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ABSTRACT Millimeter-wave (mmWave) and terahertz (THz) communication systems require large
antenna arrays and use narrow directive beams to ensure sufficient receive signal power. However, selecting
the optimal beams for these large antenna arrays incurs a significant beam training overhead, making
it challenging to support applications involving high mobility. In recent years, machine learning (ML)
solutions have shown promising results in reducing the beam training overhead by utilizing various sensing
modalities such as GPS position and RGB images. However, the existing approaches are mainly limited
to scenarios with only a single object of interest present in the wireless environment and focus only
on co-located sensing, where all the sensors are installed at the communication terminal. This brings
key challenges such as the limited sensing coverage compared to the coverage of the communication
system and the difficulty in handling non-line-of-sight scenarios. To overcome these limitations, our paper
proposes the deployment of multiple distributed sensing nodes, each equipped with an RGB camera.
These nodes focus on extracting environmental semantics from the captured RGB images. The semantic
data, rather than the raw images, are then transmitted to the basestation. This strategy significantly
alleviates the overhead associated with the data storage and transmission of the raw images. Furthermore,
semantic communication enhances the system’s adaptability and responsiveness to dynamic environments,
allowing for prioritization and transmission of contextually relevant information. Experimental results on
the DeepSense 6G dataset demonstrate the effectiveness of the proposed solution in reducing the sensing
data transmission overhead while accurately predicting the optimal beams in realistic communication
environments.

INDEX TERMS Beamforming, camera, computer vision, deep learning, distributed sensing, environment
semantics, millimeter-wave, semantic communications.

I. INTRODUCTION

TILIZING higher frequency bands, such as mmWave

in 5G and possibly sub-terahertz in 6G, is a key trend in
current and future communication systems. These frequency
ranges provide higher bandwidths, enabling the commu-
nication systems to efficiently meet the higher data rate
demands of emerging applications such as augmented/virtual
reality, autonomous vehicles, and smart cities [1], [2], [3].
However, these systems necessitate the deployment of large
antenna arrays and the use of narrow beams at both the
transmitter and receiver to ensure adequate receive signal
power. Selecting the best beams for these large antenna
arrays incurs a substantial training overhead, making it
challenging to satisfy the low-latency and high-reliability

requirements of these current and future applications. This
emphasizes the need to explore innovative approaches that
(1) reduce or mitigate the training overhead associated
with beam selection and (ii) enable highly mobile wireless
communication applications.

Several solutions have been proposed over the years to
reduce the beam training and channel estimation overhead
in mmWave communication systems [4], [5], [6], [7]. The
focus of these solutions has been mainly on: (i) The
development of beam training with adaptive/hierarchical
beam codebooks [4], [5]. (ii) The utilization of compressive
sensing tools [5] to estimate the full channel with a much
smaller number of measurements. This is motivated by the
sparsity nature of the mmWave channels, where only a few
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dominant paths typically exist between the transmitter and
receiver. (iii) The design of beam tracking techniques [6] that
leverages the user mobility information to predict the future
beams and hence reduce the exhaustive search beam training
overhead. These classical approaches, however, usually result
in a training overhead reduction of only one order of
magnitude, which is not sufficient for very large antenna
array systems and applications that require very low-latency.

The challenges faced by classical solutions have led to the
development of machine learning approaches that leverage
prior observation and additional sensing information [8], [9],
[10], [11], [12], [13], [14]. The additional sensing modalities
include position (GPS location) [9], RGB images [10], [11],
LiDAR [12], and radar [13], [14]. The additional sens-
ing information provides a crucial environmental context,
enabling an in-depth comprehension of the wireless envi-
ronment and its influence on channel characteristics. These
prior studies have demonstrated the potential of utilizing
additional side information in minimizing the beam training
overhead. However, these solutions have certain limitations.
Firstly, they are primarily designed for scenarios with a
single object of interest, which can be challenging when
scaling them to real-world situations with multiple objects.
Secondly, the additional sensors used in these solutions, such
as cameras, LiDAR, and radar, are positioned exclusively at
the basestation and have a limited range of approximately
60 — 80 meters [15]. This range is significantly shorter than
the typical range of the mmWave communication systems,
which is around 300 meters. Consequently, this limited
range of these additional sensing modalities significantly
impacts the effectiveness of these solutions in real-world
wireless communication tasks (such as beam prediction and
proactive blockage prediction). Additionally, these sensors do
not provide coverage for non-line-of-sight scenarios, further
restricting their applicability in diverse environments.

One promising solution to overcome these challenges is
deploying multiple nodes, each equipped with its own sen-
sors, to capture information about the wireless environment
in a coordinated manner. This distributed sensing approach
enhances coverage, reliability, and adaptability by strategi-
cally distributing sensors throughout the network [16], [17].
Instead of relying solely on sensors at the basestation, data
collected by these distributed nodes can be utilized by one or
more basestations to make informed decisions. This scalable
and robust approach leverages the collective sensing capabil-
ities of multiple nodes, providing a comprehensive view of
the wireless environment and optimizing tasks such as beam
prediction and proactive blockage prediction. However, as
the number of distributed nodes increases, challenges arise
in managing the growing volume of captured data, including
storage, processing, and transmission concerns. Furthermore,
the heightened data rate resulting from the increased number
of nodes necessitates robust data synchronization methods
to maintain temporal coherence.

One approach to address these challenges is to process
the data captured by the distributed nodes locally, either at
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the edge or in the cloud. This processing involves extracting
essential information, referred to as semantics, from raw
sensor data and transmit these semantics to basestation.
Semantic communication systems are broadly classified into
two categories: source-oriented semantic communications
(SOSCs) and channel-oriented semantic communications
(COSCs) [18]. An SOSC system typically comprises a
semantic encoder at the transmitter and a semantic decoder
at the receiver. The semantic encoder, implemented as a deep
neural network, extracts semantic features based on the trans-
mitter’s background knowledge. The semantic decoder, also
a deep neural network, interprets these semantic features and
reconstructs the original source signals using the receiver’s
background knowledge. In SOSCs, the transmitted semantic
information consists of feature vectors produced by the
encoder’s deep neural network. For instance, [19] and [20]
utilize deep neural networks to extract feature vectors from
text and speech data, respectively, and transmit these feature
vectors as the semantic information of the source data.
Conversely, COSC systems extract channel semantics from
sensory information about the environment data such as
images, LiDAR, or radar [18]. This semantic information
is utilized for channel-related downstream tasks, includ-
ing blockage prediction, beam prediction, and basestation
handoff. In [21], the semantic information in channel-
oriented semantic communication system is divided into
two categories: (i) parameter semantics and (ii) environment
semantics. Parameter semantics include channel parameters
such as angle of arrival, angle of departure, number of paths,
and Doppler frequency offset, which can be obtained from
sensors like radar and GPS. Environment semantics, on the
other hand, refer to information about the environment, such
as the layout, shape, number, and category of objects present
in it [22]. The most effective form of semantic information
for channel-oriented semantic communication system would
depend on the sensor data modality and the communication
task to be performed at the basestation. In our work, which
involves using cameras at distributed nodes for vehicle-
to-infrastructure communication, we focus on extracting
environment semantics. Moreover, to extract environment
semantics from images, we can utilize powerful yet efficient
pre-trained deep learning models such as YOLOv7 [23],
eliminating the need to train models from scratch, as would
be required for parameter semantics.

