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ABSTRACT

From the general inverse theory of periodic Jacobi matrices, it is known that a periodic Jacobi matrix of minimal period p > 2 may have at
most p — 2 closed spectral gaps. We discuss the maximal number of closed gaps for one-dimensional periodic discrete Schrodinger operators
of period p. We prove nontrivial upper and lower bounds on this quantity for large p and compute it exactly for p < 6. Among our results,
we show that a discrete Schrédinger operator of period four or five may have at most a single closed gap, and we characterize exactly which
potentials may exhibit a closed gap. For period six, we show that at most two gaps may close. In all cases in which the maximal number of
closed gaps is computed, it is seen to be strictly smaller than p — 2, the bound guaranteed by the inverse theory. We also discuss similar results
for purely off-diagonal Jacobi matrices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0175428

I. INTRODUCTION
A. Setting
Given v € R? and a € (0, 00)" = RY, the associated periodic Jacobi matrix J = J, , : £*(Z) — £*(Z) is defined by

Oyl(n) = A(n = Dy (n = 1) + V(n)y(n) + A(n)y(n + 1), (1L.1)

where A, V : Z — R are the p-periodic sequences satisfying A(n) = a, and V(n) = v, for 1 < n < p. In order to avoid trivialities that come from
repetitions, we will always assume that (a,v) is irreducible in the sense that it has p distinct cyclic shifts [which is equivalent to restricting
attention to A and V such that (A, V) has minimal period p]. That is, defining cyc : R” — R? by cyc(v) = (v2,v3, . .. ,Up, V1), We say that
(a,v) € RE x R? is irreducible if

(@.0), (cye(@)eyc(v)), «.r (eyd™ (@) ey ™ (v))

are pairwise distinct elements of R, x R?, and we call it reducible if it is not irreducible [with similar definitions of (ir)reducibility of a and v].

Periodic Jacobi matrices play an important role in mathematical physics and spectral theory. On one hand, they arise quite naturally in
the inverse spectral theory corresponding to finite-gap subsets of R: for any finite-gap set X ¢ R whose components have rational harmonic
measure, there is a family (indeed, topologically a torus) of periodic Jacobi matrices with precisely that set as their common spectrum. See
Appendix A for alonger discussion and Refs. 11 and 12 for textbook discussions. From the perspective of direct spectral theory and mathemat-
ical physics, Jacobi matrices give one of the simplest models of a one-dimensional Hamiltonian with nearest-neighbor interactions. Indeed,
the special case a = 1, the vector of all ones, gives rise to discrete Schrodinger operators (DSO), which have been extensively studied over the

years; for background, we point the reader to the textbooks.” '’
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It is known that the spectrum of J, ,, can be written as a union of nondegenerate closed intervals via the following procedure. For each

0 € R, define J(0) = Jo,.(6) by
e—Zniﬂap

J(0) = . (1.2)

ap-2  Up-1 Aap-1
27i0
e llp ap_l UP

Let 11(0) < 22(0) < --- < 1,(0) denote the eigenvalues of J(0) (counted with multiplicity). Defining

A; =min{};(6) : 6 €[0,1]}, A} =max{X;(6):0¢[0,1]},

we have the inequalities A7 < A} <A; <--- < Ap < /\; and the following expression for the spectrum
P - 3+
spec(J) = J [A},A7 ] (1.3)
j=1

The intervals [A;,A}] are called the bands of the spectrum, and the intervals (A}, A},,) are called gaps. One says that A € R is a closed gap of
(a,v)if A =A7 =17, forsome 1< j<p-1.

The famous Borg-Hoschstadt Theorem™"” asserts that if all spectral gaps collapse (i.e., A} =A%, forall 1 < j < p—1), then the diagonals
and off-diagonals are constant; this immediately tells one that the maximal number of closed gaps for a Jacobi matrix of minimal period p
is at most p — 2. In fact, within the class of all Jacobi matrices with minimal period p, the maximal number of closed gaps is precisely p — 2,
which can easily be deduced from the inverse theory (see Appendix A). We are interested in what restrictions are placed on the structure of
the spectrum if one restricts attention to the class of DSO.

Question 1.1. How many closed gaps can an irreducible (a,v) € R% x R? have if it belongs to the class of discrete Schrédinger operators?

This work is related to and inspired by VandenBoom’s work."? More specifically, VandenBoom investigates broadly what sets whose
components have rational harmonic measure can be spectra of discrete Schrodinger operators, and the question we are after here is of a
related nature: how many connected components can the spectrum of a period-p DSO have? We also discuss the related case of off-diagonal
Jacobi matrices (ODJM), which correspond to v = 0.

B. Results
To formulate results, let ®(a,v) denote the number of closed gaps'* of (a,v). When restricting to the class of discrete Schrodinger
operators, we write H, = J; , and ®pso(v) := (1,v). Similarly, we write L, = J, o and Gopym(a) = ®(a,0). We are then interested in the

quantities:
gac(p) = max {6(a,v) : (a,v) € RE x RP isirreducible}
apso(p) = max {Gpso (v) : v € Rf isirreducible}
goopm (p) = max { Gopym(a) : a € R, isirreducible}.
From the definitions, we see that g(1) = 0 trivially in every case, so we focus on p > 2. It is well known and not hard to show that Gpgo (v) = 0
for generic'® v € R? and similar reasoning shows Gopym(a) = 0 for generic a € R ; compare Ref. 1, Claim 3.4 and Ref. 7, Lemma 2.1.

One can readily show that
giac(p) =p-2, p=2 (1.4)

Indeed, this follows immediately from the general inverse spectral theory of periodic Jacobi matrices. For the reader’s convenience, we give
the proof of (1.4) in Appendix A.
From (1.4), we immediately note the upper bounds

gpso(p), gopm(p) <p-2, p>2. (1.5)

One naturally wonders how gpso, goojm, and g compare with one another aside from this bound. In particular, one naturally may wonder
whether (1.5) is sharp. We will show that in general (1.5) is not sharp.

Theorem 1.2. Let p > 7 be given.
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gpso(p) > 1

gpso(p) <p-3if p#2 mod 4.

goom(p) > Lif p is even and goopm (p) > 2 if p is odd
gopm(p) <p-3.

Remark 1.3.

We expect that the upper bounds from Theorem 1.2 are not sharp in general. We will see in the next theorem that the lower bounds can
be improved inductively.

We also expect that the arithmetic assumption in part (b) is an artifact of the proof. It would be interesting to find an alternative approach
in this case.

