] [ ] ] u
[ ] ] ]|
m (1]
18 18 HE EE =
u m u
[ ] ] ] ]
HE _EE
L] NN
] [ ] (1]
24+ M 24 EE EN
1 6 12 18 24 1 6 12 18 24

Let us conclude with some plots of zeros and numerical approximations of the density of
zeros. We begin with the Fibonacci case, which supplied the original motivation for the present
work.

Example 5.2 (Fibonacci). Consider an alphabet A = {a, b} with two letters, and let A*
denote the free monoid over A (that is, the set of finite words written with the letters in A).
The Fibonacci substitution is defined by S(a) = ab and S(b) = a, and extended to A* by
concatenation. Thus, beginning with the seed uo = a, one forms the sequence u; = S*(wp):

u; =ab
u, = aba
u3 = abaab

us = abaababa,

and so on. As one can see, the initial letters stabilize once they appear, so one can define the
word uy = limg_, o 1y = abaababa. .., where the limit may be understood in the sense of
the product topology on A" (and in which A has the discrete topology).
One can specify a ferromagnetic Ising model by choosing pa, pp > 0 and defining the
sequence of normalized magnetic couplings via
by = :pa, Uso(n) = &; 5.7
Pb,  Us(n) =Dh.

There are several equivalent ways to imbed this example into an ergodic context. The
Fibonacci subshift, x € A? is the set of all sequences whose local structure coincides with
that of u,,. More precisely, if v = vy ---v, € A* and u is a finite word or infinite sequence,
we write v <u if for some j, v =u(j)u(j+1)---u(j + € — 1) (and we say v is a subword of
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u). One then defines

r={w=(Whez :VLEN, n€Z, w,  Wyio—1 <Uso}- (5.8)

One can check that £ is a compact subset of A% that is invariant under the action of the shift
[Tw]l, = wy41. It is furthermore known that ({2, T') enjoys a unique 7T'-invariant measure
satisfying supp u = (2.

For this system, the set of labels can be computed explicitly:

A, T, W) =Z +aZ = {n +ma :n,m € 7}, 5.9)

where o = («/5 — 1)/2 denotes the inverse of the golden mean; see, e.g., [7,15] for details.

Let us show some plots for this model. Following [3], we take p; = 2/3 and pp = 1/100.
First, we show the zeros of the partition function for the Ising model corresponding to k = 10
and k = 17 iterations of the Fibonacci substitution. (The k = 10 plot replicates the analogous
plot in [3, Fig. 1].)

Fibonacci: k=10 (N = 178) Fibonacci: k =17 (N = 2584)

-
- -

. ~
N\
“\ \

05r 0.5

- ..

-

-05 1 -0.5

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Next, let us inspect the corresponding IDS, plotted as function of 6 = —i log z/2m, that is,
we compute «([1, €2™1%]) for 6 € [0, 1]. (The IDS for k = 10 is shown in [3, Fig. 2].) The
fractal nature of the distribution of the zeros becomes more apparent from this perspective,
and indeed can be seen to be a consequence of the Cantor structure of the spectrum of the
CMV operator having coefficients generated by the Fibonacci sequence [20]. It is known that
the density of states measure assigns no weight to gaps of the spectrum, so each flat portion
in the graph of the IDS corresponds to a gap in the spectrum. The height of the graph of the
IDS in the gap then corresponds to the gap label.

08

0.6

02

Fibonacci: k =10 (N = 178)

0.9
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To get another perspective on the structure of gaps, let us look at the distribution of gap
lengths. The histograms below show the proportion of gaps between successive zeros of various
lengths.

