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We investigate the symmetries of the so-called generalized extended Cantero–Moral–Velázquez (CMV)
matrices. It is well-documented that problems involving reflection symmetries of standard extended
CMV matrices can be subtle. We show how to deal with this in an elegant fashion by passing to the
class of generalized extended CMV matrices via explicit diagonal unitaries in the spirit of Cantero–
Grünbaum–Moral–Velázquez. As an application of these ideas, we construct an explicit family of
almost-periodic CMV matrices, which we call the mosaic unitary almost-Mathieu operator, and prove
the occurrence of exactmobility edges.That is,we show the existence of energies that separate spectral
regions with absolutely continuous and pure point spectrum and exactly calculate them.

1 Introduction

Cantero–Moral–Velázquez (CMV) matrices, which arise in the study of orthogonal polynomials on the
unit circle (OPUC), play a fundamental role in the spectral theory of unitary operators, analogous to the
role played by Jacobi matrices and discrete Schrödinger operators in the theory of self-adjoint operators.
For background, we direct the reader to the monographs [73, 74] and references therein. CMV matrices
also play an important role in mathematical physics due to their connections with important models,
notably, with quantum walks in one spatial dimension. Quantum walks, which function as quantum-
mechanical analogs of classical randomwalks, are fundamental models in spectral theory and modern
mathematical physics. Due to the fast spreading rate of quantum walks compared to classical random
walks, they have shown promise in quantum algorithms [4, 6, 42, 67, 69, 70] and quantum computing [7,
47, 63, 64, 77]. Additionally, they provide an excellent set of test cases to study discrete-time quantum
dynamics [1–3, 9, 43, 58] and model topological phases [8, 22, 25, 28, 29, 59, 66]. Quantum walks also
represent a rich collection of objects on which one can study the interplay between spectral theory and
discrete-time quantum dynamics [26, 31].

There is a mismatch between the two classes of objects that played a role in the work [27] and that
we want to make explicit here. In the self-adjoint setting, the physical objects (discrete Schrödinger
operators) comprise a subset of the collection of natural inverse spectral objects (Jacobi matrices); that
is to say, every discrete Schrödinger operator is a Jacobi matrix. However, in the unitary setting, the
situation is reversed: the inverse spectral objects (CMV matrices) comprise a subset of the physical
objects (quantum walks). More precisely, a quantum walk has the form of a CMV matrix as long as
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the quantum coins have unit determinant and real and positive diagonal entries, which is not always a
natural condition to impose on the associated physical system. In the present manuscript, we identify a
split-step quantumwalkwith an operator having the general appearance of an extended CMVmatrix with
complexified ρ’s; we called these generalized extended CMV matrices (GECMV matrices) in [27] (see also
[21]). This additional freedomwithin the family of GECMVmatrices is important; for example, it is what
allowed the authors of [27] to make room for important techniques from the quasi-periodic theory
including coupling constants, the Herman estimate, Aubry duality, and more. Also, it allowed for the
introduction of randomly chosen phases in [21] and the discussion of the density of states [56], fractional
moment estimates [57], and Anderson and dynamical localization in [44] and [45], respectively.

This mismatch between the physical and spectral objects has serious consequences: while the
spectral theory of extended CMV matrices is well-developed [73, 74] with many useful tools such as
subordinacy theory, Kotani theory, Avila’s global theory, and others, less is known about the spectral
theory of GECMV matrices and quantum walks. Some of these issues were dealt with by the authors of
[27] in an ad-hoc manner. Thus, we seek to introduce suitable tools to establish the spectral theory of
GECMV matrices in a more systematic way, which is one motivation of our paper.

Building on ideas of Cantero–Grünbaum–Moral–Velázquez [23], we close this gap by showing that
any GECMV matrix can be transformed to a standard CMV matrix by a diagonal gauge. Moreover,
there is a crucial point here: in the case of coins with unit determinant, we show that one can do this
without altering the Verblunsky coefficients. The ability to fix Verblunsky coefficients and vary other
parameters within a family of GECMV matrices is important from the dynamical systems perspective,
since, if the Verblunsky coefficients are dynamically defined over suitable base dynamics (e.g., a torus
translation), then we can produce isospectral GECMV matrices that also fiber over the same base
dynamics.

Let us explain one way that we get some additionalmileage out of the variation of the phases, beyond
just showing that generalized CMV matrices are equivalent to “standard” CMV matrices. A technique
that often plays a crucial role in the study of discrete Schrödinger operators is the presence and use
of suitable reflection symmetries. These symmetries are well-documented and manifest in a variety
of ways, such as the symplectic symmetry of the associated transfer matrix cocycle. Indeed, these
symmetries play a key role in, for instance, the study of localization with fixed frequency [48–50]. On the
other hand, it is known that techniques centering on reflection symmetries of CMV matrices are more
delicate, which makes it difficult, if not impossible, to study the mentioned localization phenomena
strictly in this class of operators. However, in the class of GECMV matrices, one can work directly with
operators having purely imaginary ρ-values, which enjoy a particularly simple reflection symmetry. This
observation and its application to models of interest seems to be new, as well, and holds promise for
studying other aspects of quasi-periodic CMV matrices. Thus, we use the gauge freedom to pass to a
GECMVmatrix, reveal the hidden symmetry, and then use the gauge freedomagain to deduce associated
spectral consequences for the initial operator.

Another motivation comes from two important topics in spectral theory: mobility edges and
localization with fixed frequency. One of the most notable phenomena in spectral theory is the spectral
phase transition between absolutely continuous and pure point spectral types as one varies a parameter
within a given system. A significant instance of this phase transition occurs when several spectral
types coexist simultaneously for the same operator, that is, the phase transition happens in the energy.
On account of the RAGE theorem, the quantum dynamics in the pure point part of the spectrum is
localized whereas the dynamics in the absolutely continuous part of the spectrum exhibits transport in
a suitable sense [5, 38, 68]. Thus, one refers to an energy separating pure point and absolutely continuous
spectral regimes as amobility edge. Proving the existence of amobility edge formultidimensional random
operators remains a serious open problem in spectral theory and mathematical physics (compare [72]).
One of themost important families inwhich spectral phase transitions have been observed is the almost-

Mathieu operator

(HV,α,θ u)(n) = u(n + 1) + u(n − 1) + V(nα + θ)u(n),

where V(x) = 2λ cos 2πx for x ∈ T := R/Z. The almost-Mathieu operator is known to exhibit phase
transitions as the relevant parameters (coupling constant, frequency, and phase) are varied [10, 14–16,
48–50]. Furthermore, the mosaic almost-Mathieu operator and the “generalized” André–Aubry model
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6908 | C. Cedzich et al.

display exactmobility edges [79]. Spectral phase transitions have been observed lately also in the unitary
almost-Mathieu operator (UAMO) [27],which is defined as the GECMVmatrix with Verblunsky coefficients

α2n−1 = λ2 sin(2π(n� + θ)), α2n = λ′
1,

ρ2n−1 = λ2 cos(2π(n� + θ)) − iλ′
2, ρ2n = λ1,

where λi ∈ [0, 1] and λ′
i =

√

1 − λ2
i . However, it is unknown whether there exist GECMV matrices and

extended CMV matrices, which have exact mobility edges.
Specifically, to establish the presence of mobility edges for extended CMV matrices, the key issue is

to obtain Anderson localization for fixed frequency, since establishing the presence of purely absolutely
continuous spectrum is well-developed for quasi-periodic extended CMVmatrices [62].We should point
out that in the Schrödinger case, Anderson localization for fixed frequency is quite an important issue
in establishing the Ten Martini Problem [13], the universal hierarchical structure of eigenfunctions
[50], and the sharp arithmetic phase transition [51]. In the quasi-periodic extended CMV setting and in
the positive Lyapunov exponent regime, Anderson localization with fixed phase is given by Damanik–
Wang [78] (in the same spirit as in Bourgain–Goldstein [19]). However, it is still a major challenge to
establish Anderson localization for fixed Diophantine frequency for general almost-periodic extended
CMV matrices (See, however, [82] for a result in the case of specific generalized extended CMV.). Our–
>main results give a profitable step forward and a new set of tools in this regard.

In this manuscript, we construct a family of GECMV matrices that is derived from a quantum walk
with quasi-periodic coins that are periodically inserted into an otherwise fully transmitting medium.
Using the ideas discussed above, we prove an exact mobility edge result in the case in which every other
coin is generated by the quasi-periodic sequence, which we call the mosaic UAMO (see Section 2 for
detailed definitions and Section 3 for the physical background). The idea of potentials taking different
values at even and odd sites as in the mosaic UAMO has a natural physical background. For example,
it appeared in the study of the classical Su–Schrieffer–Heeger (SSH) model [46] and driven conformal
field theory [81]. Recently, the quasi-periodic mosaic model [79, 80] has been experimentally realized to
detect exact mobility edges [40].

The remainder of the paper is structured as follows: in the next section, we introduce the model(s)
we consider, that is, the GECMV matrices and the mosaic UAMO as a special case thereof, and state
our main results. Section 3 provides the physical background on the mosaic UAMO model. In Section 4,
we prove the main structural result relating different GECMV matrices and discuss their symmetries.
In Section 5, we classify the cocycles corresponding to the mosaic UAMO and calculate its Lyapunov
exponent. In Sections 6 and 7, we prove the exact mobility edges for the mosaic UAMO by showing
that the spectral type is pure point and absolutely continuous in the super- and subcritical regime,
respectively.

2 Model and Results
2.1 Generalized extended CMV matrices
Consider the Hilbert space H := �2(Z) with the standard basis {δn : n ∈ Z}. On H, we consider
generalized extended CMV matrices E = E(α, ρ) defined by E = LM, where L =

⊕

n∈Z 
(α2n, ρ2n) and
M =

⊕

n∈Z 
(α2n+1, ρ2n+1) are specified by


(α, ρ) =
[

α ρ

ρ −α

]

(2.1)

with Verblunsky pairs

(α, ρ) ∈ S3 = {(z1, z2) ∈ D
2
: |z1|2 + |z2|2 = 1}. (2.2)
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In the definitions of L and M, we note that 
(αj, ρj) acts on the subspace �2({j, j + 1}). In the standard
basis {δn : n ∈ Z} of �2(Z), such a GECMV matrix takes the form

(2.3)

where we boxed the (0, 0) matrix element of E .
“Generalized” here means that the ρ’s are allowed to take complex values inside the closed unit disk

D, in contrast to standard extended CMV matrices as defined in [24], where the ρ’s merely take real values
in (0, 1]. Let us mention that this complexification of extended CMV matrices was originally motivated
by physical models [18, 21]. Moreover, this class of operators is motivated by the study of split-step
quantum walks whose quantum coins have determinant one; indeed, if one takes such a split step
walk and writes down the matrix with respect to the ordered basis

. . . δ−
−1, δ

+
0 , δ

−
0 , δ

+
1 , . . . ,

then the associated matrix is exactly a GECMVmatrix with suitable (α, ρ); see Section 3. As discussed in
the introduction, this generalization turned out to be essential to the work [27] since the complexifica-
tion of the ρ parameters (which was motivated by the choice of magnetic translations for an associated
2D model) was absolutely crucial to make room for the magic of duality, the Herman estimate, and
other techniques.

To study the spectral properties of E , one naturally considers the generalized eigenvalue equation
Eu = zu for z ∈ C. Solutions to this equation satisfy the iterative relation

[

u2n+1

u2n

]

= An,z

[

u2n−1

u2n−2

]

, n ∈ Z,

where the transfer matrices An,z are given by

An,z = 1
ρ2nρ2n−1

[

z−1 + α2nα2n−1 + α2n−1α2n−2 + α2nα2n−2z −ρ2n−2α2n−1 − ρ2n−2α2nz

−ρ2nα2n−1 − ρ2nα2n−2z ρ2nρ2n−2z

]

, (2.4)

for n ∈ Z and z ∈ C \ {0}. This follows from direct calculations, which are carried out in detail in [27,
Section 4].

We will relate isospectral families of GECMV matrices at two levels: first, we show that any two
GECMV matrices with the same α’s are unitarily equivalent via a diagonal unitary. Thus, the spectral
type and properties of solutions to the eigenvalue equation are independent of the phase of the ρ’s.
Second, later in the paper, we show how to relate the transfer matrix cocycle as in (2.4) to the the Szegő
[73] cocycle. These are also related to the Gesztesy–Zinchenko [41] cocycle via an identity elucidated in
[36], but we will not need that connection here. We give precise definitions of these objects later. We
anticipate that these ideas and connections will be useful in other contexts.