While exploring distributed learning solutions, it is notable
that paradigms such as federated learning [24], [25] are
gaining traction. This method entails training models across
decentralized devices using local data, with the aggre-
gated insights refining the overall model while maintaining
data privacy and minimizing bandwidth use. In addition,
distributed artificial intelligence (AI) and edge computing
have shown potential in enhancing network functionalities.
These technologies, particularly edge computing, have been
effective in managing the data from distributed nodes,
addressing significant challenges in data processing and
storage [26], [27]. However, these advancements still need
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FIGURE 1. Overall system model of the proposed setup. The distributed nodes extract environment semantic information from the RGB images, which is subsequently
transmitted to the basestation. This semantic information is then utilized for beam prediction at the basestation.

to be explored in the context of distributed sensing-aided
vehicle-to-infrastructure (V2I) beam prediction and tracking.
To bridge this gap, we aim to investigate the utilization of
environment semantics in enabling distributed sensing-aided
wireless communication in real-world scenarios. Specifically,
we propose a novel approach that leverages environment
semantics in a distributed sensing scenario to predict optimal
beams in a real-world wireless communication setting
accurately. The main contributions of this paper can be
summarized as follows:

« Formulating the sensing-aided beam prediction problem
for vehicle-to-infrastructure (V2I) communication sce-
nario with multiple distributed nodes, each equipped
with an RGB camera to capture the wireless
environment.

o Developing a novel deep learning-based solution that
leverages images captured by cameras installed at
distributed nodes to accurately predict the optimal
beam index at the basestation in a V2I communication
scenario.

« Investigating various environment semantics that can be
extracted from images, such as object bounding boxes
and masks, with the aim of enabling distributed sensing-
aided wireless communication. We further perform
a comprehensive comparative study, evaluating the
performance, complexity, and practical feasibility of
these environment semantics for the specific task of
distributed sensing-aided beam prediction.

« Providing the first real-world evaluation of distributed
environment semantic-aided beam prediction based on
a new scenario in the DeepSense 6G dataset [28].
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This scenario focuses explicitly on the distributed
aspect, capturing co-existing multi-modal data from the
basestation and two distributed units, enabling the study
of distributed sensing-aided wireless communication.
The paper is organized as follows: Section II provides
the system model and problem formulation for the proposed
solution. In Sections III and IV, we delve into the key
idea and the proposed solution, respectively. The testbed and
the DeepSense 6G dataset utilized in our experiments are
described in Section V. Finally, in Section VI we present a
detailed evaluation of the proposed solution.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the adopted system model and
formulate the distributed environment semantic-aided beam
prediction problem.

A. SYSTEM MODEL

Fig. 1 illustrates the proposed distributed sensing-aided com-
munication setup. N distributed nodes sense the environment.
Each distributed node is equipped with an RGB camera.
Furthermore, the basestation is also equipped with an RGB
camera and 3 M-element uniform linear arrays (ULAs),
with each ULA having a field of view of around 90°.
The three ULAs are positioned 90° apart from each other
and oriented towards the front, left, and right of the
basestation. Furthermore, the area served by the basestation
is divided into N + 1 subregions. The basestation camera
provides sensing information for the region directly in front
of the basestation while each distributed node provides
sensing information for one of the remaining N regions. We
strategically position the distributed nodes to enhance the
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combined camera coverage over the range of the mmWave
communication system.

The user is equipped with a single-antenna transmitter.
The basestation, for each ULA, uses (i) OFDM transmission
with K subcarriers and a cyclic prefix of length D, and (ii) a
pre-defined beam steering codebook F = {fq}gzp where
f, € CM*1 is the ¢ beamforming vector and Q is the total
number of beamforming vectors. The beam steering beams
are uniformly spaced and jointly cover the ULA’s 90° field
of view. In the downlink, the received signal at the user
from the ULA that has the user in its field of view at the
k™ sub-carrier and time ¢ can be represented as

yelt] = WY (1€, [£]x + vel1], (1

where hi[f] € CM*! denotes the channel between the
basestation and the mobile user, f; € F is the beamforming
vector, and vi[f] represents noise sampled from a complex
Gaussian distribution N¢ (0, 02). The transmitted complex
symbol x € C satisfies the power constraint E[|x|?] = P,
where P is the average symbol power. Moreover, the
beamforming vector f,[¢], at each time step ¢ is selected from
the beam steering codebook JF to maximize the average
receive SNR as follows

K

1 2
argmax — SNR‘hZ[t]fq[t] , 2)
rineF K =
where SNR is the transmit signal-to-noise ratio, SNR = £

At any time instant ¢, the receive power vector of effective
channel gain with codebook elements from the ULA that
has the user in its field of view can therefore be expressed
as plfl = [piltl, . .., polt]], where p[r] € RZ*! and py[f] is
defined as

T 2
plt] = ‘hk [t]fq[z]) L gel,.....0 3)

In the next subsection, we formulate the distributed environ-
ment semantic-aided beam prediction problem.

B. PROBLEM FORMULATION

Given the system model presented above, the goal is to
select the optimal beam index (at the basestation for any
given time ¢) that maximizes the receive power using camera
images captured by the distributed node. Attaining this goal
involves a few key tasks. Firstly, we need to determine the
ULA that encompasses the user within its field of view.
Secondly, we have to identify the sub-region where the
user is located. Lastly, we must also discern the transmitter
vehicle from other vehicles present in the RGB images.
One potential solution to this problem is to leverage the
receive power vector derived from previous time instances.
Consequently, this work aims to develop a beam prediction
model that utilizes a sequence of available RGB images
and the ground truth receive power vector corresponding
to the time instant of the first image capture. The receive
power vector corresponding to the first image capture in the
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sequence serves a dual role in our proposed solution. Initially,
it is used to identify the ULA and the sub-region where the
user is located. Subsequently, this receive power vector is
employed to facilitate the identification of the transmitter in
the scene. Let X,[f] € RW*H#*C represent the RGB image
captured at time ¢ by the camera installed at the n* node,
where W, H, and C are the width, height, and the number
of color channels for the image, respectively. Further, let
plt] € R'*€ denote the mmWave receive power vector from
the ULA that has the user in its field of view at time t.
At any given time instant ¢, the distributed node n, captures
a sequence of r RGB images, and the basestation collects
the mmWave receive power vector corresponding to the time
instant of the first image capture, S[¢], defined as

Sl = {(Xal =74y, T — r+ 11}, )

where r € Z is the length of the input sequence or the
observation window to predict the optimal beam index. In
particular, at any given time instant f, the goal in this
work is to find a mapping function fg that utilizes the
available sensory data samples S[7] to predict (estimate) the
optimal beam index f[¢] € F with high fidelity. The mapping
function can be formally expressed as

fo : SIf] — 1. (5)

Let D = {(S.f] )}Efl represent the available dataset
collected from the real-world wireless environment. The total
number of samples in the dataset is denoted by . The goal
is to maximize the number of correct predictions over all the
samples in the dataset D. This can be formally written as

]
fon = argmax [[P(fos) =1£). ©)
O =1

where the joint probability distribution in (6) is due to the
implicit assumption that the samples in D are drawn from
an independent and identical distribution. The objective is
to find the optimal set of parameters ®* that maximizes
the product of the probabilities of correct predictions. The
set of parameters ®* can be learned from the dataset D
by utilizing a machine learning solution. During training, fo
can be considered random as the parameters change during
training based on the stochastic updates. The model fg is
deterministic once the parameters ® are learned. The next
section presents the proposed deep learning-based solution
for the proposed distributed sensing-aided beam prediction.

lll. KEY IDEA

In this section, we present the key idea behind setting up
distributed nodes and utilizing the environment semantics
from these distributed nodes for beam prediction at the
basestation.

Recent works [9], [10], [11], [12], [13], [14] demon-
strate the potential of using various sensing modalities
including position [9], LiDAR [12], radar [13], and RGB
images [10] for beam prediction. These works primarily
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focus on co-located sensing and communication, where
sensors are installed at the basestation. This approach
introduces various challenges that need to be addressed.
First, practical sensors have limited range -capabilities.
When machine learning models process this sensor data
to detect distant objects, the resulting bounding boxes
and masks appear disproportionately small, giving the
impression of minimal movement even if the objects are
actually moving rapidly. Second, the sensors predomi-
nantly rely on line-of-sight (LOS) conditions for accurate
data capture [29]. Consequently, non-line-of-sight (NLOS)
scenarios, which are inherently challenging, significantly
impact the usability of these sensors. Achieving reliable
mmWave communication necessitates the development of
techniques that can effectively handle both LOS and NLOS
cases.