Fibonacci: k =10 (N = 178) Fibonacci: k =17 (N = 2584)

0.3

0.3

o
o
o

- 9 0.25 -

o
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0.1F

0.05 H 1 0.05
L 0 WL .

7 -6 5 -4 -3 2 0 7 6 5 -4 -3 2 -1 0
logyo(gap widths, normalized by 2m) logyo(gap widths, normalized by 2m)

proportion of gaps
°
o
proportion of gaps

Example 5.3 (General Subshifts). The previous example is a special case of a general type
of dynamical system, called a subshift. To formulate the general setting, consider a finite set
A (the alphabet) with the discrete topology, and X = A% with the product topology. This
topology makes X a compact metrizable space with, e.g.,

d(w, @) = 27 minllnkenson) o) £ o (5.10)

an example of a metric giving the topology on X. The shift on X is given by [Tx], = Xx,+1
for x € X. A subshift is any T-invariant compact subset of X. If {2 € X is a subshift, one
abuses notation and writes T for the restriction of the shift to 2. If u is a T-ergodic measure
on {2, it is known that

Ql(Q,T,/L):{/fd,u:feC(Q,Z)}. (5.11)

Equivalently, 2A(f2, T, u) can be characterized by measures of cylinder sets. More precisely,
given a word u € A*, the associated cylinder set is

E,={weR:w;=uj, V1 <j <n}

Then A(£2, T, u) is precisely the group generated by {u(=,) : u € A*}.
One particularly interesting class of subshifts is supplied by so-called subshifts of finite-type.
Given a matrix M € RA*A such that My, € {0, 1} for every a, b € A, the associated subshift

of finite type is given by

Oy ={we A% : M, =1VneZ). (5.12)

n,>Wn+1

One also assumes that M is primitive in the sense that for some n € N, (M")ap > 0 for all
a,be A

There is a plethora of invariant measures on 2. Suppose P € RA*4 is such that every
entry of P is nonnegative, Pap > 0 <= Myp =1, and

Y Pap=1 VacA
beA
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By the primitivity assumption on M and the Perron—Frobenius theorem, there is a unique
invariant probability vector, that is, a vector (pa)ac.4 such that

> paPab=po. Vbe A (5.13)
ac A

The induced measure p on {2y is given by

n—1

10D = Py [ ] Py (5.14)
j=1

In view of the previous discussion, one can use this to compute ({2, T, i) in terms of the
entries of P and p, namely, 2({2, T, i) is the Z-module generated by the numbers in (5.14).

Example 5.4 (Cat Map). We begin with the base space {2 = T? := R?/Z. The cat map is the
transformation 7' = Ty @ 2 — {2 given by

Toalx,y)=Q2x+y,x+y), (x,y)eT% (5.15)

This example is known to have many invariant measures. One can check that © = Leb, the
normalized Lebesgue measure on T2, is T.q-ergodic. It was shown in [15] that

A(£2, Tear, ) = Z. (5.16)

For the sampling function, we take f(x,y) = 1/2 4 cos(2xy)/3. The corresponding
Verblunsky coefficients are

an(x,y) = f(T"(x,y), (x,y) €T (5.17)

In view of the relationship we have discussed previously, this corresponds to an Ising model
with couplings

1
pn = pn(-xa y) = _E log f(Tn(-xv )’))
By induction, one can check that
T5(x, y) = (Foup1x + Fo,y, Foux + Fop_1y),

where F, denotes the nth Fibonacci number, normalized by Fy = 0, F; = 1, and F,1; =
F,+ F,_ forn > 1.

For the cat map, we produce plots similar to those from previous example. We note that
the numerical calculations in the illustrations that follow require more care than might first be
apparent. The rapid growth of the entries in 7, (x, y) means that, in standard double-precision
floating point arithmetic [27], the argument y in cos(2ry) in the calculation of «,(x, y) lacks
sufficient precision for the Verblunsky coefficients to be computed accurately. Indeed, double
precision calculations produce o, (x, y) with errors of O(1) when n > 40, rendering subsequent
numerically computed eigenvalue statistics essentially meaningless. To avoid this pitfall, we
compute these coefficients using high-precision arithmetic in Mathematica, then render them in
full double-precision accuracy for the subsequent eigenvalue calculation. (We use MATLAB’s
standard dense nonsymmetric eigensolver eig to compute the eigenvalues of the unitary matrix
Fn(/2).)
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We start with the zeros, generated with x = 1/ V2 and y = 1/+/3. In the plots below, the
red arc [e~'?, ¢'?] for ¢ = 2sin"!(1/6) denotes an inner bound on the spectral gap proved
in [17].