Theorem 2.1. Any two GECMV matrices with the same α’s are unitarily equivalent, and thus
isospectral. More precisely, given a set of Verblunsky coefficients {αn : n ∈ Z} ⊂ D, let ρn =
√

1 − |αn|2. Then, for any two sequences {ξn}n, {ζn}n ⊂ ∂D, the GECMVs E ξ and Eζ associated to
coefficient sequences {αn, ξnρn} and {αn, ζnρn}, respectively, are gauge equivalent, that is, there
exists a diagonal unitary matrix D so that E ξ = D∗EζD.
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6910 | C. Cedzich et al.

Remark 2.2. Verblunsky’s Theorem (also called Favard’s Theorem on the circle, compare, [73,
Section 1.1]) sets up a one-to-one correspondence μ ↔ {αn}∞n=0 between non-trivial probability
measures on the unit circle ∂D and×∞

j=0
D. This correspondence does not care about the values

of ρn’s. Theorem 2.1 shows the isospectral nature of GECMVs associated to the phased ρn’s.

This immediately implies that every GECMV matrix can be turned into a standard extended CMV
matrix. This requires transforming the ρ’s to nonnegative real numbers, which can be achieved via a
diagonal gauge transformation, and thus generalizes the technique in [23, Sect. 7]:

Corollary 2.3. Every GECMVmatrix is gauge-equivalent to a standard extended CMVmatrix.More
precisely, for anyGECMVmatrix E determined byVerblunsky pairs (αk, ρk)k∈Z, there is a diagonal
unitary operator D such that D∗ED is a standard extended CMV matrix with Verblunsky pairs
(αk, |ρk|)k∈Z.

Remark 2.4. The matrix form of E given in (2.3) and the condition (2.2) are essential for the the
ability to choose the diagonal conjugation in such a way that the α’s remain fixed. As discussed
above, this corresponds to split-step walks with unimodular coins. In the more general setting,
one is led to operators such that |α|2 + |ρ|2 ∈ ∂D; see Appendix A for details. Here, one has to
be slightly more careful, but the basic idea still works; compare [31]. As a word of warning,
however, it is sometimes not possible to choose the gauge in such a manner as to fix the α’s
in this general setting, and in particular, the base dynamics may no longer be gauge invariant
within the class of isospectral GECMV. For instance, the CMV matrix corresponding to the
quasi-periodic quantum walk in [31] is not quasi-periodic anymore; instead, its Verblunsky
coefficients are generated by the skew-shift.

As discussed above, one of the pleasant outcomes of this approach is that it enables us to deal with
reflection symmetries in a useful way. See Section 4.2 for detailed statements, and note that the desired
reflection symmetry for the ρ terms is given by (4.9), which forces one to consider ρ values outside of
[0, 1]. We anticipate that this perspective will lead to useful results in other contexts.

2.2 Almost-periodic GECMV matrices
Our work is motivated by the study of certain almost-periodic (but not quasi-periodic) quantum walks,
which lead to the following GECMV matrices. We will explain the origin of this model in Section 3. We
here consider a model where all even Verblunsky pairs are constant, every s-th odd one is given by a
quasi-periodic function, and all others are “trivial” from a dynamical perspective. Concretely, let θ ,� ∈ T,
and λ1, λ2 ∈ [0, 1], and consider

(α2n−1, ρ2n−1) =

⎧

⎨

⎩

(λ2 sin 2π(θ + n�), λ2 cos2π(θ + n�) − iλ′
2), n ∈ sZ,

(0,−i), n ∈ Z\sZ,

(α2n, ρ2n) = (λ′
1, λ1), n ∈ Z, (2.5)

where λ′
i =

√

1 − λ2
i , i = 1, 2. The case s = 1 corresponds to the unitary almost-Mathieu operator (UAMO) and

was studied extensively in [27]. For reasons that will become clear later, we will call GECMV matrices
with coefficients as in (2.8) the mosaic UAMO (see Section 3) and denote them by E�,λ1 ,λ2 ,s(θ) or E(θ) for
short when all parameters are fixed.

By a well-known argument using minimality of θ �→ θ + � on T := R/Z and strong operator
approximation, there is a fixed set �λ1 ,λ2 ,�,s such that (compare [74, Theorems 10.9.13 and 10.9.14] for
a discussion in the case of standard (half-line) CMV matrices and [33, Theorem 4.9.1] for a proof in the
case of discrete Schrödinger operators)

σ(Eλ1 ,λ2 ,�,θ ,s) = �λ1 ,λ2 ,�,s ∀θ ∈ T.
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For physical reasons given in [27, Section 3], we call λ1, λ2 ∈ [0, 1] “coupling constants”, � ∈ T the
“frequency”, and θ ∈ T the “phase”. The arithmetic properties of � play a crucial role in determining
spectral properties of the underlying operator.We call � Diophantine if there exist κ > 0, τ > 1 such that

‖n�‖T := inf
p∈Z

|n� − p| ≥ κ

|n|τ ∀n 
= 0. (2.6)

In this case, we write � ∈ DC(κ, τ). Moreover, we shall denote the set of all Diophantine frequencies by

DC =
⋃

κ>0,τ>1

DC(κ, τ). (2.7)

We are mostly interested in the simplest non-trivial case s = 2 for which (2.5) reduces to

α4n−1 = λ2 sin 2π(θ + 2n�), α4n+1 = 0, α4n = α4n+2 = λ′
1,

ρ4n−1 = λ2 cos2π(θ + 2n�) − iλ′
2, ρ4n+1 = −i, ρ4n = ρ4n+2 = λ1. (2.8)

In order to compactly refer to arcs on the circle ∂D, we write (ζ1, ζ2) to denote the open arc of ∂D from
ζ1 to ζ2 in the positive (counterclockwise) direction. The following establishes the presence of exact
mobility edges for the mosaic UAMO and is one of the main results of this paper:

Theorem 2.5. Fix � ∈ DC and λ1, λ2 ∈ (0, 1), satisfying

λ2
1

λ′
1

<
2λ2

λ′
2
. (2.9)

For each θ ∈ T, define α = α(θ) and ρ = ρ(θ) by (2.8) and consider the associated GECMVmatrix
E(θ) := E(α(θ), ρ(θ)) as in (2.3). Choose t0 ∈ (0,π/2) such that

cos(t0) = λ2
1λ

′
2

2λ′
1λ2

. (2.10)

Then, for any ξ = {ξn : n ∈ Z} ⊂ ∂D,

(a) E ξ (θ) has purely absolutely continuous spectrum in

Iac := (eit0 , ei(π−t0) ∪ (ei(π+t0), ei(2π−t0))

for every θ ∈ T.
(b) E ξ (θ) exhibits Anderson localization in

Ipp := (e−it0 , eit0 ) ∪ (ei(π−t0), ei(π+t0))

for every θ that is non-resonant with respect to � (in particular, for a.e. θ ).

Remark 2.6.

(1) To the best of our knowledge, this gives the first explicit example of almost-periodic (GE)CMV
matrices/quantumwalks enjoying an exactmobility edge. Part (b) is of particular interest. Recalling
Corollary 2.3, this gives the first family of almost-periodic extended CMV matrices that has
Anderson localization for fixed frequency.

(2) The condition on the coupling constant λ1 and λ2 in the statement of the theorem ensures that
there is a genuine mobility edge, that is, that t0 is well-defined.

(3) The reader may consult Figure 2 for an illustration of the different spectral regions for varying
coupling constants, and Figure 1 for numerical simulation thereof.
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6912 | C. Cedzich et al.

Fig. 1. Mobility edges for the mosaic UAMO for � = (
√
5 − 1)/2. In the upper row, we vary λ1 while keeping fixed to

λ2 ∈ {1/3, 1/2, 2/3}, whereas in the bottom row we vary λ2 and fix λ1 ∈ {1/3, 1/2, 2/3}. The dashed red lines
correspond to ±π/2 cos(t0) with t0 given in (5.29). The coloring encodes the so-called fractal dimension�(m), which
measures how spread out a generalized eigenfunction is. As a rule of thumb, the more localized the generalized
eigenfunctions are at z, the smaller its fractal dimension. It is helpful to consider the limiting cases: if z is a proper
eigenvalue, then �(z) = 0. On the other hand, if z gives a plane wave solution whose mass is equally distributed on
all sites, then �(z) = 1. For more background on the fractal dimension, see for example, [17, 76].

Fig. 2. “Phase diagram” of the mosaic UAMO with the mobility edges determined in Theorem 2.5 plotted for
various λ1, λ2 ∈ {0.6, 0.7, 0.8}. The blue arcs contain the absolutely continuous spectrum, and the yellow arcs
contain the pure point spectrum.

(4) We compute exactly the Lyapunov exponent on the spectrum (see Theorem 5.2 for a detailed
statement) and show that the eigenfunctions decay at the Lyapunov rate (see Theorem 6.17)

3 Physical Motivation: The Mosaic UAMO

Let us describe the physical model that motivates both our study of GECMV matrices and of mobility
edges for the mosaic UAMO, that is, one-dimensional quantum walks of split-step type. These systems
are specified by a generalized shift and a coin sequence, which for the mosaic UAMO alternates
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between a quasi-periodic coin and s − 1 perfectly transmitting coins. The generalized shift as well
as the quasi-periodic coin sequences are derived from the unitary almost-Mathieu operator (UAMO) [27],
which describes the discrete time evolution of a particle on two-dimensional lattice with perpendicular
magnetic field [26, 30].

Let H = �2(Z) ⊗ C2. On this Hilbert space, we consider a split-step quantum walk W : H → H that is
given as a product of a conditional shift operator that additionally depends on a coupling constant and a
coin operator. To define these operators, let us write the standard basis of H as

δsn = δn ⊗ es, n ∈ Z, s ∈ {+,−}, (3.1)

where {δn : n ∈ Z} is the standard basis of �2(Z) and {e+ = (1, 0)�, e− = (0, 1)�} is the standard basis of
C2. With respect to this basis, we denote the coordinates of an element ψ ∈ H as ψs

n = 〈δsn,ψ〉, so that
ψ =

∑

n∈Z ψ+
n δ+

n + ψ−
n δ−

n .
The conditional shift operator with coupling constant λ ∈ [0, 1] is specified by its action on basis

elements as

Sλδ
±
n = λδ±

n±1 ± λ′δ∓
n , λ′ =

√

1 − λ2

and a coin operator Q that acts coordinatewise via a sequence of local unitary coins

Qn =
[

q11n q12n
q21n q22n

]

∈ U(2,C), n ∈ Z,

that is, [Qψ]n = Qnψn, where ψn = [ψ+
n ,ψ

−
n ]

�. With these definitions, the split-step walk operator W is
given by

W = SλQ. (3.2)

Identifying �2(Z) ⊗ C2 with �2(Z) by ordering the basis in (3.1) as

. . . , δ−
−1, δ

+
0 , δ

−
0 , δ

+
1 , δ

−
1 , δ

+
2 , . . . , (3.3)

we may identify the split-step walk W defined in (3.2) with the GECMV matrix E with Verblunsky
parameters by setting

Qn =:

[

ρ2n−1 −α2n−1

α2n−1 ρ2n−1

]

, (α2n, ρ2n) := (λ′, λ). (3.4)

Using this connection, the authors of [27] introduced a new coupling constant in the definition of
quasi-periodic coin sequences to create room for the magic of André–Aubry duality. More specifically,
in [27], the local coins Qn are generated in a dynamical way as

Qn = Qn,λ2 ,�,θ =
[

λ2 cos(2π(θ + n�)) + iλ′
2 −λ2 sin(2π(θ + n�))

λ2 sin 2π(θ + n�) λ2 cos2π(θ + n�) − iλ′
2

]

, (3.5)

where λ2 ∈ [0, 1], λ′
2 =

√

1 − λ2
2, � ∈ T := R/Z is the frequency and θ ∈ T is the phase. The constant

appearing in the shift in (3.2) will be denoted as λ1 and the shift operator will accordingly be denoted
by Sλ1 . The resulting quantum walk Wλ1 ,λ2 ,�,θ was dubbed the unitary almost-Mathieu oparator (UAMO) in
[27] due to the close parallels between this model and the almost-Mathieu operator (AMO).
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Fig. 3. The mosaic UAMO for s = 2. The arrows indicate the action of Sλ1 , where for the sake of clarity the
parameters are displayed only at a single lattice site. In the red cells, the respective non-trivial Qn is acting, while
in the grayed out cells the trivial coin with λ2 = 0 acts.

In the same spirit, plugging the Verblunsky coefficients from (2.8) into (3.4) identifies the GECMV
matrix E(θ) defined in (2.8) as a mosaic model derived from the UAMO with local coins determined by

Qn =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎣

λ2 cos(2π(n� + θ)) + iλ′
2 −λ2 sin(2π(n� + θ))

λ2 sin(2π(n� + θ)) λ2 cos(2π(n� + θ)) − iλ′
2

⎤

⎦ n ∈ sZ

⎡

⎣

i 0

0 −i

⎤

⎦ n ∈ Z \ sZ.