To unlock the full potential of additional sensing modal-
ities, adopting a distributed sensing approach is essential.
This approach entails deploying multiple distributed nodes,
each equipped with sensors such as camera, LiDAR, and
radar, to overcome limitations in range and expand the scope
of data collection to cover a broader area. Furthermore,
distributed sensing enables us to address NLOS scenarios
effectively by enhancing sensing coverage and capturing
diverse perspectives. By capitalizing on the synergistic
capabilities of multiple sensors deployed across the network,
we can elevate overall system performance and realize
advanced functionalities.

As the number of distributed nodes increases, there is
a corresponding increase in the volume of captured data,
which brings forth several challenges. Firstly, the substantial
size of the accumulated data presents significant obstacles
in terms of storage, processing, and transmission. Secondly,
the heightened data rate resulting from the increased number
of nodes calls for robust data synchronization mechanisms
to maintain temporal coherence and mitigate potential data
inconsistencies. Addressing these challenges associated with
the growing scale of data capture and synchronization over-
head is paramount to facilitate seamless operation and enable
the effective utilization of distributed sensing techniques in
mmWave communication systems. One promising approach
to overcome these challenges is reducing the data traffic
volume between the basestation and the distributed nodes
by selectively transferring only critical information. For
instance, in the case of a distributed node equipped with a
camera, rather than transmitting the entire image, a more
efficient strategy is to extract the environment semantics
locally. These environment semantics comprise relevant
information about the wireless environment, such as the
presence of different vehicles in the scene and their relative
locations. By focusing on transmitting only this critical
information, the data traffic between the distributed nodes
and the basestation can be significantly reduced, alleviating
the storage, processing, and transmission burdens.

To address the challenges mentioned above, this paper
focuses on designing efficient strategies for extracting
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FIGURE 2. The selection process of the ULA, the sub-region, and the corresponding
distributed node.

environment semantics from RGB images (such as the
masks and bounding boxes of the objects of interest) to
facilitate the beam prediction process in a realistic V2I
communication scenario with two distributed nodes. In this
scenario, we consider a more complex environment with
multiple probable objects, requiring advanced techniques
for accurate prediction. Given the multi-candidate nature of
the scenario, our solution is designed to efficiently extract
environment semantics, identify the transmitter in the scene,
and predict the optimal beam in real time. To accomplish this,
we leverage a sequence of RGB images captured by the dis-
tributed nodes. However, one key challenge that still remains
is the latency associated with transferring these environment
semantics to the basestation for beam prediction. It is
important to note here that our solution can also be extended
to predict future beams, enhancing the proactive nature of
the system. By adopting a proactive approach and predicting
future beams, we can effectively overcome the latency issue,
ensuring timely and accurate beam prediction in distributed
sensing-based mmWave communication systems. Next, we
present the proposed solution in detail.

IV. PROPOSED SOLUTION

This section provides a comprehensive overview of the
proposed solution for distributed environment semantic-
aided communication. Note that our focus in this work is
primarily on mobile vehicles within the context of vehicle-to-
infrastructure communication. We divide the region served
by the basestation into three sub-regions, where each sub-
region corresponds to one of the phased arrays of the
basestation as shown in Fig. 2. Furthermore, we include two
distributed nodes in the system with one node located to the
left of the basestation and the other to the right. At any given
time ¢, the selection of sensing data for further processing
and beam prediction depends on the user’s location in the
wireless environment. For instance, if the user is situated in
the sub-region to the right of the basestation, the RGB images
captured by the right distributed node (distributed node 1) are
utilized for beam prediction. It is important to note here that
the selection of the distributed node for further processing
and beam prediction does not rely on the user’s position
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FIGURE 3. The different stages of the proposed solution. In the first stage, environment semantics are extracted from the raw RGB images at the distributed nodes. The
second stage, performed at the basestation, involves identifying the transmitter in the initial frame and tracking it across the subsequent frames. Finally, in the third stage, the
semantic information gathered in the second stage is used for beam prediction at the basestation.

data (GPS position). Instead, we utilize the receive power
vector, which provides valuable directional information that
aids in determining the optimal beam index. By utilizing
the optimal beam index, we can select one of the ULAs.
Next, depending on the selected ULA, we approximate the
sub-region where the user is located. This approximation, in
turn, helps identify the specific distributed node from which
to utilize the sensing data. This approach ensures efficient
utilization of the sensing data based on the user’s location
within the coverage area.

The proposed solution comprises three stages as depicted
in Fig. 3. The first stage would be carried out at the
distributed nodes, while the second and third stages would
take place at the basestation. In the first stage, object masks
and bounding boxes of potential users would be extracted
at the distributed nodes. In the second stage, executed
at the basestation, the received power vector would be
used to identify the transmitter from multiple candidates.
The transmitter would then be tracked over the subsequent
r — 1 frames using the nearest neighbor algorithm. Lastly,
in the third stage, the basestation would leverage the
transmitter’s semantic information from the current and past
r frames to predict the current optimal beam index. Since the
semantic information is very lightweight, the transmission
of semantic information from the distributed nodes to the
basestation is assumed to be instantaneous. A proposed real-
time communication system could be designed with each
distributed node equipped with a single antenna for uplink
transmission, while the basestation uses its ULAs to form a
beam for efficient reception of data from these nodes.
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A. STAGE 1: ENVIRONMENT SEMANTICS EXTRACTION
The first stage of the proposed solution aims to extract
environment semantics from RGB images, as shown in
Fig. 4. The primary objective of this stage is to accurately
and efficiently capture information that represents the objects
of interest in the wireless environment while also minimizing
the required data storage compared to the original sensing
modality (i.e., the images themselves). To achieve this, we
utilize the state-of-the-art COCO [30] pre-trained object
detection and image segmentation model, YOLOv7 [23]. In
particular, we aim to extract two crucial types of environment
semantics: bounding boxes and binary masks. Bounding
boxes, denoted as Xppox|[?] € RUX4, serve as representations
for potential users within the wireless environment, where
U is the total number of detected objects in the RGB
image. Each row of Xppox[f] contains a bounding box
vector [xc, ¢, w, h], where x., y., w, and h denote the x-
center, y-center, width, and height of the detected object,
respectively. These bounding boxes provide essential spatial
information about the potential users. Additionally, we
generate binary masks, represented as Xnmask[f] € RWxH
where W and H correspond to the downsampled width
and height of the image mask, respectively. These masks
offer more detailed and fine-grained depictions of the spatial
extent of the potential users within the wireless environment.
Furthermore, the image segmentation model employed in our
solution not only outputs the binary masks but also provides
the bounding box information for the detected objects. Let
Xpmask[f] € RY** denote the bounding boxes extracted
during the image segmentation.
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B. STAGE 2: TRANSMITTER IDENTIFICATION AND
TRACKING

By adopting YOLOv7, which allows the simultaneous
generation of bounding boxes and masks, we eliminate
the need for separate runs, resulting in faster inference
speed. Moreover, YOLOvV7 achieves a significant reduc-
tion of approximately 40% in parameter size compared
to other real-time object detectors, leading to enhanced
computational efficiency. Utilizing pre-trained models based
on the COCO dataset is advantageous as they can detect
most of the relevant objects commonly encountered in
wireless environments, such as cars, bikes, and people. We
now present the second stage of our proposed solution.
Specifically, two tasks must be accomplished to predict
the optimal beam index. Firstly, the transmitter must be
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identified among the detected objects, and secondly, the
transmitter needs to be tracked over the subsequent r — 1
samples. To address these challenges, we introduce a two-
stage solution encompassing transmitter identification and
object association-based tracking, as presented in Fig. 5.
In the following sections, we provide a comprehensive
description of our proposed transmitter identification and
object association-based tracking solution.