The theorem is only formulated for p > 7, since we compute the quantities in question exactly for p < 6 and give some additional infor-
mation below. For instance, we will see that the lower bound from part (a) holds for all p > 4 and the upper bound from part (b) holds
forallp > 3.

For larger periods, one can use an inductive construction to prove larger lower bounds:
Theorem 1.4. Forall p,k > 2, and e € {DSO, ODJM},

9e(2kp) > go(p) + (k- 1)p. (1.6)

Remark 1.5.
It is not hard to see from the proof that one in fact has
ge(mkp) 2 ge(p) + (k= 1)p (1.7)

for all m,p,k > 2,and e € {DSO,ODJM}.
This bound is also in general not sharp. For instance, taking k = p = 2 gives the lower bound

gpso(8) > gpso(2) + (2-1)2=2.
However, the reader can directly check that for any A # 0, v = (0,0,0,1,0,0,0, 1) has closed gaps at E = —\/2,0, +v/2, and hence

gpso(8) > 3. (1.8)

To supplement the abstract results, we also give exact computations for periods p < 6. The computations and their proofs suggest that

the behavior of ge may be subtle in general.

(a)
(b)
(©)
(d)

Theorem 1.6. We have:

gpso(2) =0,
gpso(3) =0,
goom(2) =0,
gopm(3) = 0.

Equivalently, ®pso(v) = 0 for any irreducible v in R* or R® and Gopy(a) = 0 for any irreducible a € R% or R3..

Remark 1.7. Let us point out that ®(a,v) = 0 for irreducible (a,v) of period 2 is well-known and follows immediately from the general

theory [compare (1.4)]. It is included for completeness and because the calculations used to prove this directly furnish a basis for more
elaborate computations later. We found the result for p = 3 already to be intriguing, since 0 < gjac(3) = 1, so the maximal number of closed
gaps is strictly less than the theoretical upper limit provided by (1.4).

The next result shows ge(4) = 1 for e € {DSO,ODJM} and explicitly characterizes the coefficients that saturate the maximum. Again,

we found this striking, since 4 — 2 = 2 > 1, so the maximal number of gaps is again strictly smaller than gjac(4) = 2 in the restricted classes.

Theorem 1.8. We have:
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gpso(4) = 1. Moreover, if v € R* is irreducible, then Gpso(v) = 1 if and only if, up to an additive constant and a cyclic shift, v has the
form

v=(0,4,0,-1), A#0. (1.9)
goopm(4) = 1. Moreover, if a € RY is irreducible, then Gopym(a) = 1 if and only if

ajas = axdq. (1.10)

Theorem 1.9. We have:

gpso(5) = 1. Furthermore, Gpso(v) > 1 for v € R® if and only if v has one of the following forms, up to an additive constant and a cyclic
shift:

@ v=Nn %,Aﬂ -1, %)forsome A, 4 such that Ay # 1.

(i) v=W0n ;;1%11, 1-An, %)for some A, i such that Ay # 1.

gopym(5) = 2. Furthermore, for a € R3., one has Gopym(a) > 2 if and only if, up to a multiplicative constant and a cyclic shift, a has the
form

o +p-1 aff of+pi-1
oL @-nE-n NPl

for some a, B such that either « > 1 and > 1 or o + ﬂz < 1.

(1.11)

Remark 1.10.

We note that gpso (5) and gopjm (5) are both strictly less than gjac(5).

Case (i) in Part (a) corresponds to a gap associated with periodic boundary conditions closing while Case (ii) corresponds to a gap
associated with antiperiodic boundary conditions closing.

Cases (i) and (ii) contain the special case in which v is constant (and hence all gaps close). For instance, taking 1 = 5 = ¢ := (v/5 +1)/2
or A =n=—¢"in Case (i) gives a constant potential.

One has a similar classification in the off-diagonal Jacobi case. Concretely, by a reflection symmetry that we will describe later (see
Lemma 2.2), the spectral gaps of a are reflection symmetric about the origin, and hence occur in matched pairs (since 5 is odd). The case
o, 8> 1in Part (b) corresponds to the “inner” gaps closing while a? + 82 < 1 corresponds to the “outer” gaps closing.

The choices a = f = pand a = B = ¢~ in Part (b) yield the cases of constant off-diagonals in the two settings.

Let us point out some symmetries that are not readily apparent from the expressions. Putting

x+1
xy—1

fe(xy) = o g (%) = f+ (%))

one can check via direct computations that for v as in Case (i) one has v;; = f; (v -1,V j) for any j for which the latter is defined.
In particular, we point out that g3 (x,y) = (x,y) for any (x,y) for which g; is defined. A similar formalism holds for f-(x,y) = (x -
1)/(xy — 1) and in the ODJM case as well.

We conclude the computations for small periods with p = 6.
Theorem 1.11. We have:

gpso(6) =2
gooym(6) = 3.

The rest of the paper is laid out as follows. We review some relevant background in Sec. II, prove the exact computations for g with

p < 6in Sec. 111, and discuss the upper and lower bounds for larger p in Sec. I'V. Appendix A collects some important facts from the general
inverse theory, and Appendix B discusses complex Jacobi matrices, in particular, why we formulate our results for Jacobi matrices with strictly
positive off-diagonals.
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Il. PRELIMINARIES

Let us briefly recall important definitions and results from Floquet theory that will be used in the proofs of the main results. For additional
details, see the textbooks.'"'”

Definition 2.1. Fors € Ry, t € R, denote

B(s,t) := lLtZ 1].

s 0

If (a,v) € R} x R, then the associated monodromy matrix is defined by
®(E) = Oy (E) := B(ap, E—vp) - - -B(az, E - v2)B(a1, E - v1)

and the discriminant is given by
D(E) = Dy (E) = Tr @y (E). (2.1)

The significance of B (and hence of ®) comes from noting that if J, ,,u = Eu for a sequence u : Z — C and a scalar E, then
u(n+1) u(n)
=B(A(n),E-V 2.2
[A(n)u(n)] (A(m) (”))[A(n “Du(n-1) 22)

for every n € Z.
The spectrum of J, ,, is then given by
spec(Ju) ={E€R:-2< Dy (E) <2} (2.3)

and furthermore E is the location of a closed spectral gap of (a,v) if and only if @4, (E) = +1, where 1 denotes the identity matrix.
For the off-diagonal Jacobi case, we need to leverage a suitable reflection symmetry. This is well-known and included to keep the paper
self-contained.

Lemma 2.2. Consider a € RY, and let Lo(0) = Ja0(0) denote the corresponding Floquet matrix.