(3.6)

Here, s ≥ 1 is a fixed integer that determines the “step size”: every s-th coin is the same as in the UAMO,
and all others are replaced by perfectly transmitting coins. More precisely, we set λ2 = 0 at lattice sites
n /∈ sZ = {sm : m ∈ Z}.

The resulting walk W = Sλ1Q with coin operator Q = Qλ2 ,�,θ ,s corresponding to the sequence of local
coins defined in (3.6) will be denoted Wλ1 ,λ2 ,�,θ ,s. This model can be thought of as a unitary analogue of
the almost-periodic mosaic model studied in [79, 80], that is, the discrete Schrödinger operator HV,�,θ

with onsite potential

Vn =

⎧

⎨

⎩

2λ cos(2π(n� + θ)), n ∈ sZ

0, n ∈ Z \ sZ.

In view of the connection between the AMO and the UAMO, we thus call Wλ1 ,λ2 ,�,θ ,s the mosaic unitary

almost-Mathieu operator, or the mosaic UAMO for short.
In contrast to the UAMO, the coin sequence for the mosaic UAMO is almost-periodic, but no longer

quasi-periodic. However, we can still recover quasi-periodicity in the study of the eigenvalue equation
by passing to steps of length s, an idea that has been fruitfully applied in several similar models, see,
for example, [34, 79].

Remark 3.1. Let us make a few comments.

(1) With the single coupling constant of the AMO being replaced by two independent coupling
constants for the UAMO, onemight be tempted to consider another mosaic model by setting λ1 = 1
at every s-th site. However, as noted in [27, Remark 2.1(c)] the quantity that most closely parallels
the coupling constant of the AMO is

λ0 = λ0(λ1, λ2) :=
λ2(1 + λ′

1)

λ1(1 + λ′
2)
.

In view of this, the only way to make λ0 vanish within the admitted parameter ranges λ1, λ2 ∈ [0, 1]
is to set λ2 = 0, which motivates the definition of the mosaic model that we use here.

(2) Setting s = 1 in (3.6) one recovers exactly the UAMO from [27].

Theorem 2.5 thus shows that the mosaic UAMO exhibits an explicit mobility edge for suitable
choices of the parameters. As said before, this gives a new type of phase transition in the world of
one-dimensional quasi-periodic quantum walk operators: a phase transition in the spectral parameter.
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4 Generalized Extended CMV Matrices
4.1 Gauge transformation
We first prove that the phases of the ρ’s that define a GECMVmatrix can be freely changed via a diagonal
gauge transformation:

Proof of Theorem 2.1. First, note that to prove the statement it is sufficient to show that any GECMV
matrix E with Verblunsky coefficients αn can be transformed by a diagonal unitary into a “reference”
GECMV matrix E0 with the same α’s. This readily implies the statement by combining two such steps:
if E ξ and Eχ are two such GECMV matrices with D∗

ξE
ξDξ = E0 and D∗

χE
χDχ = E0, respectively, then

E ξ = DξD∗
χE

χDχD∗
ξ . A particularly natural choice for E0 turns out to be the standard extended CMV

matrix with Verblunksy coefficients αn and ρn =
√

1 − |αn|2.
Let E ξ be a GECMV matrix as in (2.3) that is specified by the Verblunsky coefficients αn and ξnρn. We

show that E ξ is unitarily equivalent to E0 via a diagonal unitary operator. Fix d0, d−1 ∈ ∂D and define the
entries of D recursively by

d2n+2 = ξ−1
2n+1ξ

−1
2n d2n, d2n+1 = ξ−1

2n−1ξ
−1
2n d2n−1. (4.1)

We then define the new Verblunsky coefficients

α̃k = d0
d−1

ξ−1αk, ρ̃k = ρk, (4.2)

and denote by Ẽ the extended CMVmatrix corresponding to α̃ and ρ̃. To conclude, we will demonstrate

Ẽ = D∗E ξD. (4.3)

From the recursion relation (4.1), we get

d2n
d2n−1

= ξ−1

ξ2n−1

d0
d−1

,
d2n
d2n+1

= ξ2nξ−1
d0
d−1

.

We then calculate that for all integers n,

d2nd2n+2(ξ2n+1ρ2n+1)(ξ2nρ2n) = ρ2n+1ρ2n = ρ̃2n+1ρ̃2n, (4.4)

d2n+1d2n−1(ξ2n−1ρ2n−1)(ξ2nρ2n) = ρ2n−1ρ2n = ρ̃2n−1ρ̃2n (4.5)

d2n+2d2n+1(ξ2n+1ρ2n+1)α2n = ρ̃2n+1α̃2n (4.6)

d2nd2n+1(ξ2nρ2n)α2n−1 = ρ̃2nα̃2n−1. (4.7)

This suffices to prove (4.3).
The statement of the theorem follows from (4.2) by noting that we may choose d0 and d−1 so that

d0ξ−1/d−1 = 1, which yields E ξ = D∗E0D. �

4.2 Reflection symmetries
Consider the GECMV matrix in (2.3) with Verblunsky pairs (αj, ρj). For k ∈ Z, let Rk be the unitary
involution on �2(Z) that reflects through the center c = k + 1

2 , that is, Rk : δn �→ δ−n+2k+1. In particular,
Rk : δ2n−1 �→ δ2(−n+k) and Rk : δ2n �→ δ2(−n+k)+1. Notice that Rk maps �2({−n, . . . ,n + 2c}) to itself.

Definition 4.1 (Reflection). We call ER := RkERk the ref lection of E with center c = k + 1/2. One
can check that ER is obtained from E by exchanging the positions of the elements that are
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symmetric with respect to the center of the square

[

−αkαk−1 αk+1ρk

−ρkαk−1 −αk+1αk

]

,

when k is even, and

[

−αkαk−1 αk−1ρk

−ρkαk+1 −αk+1αk

]

,

when k is odd.

Remark 4.2.

1) We restrict ourselves to centers from 1
2 + Z. This is mostly for convenience so that the reflected

GECMV matrix is again a GECMV matrix. If one reflects through an integer center, the reflected
matrix is the transpose of a GECMV matrix.

2) In the quantum walks language of Section 3, if k is even, the center of reflection lies “between” the
cells at k and k + 1, whereas if k is odd, the center of reflection lies “within” the cell at k.

A direct consequence of this definition is that E and ER have the same spectrum with similar
statements for suitable finite cutoffs. In particular, for the finite restriction (or “cutoff” GECMV matrix
[75]) E |[−n,n+2c], one has for the reflection ER with center c that

det(z� − E |R[−n,n+2c]) = det(z� − E |[−n,n+2c]). (4.8)

Let us see how one can take advantage of some of these ideas in the setting of GECMV matrices
generated by sampling functions with suitable symmetries. Concretely, assume that {E(θ)}θ∈T =
{E(α(θ), ρ(θ)}θ∈T is a family of GECMVmatrices that depends on the variable θ ∈ T, and let us furthermore
assume that the coefficients possess the following reflection property with respect to the reflection
center c:

α−n+2c(θ) = αn+2c(−θ), ρ−n+2c(θ) = −ρn+2c(−θ). (4.9)

Then, the corresponding GECMV matrix E(θ) satisfies ER(θ) = S−2(k+1)E(−θ)S2(k+1) where S : δn �→ δn+1

denotes the bilateral shift on �2(Z). That is, reflecting with center c = k+1/2 is equivalent to shifting by
2(k + 1) up to a sign-change of θ .

This yields the following result:

Proposition 4.3. Let E(θ) be a GECMV matrix with Verblunsky coefficients satisfying (4.9) for c =
−1/2. Then det(z� − E(θ)|[−n,n−1]) is an even function of θ ∈ T.

Proof. As a consequence of the reflection pairs above, (4.8) and (4.9) we have

det(z� − E(θ)|[−n,n−1]) = det(z� − ER(θ)|[−n,n−1])(θ) = det(z� − E(−θ)|[−n,n−1]). (4.10)

�

We shall apply this result in Section 6 to prove localization of the mosaic UAMO in the supercritical
regime.We remark that when applied to the UAMO from [27], Proposition 4.3 provides an alternate proof
for [82, Lemma 4.2].
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5 Cocycle Dynamics and Lyapunov Exponents

A crucial ingredient in the study of the properties of a GECMV matrix is the classification of cocycle
behavior via Avila’s global theory of one-frequency analytic cocycles [12]. We first review this theory
and then show the equivalence between transfer matrix cocycles as defined in (2.4) and Szegő cocycles.
This will provide the necessary tools to calculate the Lyapunov exponent on the spectrum.

5.1 Review of Avila’s global theory
Given � irrational and M : T → M(2,C) continuous, consider the skew product

(�,M) : T × C2 → T × C2, (θ ,v) �→ (θ + �,M(θ)v). (5.1)

The iterates of this quasi-periodic cocycle are given by (�,M)n = (n�,Mn) where for n ∈ N

Mn(θ) = Mn,�(θ) =
0
∏

j=n−1

M(θ + j�).

The Lyapunov exponent of the cocycle (�,M) is defined by

L(�,M) = lim
n→∞

1
n

∫

T

log ‖Mn,�(θ)‖dθ .

IfM is analytic with an analytic extension to a strip Tδ := {θ + iε : |ε| < δ}, for |ε| < δ wemay consider the
complexified cocycleM(·+ iε) : θ �→ M(θ + iε) and define L(�,M, ε) as the Lyapunov exponent associated
with the complexified cocycle map M(· + iε), that is,

L(�,M, ε) = L(�,M(· + iε)). (5.2)

Under the analyticity assumption, we define the acceleration [12, 52, 53] for |η| < δ by

ω(�,M, η) := lim
ε↓0

1
2πε

(L(�,M, η + ε) − L(�,M, η)),

and abbreviate

ω(�,M) := ω(�,M, 0) = lim
ε↓0

1
2πε

(L(�,M, ε) − L(�,M)).

A central property of the acceleration that we shall need further below is its quantization, that is,

ω(�,M, η) ∈ 1
2Z

for all |η| < δ [12, 52, 53]. Moreover, if M(θ) ∈ SL(2,C) for all θ ∈ T, we have ω(�,M, η) ∈ Z for all |η| < δ.
A SL(2,C)-cocycle (�,M) is called uniformly hyperbolic if for some constants c, λ > 0 one has

‖Mn(θ)‖ ≥ ceλ|n| (5.3)

uniformly in n ∈ Z and θ ∈ T. From the spectral perspective, uniform hyperbolicity corresponds to the
resolvent set of the underlying operator in the sense that a given spectral parameter z belongs to the
resolvent set if and only if the associated transfer matrix cocycle is uniformly hyperbolic [35]; see also
[55, 83].

Definition 5.1. Assume that (�,M) is a SU(1, 1) cocycle that is not uniformly hyperbolic. Then
(�,M) is said to be

(1) Supercritical, if L(�,M) > 0.
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(2) Subcritical, if there exists ε0 > 0 such that L(�,M, ε) = 0 for all ε with |ε| < ε0.
(3) Critical; otherwise.

5.2 Calculations of Lyapunov exponent
In this section, we compute the Lyapunov exponent of the mosaic UAMO model. Let us first introduce
the basic notations and definitions: for the mosaic UAMO with s = 2 and Verblunsky coefficients given
in (2.8), the transfer matrices from (2.4) take the form:

A2n,z = 1
λ2 cos2π(θ + 2n�) − iλ′

2

×
[

λ−1
1 z−1 + 2λ−1

1 λ′
1λ2 sin 2π(θ + 2n�) + λ−1

1 λ′
1
2z −λ2 sin 2π(θ + 2n�) − λ′

1z

−λ2 sin 2π(θ + 2n�) − λ′
1z λ1z

]

,

(5.4)

and

A2n+1,z = i

[

λ−1
1 z−1 + λ−1

1 λ′
1
2z −λ′

1z

−λ′
1z λ1z

]

. (5.5)

These transfer matrices naturally define a transfer matrix cocycle of the form above: define Aλ1 ,λ2 ,z : T →
C2×2 by

Aλ1 ,λ2 ,z(θ) = 1
λ2c(θ) − iλ′

2

[

λ−1
1 z−1 + 2λ−1

1 λ′
1λ2s(θ) + λ−1

1 λ′
1
2z −λ2s(θ) − λ′

1z

−λ2s(θ) − λ′
1z λ1z

]

, (5.6)

where we adopted the notation

c(θ) = cos(2πθ), s(θ) = sin(2πθ). (5.7)

With this definition, one readily checks that

A2n,z = Aλ1 ,λ2 ,z(θ + 2n�), A2n+1,z = Aλ1 ,0,z(θ + 2n�). (5.8)

We remark that this construction generalizes in a straightforward fashion to s > 2.
In order to formulate results for a genuine quasi-periodic cocycle instead of the merely almost-

periodic Az, let us define the two-step cocycle map by

A+
z (θ) ≡ A+

λ1 ,λ2 ,z(θ) := Aλ1 ,0,z(θ)Aλ1 ,λ2 ,z(θ). (5.9)

From the definitions, A+
z establishes a quasi-periodic cocycle in the sense of (5.1), that is,

(2�,A+
z ) : T × C2 → T × C2, (x,v) �→ (x + 2�,A+

z (x)v).