1) TRANSMITTER IDENTIFICATION

It refers to accurately determining the transmitter’s location
within the wireless environment using the extracted semantic
information. The adopted image segmentation model not
only provides binary masks but also outputs the bounding
box information for the detected objects. In the task of
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transmitter identification, we leverage the extracted bounding
boxes from both types of environment semantics. Therefore,
the objective is to leverage the receive power vector p[t —
r + 1] from the ULA that has the user in its field of view
and the semantic information of masks and bounding boxes
at time t = v — r 4+ 1 to predict the center coordinates of
the transmitter’s bounding box br[t —r+1] € R2*! within
the image. For this, we employ a prediction function g,
parameterized by a set of parameters n, which maps the
receive power vector to the predicted bounding box center
coordinates f)TX. Mathematically, this can be expressed as:

gy © plrl = brxlr]. @)

To train the prediction function, we construct a dataset
D, comprising pairs of mmWave receive power vectors p,
and their corresponding ground-truth bounding box center
coordinates of the transmitter bry,. This dataset is a subset
of the larger dataset D, and it contains V samples, such that
Dy = {(pv,bTXV)}le. We do not have access to ground-
truth bounding box coordinates for the transmitter vehicle,
which are required to construct the dataset D,. To address
this issue, we manually select samples that contain only
the transmitting vehicle. These samples are then processed
using the YOLOV7 deep learning model, and the resulting
bounding boxes are manually reviewed for accuracy. The
bounding boxes generated by YOLOV7 for images containing
only the transmitter vehicle are subsequently used as the
ground-truth annotations for the dataset D;. The goal is to
minimize the error between the predicted and ground-truth
center coordinates of the transmitter’s bounding box across
all the samples in D;,. This optimization problem can be
formulated as:

2
; ®)

1%
! -
g;* = argmln‘—/ E HbTXV — b1y,
n v=1

where g;* represents the optimal prediction function that
minimizes the squared /; norm of the error between the
predicted and ground-truth bounding box center coordinates.

To learn g,, we use a two-layered fully connected neural
network with 512 nodes in each layer. The obtained bty from
gn is not intended to be the final prediction but rather only
an initial estimate. We utilize this initial estimate together
with the semantic information at that time instant to identify
the bounding box and mask of the object responsible for
the received signal. The bounding box of the transmitter is
identified by locating the bounding box in Xppox[T — 7+ 1]
anq XB.-Mask[T — 7 + 1] whose center coordinate is closest
to brx[t — r+ 1]. For instance, consider an image with two
candidates for transmitter, each with its own bounding box.
Let d; and d; represent the distances between f)Tx[r —r+1]
and the bounding boxes of the first and second candidates,
respectively, as shown in Fig. 5. The bounding box with
the smaller distance, min(d;, d»), will be selected as that
corresponding to the transmitter. Furthermore, we determine
the transmitter’s mask by identifying the group of pixels
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within the transmitter’s bounding box. It is worth noting
here that we assume a transmitter is present in the wireless
environment at each time step ¢#. The next step involves
tracking the bounding box and mask of the transmitter for
the next r — 1 samples.

2) OBJECT ASSOCIATION BASED TRACKING

In the previous step, we successfully identified the trans-
mitter in the first image sample (in a sequence of r
images). However, to predict the current optimal beam
index, tracking the transmitter’s location throughout the
remaining r—1 samples is essential. This section presents two
distinct approaches for transmitter tracking for the different
environment semantics: (i) Bbox-based object tracking and
(i) mask-based object tracking.

(i) Bbox-based Object Tracking: Numerous state-of-the-
art algorithms [31], [32], [33] have been proposed in the
field of multiple object tracking (MOT). However, consid-
ering the emphasis of this work on V2I communication,
primarily involving mobile vehicles, a simple Euclidean
distance-based object association algorithm is adopted [34].
This algorithm determines the transmitter in the next sample
by finding the bounding box in Xppox (of the following
sample) with the closest center coordinate to the bounding
box in the current sample as shown in Fig. 5. The key
underlying idea is that, for two consecutive image samples,
the distance between the center coordinates of the bounding
box will be the smallest for the same object compared to
other objects in the scene.

(ii) Mask-based Object Tracking: To facilitate object
association-based tracking using masks, the median color
value of mobile vehicles can be utilized. Using binary masks,
we extract the color information of all the detected vehicles
at the distributed nodes. This is achieved by performing
a Hadamard product between the binary mask and the
RGB image, followed by calculating the mean value of the
pixels where the binary mask contains a 1. We filter out
the vehicles whose color does not match with that of the
transmitter identified in the first sample. Let p € R3 denote
the median RGB color value of a probable candidate. Let
o1x and p, further represent the median RGB color values
of the transmitter and the z potential user in the mask,
respectively. The potential user is considered a candidate for
subsequent object association if the following criterion is
satisfied

lotx — pzllF < €, 9

where € is a tunable threshold. The decision of which
candidate will be retained in the list of potential users
depends on the choice of ¢, which we have kept as 20. In
the context of this paper, we refer to this filtering step that
utilizes color information as “semantic-aided filtering”. To
identify the transmitter’s mask in the subsequent sample, we
select the mask of the vehicle with the shortest distance to
the transmitter’s mask in the previous frame as the nearest
neighbor. Consequently, this selected mask is designated
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as the transmitter’s mask in the subsequent frame. By
incorporating color similarity as a refining criterion in the
object association process, we enhance the accuracy of the
tracking algorithm.

It is important to note that the proposed transmitter
identification and object association-based tracking are not
fully effective in all conditions, particularly when the
transmitter vehicle is occluded. In cases of vehicle overlap,
stage 1 of environment semantics extraction remains largely
unaffected, as YOLOv7 is robust to partial occlusion
and can provide bounding boxes and masks unless the
vehicle is heavily occluded. Occlusion poses a greater
challenge during transmitter identification and tracking. If
the occluding vehicle is closer to the predicted coordinates,
the transmitter may be incorrectly identified. This issue is
mitigated when the transmitter and occluding vehicles are
traveling in the same lane and direction, as a misidentified
transmitter may still result in a sub-optimal beam for the
transmitter vehicle with a reasonable rate. Semantic-aided
filtering further mitigates incorrect transmitter identification
in association based tracking by filtering out vehicles whose
color does not match the initially identified transmitter. The
rate performance together with the advantages and limitations
of semantic-aided filtering are discussed in Section VI. In
our future work, we can focus on utilizing multiple camera
views to improve robustness against occlusion by providing
additional perspectives of the transmitter vehicle, which will
help in accurately identifying and tracking the transmitter
even in challenging conditions.

C. STAGE 3: BEAM PREDICTION

This section introduces the final step of our proposed
solution, which aims to predict the optimal beam index
for the transmitter. The goal is to use the sequence of
bounding-box coordinates or image masks obtained from
the previous object association-based tracking to make this
prediction. However, since we are interested in predicting
the current optimal beam index rather than future ones,
it may be sufficient to use the available semantics for
the current time step only. In order to address this, we
propose two approaches: (i) Single instance-based beam
prediction and (ii) Sequence-based beam prediction. In the
single instance-based approach, we use the bounding box
or mask at the current time step ¢ to predict the optimal
beams. For the sequence-based approach, we utilize the
sequence of r available environment semantics to make
the prediction. Next, we present both of these proposed
solutions.

1) SINGLE INSTANCE-BASED BEAM PREDICTION

Due to the distinct nature of the environment semantics
(bounding box and image mask), each requires a specific
approach for predicting the optimal beam index. We present
both solutions, highlighting their effectiveness in utilizing
the corresponding environment semantic for accurate beam
prediction.
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1) Bounding Box-based Beam Prediction: This baseline
model takes the user’s bounding box at the current
time instant ¢ as input and predicts the corresponding
beam index. Mathematically, we can express this as

@ : Xppoxlt] = fl1, (10)

where  represents the mapping function and
Xphox[] € RZX! represents the center coordinate of
the transmitter vehicle’s bounding box at time . This
mapping function takes the form of a two-layered
fully connected neural network with 512 neurons in
each layer as our baseline model. Fully connected
neural networks (FCNNs) excel at handling structured
data by leveraging the network weights to capture
the relationships among input elements. Additionally,
FCNNSs establish dense connections between adjacent
layers, enabling them to learn intricate associations
between input elements.