cat map: N = 400 cat map: N = 3200
1+ L me—, b
"’- \\
¢/ N,
rd
ost / 05F
I/
!
or l 0
\
\‘.
050 Y 05
.
N, ’
\\h /"
S
1 — e 1
1 0.5 0 05 1 1 0.5 0 05 1

As the reader can see, the zeros densely fill an arc of the circle, which is expected given
results obtained rigorously from the gap labelling theorem. Below, we show the IDS as a
function of 6 = —ilogz/2m as before.

cat map: N = 400 cat map: N = 3200

1
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04r 1 o4l
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As one can see, the graph comports with the general picture of an absence of gaps, since it
appears (as it must) that the IDS is everywhere increasing on a suitable arc.
Finally, we conclude with the distribution of gap lengths.
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Here, one observes something rather curious: the lengths of the gaps seem to be more
uniform than one might expect. Concretely, from existing work on Schrodinger operators [8],
one would expect CMV matrices with coefficients generated by the cat map to exhibit Anderson
localization, that is, pure point spectrum with exponentially decaying eigenfunctions. Then,
based on the same reasoning that one pursues for Schrodinger operators, one would expect the
distribution of eigenvalues to exhibit less repulsion.

Let us note that the cat map has a natural Markov partition and hence is a factor of a subshift
of finite type in a natural way. Concretely, taking A = {1, 2, 3,4, 5} and

My =

0
0
0 , (5.18)
1
1

O O = = =
O O = = =
O O = =
—_—_- o O O

there is a continuous factor map @ : 2y — T? such that ® o T = Ty 0 @, where T denotes
the shift on 2);. See Brin—Stuck [9, pp. 135-137] or Katok—Hasselblatt [25, Section 20] for
more discussion and details.

What is notable about this example is the disparity between the label sets. For the subshift
{2y with invariant measure p, the label set is a dense subgroup of R. However, the label set for
the cat map itself is Z, which leads to the conclusion that the almost-sure spectrum associated
with a cat map model is connected.

Example 5.5 (Skew Shift). The base space is T?> = R?/Z? and the transformation T = Ty is
given by

T(x,y)=(x+y,x+y) (5.19)
where y € R is a fixed irrational number. For this example, the label set can be shown to be

Z+yZ={n+my:n,mel} (5.20)
which is a dense subgroup of R.

For the sampling function, we take f(x,y) = 1/24 cos(2my)/3 as before. The Verblunsky
coefficients are

a(x,y) = f(T"(x,y)), (x,y) €T (5.21)

As before, one can use induction to write T explicitly for n € N as

" nn—1)
Ti(x,y) = x—i—ny,y—}—nx—i—Ty . (5.22)

Taking (x, y) = (y/2, 0) for the starting point leads to

o (y/2,0) = 1/2 4 cos(n*ny)/3, neN. (5.23)
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As in the case of the cat map, we show the zeros for truncations of order N = 400 and
N = 3200 for the case y = 1/+/2, together with a red arc showing an inner bound on the
main spectral gap about z = 1 (indeed the same inner bound as in the cat map example). As
before, we also show the integrated density of states and a histogram showing the distribution
of gap lengths.

skew shift (f(x,y) = 1/2 + cos(27y)/3): N = 400
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While the application to Ising necessitates choosing strictly positive Verblunsky coefficients,

it is also of interest to look at sign-indefinite models from the CMV perspective. A notably
interesting example is given by using the sampling function f(x,y) = Acos(2wy) for some
0 < X < 1. The corresponding figures appear below. (Both skew shift examples give a
numerically computed gap of width zero for N = 3200, not shown on the histograms.)
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Example 5.6 (Unitary Almost-Mathieu Operator). We conclude with the unitary almost-
Matheiu operator, which was investigated in [12,21,35]. The coefficients are given by choosing
y irrational, and constants 0 < A, A, < 1, and defining

o (x) =4/1— A%, o2n_1(x) = Ay cosQRm(ny + x))
for x € T. The plots below use A; = 9/10 and A, = y = 1/+/2.
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unitary AMO: N = 3200
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These plots suggest many interesting problems. We hope this work inspires some readers
to study these questions in more detail, with the goal of proving some rigorous results. For
instance, it would be very interesting to confirm that the spectra of the skew-shift models
proposed above are connected subsets of the circle.
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