From the definitions above, the reader can confirm that its iterates are given by

A2n−1,z · · ·A1,zA0,z =
0
∏

j=n−1

A+
z (θ + 2j�). (5.10)

Consequentially, the Lyapunov exponent associated to the mosaic UAMO is defined to be half of the
Lyapunov exponent of the quasi-periodic cocycle (2�,A+

z ), that is,

L(z) = 1
2
L(2�,A+

z ) = lim
n→∞

1
2n

∫

T

log ‖A+
z (θ + 2(n − 1)�) · · ·A+

z (θ)‖dθ . (5.11)
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Theorem 5.2. For s = 2, any λ1, λ2 ∈ (0, 1), � ∈ R\Q, and eit ∈ �λ1 ,λ2 ,�,2, the Lyapunov exponent of
the associated mosaic UAMO model is given by

L(eit) = 1
2
max {0, F(λ1, λ2, t)} , (5.12)

where we denote

F(λ1, λ2, t) = log

[

λ2

λ2
1(1 + λ′

2)

(

2λ′
1| cos t| +

√

λ4
1 + 4λ′

1
2 cos2 t

)]

.

Moreover, for any eit ∈ �λ1 ,λ2 ,�,2, the cocycle (2�,A+
eit

) is

(a) subcritical if and only if F(λ1, λ2, t) < 0.
(b) critical if and only if F(λ1, λ2, t) = 0.
(c) supercritical if and only if F(λ1, λ2, t) > 0.

According to Corollary 2.3, it suffices to compute the Lyapunov exponents for the corresponding
extended CMV matrix. Although the calculations can be done with the initial cocycle maps A+

z , it is
more convenient to put the question into SU(1, 1), which allows one to directly apply Avila’s global
theory:

Lemma 5.3. Given (α, ρ) and z ∈ ∂D, let An,z be the transfer matrix cocycle given by (2.4) with ρn

replaced by |ρn|. Then we have the following:

An,z = R−1
2n JS

+
n,zJR2n−2, (5.13)

where S+
n,z = S2n,zS2n−1,z is determined by the normalized Szegő cocycle maps

Sn,z = z− 1
2

|ρn|

[

z −αn

−αnz 1

]

∈ SU(1, 1), (5.14)

and

Rn =
[

1 0
−αn |ρn|

]

, J =
[

0 1
1 0

]

. (5.15)

Proof. This follows from a direct computation. �

Due to (5.13), it suffices to consider the four-step combined quasi-periodic cocycle (2�, S++
z ) instead

of (2�,A+
z ), where

S++
n,z = S++

z (θ + 2n�) = S+
2n+1,zS

+
2n,z. (5.16)

By direct calculations, one verifies that

S++
z (θ) = λ−2

1

|λ2c(θ) − iλ′
2|

[

λ′
1
2 + z2 + λ′

1λ2(z + z−1)s(θ) −λ′
1(1 + z−2) − λ2s(θ)(z + λ′

1
2z−1)

−λ′
1(1 + z2) − λ2s(θ)(z−1 + λ′

1
2z) λ′

1
2 + z−2 + λ′

1λ2(z + z−1)s(θ)

]

(5.17)

=:
λ−2
1

|λ2c(θ) − iλ′
2|

Mz(θ). (5.18)
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We denote

w(θ) = |λ2c(θ) − iλ′
2| =

√

λ2
2c

2(θ) + 1 − λ2
2 =

√

1 − λ2
2s

2(θ).

Note that the analytic extension of S++
z (θ) isMz(θ+iε)/(λ2

1w(θ+iε)) and notMz(θ+iε)/(λ2
1(λ2c(θ+iε)−iλ′

2)).
This could affect calculations of the matrix norm, since, for ε 
= 0, one can check that |w(θ + iε)| and
|λ2c(θ + iε)− iλ′

2| need not coincide. To calculate the Lyapunov exponent of the cocycle (2�, S++
z ), we first

deal with the normalizing factor in front. By inspection, w(θ) is real-analytic on T, and has an analytic

extension to the strip |ε| < 1
2π

arcsinh
√

λ−2
2 − 1 given by

w(θ + iε) =
√

1 − λ2
2s

2(θ + iε).

Thus, this is the expression whose integral one needs to calculate:

Lemma 5.4. Given 0 ≤ t ≤ 1, denote t′ =
√
1 − t2 and ε0 = ε0(t) = 1

2π
arcsinh(t′/t). Then

∫ 1

0
log

∣

∣

∣

√

1 − t2s2(θ + iε)
∣

∣

∣ dθ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

log
[

1+t′

2

]

− 2π(ε + ε0)ε ≤ −ε0,

log
[

1+t′

2

]

− ε0 ≤ ε ≤ ε0,

log
[

1+t′

2

]

+ 2π(ε − ε0)ε ≥ ε0,

(5.19)

= log

[

1 + t′

2

]

+ 2π max{0, |ε| − ε0}. (5.20)

Proof. Note that

log
∣

∣

∣

√

1 − t2s2(θ + iε)
∣

∣

∣ = 1
2
log |gε(e

2π iθ )|,

where

gε(z) = z2 + t2

4

(

z4e−4πε − 2z2 + e4πε
)

.

Solving g(z) = 0 gives the four roots

±

√

√

√

√

√

t2

2 − 1 ±
√

(1 − t2

2 )2 − 1
4 t

4

1
2 t

2e−4πε
= ±

√

√

√

√

t2

2 − 1 ±
√
1 − t2

1
2 t

2e−4πε
= ±i

1 ∓ t′

te−2πε
.

For |ε| < ε0, the only roots of g in D are

r± = ±i
1 − t′

te−2πε
.

Applying Jensen’s formula to g, we obtain

1
2

∫ 1

0
log |gε(e

2π iθ )|dθ = 1
2

(

log |gε(0)| − log |r+| − log |r−|
)

= log

(

t

2

)

+ 2πε − log

∣

∣

∣

∣

1 − t′

te−2πε

∣

∣

∣

∣

,

which yields the desired result. The case |ε| > ε0 is similar. �
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Define

γ̃ = log

[

λ2
1(1 + λ′

2)

2

]

. (5.21)

It follows immediately from the above lemma that the contribution of the scalar factors of the cocycle
maps to the Lyapunov exponent is given by the following quantity:

− 1
2

∫

T

log |ρ3(θ)ρ2ρ1ρ0|dθ = −1
2
log

[

λ2
1(1 + λ′

2)

2

]

= −1
2

γ̃ . (5.22)

Proof of Theorem 5.2. Denote z = eit, in view of Lemma 5.3, it suffices to show that

L(2�, S++
eit

) = max {0, F(λ1, λ2, t)} . (5.23)

We first complexify the phase by letting θ �→ θ + iε. Then, by the definition of Lyapunov exponent and
(5.18),

L(2�, S++
eit

(· + iε)) = L(2�,Meit (· + iε)) −
∫

T

log λ2
1|w(θ + iε)|dθ . (5.24)

From this and Lemma 5.4, it is easy to check that (2�, S++
eit

(· + iε)) admits a holomorphic extension
to the strip |ε| < ε0 = 1

2π
arcsinh(λ−1

2 λ′
2). We conclude that (2�, S++

eit
(·)) and (2�,Meit (·)) have the same

acceleration whenever |ε| < ε0, that is,

ω(2�, S++
eit

(· + iε)) = ω(2�,Meit (· + iε)), ∀|ε| < ε0. (5.25)

Now let us calculate the Lyapunov exponent of (2�,Meit (· + iε)) as ε → ∞. For large ε > 0, we have by
the definition of Mz in (5.18)

Meit (θ + iε) = e2πε

([

e−2πελ′
1λ2(z + z−1)s(θ + iε) −e−2πε(z + λ′

1
2z−1)λ2s(θ + iε)

−e−2πε(z−1 + λ′
1
2z)λ2s(θ + iε) e−2πελ′

1λ2(z + z−1)s(θ + iε)

]

+ o(1)

)

= e2πελ2ie
−2π iθ

(

1
2

[

λ′
1(z + z−1) −(z2 + λ′

1
2
)z−1

−(z−2 + λ′
1
2
)z λ′

1(z + z−1)

]

+ o(1)

)

.

By continuity of Lyapunov exponent [20],

L(2�,Meit (· + iε)) = log

[

λ2

2

(

2λ′
1| cos t| +

√

λ4
1 + 4λ′

1
2 cos2 t

)]

+ 2πε + o(1),

and by quantization of acceleration [12],

L(2�,Meit (· + iε)) = log

[

λ2

2

(

2λ′
1| cos t| +

√

λ4
1 + 4λ′

1
2 cos2 t

)]

+ 2πε (5.26)

for ε > 0 large enough. The case ε < 0 can be dealt with in a similar fashion.
On the other hand, by convexity,ω(2�,Meit (·+ iε)) ≤ 1 for any ε ∈ R. SinceMeit (·) /∈ SL(2,C), one cannot

conclude ω(2�,Meit (· + iε)) ∈ Z directly. Nevertheless, since

S++
eit

(·) ∈ Cω(T,SU(1, 1)),
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one may conclude that ω(2�, S++
eit

(· + iε)) ∈ Z for |ε| < ε0 by Avila’s global theory [12]. We distinguish two
cases:
Case 1: (2�, S++

eit
) is subcritical. Assume (2�, S++

eit
) is subcritical in the regime |ε| < δ0 ≤ ε0. Let us note

in passing that it is unknown whether the subcritical radius δ0 is exactly ε0. From the choice of δ0, we
have

L(2�, S++
eit

(· + iε)) = 0 ∀|ε| < δ0. (5.27)

Case 2: (2�, S++
eit

) is supercritical or critical. From (5.25) and the convexity of L(2�,Meit (· + iε)) it follows
that ω(2�, S++

eit
(· + iε)) = 1 for |ε| < ε0, and ω(2�,Meit (· + iε)) = 1 for all ε ∈ R. This implies that

L(2�,Meit (· + iε)) = log

[

λ2

2

(

2λ′
1| cos t| +

√

λ4
1 + 4λ′

1
2 cos2 t

)]

+ 2πε

for all ε ∈ R, where the case ε ≤ 0 follows by real-symmetry. As a consequence, by (5.22) and (5.24), we
have

L(2�, S++
eit

(· + iε)) = F(λ1, λ2, t) + 2πε. (5.28)

Then (5.23) follows from (5.28) and (5.27).
By Corollary 2.3 and [35], eit /∈ �λ1 ,λ2 ,�,2 if and only if (2�, S++

eit
) is uniformly hyperbolic.Consequently, by

Avila’s global theory [12], for any eit ∈ �λ1 ,λ2 ,�,2, the corresponding cocycle (2�, S++
eit

) is either supercritical,
critical, or subcritical. We thus only need to locate the spectral parameter eit, which is supercritical or
critical. Then (b) and (c) follows immediately from (5.28), and (a) follows from (b) and (c), finally (5.23)
follows from (5.28) and (5.27). �

If λ2
1λ

′
2

2λ′
1λ2

∈ (0, 1) for given coupling constants λ1, λ2 we define

t0 = arccos

(

λ2
1λ

′
2

2λ′
1λ2

)

. (5.29)

A direct consequence of Theorem 5.2 is the following:

Corollary 5.5. Suppose that eit ∈ �λ1 ,λ2 ,�,2. Then

• L(eit) > 0 for t ∈ [0, t0) ∪ (π − t0,π + t0) ∪ (2π − t0, 2π ], and
• L(eit) = 0 for t ∈ [t0,π − t0] ∪ [π + t0, 2π − t0].

6 Localization in the Supercritical Regime

In this section, we prove that for Diophantine frequency � and non-resonant phase θ ∈ T, the generalized
eigenfunctions of themosaic UAMOdecay exponentially for L(z) > 0. This implies Anderson localization
by a standard argument and thus proves Theorem 2.5. As discussed above, the mosaic UAMO can be
transformed into a standard extended CMV matrix by a suitable gauge, so our main result also gives
an interesting example (Anderson localization for fixed frequency) in the theory of OPUC. Moreover, we
calculate the exact decay rate of the eigenfunctions.