(a) If pis even, then L,(0) is unitarily equivalent to —L,(6).

(b) If pisodd, then Lo(0) is unitarily equivalent to —La(6 + ).

(c) If piseven, then E = 0 either lies in an open spectral gap, or it is the location of a closed spectral gap.
(d) If pisodd, then E = 0 lies in the interior of a spectral band.

In particular, a has a closed gap at energy E € R if and only if it has a closed gap at —E.
Proof. All statements follow by conjugating L, () with the unitary matrix
U =diag(-1,1,-1,1,...,(-1)"),
thatis, [Uv], = (=1)"vp. O

When we discuss the case of discrete Schrodinger operators, we often abbreviate

M(E) = B(1,1) = [i _01]

and, given v € R” and E ¢ R, we write

@y (E) = D10 (E) = M(E—vp)---M(E—v1)
= Dy, (E) - Dy, (E).

For the off-diagonal Jacobi case, we similarly write

¥, (E) := ©uo(E) = B(ap,E) - - - B(ay, E)
=W, (E)---Ya, (E).

We also will sometimes use free monoid notation, for instance writing v = v1v; - - - v, for a general element of R?. For v e R?, w € R1, we
then write vw = vy - - - vpw; - - -wy € RFF for their concatenation. From this point of view, the map from v to @, (E) at fixed E is an anti-
homomorphism in the sense that

Dy (E) =Dy (E)(Dv (E) (2-4)

12:60:61 ¥202 ¥snbny ¢
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Remark 2.3. There are a few ideas that we use to simplify the calculations. First, one may freely rewrite the identity ©, (E) = +1 as
Doy (E) F [upoy (B)] ™ =0 (2.5)

for a suitable choice of m; generally, we choose m = [p/2], which has the effect of reducing the complexity of the system(s) of polynomial
equations under consideration by (approximately) a factor of two. Second, one can note that

(Dcyc(v) (E) = (DUI (E)q)v (E) [q)’Ul (E)]il’

50 @, (E) = 1 if and only if ®cyc(,) (E) = +1. Thus, for any identity that is obtained from the assumption of a closed gap, one may cyclically
permute the variables to obtain p — 1 additional relations. Concretely, if one obtains a relation that is linear in the variables of v, then one
can immediately deduce that v lies in the kernel of an explicit circulant matrix. This is put to use explicitly in the Proof of Theorem 1.9,
and implicitly in the proofs of Theorems 1.11 and 1.2. Third and finally, v has a closed gap at energy E if and only if v + c1 has a closed gap
at energy E + c. Thus, we can use an additive constant to shift the gaps, which is sometimes useful to simplify the calculations or exploit a
symmetry argument. Similarly, in the ODJM case, one can use a multiplicative constant to scale the locations of the gaps; that is, a has a closed
gap at energy E if and only if ca has a closed gap at energy cE.

Il. EXPLICIT COMPUTATIONS FOR SMALL PERIODS

Proof of Theorem 1.6.

(a) Asnoted above, the statement in this case already follows from the abstract theory. We work it out explicitly since the calculations here
are helpful for later cases. Let v = (v;,v2) € R? be given, and observe

ch(E)_I:E—l’Uz —01:||:E—1’Ul —01]
_ (E*’Ul)(Efvz)*l *(E*’Uz)
_[ (E-w1) -1 ] G0

This immediately implies @, (E) = 1 is impossible. If @, (E) = —1, then adding the (1,2) and (2,1) entries of (3.1) gives
0=(E-v1)—(E-v2) =va -1,

which implies that v is reducible. Thus, no gaps may close for irreducible v € R%.
(b) Letw = (v1,v2,v3) be given, and assume that v has a closed gap at E € R. Rearranging @, (E) = +1 as suggested in Remark 2.3, we get

CDUlvz(E) = i[cD’Ua(E)]_l’ (32)
which, using (3.1), gives
(E-v)(E-v)-1 —(E-v) . 0 1 (33)
(E—’Ul) -1 - -1 E—U3 ’ ’

By examining the (1,2), (2,1), and (2,2) entries, we get
E-vi=E—-wvy=E—-v;=+1,

leading to v; = v, = v, which implies that v is not irreducible. Therefore, there are no irreducible v € R? with a closed gap.

(c) Leta=(ai,a2) e R% be given, and observe
1 E -1|lE -1
Y, (E)=—
a( ) aaz |:a§ 0:||:6l% 0]

1 [E-a -E
= [ 2 ' 2]- (34)
araz azE —a;

Then ¥, (E) = 1 is impossible and ¥, (E) = -1 forces E = 0, and in turn a; = a,, which implies that a is reducible.

12:60:61 ¥202 ¥snbny ¢
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'© and assume E € R is a closed gap of a. Rearranging W, (E) = +1 using (3.4) gives

1 [E*-a® -E 1o 1
— 2 2| =] o . (3.5)
aiay| ayE -a, az|—a; E

Examining the (1,2), (2,1), and (2,2) entries yields

(d) Leta=(a1,a2a3) € R be given,

a)ar ayas aas
—— = —— = "= =F%FE,
as aj a

which implies @, = a, = a3 and hence that a is reducible. Therefore, there are no irreducible a € R with a closed gap.

Proof of Theorem 1.8.

(a) Given v € R* assume that E is a closed gap of v. We will show that ®,, (E) = -1 implies v is reducible and ®, (E) = 1 forces v to be as
claimed in the theorem statement.
Case 1. O, (E) = -1.
As discussed in Remark 2.3, we rewrite @, (E) = —1 as ®y,4, (E) = —[Dy,0,(E)]™". Writing this out with (3.1) yields

(E-v)(E-v)-1 —(E-v) ~ -1 (E-vy)
(E-v1) -1 ]__[—(E_v3) (E-vs)(E-vs) 1] (3.6)

Looking at the (1,2) and (2,1) entries gives v; = v3 and v, = vy, so this case implies v is reducible.

Case2. O, (E) = 1.
By adding a constant to v, we may assume without loss that E = 0. Rearranging the identity @, (E) = 1 as above and setting E = 0

yields
|:1)1’Uz -1 ’U2:| _ [—1 —V4 ] (37)
—v1 -1 V3 v3vg— 1

From this we see that one has v; = —v3, v2 = —vy, and v1v2 = 0. Thus, up to a cyclic shift, v has the desired form, proving the “only if”
part of (a). A direct computation verifies that v has a closed gap at E = 0 whenever v has the form (0,1,0,-1) for some A. Since the
presence of closed gaps is preserved by cyclic shifts and additive constants, this proves the “if” direction.