2) Mask-based Beam Prediction: In this step, similar
to bounding box-based beam prediction, we utilize
another mapping function that takes the transmitter
vehicle’s mask at the current time instant ¢ as input
and predicts the corresponding beam index as follows

(1)

where B represents the mapping function for this

B : Xmasklt] — fl1],

task and xpmas[f] € RW>*H represents the transmitter
vehicle’s mask at time 7. We note that convolutional
neural networks (CNNs) have demonstrated superior
performance and robustness in leveraging spatial rela-
tionships among neighboring pixels in image data.
Therefore, the mapping function B for this baseline
model of mask-based beam prediction takes the form
of a simple CNN model, similar to LeNet [35],
consisting of two convolutional layers followed by five
fully connected layers.

2) SEQUENCE-BASED BEAM PREDICTION

We use a recurrent neural network (RNN) [36], [37] which
processes a sequence of semantic representations of the
transmitter and predicts the optimal beam index. We chose
the RNN architecture for two reasons. First, RNNs have
achieved good accuracy in various sequential modeling tasks,
such as natural language processing and speech recognition,
due to their ability to extract crucial information from
previous sensory data. This allows the model to capture
the temporal dependencies and patterns in the semantic
information, enabling accurate beam prediction. Second,
as compared to other neural network architectures like
Transformers [38], RNNs offer advantages in terms of
computational complexity and inference time. In this section,
we present the two different solutions developed to target
the different semantic modalities.
1) Bounding Box-based Beam Prediction: We utilize a
mapping function that takes a sequence of the trans-
mitter vehicle’s bounding boxes over r consecutive
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FIGURE 6. The proposed RNN models for beam prediction. The first RNN model, shown in (a), takes the bounding boxes of the transmitter as input. Each unit consists of an
LSTM block and a classifier block. The RNN model shown in (b) takes masks of the transmitter as input. Each unit consists of an embedding block, an LSTM block, and a

classifier block.

time stamps and predicts the corresponding beam index
at the last time step. Mathematically, we can express
this as

v Xovox [} Z7 4y — 7]}, 12)
where y represents the mapping function for bounding
box sequence-based beam prediction. The mapping
function y takes the shape of a RNN model. In
Fig. 6(a), we present the block diagram of the
proposed RNN model for beam prediction using
bounding boxes as inputs. This model comprises r
repeated blocks, each consisting of a single layer Long
Short-Term Memory (LSTM) unit. LSTM is a type of
RNN specifically developed to address the challenge
of learning long-term dependencies in sequence data.
By incorporating gates and memory cells, LSTMs
effectively manage information flow over time steps
and mitigate the vanishing gradient issue encountered
in conventional RNNs. The center coordinates of the
bounding box vector, Xppox[f] € R2X1 are directly fed
as input into the LSTM block. Following the LSTM
unit, a fully connected layer acts as the classifier. The
output of the classifier block is a score vector & =
[&1, &, ..., Em]. At the output of this fully connected
layer, we utilize the cross-entropy activation function.
The m'M element of the score vector corresponds to
the m™M beam in the codebook. The beam index with
the highest score is the predicted beam.

2) Mask-based Beam Prediction: Similar to bounding box
sequence based-beam prediction, we utilize a mapping
function that takes a sequence of the transmitter vehicle
masks over r consecutive time stamps and predicts the
beam index at the last time step. We can formally
express this as

¥ Xmask [} 25—,y — HT), (13)
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where  represents the mapping function for this task.
This mapping function again takes the shape of a RNN
as shown in Fig. 6(b). This model also consists of
r repeated blocks, each comprising an LSTM unit.
Due to the structural differences between masks and
bounding boxes in terms of semantic representation, an
additional embedding block is included in this model.
The embedding block transforms the high-dimensional
semantic mask Xmask[?] into a low-dimensional vector
x[1] € R"*!, where v denotes the input state size of the
LSTM, reducing the trainable parameters of the model.
The input state size of the LSTM unit is v = 64. The
embedding block utilizes a simple CNN model, similar
to LeNet [35], consisting of two convolutional layers
and three fully connected layers. The output from the
final layer in the embedding block is used as input to
the LSTM unit. The remaining components, including
the LSTM block and the classifier block with the cross-
entropy activation function, are kept same as that in
the bounding box-based model.

In conclusion, we propose two different models designed
to effectively capture the relevant information from the
semantic representations and predict the optimal beams
accurately.

D. BASELINE SOLUTIONS

In order to evaluate the accuracy of our proposed transmitter
identification solution and the subsequent object associa-
tion step, it is important to have ground-truth bounding
box center coordinates of the transmitter in cases where
there are multiple mobile vehicles as potential candidates
for the transmitter. We shall refer to these instances as
multi-candidate scenarios. Unfortunately, we do not have
access to ground-truth bounding box coordinates of the
transmitter vehicle. In Section IV-B1, we addressed this
limitation by manually selecting the samples that contain
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only the transmitter vehicle. These selected samples are
then processed using the YOLOv7 deep learning model, and
the resulting bounding boxes are manually validated. These
bounding boxes generated by YOLOvV7 are subsequently
used as the ground-truth bounding boxes for training the
transmitter identification model. However, these bounding
boxes are only available for cases where only the transmitter
vehicle is present in the image, not for multi-candidate
scenarios. We note that the dataset used in this study provides
highly accurate position data of the transmitter. This position
data offers reliable and granular information about the trans-
mitter’s location, enabling the model to make more precise
predictions. Therefore, to test the accuracy of the proposed
transmitter identification solution and the subsequent object
association step, we utilize a position-aided transmitter
identification approach. In this approach, a machine-learning
model predicts the center coordinates of the transmitter’s
bounding box based on its GPS position. The network
architecture for this position-aided identification is identical
to the receive power vector-aided model. Both consist of a
two-layered fully connected neural network with 512 neurons
in each layer. However, unlike the receive power-aided
transmitter identification solution, which involved identifying
the transmitter only at the initial time step and subsequently
tracking it across the subsequent frames, position-aided
transmitter identification performs transmitter identification
at every time step of the sequence. The results obtained
from the position-aided transmitter identification will serve
as a baseline for evaluating the performance of (i) the
proposed transmitter identification model using the metric
of comparative accuracy and (ii) the subsequent object
association-based transmitter tracking using the metric of
association accuracy. Both these metrics are defined in detail
in Section VL.

E. SCALABILITY AND COMPUTATIONAL EFFICIENCY

The effectiveness of our sequence-based beam prediction
solution depends on both its accuracy and its ability to man-
age distributed nodes efficiently while meeting the real-time
latency requirements of V2I communication. As presented in
Section V, our current testbed implementation demonstrates
this capability in a controlled, asynchronous environment.
Each distributed node in the testbed is equipped with a
camera and GPS receiver, capturing visual data and precise
timing information asynchronously. Data synchronization
is achieved through post-processing, where we align data
from different nodes and the basestation. This asynchronous
approach allows us to utilize data from only one distributed
node at a time, based on the user’s location, effectively
managing the current scale of our system without real-
time constraints. However, real-world deployment scenarios
present additional considerations beyond our current asyn-
chronous testbed. These include managing real-time data
from multiple nodes simultaneously and handling potential
overlapping sensor coverages. The complexity increases in
multi-transmitter scenarios, where real-time decision-making
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becomes crucial. While our current asynchronous approach
effectively manages some of these aspects through post-
processing, real-world deployments may require further
adaptations to address these challenges. The exploration of
these real-time adaptations and scaling strategies will be the
focus of our future work.

Computational Complexity Analysis: Next, we analyze
the computational complexities of each step in our proposed
solution based on our current post-processing implemen-
tation. This analysis provides insights into the system’s
performance and its potential for future real-time operation
in more complex environments. In our current asynchronous
testbed, all processing occurs offline after data collection.
The environment semantic extraction step, performed during
post-processing to simulate distributed node computations,
uses the YOLOv7 model and requires approximately 29.5 ms
per frame when run on an Nvidia T4 GPU. The beam
prediction step, simulating basestation processing, uses our
proposed machine learning models and takes about 1-2 ms
per prediction when executed on an Nvidia RTX A5000
GPU during post-processing. Data transmission time is not
explicitly measured in our current setup, as data from
distributed nodes is collected and processed offline. However,
this aspect will be crucial for real-time implementations and
is a key area for future investigation and optimization. The
sub-region selection process, based on the user’s location, has
a complexity of O(k) for k sub-regions, with its latency being
negligible compared to other steps in our post-processing
pipeline. While these measurements are obtained during
post-processing and don’t reflect real-time performance, they
suggest that our proposed solution has the potential to meet
real-time requirements in future implementations. However,
they also highlight areas where further optimization may be
necessary for real-time deployment, particularly in managing
simultaneous data from multiple nodes and handling real-
time decision-making in multi-transmitter scenarios.