6.1 Localization
Wewould like to utilize the evenness of the characteristic polynomial of themosaic UAMO as a function
of the phase θ . However, inspecting Proposition 4.3, we find that the Verblunsky coefficients of the
mosaic UAMO given in (2.8) do not possess the required symmetry property (4.9). Since we want to
nevertheless utilize Proposition 4.3 we again leverage the gauge transformation in Theorem 2.1, yet, this
time in the reverse direction: it turns out that by rotating each ρ with even index by π

2 anti-clockwise
reveals the hidden symmetry. As a consequence, we establish the evenness of suitable characteristic
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polynomials, a key ingredient in the proof of localization in [48], in our proof of localization for (GE)CMV
matrices.

Rotating the ρ’s with even index as prescribed above, we introduce the following “complexified twin”
of the mosaic UAMO model:

α4n−1 = λ2 sin 2π(θ + 2n�), α4n+1 = 0, α4n = α4n+2 = λ′
1,

ρ4n−1 = λ2 cos 2π(θ + 2n�) − iλ′
2, ρ4n+1 = −i, ρ4n = ρ4n+2 = iλ1. (6.1)

We denote the corresponding GECMV matrix by E i and similarly its building blocks by Li and Mi such
that E i = LiMi. Comparing (2.8) with (6.1), we emphasize that the tiny change ρ2n �→ iρ2n paves the way
for applying the reflection symmetry argument introduced in Section 4.2: one easily verifies that after
the coordinate shift θ �→ θ + 1

4 the coefficients (6.1) satisfy (4.9) for c = −1/2, since the only non-constant
terms have index 4n − 1 for which indeed

α4n−1(θ + 1
4 ) = λ2 cos2π(2n� + θ) = λ2 cos2π(−2n� − θ) = α−4n−1(−θ + 1

4 ), (6.2)

and

ρ4n−1(θ + 1
4 ) = λ2 sin 2π(2n� + θ) + iλ′

2 = −λ2 sin 2π(−2n� − θ) + iλ′
2 = −ρ−4n−1(−θ + 1

4 ). (6.3)

We will also need the associated “standard” extended CMV matrix Ẽ = Ẽ(α, |ρ|) with every complex
ρ replaced by its absolute value, and we shall write Ẽ = L̃M̃. The role of Ẽ is to connect existing theory
for extended CMV matrices to our setting. The following observation is an elementary consequence of
Theorem 2.1:

Proposition 6.1. Let E ,E i be the GECMVmatrices with coefficients (2.8) and (6.1), respectively, and
let Ẽ be the associated extended CMV matrix. Then

(1) E , E i, and Ẽ are mutually unitarily equivalent.
(2) The Lyapunov exponents of the cocycles corresponding to E , E i, and Ẽ are identical.
(3) The spectra and spectral measures of E , E i, and Ẽ are identical.
(4) The dynamics of the solutions to the eigenvalue equations of E , E i, and Ẽ are identical.

Recall the definition of Diophantine numbers in (2.6) and (2.7).

Definition 6.2 (�-resonant). Given � ∈ DC(κ, τ), κ > 0, τ > 1, θ ∈ T is called resonant with respect
to � if

∣

∣sin 2π (θ + n�)
∣

∣ < exp(−|n| 1
2τ )

holds for infinitely many n ∈ Z. Otherwise, θ is called non-resonant with respect to �.

It is known that the collection of all Diophantine frequencies has full Lebesgue measure in T, and
the set of �-resonant phases is a dense Gδ-subset with zero Lebesgue measure in T (see [48]). Note that
E ,E i, and Ẽ depend on θ for fixed �. We will use X(θ),X ∈ {E ,E i, Ẽ} to make such dependence explicit,
yet, we sometimes suppress them from the notations to make things look concise. The main purpose
of this subsection is to prove the following theorem:

Theorem 6.3. Let Ẽ(θ) be the associated extended CMVmatrix of (6.1), and assume that � ∈ DC is
fixed and L(z) > 0. If θ is non-resonantwith respect to�, then Ẽ(θ) displays Anderson localization.

Once we have this, Theorem 2.5 (b) follows as a consequence of Proposition 6.1 (4). To prove
Theorem 6.3, it suffices to show that every generalized eigenfunction of Ẽ decays exponentially.
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6924 | C. Cedzich et al.

Definition 6.4. We say that a nonzero sequence � : Z → C is a generalized eigenfunction of the
extended CMV matrix Ẽ with corresponding generalized eigenvalue z ∈ C if

Ẽ� = z�

and there exist constants M,N such that |�n| ≤ M(1+ |n|)N, that is, � is polynomially bounded.

Schnol’s theorem [71] asserts that the generalized eigenvalues sit in the spectrum and that they
comprise spectrally almost every z in the spectrum. To formulate this precisely, one needs the following
notion. It is well-known and not hard to check that for any k, {δ2k, δ2k+1} is a cyclic set for any CMVmatrix
with nonvanishing ρ’s. The reader may find a detailed proof for the CMV case in [65, Lemma 3], or in
the more general matrix-valued version in [28, Proposition VI.3.]. Thus, the spectral measure μuniv

Ẽ
given

by

∫

f (z)dμuniv
Ẽ

(z) = 〈δ0, f (Ẽ)δ0〉 + 〈δ1, f (Ẽ)δ1〉 (6.4)

serves as a universal spectral measure of E in the sense that every other spectral measure of Ẽ is
absolutely continuous with respect to μuniv

Ẽ
. Then one has that [35, Theorem 3.4]

Theorem 6.5 (Schnol’s Theorem). Let Ẽ be an extended CMV matrix, G the set of its generalized
eigenvalues, and σ(Ẽ) its spectrum. Then we have the following:

• G ⊂ σ(Ẽ),
• μuniv

Ẽ
(σ (Ẽ) \ G) = 0,

• G = σ(Ẽ).

To deduce the desired localization statements, the key is to prove the exponential decay of the Green’s
functions. Let us first introduce some necessary notations. Let � = [a, b] ⊂ Z be a finite interval and
β1,β2 ∈ ∂D ∪ {•}. Given {αn} ⊂ D, define {α̃n} ⊂ D as follows:

α̃j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

β1 j = a − 1,

αj j 
= a − 1, b,

β2 j = b.

(6.5)

Let Eβ1 ,β2 be the GECMVmatrix with Verblunsky coefficients {α̃n, ρn} and let χ� be the projection onto
�. Define E

β1 ,β2
� = χ�E

β1 ,β2χ∗
�. One can verify that Eβ1 ,β2

� is unitary when β1,β2 ∈ ∂D. We will also use
E

•,β2
� = E

αa−1 ,β2
� and E

β1 ,•
� = E

β1 ,αb
� to denote the finite restrictions where the boundary conditions are

chosen in ∂D on one side of � and open on the other. The finite unitary restrictions Lβ1 ,β2
� andM

β1 ,β2
� are

defined in the same way.
Let

ρ� =
∏

j∈�

ρj,

and define

Pβ1 ,β2
z,� = |ρ�|−1 det(z� − (E i)

β1 ,β2
� ) (6.6)

for the GECMV matrix E i. For the case a > b, we just take Pβ1 ,β2

z,[a,b] = 1. Analogously, define

P̃β1 ,β2
z,� = |ρ�|−1 det(z� − Ẽ

β1 ,β2
� ) (6.7)

for the CMV matrix E . Then we have the following invariance property:
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Lemma 6.6. Let E i, Ẽ , Pβ1 ,β2
z,� , P̃β1 ,β2

z,� be as above. Then

Pβ1 ,β2
z,� = P̃β1 ,β2

z,� .

Proof. This follows from two observations: (1) By Theorem 2.1, there exists a unitary diagonal gauge
transformation D such that (E i)β1 ,β2 = DẼβ1 ,β2D∗. (2) χ� and D are both diagonal matrices, such that
χ�D = Dχ� = (χ�Dχ�)χ� =: D�χ�. Therefore,

det(z� − (E i)
β1 ,β2
� ) = detχ�D(z� − Ẽβ1 ,β2 )D∗χ∗

� = detD�(z� − Ẽ
β1 ,β2
� )D∗

�.

Multiplying with |ρ�|−1 on both sides concludes the proof. �

We emphasize that this equivalence is crucial since it connects the current setting of GECMV
matrices to the existing theory for extended CMV matrices in that it allows us to transfer statements
about P̃β1 ,β2

z,� to Pβ1 ,β2
z,� . More concretely, our main application of Lemma 6.6 will be to write down the exact

relations (6.12) and (6.13) below for GECMV matrices. This is important, since E i possesses a reflection
symmetry, which will allow us to conclude the evenness of det(z� − (E i)

β1 ,β2

[1,4k−2])(θ). We henceforth do

not distinguish explicitly (6.6) from (6.7), and in slight abuse of notation just write Pβ1 ,β2
z,� .

Recalling γ̃ given in (5.21), we need the following estimates:

Lemma 6.7. For any η > 0, there exists N > 0 such that for any n > N

en(γ̃ /4−η) ≤
n−1
∏

j=0

|ρj| ≤ en(γ̃ /4+η).

Proof. Since ρ4j−1(θ) = λ2 cos 2π(θ + 2j�) − iλ′
2 and ρ2j = λ1, ρ4j+1 = −i by (2.8), and θ → θ + 2� is ergodic

in T, by the Ergodic Theorem and (5.22),

lim
n→∞

1
n
log

⎡

⎣

n
∏

j=1

|ρ4j−1(θ)ρ4j−2ρ4j−3ρ4j−4|

⎤

⎦ =
∫

T

log |ρ3(θ)ρ2ρ1ρ0|dθ = γ̃ .

For any n > 0, let l be the integer such that n = 4l + r with 0 ≤ r ≤ 3. Then

n−1
∏

j=0

|ρj| =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

l
∏

k=1

|ρ4k−1(θ)ρ4k−2ρ4k−3ρ4k−4| r = 0,

r−1
∏

i=0

|ρ4l+i|
l
∏

k=1

|ρ4k−1(θ)ρ4k−2ρ4k−3ρ4k−4| r = 1, 2, 3.

Therefore, we have

1
n

∣

∣

∣

∣

∣

∣

log
n−1
∏

j=0

|ρj| − log
l
∏

k=1

|ρ4k−1(θ)ρ4k−2ρ4k−3ρ4k−4|

∣

∣

∣

∣

∣

∣

≤ log |ρ2ρ1ρ0|
n

= | log λ2
1|

n
.

Thus for any η > 0, there exists N > 0 such that for any n > N

∣

∣

∣

∣

∣

∣

1
n
log

n−1
∏

j=0

|ρj| − γ̃

4

∣

∣

∣

∣

∣

∣

≤ η.

�
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6926 | C. Cedzich et al.

Consider the equation (z� − Ẽ)�z = 0. Since Ẽ = L̃M̃, it follows equivalently that (zL̃∗ − M̃)�z = 0.
Define the finite-volume Green’s function as

G̃β1 ,β2
z,� :=

(

z(L̃β1 ,β2
� )∗ − M̃

β1 ,β2
�

)−1
, (6.8)

and denote its matrix elements for x, y ∈ � by G̃β1 ,β2
z,� (x, y) := 〈δx, G̃β1 ,β2

z,� δy〉. Then, by [60, Lemma 3.9], we
have for a < y < b,

�z(y) = G̃β1 ,β2
z,� (y, a)�̃z(a) + G̃β1 ,β2

z,� (y, b)�̃z(b), (6.9)

where the values at the endpoints of � = [a, b] are given by

�̃z(a) =

⎧

⎨

⎩

(zβ1 − αa)�
z(a) − |ρa|�z(a + 1), a is even,

(zαa − β1)�
z(a) + z|ρa|�z(a + 1), a is odd,

and

�̃z(b) =

⎧

⎨

⎩

(zβ2 − αb)�
z(b) − |ρb|�z(b − 1), b is even,

(zαb − β2)�
z(b) + z|ρb−1|�z(b − 1), b is odd.