(b) Leta e R% be given, and suppose a has a closed gap at E € R.

Case 1. V,(E) = -1
1 [E-al -E] 1 [-af E
aa a%E —ag asay —aiE B - a§

Using (3.4), we can rewrite this as
First, by looking at the (1,2) entries, we see that either E = 0 or a1a, = a3a4. However, E = 0 is impossible; indeed, if E = 0, the (1,1) entry
of the left hand side is negative and the corresponding entry of the right hand side is positive. Thus, we have E # 0 and

aijap = aszag. (3.8)

Using this and examining the (2,1) entries, we deduce a; = a3 and a, = a4, which implies that a is reducible.
Thus, neither of the gaps corresponding to Tr ¥ = —2 may close for p = 4 and irreducible a € R%.

Case2. W, (E) =1
1 [B-a -E] 1 [-a E
aja a%E 7:1%  azay 7aiE E? 7a§

Rewriting as above gives us
If E # 0, then the (1,2) entries of each side have opposite signs, so we must have E = 0. Looking at the (1,1) entries gives a1/az = as/as,
as desired. Moreover, one can check from these calculations that if a;as = a,as, then a has a closed gap at E = 0.

Proof of Theorem 1.9.
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(a) First, note that if v has the form given in Case (i) or Case (ii), then v enjoys a closed gap at E = 0 by direct computations: for instance, if
v is as in Case (i), then applying (3.1) and (3.9) with E = 0, we arrive at

—V1VU3 + V1 + U3 —vs + 1 -1 —Us
q)vlvzv 0) - q)u“; 0 = —
3( ) [ 5( )] [ ’U]Uz*l V2 ] [U4 U4U51]
/\;1()L+1) +)L+1 o1 _;1(/1+1)+11+1 o1
= Ap—1 Ap—1 Ap=-1  Ax-1
AM-(An-1)-1 -(n+1)+n+1

=0.

Since such v are irreducible whenever A # 7, we deduce also that gpso(5) > 1.

For the other inequality, let us show that if v has two or more closed gaps, then v is constant (in particular, reducible). To that end, assume
v has two closed gaps. This implies that v either has two closed gaps satisfying Tr(®,, (E)) = +2, two closed gaps satisfying Tr(®, (E)) = -2,
or one of each flavor. We will show that any of these situations forces v to be a constant vector.

Case 1. O, (E1) = Oy (E2) = 1 for some E; + E,.

As before, we may rewrite this as .y, v,0, (Ex) = [@u,0; (Ex)] ™" = 0 for k = 1,2. Computing with (3.1), we have

B 0. (E) = [E -3 —01][(15 —v)(E-v)-1 —(E- Uz)]

1 (E—’Ul) -1
_[(E—Ul)(E—vz)(E—U3)—(E—’Ul)—(E—’l)3) —(E—’Uz)(E—’U3)+1 (39)
(E—Ul)(E—’Uz)—l —(E—’Uz) ’

Putting together (3.1), (3.9), and the assumption ®y,4,v, (Ex) = [@u,v; (Ex)]™" = 0, we get

[* —(Ek—vz)—((Ek—v4)(Ek—v5)—1)]:0’ (3.10)

that is
7Ei+(U4+U5*1)Ek+1+’02*v41)5:0. (311)

Recalling the discussion in Remark 2.3, we may cyclically permute the variables and thus we have
- Ei + (Uj_l +Vj—2 — I)Ek +1+ Vjs1 = Vj-1Vj-2 = 0, 1 Sj <5 k=1,2 (3.12)

Two quadratics with the same roots and the same leading coefficient must have all coefficients the same, so (applying this to jand j + 1), we
see

Vj-1 + Vj-2 = Vj + Vj-1, (3.13)

leading to vj_» = v; for all j and thus,
V1 =0V3 =05 =V2 = Vs
that is, v is constant.

Case 2. O, (E;) = Oy (E2) = -1 for some E; # E,.
This case is similar to the previous one, but instead one considers @y, 4, v, (E) + [®y,0, (E)] ™ and computes its (2,2) entry to see that

Ei - (Ujfl +vj—2 + I)Ek -1+ Vj+1 + Vj-1Vj—2 = 0, 1 Sj <5 k=1,2 (3.14)
The final case is somewhat more involved.
Case 3. O (E;) = —Dy(Ez) = 1 for some E; # E,.
By adding a constant to v, we may assume that E; = —E, =: E. Apply (3.12) with E; = E, (3.14) with E; = —E and add them together to get

E(’Uj_l + Uj_z) + Vg1 = 0, 1 Sj <5, (3.15)
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Since this holds for every j, we see that v lies in the kernel of the circulant matrix
E E 0 1 O
0 E E 0 1
QE):=|1 0 E E 0 (3.16)
0 1 0 E E
E 0 1 0 E
We compute the determinant of Q(E) and factor to get
det (Q(E)) = 2E+1)(E* +E-1). (3.17)

In particular, we observe that the kernel of Q is trivial unless E = —1/2, E = —¢ or E = 1/¢, where ¢ = 1(1/5 + 1) denotes the golden ratio.

When E = —1/2, the kernel of Q is one-dimensional and spanned by v = 1. Thus, for any E # —¢, 9™, we can already see that v is reducible.
Subcase 3.1. E = —¢.
One readily computes that ker Q(—¢) is two-dimensional and spanned by the vectors v* € R’

03 = 4 cos (4n(n—-1)/5), )" =8 sin(4n(n-1)/5), 1<n<5.

[The n — 1 is chosen to make v; correspond to cos (0) = 1 and sin (0) = 0, and the prefactors are chosen to simplify a few fractions]. Thus, we
must have v = av™® + bv®" for scalars a,b € R, so we may write

v:(4a,—u(\/§+1)+b\/5—\/§,a(\/§—1)—b\/5+\/§,...
..‘a(\/g—1)+b\/5+\/§,—a(\/§+1)—b\/5—\/§)

Recalling that @, (E) = T and @, (-E) = —1 by assumption, we have

Oy (-9) = 1.

Rewriting this as
q)vlvzvz(_(/’) - [q)mvs(_(/))]_l =0

and computing the entries (using ¢> = ¢ + 1 to simplify) gives us

0= [(D'UI'UZ'UE;(_(p) - [q)vz;vs(_(p)]_l]lz
==(=p-v)(=p-vs) +1- (¢ -vs)
= —('Uz + U3)(p — VU3 + Us.