Storage and Transmission Efficiency: We now discuss
how utilizing environment semantics lowers the storage and
transmission requirements. Four integer values can represent
the bounding box of a vehicle. A high-definition RGB
image captured at the distributed node is approximately
5.93 MB in size. If there are four vehicles in the image,
the bounding boxes of these vehicles can be represented
by 16 integer values, occupying just 64 bytes of storage.
This is about five orders of magnitude smaller than the
storage and transmission requirements of the full RGB
image. The storage and transmission requirements of the
masks would depend on the camera angle. Fig. 4 shows a
mask of the image captured at unit 3. The image contains
four vehicles. This mask can be efficiently stored and
transmitted by encoding only the mask pixel values and the
vehicles’ bounding boxes. This approach reduces storage and
transmission requirements by approximately three orders of
magnitude compared to transmitting the entire RGB image.

Overlapping Sensor Coverage: We now present strate-
gies to manage sensor coverage overlap at distributed nodes,
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TABLE 1. Complexity analysis: Time taken (ms).

ML Model Mask-YOLOv7 BBox-YOLOv7

29.5 29.5

Inference Latency (milliseconds)

Tx. Id - FCNN

Mask-CNN  Bbox-FCNN
1 0.4

Mask-LSTM  BBox-LSTM

0.037 1.46 0.37

which can cause variations in optimal beam prediction due
to differences in the semantic information provided by each
node. Recall that in the current setup, we have the optimal
beam index information at the first time stamp and predict
the beam at the " timestamp, where r is the length of the
observation window. Further recall that the region served by
the basestation is divided into sub-regions. Using the optimal
beam index at the first timestamp, we select the sub-region
and the corresponding distributed node whose semantic data
is used for beam prediction at the " timestamp. The current
setup has minimal overlap between the sub-regions covered
by the distributed nodes and their camera fields of view
such that, at a given time instant, only semantic data from
a single distributed node is utilized for beam prediction at
the basestation. However, we expect that when systems try
to densify the sensor network, then increasing the number
of nodes could lead to more overlaps. This can result in
variations in beam predictions due to the different semantic
information provided by each node. Addressing this issue
remains an open problem and warrants further investigation.
In the next paragraph, we briefly discuss some directions for
potential solutions.

An initial solution for the problem discussed above may
involve training the node-specific beam prediction models
with additional data samples from their respective coverage
areas, particularly in the overlapping regions. By including
sufficient training samples from these overlapping areas,
along with their associated ground truth beam indices,
each model will learn to make consistent beam predictions
regardless of which node’s perspective is used. An alternative
future approach to address the variations in beam predictions,
due to the differing semantic information from each node,
could be to transition from individual models to a unified
machine learning model that performs sensor fusion across
all distributed nodes. The key idea is to incorporate learnable
parameters in the neural network architecture to learn optimal
weights for combining features from different distributed
nodes based on the user’s location (identified from the first
beam). One promising way to achieve that is through an
attention layer, where the network would learn to generate
attention weights for each distributed node’s features based
on the user’s location. For instance, if the user is in a
region covered by both node 1 and node 2, the attention
mechanism would learn to assign appropriate weights to
features from both nodes for beam prediction. These weights,
learned during training, would help the model determine how
to best combine features from multiple nodes in overlapping
regions, while naturally focusing on a single node’s features
in non-overlapping regions. This structured approach to
learning feature combination weights enables sophisticated

7778

feature fusion, potentially leading to more accurate beam
predictions in complex scenarios with multiple overlapping
node coverage.

Latency Mitigation Strategies: Finally, we discuss
the strategies to mitigate the latency challenges in the
proposed solution. The time taken for extracting environment
semantics can be significantly reduced by using more
computationally efficient models such as MobileNetv2 [22],
which utilizes about 3.5 million parameters compared to
YOLOv7’s 37.5 million parameters. Note that the time
taken for transmitting environment semantics will depend
on the type of environment semantic information being
transmitted, with bounding boxes requiring less time than
masks. At the basestation, beam prediction takes about
1-2 ms, which is relatively low. It is important to highlight
here that our solution can also be extended to predict future
beams, enhancing the proactive nature of the system. By
adopting a proactive approach and predicting future beams,
we can effectively overcome the latency issue, ensuring
timely and accurate beam prediction in distributed sensing-
based mmWave communication systems.

V. TESTBED DESCRIPTION AND AI-READY DATASET

To assess the effectiveness of our proposed distributed
sensing-aided beam prediction solution, we employ the
DeepSense 6G dataset [28]. DeepSense 6G is a com-
prehensive real-world dataset specifically designed for
sensing-aided wireless communication applications. It
encompasses diverse multi-modal data, including vision,
mmWave wireless communication, GPS, LiDAR, and radar.
In this section, we provide an overview of scenario
41 adopted from the DeepSense 6G dataset and subse-
quently analyze the Al-ready dataset used to evaluate the
performance of our proposed solution.

A. DEEPSENSE 6G TESTBED

The study adopts scenario 41 of the DeepSense 6G dataset
specifically designed to study distributed sensing-aided com-
munication in a multi-user scenario. The hardware testbed
and the locations for collecting this data are shown in
Fig. 7. The DeepSense testbed 7 is utilized for this data
collection. It consists of (i) three stationary units, one acting
as the basestation and the other two acting as the distributed
nodes, and (ii) a mobile transmitter. All the stationary units,
namely the basestation (unit 1), the first distributed node
(unit 2), and the second distributed node (unit 3), are
equipped with an RGB camera. The distributed units are also
equipped with a GPS receiver. The basestation further adopts
three 16-element (M=16) 60 GHz-band phased arrays, and
it receives the transmitted signal using an over-sampled
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FIGURE 7. The testbed setup for the DeepSense 6G Al-ready dataset used in our experiments. It consists of a stationary unit (unit 1), acting as the basestation, a mobile unit

(unit 4), acting as the transmitter, and two distributed nodes (unit 2 and unit 3).

codebook of 64 pre-defined beams (Q = 64). The mobile
unit (unit 4) is a vehicle equipped with a mmWave transmitter
and GPS antenna/receiver. The transmitter consists of a
quasi-omni antenna constantly transmitting (omnidirectional)
at the 60 GHz band.

It is crucial to note that this setup reflects our data
collection process, not a real-time system implementation.
Our current testbed implementation uses an asynchronous
data collection approach in which all data processing occurs
after data collection. Each distributed node and the base
station are equipped with a camera and a GPS receiver. At
each node, cameras capture images at 60 frames per second,
while the GPS receiver operates at 10 samples per second.
Additionally, at the base station, receive power measurements
are recorded at 10 Hz. During data collection, each sample
from every modality (images, GPS data, and receive power
measurements) is recorded with its corresponding UTC
timestamp. We align the sensor data collected at different
time instances and sampling rates to create a uniform set
of samples at a single sampling rate of 10 Hz. The GPS
receiver serves as the reference modality, with data from
other sensors aligned by selecting the nearest sample to each
GPS timestamp. The maximum synchronization error for
each modality (except the GPS) is given by ﬁ, where Fs
represents the sampling frequency of the modality. For more
information regarding the data collection setup, testbed, and
synchronization method, please refer to [28].