By [60, Proposition 3.8] and the correction note in [84, Appendix B.1.],

∣

∣

∣G̃
β1 ,β2
z,� (x, y)

∣

∣

∣ = 1
|ρy|

∣

∣

∣

∣

∣

∣

Pβ1 ,•
z,[a,x−1]P

•,β2

z,[y+1,b]

Pβ1 ,β2
z,�

∣

∣

∣

∣

∣

∣

, x, y ∈ �. (6.10)

The next step is to connect the Green’s function to the Szegő transfer matrix. Let

S̃n,z = 1
|ρn|

[

z −αn

−αnz 1

]

(6.11)

be the Szegő cocycle map of the extended CMV matrix Ẽ , which has all ρ’s real. By [60, Corollary 3.11]
and Lemma 6.6, we have that

[

Pβ1 ,β2

z,[a,b] P−β1 ,β2

z,[a,b]

Pβ1 ,−β2

z,[a,b] P−β1 ,−β2

z,[a,b]

]

=
[

z −β2

z β2

]

⎛

⎝

1
|ρb|

b−1
∏

j=a

S̃j,z

⎞

⎠

[

1 1
β1 −β1

]

(6.12)

and

[

Pβ,•
z,�

P•,β
z,�

]

=
b
∏

j=a

S̃j,z

[

1
β

]

. (6.13)

It follows that

|Pβ1 ,•
z,[a,x−1]| ≤

√
2
∥

∥

∥

∥

x−1
∏

j=a

S̃j,z

∥

∥

∥

∥

, |P•,β2

z,[y+1,b]| ≤
√
2
∥

∥

∥

∥

b
∏

j=y+1

S̃j,z

∥

∥

∥

∥

. (6.14)

Definition 6.8. Fix z = eit ∈ ∂D, γ ∈ R, and k̄ ∈ Z. We say that y ∈ Z is (γ , k̄)-regular if

• there exists [n1,n2] containing y such that n2 = n1 + k̄ − 1, that is, there is an interval of size k̄ that
contains y,

• |y − ni| ≥ k̄
7 , i = 1, 2, that is, the distance of y to the boundary of [n1,n2] is at least k̄/7,
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• |G̃β1 ,β2

z,[n1 ,n2]
(y,ni)| < e−γ |y−ni |, i = 1, 2, that is, the Green’s function decays exponentially with a rate at

least γ .

Otherwise, we call y ∈ Z (γ , k̄)-singular.

It is well known that if �z 
= 0 is a non-zero generalized eigenfunction, then any y with �z(y) 
= 0 is
(γ , k̄)-singular for sufficiently large k̄. Thus, we usually assume �z(0) 
= 0, and replace �z(0) with �z(1)

otherwise.
To prove the exponential decay of the generalized eigenfunction corresponding to the generalized

eigenvalue z, we need the following lemma that guarantees that there exists a k̄ for which y is close to
being (γ , k̄)-regular:

Lemma 6.9. Suppose that � ∈ DC, θ is non-resonant w.r.t. � and L(z) > 0. Then for any ε > 0 and
|y| > k0(θ ,�, z, ε) large enough, there exists k̄ >

5|y|
16 , such that y is (L(z)/2 − ε, k̄)-regular.

We prove this lemma at the end of this section. In the following, we will take γ ≡ L(z)/2 for simplicity,
and we will fix z and θ and suppress them from the notation. Assuming that Lemma 6.9 holds, we can
prove Theorem 6.3.

Proof of Theorem 6.3. By Schnol’s theorem (Theorem 6.5), it is enough to prove that any generalized
eigenfunction decays exponentially. For |y| > k0, since y is (γ − ε, k̄)−regular by Lemma 6.9, we have

|G̃β1 ,β2

z,[n1 ,n2]
(y,ni)| < e−(γ−ε)|y−ni | ≤ e− γ−ε

7
5|y|
16 .

Since |�z(y)| ≤ M(1 + |y|)N for any y, we obtain the following estimate from (6.9):

|�z(y)| ≤ 2e−(γ−ε)(y−n1) max{|�z(n1)|, |�z(n1 + 1)|}

+ 2e−(γ−ε)(n2−y) max{|�z(n2)|, |�z(n2 − 1)|}

≤ 2
(

e−(γ−ε)(y−n1)M(1 + |n1|)N + e−(γ−ε)(n1−y)M(1 + |n2|N)
)

.

Since |ni| ≤ |ni − y| + |y| for i = 1, 2, we have

(1 + |ni|N) ≤ 2N max{|y|N, |ni − y|N},

such that in both cases we have the exponential decay estimate

|�z(y)| ≤ e−(γ−ε)
5|y|

14×16 .

From this the result follows. �

It remains to to prove Lemma 6.9, which we do in a sequence of steps. More concretely, we need
to establish the exponential upper bound on the absolute value of the Green’s function G̃β1 ,β2

z,[a,b] in the
definition of regularity (Definition 6.8). To this end, we consult (6.10) and bound the numerator from
above and the denominator from below.

Define S̃++
n,z as the four-step quasi-periodic cocycle of S̃n,z in the same fashion as in (5.16). It is readily

verified that for z ∈ ∂D, we have L(2�, S̃++
z ) = L(2�, S++

z ) = 2L(z), where L(z) is the Lyapunov exponent
given in Theorem 5.2.

Lemma 6.10. For any ε > 0, z ∈ ∂D, there exists k1 = k1(ε, z) such that

∣

∣

∣P
β1 ,•
z,[a,b]

∣

∣

∣ ,
∣

∣

∣P
•,β2

z,[a,b]

∣

∣

∣ < e(γ+ε)(b−a+1)

if b − a + 1 > k1.
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Proof. By (5.9), (5.13), and (5.16), we have

L(z) = lim
k→∞

1
2k

∫

T

log

∥

∥

∥

∥

0
∏

j=k−1

A+
z (θ + 2j�)

∥

∥

∥

∥

dθ = lim
k→∞

1
2k

∫

T

log

∥

∥

∥

∥

0
∏

j=k−1

S++
z (θ + 2j�)

∥

∥

∥

∥

dθ .

Therefore,

L(z) = lim
k→∞

1
2k

∫

T

log

∥

∥

∥

∥

0
∏

j=k−1

S̃++
z (θ + 2j�)

∥

∥

∥

∥

dθ .

Since S̃++
z are four combined steps of S̃j,z, this implies that limk→∞ k−1

∫

T
log ‖

∏0
j=k−1 S̃j,z(θ)‖dθ = L(z)/2 =

γ . Then the statement follows from Furman’s well-known result [39] and (6.14). �

Recall that Pβ1 ,β2
z,� in (6.6) and (6.7) depends on the phase parameter θ . In the following, we will write

Pβ1 ,β2
z,� (θ) to make this dependence explicit. Now let us give the lower bound on the denominator in (6.10)

by following the idea of [54]. To facilitate the proof, we restrict to the concrete interval [1, 4k− 2], which
is the only interval we shall require:

Lemma 6.11. For any ε > 0, z ∈ ∂D, there exists k2 = k2(ε, z) > 0 such that

1
4k − 2

∫

T

log |Pβ1 ,β2

z,[1,4k−2](θ)|dθ ≥ γ − ε

for any 4k − 2 > k2.

Proof. Let D(θ) = |ρ3ρ2ρ1ρ0|S̃3,zS̃2,zS̃1,zS̃0,z with S̃n,z given by (6.11). Direct computation gives

D(θ) = z2
[

z2 + λ′2
1 + λ′

1λ2s(θ ′)(z + z−1) −λ′
1(z + z−1) − λ2s(θ ′)(λ′2

1 + z−2)

−λ′
1(z + z−1) − λ2s(θ ′)(λ′2

1 + z2) λ′2
1 + z−2 + λ′

1λ2s(θ)(z + z−1)

]

,

where we recall from (5.7) the notation s(θ) = sin 2π(θ) and we set θ ′ = θ + 2�. Writing z = eit and
s(θ ′) = (e2π iθ ′ − e−2π iθ ′

)/(2i) = (w − w−1)/(2i), where w = e2π iθ ′
, then D(θ) can be written as

D(θ) = w−1e2it
[

(λ′2
1 + z2)w + 2λ′

1λ2 cos(t)
w2−1
2i −2λ′

1w cos(t) − λ2(λ
′2
1 + z−2)w

2−1
2i )

−2λ′
1w cos(t) − λ2(λ

′2
1 + z2)w

2−1
2i (λ′2

1 + z−2)w + 2λ′
1λ2 cos(t)

w2−1
2i

]

=: w−1e2itD̂(w).

Let γ̃ be given by (5.21) and let

V =
[

1 0
0 0

]

, B1 =
[

1 1
β1 −β1

]

, B2 =
[

z −β2

z β2

]

.

Then, by (6.12),

∫

T

log |Pβ1 ,β2

z,[1,4k−2](θ)|dθ + (k − 1)γ̃ =
∫

T

log

∥

∥

∥

∥

VB2S̃4k−3,z

k−2
∏

j=0

D(θ + j2�)S̃−1
0,zB1V

∥

∥

∥

∥

dθ

=
∫

∂D

log

∥

∥

∥

∥

VB2S̃4k−3,z

k−2
∏

j=0

w−1e2itD̂(we2ij2�)S̃−1
0,zB1V

∥

∥

∥

∥

dw

≥ log

∥

∥

∥

∥

VB2S̃4k−3,z

k−2
∏

j=0

D̂(0)S̃−1
0,zB1V

∥

∥

∥

∥

.

(6.15)
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The last inequality is due to subharmonicity. By (6.1),

S̃4k−3,z = i

[

z 0
0 1

]

, S̃0,z = 1
iλ1

[

z −λ′
1

−λ′
1z 1

]

,

and

D̂(0) = λ2

2i

[

−2λ′
1 cos(t) λ′2

1 + z−2

λ′2
1 + z2 −2λ′

1 cos(t)

]

= λ2

2i
Q−1

[

λ+ 0
0 λ−

]

Q,

where Q is the normalized diagonalization matrix (detQ = 1), and

λ± = 2λ′
1 cos t ±

√

λ2
1 + 4λ′2

1 cos2 t.

Direct computations give the right side of (6.15) as a linear combination of the log of ( λ2
2 λ±)k−1 with

non-zero constant coefficients (independent of k). Thus, for any ε > 0 and 4k−2 > k2(ε, z) large enough,
we have

1
4k − 2

∫

T

log |Pz,[1,4k−2](θ)|dθ ≥ 1
4

⎛

⎝log
λ2(2λ′

1| cos t| +
√

λ2
1 + 4λ′2

1 cos2 t)

2
− γ̃

⎞

⎠− ε

= γ − ε.

�

Let us denote

�
β1 ,β2
z,� := det(z� − (E i)

β1 ,β2
� ) ≡ |ρ�|Pβ1 ,β2

z,�

to facilitate the statement of the results. In deriving the following statement, we want to use the
reflection symmetry. Since we want to use the results of Section 4.2, we fix the boundary conditions
β2 = β1 for (4.9) to hold. The key ingredient of proving localization is the following lemma:

Lemma 6.12. �
β1 ,β2

z,[1,4k−2](θ + 1
4 ) is a polynomial of cos2π(θ + (k − 1)�) of degree at most k.

Proof. First note that �
β1 ,β2

z,[1,4k−2](θ) is a polynomial in sin 2πθ and cos 2πθ of degree at most k. This is a
direct consequence of (6.7), Lemma 6.6, (6.12) and our specific model (6.1).

Next, we show that �
β1 ,β2

z,[1,4k−2](θ + 1
4 − (k−1)�) is an even function of θ : recall the reflection symmetry

of the αj and ρj established in (6.2) and (6.3), respectively. Then, evenness in θ follows from applying
Proposition 4.3 to �

β1 ,β2

z,[1,4k−2](θ + 1
4 − (k − 1)�). The change of variable θ �→ θ + (k − 1)� concludes

the proof. �

By Lemma 6.12, there exists a polynomial Qk of degree k such that �
β1 ,β2

z,[1,4k−2](θ + 1
4 ) = Qk(cos 2π(θ +

(k − 1)�)). For any positive integer k and r > 0, define

Ar
k = {θ ∈ T : |Qk(cos 2πθ)| ≤ ekr}.

Define

γ ′ = γ + γ̃ /4. (6.16)

Then, similar to [48, Lemma 6], the following holds:
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6930 | C. Cedzich et al.

Lemma 6.13. Assume that y is (γ − ε, 4k − 2)-singular for some k ∈ Z and ε > 0. Then for each
j ∈ Z with

y −
⌊

2
4

(4k − 2)

⌋

+ (k − 1) ≤ 2j ≤ y +
⌊

1
4

(4k − 2)

⌋

+ (k − 1),

we have θ + 2j� ∈ A
4γ ′− ε

8
k , where γ ′ is given by (6.16), provided 4k − 2 > k3(γ , ε

48 ) is sufficiently
large.

Proof. Let us take k3 = max{k0, k1, k2,N} with N, k0, k1, k2 from Lemma 6.7, Lemma 6.9, Lemma 6.10, and
Lemma 6.11, respectively. Then, by Lemma 6.10, for any ε′ > 0, b − a + 1 > k3

∣

∣

∣P
β1 ,•
z,[a,b]

∣

∣

∣ ,
∣

∣

∣P
•,β2

z,[a,b]

∣

∣

∣ < e|b−a+1|(γ+ε′). (6.17)

Since y is (γ −ε, 4k−2)-singular, then without loss of generality, for any n1 < n2 such that y ∈ [n1,n2],n2−
n1 + 1 = 4k − 2 with |y − ni| ≥ 4k−2

7 , we assume

∣

∣

∣G̃
β1 ,β2

z,[n1 ,n2]
(y,n1)

∣

∣

∣ > e−|y−n1 |(γ−ε).