Noting that 5 + v/5 = 24/5¢*', we can see
vs = (03 +v3) = (—a(\/§+ 1) -b/5- ﬁ)
—(—a(\/§+1)+b\/5—\/§+a(\/§—1)—b\/5+\/§)<p

12:60:61 ¥202 ¥snbny ¢

=0,
and thus we arrive at
0= —UV2V3

= —(—a(\/§+ 1) +b\/5- \/E)(a(ﬁ— 1) -b\/5+ ﬁ)

=4a® - 41\/5+/5ab+ 256 (3.18)
In a similar way, looking at the (2,2) entry gives

0=4a" +4\/5+\/5ab+2\/5b (3.19)
J. Math. Phys. 65, 052101 (2024); doi: 10.1063/5.0175428 65, 052101-9
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Adding (3.18) and (3.19) gives
8a> +4V/5b% =0,

and thus a = b = 0, which implies v = 0 and hence is reducible.

Subcase 3.2. E = 1/¢.
Similar to before, ker Q(1/¢) is two-dimensional and spanned by the vectors u® € R’

w = 4 cos 2m(n—-1)/5), u)"=V8sin(2n(n-1)/5), 1<n<5.

One deduces a = b = 0 by similar considerations to those in the previous subcase.

Having exhausted the possible cases, we conclude that for v € R®, Gpso(v) > 2 implies that v is constant, and thus gpso(5) < 1. Since
we have already exhibited a pair of two-parameter families with ®pso (v) > 1, we conclude gpso(5) = 1.

Next, we want to show that the presence of (at least one) closed gap implies that v has one of the forms in (i) or (ii). To that end, assume
that v € R® has a closed gap. Since we work up to translation, we may assume that the closed gap occurs at E = 0.

Case 1. ©,,(0) = +1.

Applying (3.1) and (3.9) with E = 0, we arrive at

0= (Dvl'l)z’L);(O) - [CDM’US(O)]_I

|:—U1’Uz1]3 +v1+v3 —vU3 + 1] [—1 —Us5 :|

vivy — 1 2 Vs vaUs5 — 1

[—vlvzm +v1+v3+1 —vvs +Us+ 1]

Vv —vg — 1 —V4Us5 + V2 + 1
Looking at the (1,1) entry and (say) the (1,2) entry, and cyclic permutations of the indices we have
—VjVj+1Vj+2 + Uj + Vj42 + 1=0, V1 Sj <5 (3.20)
VjUj+1 —’Uj+3—1 =0 VI SjS5. (3.21)

Subcase 1.1. v1v; = 1.
Inserting this assumption into (3.20) with j = 1 gives

0=-vivv3 +v1 +v3+1,=v; + 1, (3.22)
so we see v; = —1, which (by the assumption v1v; = 1) in turn forces v, = —1. Using (3.21) with j = 1 gives
mv=muv-1=1-1=0.
In a similar way, v3 = —vs — 1. Thus, v has the form v = (=1,-1 — v5 — 1,0, vs) in this case. Therefore, after a cyclic shift, this has the claimed
form withA =0 7 = vs.

Subcase 1.2. vyv; # 1.
In this case, we can solve (3.20) (with j = 1) for v3 in terms of v1 and v, to get

+1
vy= AT (3.23)
v — 1
We get vy from (3.21) via
V4 = V102 — 1. (3.24)
Finally, we may solve (3.20) with j = 5 for vs to get
+1
vs= 211 (3.25)
V102 — 1

This shows that v has the claimed form up to a cyclic shift.
Case 2. ©,(0) = -1.
This is similar and precisely leads to the other possible form of v.

(b) By reflection symmetry as in Lemma 2.2, any nonzero spectral gaps come in matched pairs. Thus, @ € R3, has a closed gap at E # 0 if and
only if it also has a closed gap at —E. Since 0 is in the interior of a band, each a € R} may have 0, 2, or 4 closed gaps. Due to Theorem
A.1, if a has four closed gaps, then it is a constant vector, hence reducible. Thus, we automatically have gopm(5) < 2.
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Now, assume a exhibits a closed gap. Scaling a by a positive constant, we may assume that a has closed gaps at E = +1. Suppose first that
the “inner” pair of gaps close. This corresponds to
V(1) =1, Wa(-1)=-1. (3.26)

As usual, rewrite the first identity as ¥o, 4,0, (1) = [Wa,a, (1)]™" = 0, leading us to

l—a%—a%+a5 a%—l 1

0= Yana (1) = [Waae (1)] 7 = | @203 ds @1d2ds  dads | 327
113112111( ) [ uw)( )] as aa; . as as .\ ai -1 ( )

aya ap as ayaz asas

Setting the (2,1) entry equal to zero gives
asay -1
as = 7(&11 —a; ) (328)
2

Notice that this forces a; > 1, since as > 0 by definition. On the other hand, subtracting the (2,1) entry from the (1,1) entry (and multiplying
by a1aza; to clear denominators) yields

2 2 2. 22
1-aj—a;—a;+aja; =0.

a=\/(ai - 1)(a5 - 1). (3.29)

At this point, we note that a, > 0, so (3.29) and a; > 1 forces a3 > 1 as well. Substituting (3.28) and (3.29) into the (1,2) entry of (3.27) (and
multiplying by ata3asas to clean up) gives

Solving for as, one has

a azasas 2
" _a

0=(a5-1) a;

as
22 2 2\ 2,2 2, 2 2
= (a1a3 —ay —a3)as(ay — 1) —ay(ay - 1)(a5 - 1)
2 222 22 22 22 2
= (al - 1)(a1a3u4 —apag —asdy —a as + al).
As discussed above, af — 1 # 0 and hence the second factor vanishes. Thus, solving for a;, we have

asdg

V@ -n@-1)
Since we deduced a3 > 1 earlier, (3.30) forces a4 > 1 as well.
Now, we substitute (3.30) back into (3.29) and simplify to obtain

a=\/(al-1)(a3-1)

_\(W§1i2n‘1y%‘”

u§+ai—1

a = (3.30)

ai -1
Finally, (3.28) determines as:

asag

-1
as = ——\(ay —a
5 az(l 1)

B ai-1 asay vV (“%‘ 1)(“2— 1)
e 2iad-1 2 2 B asa
R V (a5 -1)(ag - 1) S
3 1 [u§+ai—l]
\/a§+ai—1 \/ag—l

B a§+ai—1
= -
az — 1
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Thus, the desired characterization holds in this situation after a cyclic shift using & = a3 and 8 = as.