B. DEEPSENSE 6G AI-READY DATASET
The evaluation of the proposed distributed sensing-aided
beam prediction solution necessitates real-world data
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obtained from a wireless environment. As such, we utilize
scenario 41 of the DeepSense 6G dataset. This dataset is
collected at McAllister Ave., Tempe, during the daytime.
The speed limit on the road where this testbed was deployed
was about 48.3 km/h. Images at the distributed nodes are
available at a frequency of 10 Hz, meaning one image is
available for every 100 ms. The time duration between
timestamp 7t and v — 1 is therefore 100 ms. Throughout
the data collection process, the road was actively utilized
by other vehicles, pedestrians, and cyclists. The raw dataset
includes RGB images from both the basestation (unit 1) and
the distributed nodes (unit 2 and unit 3), receive power
vectors from the three ULAs, and the user’s GPS position.
Fig. 8 shows the sample dataset images from each unit.
We process the RGB images from unit 2 and unit 3 using
a sliding window of size r = 5, generating time-series
sequences of RGB images for each unit. The Al-ready
dataset comprises these processed RGB image sequences,
along with the receive power at the initial time step,
plt —r+ 1], and the optimal beam index f* at the last
time step of each sequence. Furthermore, it also incorporates
the transmitter’s GPS position at every time instant. Only
the sequences where the transmitter car is present in the
camera’s field of view are retained in the Al-ready dataset.
There are 2991 and 5476 image sequences for unit 2 and
unit 3, respectively, which are further split into training,
validation, and testing categories with a ratio of 70:20:10.
Our previous works [10], [11], [22] have indicated that the
accuracy of vision-based beam prediction solutions using
RGB images captured at night can approach that achieved
with daytime images, with some additional processing of
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FIGURE 8. The RGB image samples captured at the basestation (unit 1) and the
distributed nodes (units 2 and 3), illustrating both single-candidate and
multi-candidate scenarios.

the nighttime data. Therefore, we anticipate that the beam
prediction accuracy for images from scenario 41 will not
significantly degrade under night conditions. In future work,
we are considering collecting a similar dataset for night-
time scenarios and using it to validate this study’s findings
further.

For the transmitter identification models, we construct
separate datasets for each node. The training dataset for
the position-aided transmitter identification models consists
of pairs of GPS positions and the corresponding center
coordinates of the transmitter’s bounding box. Similarly,
the training dataset for the receive power-aided transmitter
identification models includes pairs of receive power vectors
and their corresponding bounding box center coordinates. It
is important to note there that we do not have access to
ground-truth bounding box coordinates for the transmitter
vehicle. To address this issue, we manually select samples
that contained only the transmitting vehicle. These samples
are then processed using the YOLOvV7 deep learning model,
and the resulting bounding boxes were manually reviewed
for accuracy. The bounding boxes generated by YOLOv7
for images containing only the transmitter vehicle are
subsequently used as the dataset for training the transmitter
identification models. We have 343 and 1124 such samples
for unit 2 and unit 3, respectively.

VI. PERFORMANCE EVALUATION

This section focuses on evaluating the performance of the
proposed distributed sensing-aided beam prediction solu-
tion. In Section VI-A, we provide a description of the
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experimental setup utilized in this work. We then analyze
the results of the proposed solution in Section VI-B.

A. EXPERIMENTAL SETUP
We first outline the neural network training parameters of
the machine learning models adopted in this work. Next, we
discuss the evaluation metrics which we utilize to assess the
performance of different stages of the proposed solution.
Network Training: As described in Section IV, the
proposed distributed sensing-aided beam prediction solution
consists of three steps: 1) environment semantics extraction
2) transmitter identification and tracking and 3) beam
prediction. In the transmitter identification and tracking
stage, we use a two-layered fully connected neural network
with 512 neurons in each layer to predict the center
coordinates of the transmitter’s bounding box within the
image. For the beam prediction stage, we employ distinct
LSTM models for bounding box-based beam prediction and
mask-based beam prediction, as elaborated in Section IV-C.
In the case of bounding-box based beam prediction, we
employ a baseline model consisting of a two-layered FCNN
with 512 neurons in each layer. For mask-based beam
prediction, we evaluate the LSTM model for it against the
LeNet CNN model. In the beam prediction classification
task, the LSTM models and their respective baselines are
trained using cross entropy loss. On the other hand, the
receive power-aided transmitter identification FCNN and
its corresponding baseline FCNN are trained using mean
squared error loss. In the transmitter identification regression
task, both the FCNNs, one taking receive power vector as
input and the other taking position as input, are trained using
mean squared error loss. We use Adam optimizer to train
all the aforementioned models. The detailed hyperparameters
used to fine-tune each model are presented in Table 2.
Evaluation Metrics: The evaluation metric used to assess
the proposed beam prediction solution is the top-k accuracy,
which measures the percentage of test samples where the
ground-truth beam falls within the top-k predicted beams. In
this work, we present the top-1, top-2 and top-3 accuracies
to evaluate the performance of the beam prediction stage.
We further assess the performance of the proposed solution
using the metric of achievable rate R defined as

R = log,(1 + SNR). (14)

We use the evaluation metric of comparative accuracy to
assess the proposed transmitter identification solution. We
define comparative accuracy as the percentage of samples
in which the transmitter identified by the receive power-
aided FCNN matches the one predicted by the position-aided
FCNN. Whereas comparative accuracy is used to evaluate
the performance of the proposed transmitter identification
solution, the metric of association accuracy is used to evalu-
ate the performance of tracking transmitter across subsequent
frames after initial identification. Once the transmitter is
identified in the first frame, the association accuracy for each
following frame represents the percentage of samples where
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TABLE 2. Beam prediction: Design and training hyper-parameters.

ML Model Mask-LSTM  BBox-LSTM | Mask-LeNet Bbox-FCNN | Position-Aided FCNN  Receive Power-Aided FCNN

Batch Size 5 8 5 8 50 50

Learning Rate 1x1073 1x 1072 1x1073 1x 1072 1x1072 1x 1072

Learning Rate Decay - epoch 20 - epoch 20 epoch 30 and 70 epoch 30 and 70

LR Reduction Factor - 0.1 - 0.1 0.1 0.1

Total Training Epochs 50 50 50 50 100 100

. . . . .. . 100 T T

the transmitter identified by object association-based tracking romm----- < S O m e $
(detailed in Section IV-B) matches the transmitter identified TTTe--o qb ______ |
by the position-aided FCNN. Note that association accuracy P I L,,,,,,,,,,,,,—,ﬁr;::,_,_,: ,,,,,
varies across frames and assumes that the transmitter was @ - i i -0
correctly identified in the first frame, where both the & RN l |

. .. . . f ~ < I |
receive power-based and position-based FCNNs identify the 5 96-----------—- S~y R EEE R
same object as the transmitter. For example, an association % i TTeell_
accuracy of 97% at the second frame indicates that, after % | ¢‘ S-—__

el . . . . . . = | | - = -
the initial identification, the transmitter predicted by object g %4/~~~ [ —— L 9
association-based tracking aligns with the position-aided < i i
FCNN prediction 97% of the times in the second frame. 0 | |

: St toie g ["|- © = Unit 3 without semantic-aided filtering| '~~~ "~ """ """~
In computing as.socnanon accuracy, 1t 1S 1mportant. to note ~ © - Unit 3 with semantic-aided filtering i
that we do not include the sequences where the difference - © - Unit 2 without semantic-aided filtering }
. . .\ it 2 wi ic-aided filteri

between the predicted center coordinates by the position- 00 Unit 2 with fc-aided Rltering !
aided FCNN and the center coordinate of the closest 2 3 4 5

bounding box in Xppox and Xp.mask €xceeds a specified
threshold.

B. NUMERICAL RESULTS
This section presents a detailed evaluation of the results from
the proposed solution.

How accurately can the proposed transmitter iden-
tification and tracking solution identify and track the
transmitter?

The proposed transmitter identification solution involves
using a neural network to predict the center coordinates of
the transmitter in the first sample in the sequence using the
optimal receive power vector at that time instant. The bound-
ing box and the mask closest to the predicted coordinates is
identified as that of the transmitter. The proposed transmitter
identification model achieves a comparative accuracy of 82%
and 92.42% for unit 2 and 3, respectively. Fig. 9 shows how
the association accuracy varies against the sequence length
with and without semantic-aided filtering for both unit 2 and
unit 3. We observe that the association accuracy for unit 3
decreases only marginally as the sequence length increases
and remains above 99% for the whole length of the sequence.
However, the association accuracy for unit 2 decreases as
the sequence length increases. This may be attributed to
the different environmental conditions that the cameras of
each unit face. These environmental conditions can include
anything from lighting conditions to traffic stoppages.