Suppose that there exists some j0 with

y −
⌊

2
4

(4k − 2)

⌋

+ (k − 1) ≤ 2j0 ≤ y +
⌊

1
4

(4k − 2)

⌋

+ (k − 1)

such that θ + 2j0� /∈ A
4γ ′− ε

8
k , that is, |Qk(cos 2π(θ + 2j0�))| > ek(4γ ′− ε

8 ). Let θ̃ = θ + (j0 − (k − 1))�. Then
|�β2 ,β2

z,[1,4k−2](θ̃)| > ek(4γ ′− ε
8 ) by Lemma 6.12. By (6.10) and (6.17), we conclude that

|G̃β1 ,β2

z,[n1 ,n2]
(y,n1)| < |ρy|−1

⎛

⎝

n2
∏

j=n1

|ρj|

⎞

⎠ e(γ+ε′)(n2−y)e−k(4γ ′− ε
8 ).

By Lemma 6.7, if 4k − 2 > N, we have

n2
∏

j=n1 ,j 
=y

|ρj| ≤ e(n2−n1)(γ̃ /4+η).

Putting the above inequalities together yields

|G̃β1 ,β2

z,[n1 ,n2]
(y,n1)| < e|y−n1 |(γ−ε)

whenever we take 28η + 24ε′ < ε
9 . This contradicts the (γ − ε, 4k − 2)-singularity of y. �

We can write a polynomial Qk(x) of degree k in the following Lagrange interpolation form

Qk(x) =
k
∑

j=0

Qk(cos2πθj)

∏

i 
=j(x − cos 2πθi)
∏

i 
=j(cos 2πθj − cos2πθi)
. (6.18)

Definition 6.14 (ε-uniform). The set {θj}kj=0 ⊂ T is called ε-uniform if and only if

max
x∈[−1,1]

max
0≤i≤k

k
∏

j=0,j 
=i

∣

∣

∣

∣

x − cos 2πθj

cos 2πθi − cos2πθj

∣

∣

∣

∣

< ekε . (6.19)
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Then the following result holds:

Lemma 6.15. Let 0 < ε′ < ε, k ∈ N+, and γ > 0. If {θ0, · · · , θk} ⊂ A4γ ′−ε

k , then {θ0, · · · , θk} can not be
ε′−uniform for any sufficiently large k such that 4k − 2 > k4(ε, ε′).

Proof. If {θ0, · · · , θk} ⊂ A4γ ′−ε

k is ε′-uniform, then as a result of (6.18), we have the following estimates:

|�β1 ,β2

z,[1,4k−2](θ + 1
4

)| = |Qk(cos 2π(θ + (k − 1)�)| ≤ (k + 1)ek(4γ ′−(ε−ε′)). (6.20)

Compare this with Lemma 6.7 and Lemma 6.11:

1
4k − 2

∫

log |Pβ1 ,β2

z,[1,4k−2](θ)|dθ ≥ γ − ε′′ (6.21)

where ε′′ is arbitrarily small and k sufficiently large. Then (6.20) and (6.21) lead to a contradiction if we
pick ε′′ <

ε−ε′−4η

5 . �

Let pn/qn be the sequence of continued fraction approximants of 2�, let y be large enough, let m be
such that qm ≤ y

16 < qm+1, and let s be the largest positive integer with sqm <
y
16 . Define

I1 = [0, sqm] ∩ Z, I2 =
[

1 +
⌊ y

2

⌋

− sqm,
⌊ y

2

⌋

+ sqm
]

∩ Z.

Note that I1 ∩ I2 is empty, the elements of {θ + 2j�}j∈I1∪I2 are all distinct, and the number of points in
I1∪I2 is 3sqm+1. Actually, the elements of {cos2π(θ +2j�)}j∈I1∪I2 are also distinct.Moreover, the following
property holds:

Lemma 6.16. For any ε > 0, the set {θ + 2j�}j∈I1∪I2 is ε-uniform for y > y0(�, θ , ε) sufficiently large.

The proof is standard, and we thus leave it to Appendix 15. Once we have this, we are ready to prove
Lemma 6.9:

Proof of Lemma 6.9. Let K = max{k1, k2, k3, k4} and let y be sufficiently large such that 12sqm −2 > K. By

Lemma 6.15 and Lemma 6.16, {θ +2j�}j∈I1∪I2 cannot be inside the set A
4γ ′− ε

8
3sqm . Since 0 is (γ − ε, 12sqm −2)-

singular by the assumption �z(0) 
= 0, y must be (γ − ε, 12sqm − 2)-regular, since if y would be
(γ − ε, 12sqm − 2)-2singular, the clusters of points given by Lemma 6.13 with respect to 0 and y

would cover I1 and I2. This is a contradiction. Notice also that 12sqm − 2 >
5y
16 , so the proof can

be completed. �

6.2 Decay rate of eigenfunctions
In this section, we prove that the eigenfunctions in the supercritical case decay at the Lyapunov rate:

Theorem 6.17. For Diophantine �, non-resonant θ , and every eigenvalue z ∈ Ipp of E(θ) as in
Theorem 2.5, the corresponding eigenfunction �z = (· · · ,�z(2n),�z(2n + 1), · · · ) satisfies

lim
n→∞

1
n
log(|�z(2n)|2 + |�z(2n + 1)|2) = − L(z)

2
. (6.22)

Since every GECMV matrix is gauge equivalent to an extended CMV matrix Ẽ via a diagonal unitary
transformation (see Theorem 2.1), we can use the normalized Szegő cocycle maps Sn,z from (5.14) to
compute the decay rate. By (5.13) and Theorem 5.2, the corresponding Lyapunov exponent is L(z)/2.
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Let �z be the solution to the eigenvalue equation of the extended CMV matrix

Ẽ�z = z�z.

It is a general result [32, Theorem 3.2] that

lim inf
|n|→∞

log(|�z(2n)|2 + |�z(2n + 1)|)
2|n| ≥ − L(z)

2
.

Note that the factor 1
2 on the right-hand side is due to our specific way of defining the Lyapunov expo-

nent. Thus, we only need to give an upper bound to prove Theorem 6.17. Such an upper bound follows
from the block-resolvent expansion of [48], with the power law growth of the scales counteracting the
combinatorial factor. However, in the present context, this expansion is more involved.

To be more specific, let γ = L(z)/2 and k5 be such that any y with |y| ≥ k5 is (γ − ε, |y|)- regular. To
make the expansion clear, we use i ∈ N to track the times or levels of expansions, and j ∈ N to denote the
index of endpoints of the interval in the definition of (γ , k)-regularity (Definition 6.8). Let ni,j stand for
the j-th endpoint of i-th level of expansion counting from left to right, let I(x) be the interval containing
the (γ − ε, |x|)-regular x given in the definition of regularity, and n′

i,j be either ni,j or the interior neighbor
of ni,j that belongs to the interval that takes ni,j as one of its endpoints.

Denote G̃I(x)(x, ·) the Green’s function defined in (6.8). It is immediate to check that if ni,j is (γ −ε, |ni,j|)-
regular, then it is contained in an interval [ni+1,2j−1,ni+1,2j] with |ni,j − ni+1,ci,j | ≥ 1

7 |ni,j|, where ci,j = 2j − 1
or 2j standing for the left or right boundary, respectively. Let r > 1, we start from a y large enough and
let k6 be such that kr6 < y < (k6 + 3)r and k6 > k5. Since y is (γ − ε, |y|)-regular, there exists [n1,1,n1,2]
containing y and satisfies k6 < 1

7k
r−1
6 k6 − 1 ≤ 1

7y − 1 ≤ n1,1 < n1,2. Therefore, n1,1 is (γ − ε,n1,1)-regular,
and there exists [n2,1,n2,2] containing n1,1. We continue this expansion until either some n′

i,ci,j
< k6 or the

number of the G̃I(n′
i,ci,j

)(n
′
i,ci,j

,ni+1,ci+1,j
) terms in the product in (6.23) below exceeds 7kr−1

6 .

This yields the following expansion for the generalized eigenfunction in (6.9)

�z(y) =
∑

s;j

G̃I(y)(y,n1,j)G̃I(n′
1,j)

(n′
1,j,n2,c2,j ) · · · G̃I(n′

s,cs,j
)(n

′
s,cs,j

,ns+1,cs+1,j )�
z(n′

s+1,cs+1,j
) (6.23)

where ci,j = 2j − 1 or 2j, and each n′
i,j can be specified by either ni,j or ni,j − (−1)j. By our design, we have

n′
i,ci,j

> k6 for i = 1, 2, · · · , s and either n′
s+1,cs+1,j

< k6 and s ≤ 7kr−1
6 , or s+ 1 = 7kr−1

6 . Note that in (6.23), the j

in each n′
i+1,ci+1,j

is indeed ji+1, which stands for either the left or right end point of the interval containing

n′
i,ci,j

, and needs not to be uniform for all i = 1, 2, · · · , s + 1. If n′
s+1,cs+1,j

< k6 and s ≤ 7kr−1
6 , we have

∣

∣G̃I(n)(y,n1,j)G̃I(n′
1,j)

(n′
1,j,n2,c1,j ) · · · G̃I(n′

s,cs,j
)(n

′
s,cs,j

,ns+1,cs+1,j )�
z(n′

s+1,cs+1,j
)
∣

∣

≤ e
−(γ−ε)(|y−n′

s+1,cs+1,j
|+
∑

1≤i≤s |n′
i,ci,j

−ni,ci,j |)

≤ e
−(γ−ε)(|y−n′

s+1,cs+1,j
|−(s+1))

≤ e−(γ−ε)(y−k6−7kr−1
6 ).

If s + 1 = 7kr−1
6 , then |y − n1j| ≥ k6

7 , ..., |n′
i,ci,j

− ni+1,ci+1,j
| ≥ k6

7 , for i = 1, 2, · · · , s, which yields the estimate

∣

∣

∣G̃I(y)(y,n1,j)G̃I(n′
1,j)

(n′
1,j,n2,c2,j ) · · · G̃I(n′

s,cs,j
)(n

′
s,cs,j

,ns+1,cs+1,j )�(n′
s+1,cs+1,j

)

∣

∣

∣ ≤ e−(γ−ε)
k6
7 7kr−1

6 .

In both cases, we obtain

∣

∣

∣G̃I(y)(y,n1,j)G̃I(n′
1,j)

(n′
1,j,n2,c2,j ) · · · G̃I(n′

s,cs,j
)(n

′
s,cs,j

,ns+1,cs+1,j )�(n′
s+1,cs+1,j

)

∣

∣

∣ ≤ e−(γ−ε−δ)|y| (6.24)
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for any δ > 0 and y sufficiently large. The total number of terms in the sum can be bounded by 47k
r−1
6 .

This together with (6.24) gives

|�z(y)| ≤ 47|y| r−1
r e−(

L(z)
2 −ε−δ)|y|.

Since δ, ε can be arbitrarily small, the upper bound is therefore obtained.

7 Absolutely Continuous Spectrum in the Subcritical Regime

According to [62, Appendix B], the spectral measure of an extended CMV matrix with quasi-periodic
Verblunsky coefficients is purely absolutely continuous continuous in the subcritical region. A key
ingredient of [62] is the analysis of the Szegő cocycle of the extended CMV matrix. Namely, if one has
relatively “good” control on the growth of these cocycle, then the spectral measure can likewise be
controlled. However, this argument does not apply directly to the mosaic UAMO with coefficients (2.8)
for two reasons: Firstly, the doubly-infinite matrix corresponding to the mosaic UAMO is not a standard
extended CMVmatrix, since the ρ’s appearing therein are complex whenever λ2 
= 1, see (2.8). Secondly,
the coefficients in (2.8) are not quasi-periodic but merely almost-periodic.

Fortunately, we can do away with the first obstacle by appealing to the gauge transform D in
Theorem 2.1. The second obstacle can be resolved by considering the four-step combined Szegő cocycle
(2�, S++

eit
), which is quasi-periodic. Theorem 5.2 guarantees that (2�, S++

eit
) is subcritical for eit ∈ �

whenever F(λ1, λ2, t) < 0, and that the behavior of the solution to the eigenvalue equation of the mosaic
UAMO is the same as that of the corresponding extended CMV matrix with real ρ’s when the phase θ

is complexified.
We need the following global-to-local reduction lemma to turn the subcritical cocycles into pertur-

bations of constant ones. Let h > 0 be given, and for any function f defined on {z ∈ C : |Im z| < h}, let
‖f‖h = sup|Im z|<h ‖f‖.