If W,(+1) = F1 (which corresponds to the outer pair of gaps closing), then one can verify by completely similar computations that the
desired form holds with &® + 8% < 1. As usual, checking that the gaps do indeed close for a satisfying one of the given conditions follows from
direct computations. O

Remark 3.1. In principle, one could try to leverage the explicit representations for period-5 potentials exhibiting at least one closed gap
to show that no more than one gap can close for nonconstant potentials. However, we found the algebraic manipulations to be simpler in the
argument that we gave.

Proof of Theorem 1.11.

(a) Assumev € R is irreducible. To show Gpso(v) < 2, it suffices to prove the following statements.

Claim 1. If both gaps with Tr @ = +2 close, then v has the form
v =1(a,0,0,-4,0,0), a=0, (3.31)
up to an additive constant and a cyclic shift.
Claim 2. If v has the form (3.31), then no gaps with Tr ® = -2 may close.
Claim 3. No more than one gap with Tr ® = -2 may close.

Proof of Claim 1. Assume @, (E;) = ®,(E;) =1 for E; # E,. We will show that this implies either that v is reducible (contrary to our
assumption) or that v has the form (3.31) up to an additive constant and a cyclic shift.
To that end, we may shift v by a constant and assume that E; = —E,. From (3.9), we note that for E = Ej, we have

0= [(DUIUZU3 (E) = Qo v50 (E)71:|12

=2- 2E2 + (1}2 + V3 + U5 + UG)E — VU3 — VUsVe. (3.32)

Similar to the argument for p = 5, apply (3.32) with E = Ej, E,, subtract the results, and cyclically permute the indices to see that v satisfies

V]tV +V4+ Vs = 0 (333)
V2 +v3+Us +06=0 (3.34)
V1 + U3 + V4 +vg = 0. (3.35)

Adding (3.33) and (3.34) and subtracting (3.35) gives v5 = —v,. In a similar way, we also deduce
Vg = —UI, Vs = —Us.
Substituting this into (3.32), we have 2 — 2E* - 2v,v3 = 0, leading to
B =1- s (3.36)
Using this, (again taking E = Ej) we can substitute and simplify

0= [®U1U2U3 (E) - (DWUSU() (E)71:|11
= (E—’Ul)(E— ’Uz)(E— ’[}3) - (E—U1) - (E— ’U3) + (E+1}2)

= E3 - (’Ul + vy + 1)3)E2 + ClE + v + vy + V3 — V1V, (337)
where ¢ is independent of E. Evaluating this expression for E = Ej, E,, adding the results, dividing by two, and using (3.36) gives

0= —(U1 + Uy + 1)3)(1 - 1)21}3) + V1 + V2 + U3 —UV1V2V3
= 1}2’03(1}2 + 1}3). (3.38)

There are thus three possibilities: v, = 0, v3 = 0, or v3 = —v;.
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Case 1. v, = 0.
On account of (3.36), this gives E* = 1. Taking E = 1 and using the relations obtained so far gives us
—1 V1VU3 0
0= (DUl’Uzvz(l) - [(Dmvsvs(]-)] = .

0 —V13.

This forces v; = 0 or v3 = 0, either of which implies that v has the form (3.31) up to a cyclic shift.
Case 2. v3 = 0.
Similar to the case v, = 0, this forces v to be of the form (3.31) up to a cyclic shift.
Case 3. v3 = —v;.

Adding the (1,2) and (2,1) entries of the matrix ®y, v,v; (Ex) — [ Qo050 (Ek)Tl gives us v% + 102 = 0. The case v, = 0 leads again to the

form (3.31), while the case v, = —v; forces v to have the form v = (a, -4, a, —a, a, —a), which is reducible.

0

Proof of Claim 2. Consider v of the form (3.31) for some a # 0 and observe that it has exactly two closed gaps. Indeed, one can check

directly that
Dy(1) =Dy(-1) =1.

However, @, (E) # —1 for all E. Indeed, if ®,,(E) = -1, we have

0= [q)vlvzvz (E) + [(DUWSUs (E)]_l]ZI
= —2aE.

Since a # 0, this forces E = 0. But then we compute
0 = cI)1117121)3 (0) + [‘DWUSU{; (O)]_l
_|a 0
"o -a
+0,
a contradiction.

Proof of Claim 3. Suppose @, (E1) = O, (E;) = -1 for E; # E,. Observe then that

0= [(Dvlvzvs (Ek) + I:(DUUJS% (Ek)]_l]21
= (Ex—v1)(Ex —v2) = 1= ((Ex — va) (B —vs) = 1)
= (’04 + V5 — V] — ’Uz)Ek + V1V2 — V4Vs.

Since this holds for E; and E;, the coefficient of E; must vanish. Permuting the variables cyclically gives us
Vi+v2—v4—v5 =0
Ve + V1 —v3 —vg = 0.

Substituting back into (3.39) gives

o
|

= V102 — V405
= V1V — U4(’U1 + vy — U4)

(U1 - 1)4)(’()2 - 1}4).

This forces v1 = v4 or v2 = V4.
Case 1. v; = vs.
Together with (3.40) and (3.41), this gives

Vs =V1 +U2 = V4 =02

Ve = U3 + Vs — V1 = VU3,

contrary to irreducibility of v.
Case 2. vy = vs4.

(3.39)

(3.40)
(3.41)

(3.42)
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Together with (3.40), we get v} = vs. Putting this together with @, (E;) = —1, we arrive at

0= [(DUl’Uzvs(Ek) + [q)vﬂ)svs (Ek)]_l]lz

= —vv3 + 1 (V3 + V2 — V1)

= *(”Ul *’Uz)(l}] *’U3).

(=(Ex —v2)(Ex —v3) + 1) = (=(Ex — v5)(Ex —v6) + 1)

pubs.aip.org/aip/jmp

If v1 = vy, then (recalling vs = v; and v4 = vy), (3.41) implies v3 = vs and thus v has the form aabaab, which is reducible. Similarly, if v, = v3,

then v has the form ababab, which is again reducible.

0

Combining Claim 1, 2, and 3, we obtain gpso(6) < 2. Furthermore, since we have already shown Gpso(a,0,0,-a,0,0) = 2 for a # 0, we

deduce gpso(6) = 2.

(b) Note that gopjm(6) < 3. Indeed, we know that ®opjm(a) < 4 for any irreducible a € RS. If Gopm(a) = 4, this (by symmetry) means
that all non-central gaps close, which forces a to be reducible by Theorem A.1. Thus gopjm(6) < 3 follows.