Lemma 7.1. Let � ∈ DC, and let �sub be the set of spectral parameters for which the cocycle
(2�, S++

eit
) is subcritical. Then there exists h = h(2�) > 0 such that for any η > 0, and for any

eit ∈ �sub, there exist Zt ∈ Cω(2T,SU(1, 1)), ft(θ) ∈ Cω(T, su(1, 1)), φ(t) ∈ R,Dφ(t) = diag{eiφ(t), e−iφ(t)}
such that

Z−1
t (θ + 2�)S++

eit
(θ)Zt(θ) = Dφ(t)e

ft(θ) (7.1)

with ‖ft‖h < η, ‖Zt‖h < �(�, η, λ1, λ2) for some constant �.

Remark 7.2. The proof depends on Avila’s solution of almost-reducible conjecture [11, 12], that
is, if the cocycle is subcritical then it is almost-reducible. With the compactness argument
from [61, Proposition 5.2], the key observation here is that one can choose h and �(�, η) to be
independent of eit; see also [79, Lemma 4.2].

Combining this lemma with the main results of [62], we can conclude that the spectral measure
is purely absolutely continuous on �sub, that is for t < t0(λ1, λ2) and 2π − t0 < t < 2π with t0 as
defined in (5.29). We give the sketch of proving purely absolutely continuous spectrum for the reader’s
convenience, and direct the reader to [62] for a more detailed proof.

In order to facilitate our statement, we need to introduce the prescriptions of notations that will be
needed: following Lemma 7.1, let ε0 = η be sufficiently small and define the sequences

εj = ε2
j

0 , rj = r

2j
, Nj = 4j+1 log ε−1

0

r

as each standard KAM argument does. Let ρ(2�,Dφ(t)eft ) be the fibered rotation number of the cocycle.
Then we have the following result as an application of [62, Proposition 3.1] to the near constant cocycle
(2�,Dφ(t)eft ):
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Theorem 7.3. Assume that κ, τ , r > 0 and � ∈ DC(κ, τ). Let Dφ(t) ∈ SU(1, 1), ft ∈ Cω
r (Td, su(1, 1)) with

‖ft‖r ≤ ε0 ≤ D0
∥

∥Dφ(t)

∥

∥

C0

( r

2

)C0τ

,

where D0 = D0(κ, τ) and C0 is a numerical constant. Then for any j ≥ 1, there exists Bj ∈
Cω
rj
(2Td,SU(1, 1)) such that

Bj(θ + 2�)(Dφ(t)e
ft(θ))B−1

j (θ) = D
j
φ(t)e

f
j
t (θ),

where ‖f jt (θ)‖rj ≤ εj and Bj satisfies

∥

∥Bj
∥

∥

0 ≤ ε
− 1

192
j−1 , (7.2)

|deg Bj| ≤ 2Nj−1. (7.3)

More precisely, we have

(a) If ‖2ρ(�,Dj−1
φ(t)e

f
j−1
t )−〈m, 2�〉‖R/Z < ε

1
15
j−1 for somem ∈ Zd with 0 < |m| < Nj−1,we have the following

precise expression:

D
j
φ(t) = exp

[

itj vj
vj −itj

]

,

where tj ∈ R, vj ∈ C, and |tj| ≤ ε
1
16
j−1, |vj| ≤ ε

15
16
j−1.

(b) Moreover, there always exist unitary matrices Uj ∈ SL(2,C) such that

UjD
j
φ(t)e

f
j
t (x)U−1

j =
[

e2π iρj cj
0 e−2π iρj

]

+ F
j
t(x) (7.4)

where ρj ∈ R ∪ iR, with estimates ‖Fjt‖rj ≤ εj, and

‖Bj‖20|cj| ≤ 8‖Dφ(t)‖. (7.5)

Curious readers may consult [62, 79] for the proof. Note that the cocycle (2�, S++
eit

) represents a four-
steps combined iteration. A simple observation is that

S4n,z = S4n+2,z = 1
λ1

[

z
1
2 −λ′

1z
− 1

2

−λ′
1z

1
2 z− 1

2

]

, S4n+1,z =
[

z
1
2 0
0 z− 1

2

]

.

Let Tn
z =

∏0
j=n−1 Sj,z be the transfer matrix of the normalized Szegő cocycle maps. It follows immediately

that there exists a positive constant C = C(λ1) such that

C−1

∥

∥

∥

∥

∥

∥

0
∏

j=n−1

Dφ(t)e
ft(θ+2j�)

∥

∥

∥

∥

∥

∥

≤ ‖T4n+k
eit

‖ ≤ C

∥

∥

∥

∥

∥

∥

0
∏

j=n−1

Dφ(t)e
ft(θ+2j�)

∥

∥

∥

∥

∥

∥

for k = 0, 1, 2, 3. (7.6)

This enables us to translate the estimates for (2�,Dφ(t)eft ) (and thus (2�, S++
eit

) by Lemma 7.1) given by
Theorem 7.3 to the corresponding estimates of the transfer matrix of Szegő cocycle maps of any length.
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For any m ∈ Zd with 0 < |m| < Nj−1, define

�m(j) =
{

eit ∈ � :
∥

∥

∥2ρ
(

2�,Dj−1
φ(t)e

f
j−1
t

)

− 〈m, 2�〉
∥

∥

∥ R/Z < ε
1
15
j−1

}

, (7.7)

and

Kj =
⋃

0<|m|≤Nj−1

�m(j) (7.8)

with �m(j) from (7.7). Let

F(z) =
∫

eiθ + z

eiθ − z
dμ

be the Carathéodory function of a measure μ, then following the CMV version of the Damanik–Killip–
Lenz maximum modulus principle argument [37] of Munger–Ong [65], gives

Re f ((1 − ε)eit) ≥ 1
ε

μ(t − ε, t + ε) (7.9)

for any t and ε > 0 small. Together with the Jitomirskaya–Last inequality of the CMV version (see Section
10.8 of [74]), we have

μ(t − ε, t + ε) < Cε sup
0≤s≤cε−1

‖Ts
eit

‖2. (7.10)

As a well known result, let B = {t ∈ [0, 2π ] : limsups ‖Ts
eit

‖0 < ∞}, then μ|B is absolutely continuous.
Therefore, absolute continuity of μ follows from μ(�\B) = 0. LetR denote the collection of the spectral
parameters for which (2�,Dφ(t)eft ) is reducible, since R\B is the set of spectral parameters for which
the cocycle is reducible to the parabolic, thus at most countable and supports no point spectrum,
μ(R\B) = 0. Therefore it suffices to show μ(�\R) = 0. To this end, we need the observation that by our
construction of Kj in (7.7) and (7.8), we have �\R ⊂ limsupKj. That is, irreducible spectral parameters
of � belong to infinitely many Kj’s. On each Kj, combining estimates of Theorem 7.3 and (7.10), the
following inequality holds

μ(Kj) ≤ Cε
7

384
j−1 ,

which implies that
∑

j μ(Kj) < ∞. By the Borel–Cantelli Lemma, μ(�\R) = 0, which finishes the proof.

Appendix A. Proof of Lemma 6.16

We first need the following result of [13]:

Lemma A.4. Let ω ∈ R \Q, x ∈ R, and qm be the denominator of continued fraction approximants
of ω. Let 0 ≤ l0 ≤ qm − 1 be such that

| sinπ(x + l0ω)| = inf
0≤l≤qm−1

| sinπ(x + lω)|,

then for some absolute constant C,

− C log qm ≤
∑

0≤l≤qm−1,l
=l0

log | sinπ(θ + lω)| + (qm − 1) log 2 ≤ C log qm. (A.1)
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Let z = cos 2πa ∈ [−1, 1], our goal is to obtain the estimate:

∑

j∈I1∪I2 ,j 
=i

(

log | cos 2πa − cos2πθj| − log | cos 2πθi − cos2πθj|
)

< 3sqmε

for any i. Denote

S1 =
∑

j∈I1∪I2 ,j 
=i

log | cos2πa − cos2πθj| + 3s(qm − 1) log 2

and

S2 =
∑

j∈I1∪I2 ,j 
=i

log | cos 2πθi − cos2πθj| + 3s(qm − 1) log 2.

By a trigonometric identity,

S1 =

⎛

⎝

∑

j∈I1∪I2 ,j 
=i

log | sinπ(a + θj)| + log | sinπ(a − θj)|

⎞

⎠+ (3sqm − 1) log 2.

Note that the sum in S1 contains 3sqm terms, which we can divide it into 3s groups, each of which
contains qm terms and then apply Lemma A.4. We have the following:

S1 ≤ −3s(qm − 1) log 2 + 3sC log qm. (A.2)

Similarly, we can write

S2 =

⎛

⎝

∑

j∈I1∪I2 ,j 
=i

log | sinπ(2θ + (i + j)2�)| + log | sinπ(i − j)2�|

⎞

⎠+ 3s(qm − 1) log 2.

Since � ∈ DC(κ, τ), for any 0 < |j| < qm+1, we have

‖j2�‖T ≥ ‖qm2�‖T ≥ κ

(2qm)τ
,

which implies that

max{log | sinπx|, log | sinπ(x + j2�)|} ≥ 2 log κ − 2τ log 2qm. (A.3)

Since θ is non-resonant with respect to �, we have

log | sin 2π(θ + (i + j)�)| ≥ −|i + j| 1
2τ ≥ −(20sqm)

1
2τ , (A.4)

and since � ∈ DC(κ, τ), we also have

log | sinπ(i − j)2�| ≥ log κ − τ log 20sqm. (A.5)

By (A.3), every sqm terms in the sum of S2 may contain at most one extra small term that is bounded
from below by (A.4) and (A.5).

Therefore, we have the following estimate for S2:

S2 ≥ −6sC log qm − 3s(qm − 1) log 2 − 3(20sqm)
1
2τ + 3(log κ − τ log 20sqm). (A.6)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/8

/6
9
0
6
/7

4
6
4
9
9
9
 b

y
 T

e
x
a
s
 S

ta
te

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 0

6
 J

u
n
e
 2

0
2
4



CMV Matrices with Mobility Edges | 6937

Combining (A.2) with (A.6) gives

S1 − S2 ≤ 3sqmε = kε.

B S(uper)GECMV matrices

Theorem 2.1 generalizes to Verblunsky pairs whose vector 2-norm is a phase in the following way:
Consider the GECMV matrix E = Eα,ρ as defined in Section 2, but with the 
-matrices specified by
Verblunsky pairs (α, ρ) satisfying the relaxed condition

|α|2 + |ρ|2 = e2iϕ = −det
(α, ρ).

Then

Proposition B.1. E is isospectral to a standard extended CMV matrix.

Proof. The proof goes along the same lines as that of Theorem 2.1: fix d0, d−1 ∈ ∂D and define the entries
of D recursively by

d2n+2 = ξ−1
2n+1ξ

−1
2n e

−i(ϕ2n+1+ϕ2n)d2n, d2n+1 = ξ−1
2n−1ξ

−1
2n e

−i(ϕ2n+ϕ2n−1)d2n−1, (B.1)

where ρ = ξ |ρ|. We then define the new Verblunsky coefficients

α̃2n−1 =
[

n−1
∏

k=0

e−i(ϕ2k+1+2ϕ2k+ϕ2k−1)

]

ξ−1
d0
d−1

α2n−1, (B.2)

α̃2n =
[

n
∏

k=1

e−i(ϕ2k+2ϕ2k−1+ϕ2k−2)

]

e−i(ϕ−1+ϕ0)/2ξ−1
d0
d−1

α2n, (B.3)

ρ̃k = |ρk|, (B.4)

and denote by Ẽ the extended CMVmatrix corresponding to α̃ and ρ̃. To conclude, we will demonstrate

Ẽ = D∗ED. (B.5)

From the recursion relation (B.1), we get

d2n
d2n−1

=
n−1
∏

k=0

e−i(ϕ2k+1+2ϕ2k+ϕ2k−1)
ξ−1

ξ2n−1

d0
d−1

,

d2n
d2n+1

=
n
∏

k=1

e−i(ϕ2k+2ϕ2k−1+ϕ2k−2)e−i(ϕ−1+ϕ0)ξ2nξ−1
d0
d−1

.

We then calculate that for all integers n,

d2nd2n+2e
i(ϕ2n+1+ϕ2n)ρ2n+1ρ2n = ρ̃2n+1ρ̃2n,

d2n+1d2n−1e
i(ϕ2n−1+ϕ2n)ρ2n−1ρ2n = ρ̃2n−1ρ̃2n

d2n+2d2n+1e
i(ϕ2n+1+ϕ2n)ρ2n+1α2n = ρ̃2n+1α̃2n

d2nd2n+1e
i(ϕ2n−1+ϕ2n)ρ2nα2n−1 = ρ̃2nα̃2n−1.

This suffices to prove (B.5). �
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Remark B.2. Notice that if the phases ϕ are nontrivial, then (B.2) and (B.3) show that one cannot
in general hope to preserve that α’s under the gauge transform here; compare Remark 2.4.
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