Let us assume that a € RS has three closed gaps. As usual, we can scale and assume that the closed gaps occur at 0 and +1. Let us consider
the case in which the “inner” pair of non-central gaps close, which corresponds to W(x1) = 1. Since the central gap at zero closes, we may

deduce
ajasas = aza4ae.
Recalling
1- af - a% a% -1
= a\aa a1aas |.
Wﬂl“z“} (l) as d31a3 as
maz @ aaz’

Using this and substituting a¢ = aid3as/(a2as), we arrive at

0= [\Falaza3(1) - [\Pawsﬂs(l)]_l]ll - [‘{jﬂlﬂzﬂs(l) - [\Pﬂ4a5as(1)]_1]21

2 2
l1-aj—a; as as aas
=4+ — | — - +

a1a2a3 a4as aiay az
2 2
l1-aji—-a; as ajas  a1a3
a1a2a;3 a1az az az

2 2 2 2 2
1—-aj—a;—a3+2aja;

ayazas

Thus,
2 2

as asde ))
asas  as

l-aj—-a;= (I—Za%)ag

leading to

a%+a§71
as = Y~ 2 4 -
2a1 -1

Substituting this back into Wa,aya, (1) = [Wasasa, (1)]™ = 0 and considering the (1,1) and (1,2) entries gives us
a% + ai - Za%ai =0

2 2 2 2
a; + as — 2aas =0,

yielding
ay
T o1
a
“T a1

Substituting (3.44)-(3.46) into (3.43) gives

a1asas a% + a% -1
ag = = .
N 2a5 - 1

(3.43)

(3.44)

(3.45)

(3.46)
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Thus, if a has at least three closed gaps and the pair comes from the inner gaps, a has the form

2, 2
az(a, oc+/)’—1 a+p -1 (3.47)

2a% -1 m\/— 28 -1

where a, 8 > 1/1/2, up to a constant multiple. The reader can verify by direct computations that any a € R of the form (3.47) with &, § > 1//2
has closed gaps at E = 0, +1. For generic choices of a and f3, the resulting a is irreducible, so we see that gopyjm(6) > 3, concluding the argument.

[m]
IV. BOUNDS FOR LARGER PERIODS
Proof of Theorem 1.2.
(a) One may conclude using the identities
M) = M) =1, [M(-1)]’=1. (CRY
Indeed, if p > 7 is odd, then
v=(1,1,1,0,0,...,0)
—————
p—3 copies
produces a closed gap at E = 0 on account of (4.1). Similarly, if p > 7 is even, then
v=(1,1,1,-1,-1,-1,0,0,...,0)
[ —
p—6 copies
produces a closed gap at zero.
(b) Assumewv € R’ is irreducible. By an inductive calculation, one can check directly that for any w € R™,
m—1
[@w(E)]ar = E" = | 3 wj |E" + O(E"). (4.2)
=1

Case 1. p is divisible by 4.
Consider the anti-periodic closed gaps of v, which are defined by @, (E) = -1, which we may rewrite as

@, (E) + [, ()] =

where vt = (U1,...,U§) andv” = (vgﬂ, ...,0p). On account of (4.2), we get

( Ve - »))Ei‘z +o(E§‘3) (4.3)

for any antiperiodic closed gap E; as in previous arguments, this holds for all cyclic permutations of v. We claim that there are at
most £ — 2 antiperiodic closed gaps. Indeed, if there are £ — 1 or more antiperiodic closed gaps, then we have by (4.3) and its cyclic
permutatlons

er

-1

1

J

0=[®,(E) + [®,-(E)] (

Y

-1

(vj+£+§ —W) =0, Yo<l<p-1 (4.4)
j=1

Denote yo = 1, y1 = 0, yg = (—=1)**" for £ > 2. Multiplying the ¢th equation by y, and summing the results from £ = 0 to £ = Z-1,we
get!”
v = ’U%_H.

Cyclically permuting, one sees vj = v; e for any j, contrary to irreducibility of v.

Thus, there are at most 2 — 2 antiperiodic closed gaps. Since there are at most & — 1 periodic closed gaps, it follows that the total
number of closed gaps is at most p — 3 for irreducible v.
Case 2. p is odd.
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In this case, put m = (p+1)/2,v* = (v1,...,Um), and v~ = (Um+1, - - -, Vp). Note that m — 1 is relatively prime to p, which can be
seen (for instance) by observing

p-2(m-1)=1
Note that (4.2) gives
m=1
[y (B) - [@,(E)] "o = " + (1 S v,)Emz 4 O(E™)
j=1

We claim that v has at most m — 2 closed periodic gaps. Indeed, if v has m — 1 or more closed periodic gaps, the calculation above (and
cyclic permutations as usual) implies
1 m—1
Vj = Vj+1,
; =

m

[Ngk

-
I

leading to v1 = vy. Cyclically permuting again, we get vj = vj1u—1 for any j. Since m — 1 is relatively prime to p, v is constant, a
contradiction.
In a completely similar fashion, one sees that v has no more than m — 2 closed gaps satisfying ® = —1. Thus, v has at most

2(m=-2)=p-3
gaps, as promised.
(c) Ifp>7iseven, choose any irreducible a € R% such that
aias---dp-1 = A2a4- - - dp. (4.5)
By an inductive calculation, one can prove that
¥,(0) = (-1)"*1, (4.6)
so g(p) > 1 for everyevenp > 4.
Next, we consider odd p > 4. Note that
1 4
B(1,1)’ = B(—=,1)* = 1. (4.7)
V2
Thus, if p > 7 is congruent to 3 modulo 4, then
a=(1,1,1 2 = ) (4.8)
L s .
(p—3) copies

is an irreducible vector enjoying closed gaps at E = +1.
Similarly, if p > 7 is congruent to 1 modulo 4, the vector

a= 2,3,2,\/3/2,\/3/2,%,...,% (4.9)

(p—5) copies

exhibits closed gaps at E = +1.

(d) Assume p > 3 is given. We note that the number of closed gaps of a € R is at most p — 2 by Theorem A.2. If p is 0dd, then the number of
closed gaps of any a € RY, is even by Lemma 2.2. Since p — 2 is odd when p is odd, gopym(p) < p — 3 for odd p > 3. If p > 3 is even, the
only way for p — 2 gaps to close would be for all gaps but the central gap to close. However, this would in turn imply that the spectrum
of L, has two components, each of equilibrium measure 1/2, which in turn would imply that L, has period 2 by Theorem A.1. Since this
is a contradiction for p > 4, we again have gopjm(p) < p — 3 in this case.

Proof of Theorem 1.4. Let p,k > 2 be given. Choose an irreducible v € R? maximizing gpso (p), that is, such that

® := Gpso(v) = gpso(p),

12:60:61 ¥202 ¥snbny ¢

J. Math. Phys. 65, 052101 (2024); doi: 10.1063/5.0175428 65, 052101-16
Published under an exclusive license by AIP Publishing



Journal of ARTICLE _ o
Mathematical Physics pubs.aip.org/aip/jmp
and denote the energies corresponding to closed gaps by Ei,Ea, . . ., Es. Let v* := cyc(v) denote the cyclic permutation of v. As observed
above, we have
Dy (E) =D a(E)e{zl}, V1<j<O. (4.10)
Defining w € R*? by
> & »
w=vv- vV U U,
——— —
k copies k copies
we claim that ®pso(w) > ® + (k- 1)p. Indeed, (4.10) already shows
Du(E)=1VY1<j<6. (4.11)
Moreover, for any E such that
Tr(®,(E)) = 2 cos (mj/k) (4.12)

for an integer 1< j<k—1, ®,(E) has linearly independent eigenvectors corresponding to eigenvalues exp (inj/k) and thus @, (E)F
= (=1)71. By cydlicity of the trace, one gets the same result for @, (E), so one arrives at

O(w,E) = @ s (E)' D, (E)F =1

for any E satisfying (4.12). Since w is irreducible by construction, we arrive at gpso (2kp) > ®Gpso(w) > & + (k- 1)p
The proof in the case « = ODJM is identical up to a change in notation. O
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APPENDIX A: ISOSPECTRAL TORI

Here we recall a few important notions from the inverse spectral theory of periodic Jacobi matrices. A Jacobi matrix J is said to be reflec-
tionless on the set X C R if the diagonal elements of its Green function have purely imaginary boundary values Lebesgue almost everywhere
on X, that is, for every n € Z,

limyo Re (8, (J - E) '8,) = 0, ae. E€ %. (A1)

It is known that every periodic Jacobi matrix, J, is reflectionless on its spectrum, spec(J), and that the spectrum is a finite gap set, that is, a
union of finitely many nondegenerate closed intervals.
The inverse theory begins with a finite gap set

12:60:61 ¥202 ¥snbny ¢

z:[ahﬁl]u"'u[“ﬂraﬂm] (AZ)
where
ar<Pr<ay<---<Pum (A3)
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and asks what reflectionless Jacobi matrices may have that set as their spectrum. More precisely, the isospectral torus T(X) consists of the set
of all bounded Jacobi matrices J such that

o spec(]) =2
o ] is reflectionless on .

That this set is non-empty for any finite-gap set X (let alone a manifold or torus) is non-trivial. We direct the reader to Ref. 11, Chap. 5
and Ref. 12, Chaps. 8-9 for detailed discussions.

It turns out that there is a remarkable characterization of exactly which finite-gap sets have isospectral tori consisting of periodic Jacobi
matrices. To describe this characterization, let p = ps denote the equilibrium measure of %, that is, the unique Borel probability measure on £
that minimizes the energy functional

&) =~ [[ 1oglx~ yldu(x) du(y). (A%)

Theorem A.1. Let X be a finite-gap set as in (A2) and (A3) with equilibrium measure p = ps. If p assigns rational weight to every connected
component of X, then every element of T(Z) is periodic. Moreover, if

pj .
p[e. ) =2 j=12,...,m
qi
with pj/q; in lowest terms, then every element of T(X) is q-periodic, where q = lem(qu, . . .,qm). In particular, if T consists of a single interval,
then T(Z) consists of a single J, which then has constant diagonal and off-diagonals.

IfJ is periodic of period g, then its spectrum is a finite-gap set whose connected components have rational equilibrium measure, and the
measure of each connected component is a multiple of 1/q. We direct the reader to Ref. 11, particularly Theorem 5.13.8 and Corollary 5.13.9.

Theorem A.2. Foranyp > 2, gjac(p) =p —2.

Proof. Let p > 2 be given.

Let us first show that gjac(p) < p — 2. Indeed, if G(a,v) = p — 1 for some (a,v) € Rf x R, then spec(J,,,,) is an interval, which implies
that a and v are constant vectors by the Borg-Hochstadt theorem (also by Theorem A.1), and hence not irreducible.

To show that gjac(p) > p — 2, choose a set £ < R with two connected components, I; and I, such that the equilibrium measure of I is
1/p and consequently the equilibrium measure of I, is necessarily (p — 1)/p. By Theorem A.1, every element of the isospectral torus of ¥ is a
p-periodic Jacobi matrix. Necessarily, then, any element of this isospectral torus yields p — 1 — 1 = p — 2 closed gaps, as desired. O

APPENDIX B: COMPLEX JACOBI MATRICES

Let us briefly discuss the reason that we restrict the discussion to strictly positive off-diagonals in the present work. Indeed, given a € C?,
v € R?, we may define the associated Jacobi operator by

Oyl(n) = A(n=1)"y(n=1) + V(n)y(n) + A(n)y(n + 1), (B1)

where * denotes the complex conjugate and A and V are the p-periodic extentions of a and v as before.
First, we insist that a,, # 0 for every #, since, if a, = 0 for some n, then the “bands” of spec(J,) degenerate to single points, so the relevant
questions become trivial or meaningless.
In this case, the transfer matrices take the form
11t -1
B(t,s) = —
@91l o]
u(n
]:B(z— V(n>,A<n>>[A (m) ] (82)

(n-1)"u(n-1)

and solve
[ u(n+1)
A(n)" u(n)

whenever Ju = zu.
To see why we also choose to avoid complexifying a, let us consider a € C? given by

w = exp (27ifp), an=w", n=12,...,p. (B3)
The reader can check by direct calculations that this a has closed gaps at

Ej =2 cos(mjfp), 1<j<p-1,
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and thus ®opym(a) = p — 1; in particular, a is irreducible in the sense we discussed elsewhere in the paper, but L, has more closed gaps than
the upper bound in (1.4) allows. The phenomenon responsible for this is the following: L, is unitarily equivalent to the free Laplacian L,
via the intertwining operator [Ay](n) = exp (2nin/p)y(n). Thus, irreducibility of a € (C*)? should be interpreted as irreducibility modulo
holonomy. Restricting to a, € R, avoids this technicality altogether.
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