The semantic-aided filtering method aims to enhance
association accuracy by utilizing the physical appearance of
vehicles across frames. This approach offers advantages such
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Sequence Length

FIGURE 9. The variation of the association accuracy with sequence length for both
units 2 and 3 with and without semantic-aided filtering. We observe that
semantic-aided filtering has contrasting effects on the association accuracy from both
units 2 and 3 across all sequence lengths. Semantic-aided filtering increases the
association accuracy for unit 2 while decreasing it for unit 3.

as improved accuracy in scenarios with partial occlusion
of the transmitter vehicle. It further has the potential for
enhanced performance when incorporating additional seman-
tic information like vehicle type or color. However, it also has
several limitations. The method is sensitive to environmental
factors such as lighting conditions and camera angles, which
can affect the perceived appearance of vehicles. Maintaining
consistent performance across varying conditions is chal-
lenging due to the reliance on appearance-based features.
Additionally, determining an optimal threshold (¢) that works
effectively across different scenarios presents difficulties.
The efficacy of semantic-aided filtering is contingent on the
quality and consistency of the visual data obtained. While it
can significantly improve accuracy in favorable conditions,
particularly in complex scenarios involving multiple vehicles,
its performance may degrade in challenging environmental
conditions or when visual distinctions between vehicles are
minimal. These factors highlight the trade-offs involved in
implementing semantic-aided filtering for vehicle association
in diverse real-world environments.

Can the environment semantics extracted from dis-
tributed nodes be used for beam prediction at the
basestation?
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FIGURE 10. Beam prediction accuracies of the proposed LSTM models for both
units 2 and 3. Overall, the LSTM models, which consider a sequence of environment
semantic information as input, achieve better beam prediction accuracy than the
solutions that only use the last sample’s semantic information as input.

Fig. 10(a) and 10(b) show the top-1, top-2, and top-
3 beam prediction accuracies obtained for units 2 and 3
respectively. We observe that for both units 2 and 3, the
LSTM model that takes bounding boxes as input achieves
better top-1, top-2, and top-3 beam prediction accuracies
than the corresponding FCNN model. On the other hand,
the LSTM model that takes masks as input achieves better
top-2 and top-3 accuracies for unit 2 and top-1, top-2, and
top-3 accuracies for unit 3 compared to the corresponding
LeNet model. The top-1 accuracy obtained by the mask-
based LSTM model of unit 2 is only marginally less than
that obtained by the corresponding LeNet model. We further
note that the top-3 accuracy obtained from both the bounding
box-based and mask-based LSTM models is more than 75%
for both units 2 and 3. This means that using either of the
proposed LSTM beam prediction model, the basestation can
find the optimal beam in over 75% of instances for both units
2 and 3, thereby significantly reducing the beam training
overhead to just three in the case of exhaustive search.

Fig. 11(a) and 11(b) show the achievable rate performance
for units 2 and 3. The results show that LSTM models
generally achieve higher rates compared to single instance
models. An exception is the mask-based LSTM for unit 2,
where the rate is only marginally less than the corresponding
LeNet model. Additionally, we observe that unit 3 exhibits
more outliers in achievable rate performance compared to
unit 2 across all machine learning models. However, the
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FIGURE 11. Achievable rate obtained by the proposed LSTM models for units 2 and
3. Overall, the LSTM models, which process a sequence of environment semantic
information as input, outperform solutions that rely solely on the semantic information
from the most recent sample in terms of achievable rate.

median rates for unit 3 are consistently higher than those
for unit 2 across all models. The interquartile range of
achievable rates for unit 3 is also smaller than that for
unit 2 across all models. This difference can be attributed
to the disparity in the number of training sequences, with
unit 2 having significantly fewer training sequences than
unit 3. The improved accuracies and rates obtained using
LSTM models can be attributed to their ability to capture
better the temporal dependencies in the semantic information,
enabling more accurate beam prediction. We observe that the
bounding box-based LSTM model performs better for unit 3,
while the mask-based LSTM model performs better for unit 2
in terms of beam prediction accuracy and achievable rate.
This suggests that specific semantic representations may be
more effective in certain regions than in others. For instance,
masks can capture the user’s shape and orientation, which
may be more beneficial for beam prediction in certain regions
than in others.

Fig. 12(a) and 12(b) show the confusion matrix plots
for unit 2, utilizing masks and bounding boxes as input,
respectively. We note that for unit 2, the mask-based LSTM
model gives more correct predictions than the bounding box-
based LSTM model. Fig. 12(c) and 12(d) show the confusion
matrix plots for unit 3 utilizing masks and bounding boxes as
input, respectively. We observe that for unit 3, the bounding
box-based LSTM model gives more correct predictions
than the mask-based LSTM model. We further note that
the confusion matrices of the mask-based LSTM model
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FIGURE 12. Fig. (a) and (b) present the confusion matrix plots for unit 2, showing the results obtained from the mask-based LSTM model and bounding box-based LSTM
model, respectively. On the other hand, Fig. (c) and (d) present the confusion matrix plots for unit 3, showing the results obtained from the mask-based LSTM model and
bounding box-based LSTM model, respectively. The mask-based LSTM model for unit 2 gives more correct predictions than the bounding box-based LSTM model. For unit 3,
however, the bounding box-based LSTM model gives more correct predictions than the mask-based LSTM model.

for unit 2 and the bounding box-based LSTM model for
unit 3 show a more pronounced concentration of elements
near the diagonal. The mask-based and bounding box-based
LSTM models demonstrate varying performance for units
2 and 3. This variation is influenced by factors such as
camera angle during image capture and the distance between
the transmitter and distributed node. Our analysis of the
impact of transmitter-node distance on beam prediction
accuracy shows that certain semantic representations are
more effective in specific regions than in others. It is also
important to note that unit 3 has a significantly larger number
of training sequences than unit 2, with each unit capturing
different conditions in the wireless environment.

Can the proposed sequence-based beam prediction
solution meet real-time latency requirements?

Table 1 shows the computational complexity, in terms
of time taken (milliseconds), of the deployed machine
learning models. The time taken to extract the semantic
information of BBox and mask from the image by using
YOLOvV7 model is about 29.5 millisecond. The semantic
information is extracted and transmitted to the basestation
before the next image is taken. When the last image in
the sequence is captured, the semantic information from
previous images is assumed to have already been received
at the basestation. We assume that the communication from
the distributed node to the basestation is instantaneous. At
the basestation, transmitter identification step takes only
0.037 millisecond. An additional 1-2 ms is needed for
beam prediction at the basestation. The total time for
beam prediction using the mask-based LSTM model at
the basestation starting from the point of the last image
capture is around 31.5 ms, significantly less than the duration
of the timestamp, which is 100 ms. These measurements
suggest that our current implementation has the potential
to meet real-time requirements. We note that the mask-
based LSTM model does not take significantly more time
than the mask-based CNN model. Moreover, the bounding
box-based LSTM model actually takes less time than the
bounding box-based FCNN model. We selected an RNN
model for sequence-based beam prediction instead of other
neural network architectures such as Transformers because

VOLUME 5, 2024

[ Unit 2 BBox [II] Unit 2 Mask [N Unit 3 BBox [ Unit 3 Mask

=3
=l

oL
=]

=)
<

I
<

o
<

Top-1 Beam Prediction Accuracy
<

10-20

20-30

30-40 40-50
Distance from Unit (meter)

50-60 60-70

FIGURE 13. Top-1 beam prediction accuracy of LSTM models versus distance from
the distributed node for units 2 and 3. We note that the mask-based LSTM model
achieves higher beam prediction accuracy for certain distances, while the bounding
box-based LSTM model performs better for other distances. This shows that certain
semantic representations may be more effective in certain regions than in others.

RNNs offer advantages in computational complexity. For
example, a Transformer model with the same hidden state
size, 8 attention heads, and 6 encoder layers, processing
the sequence of masks as input, would take about 3.43 ms
to predict the beam, which is more than twice the time
taken by the LSTM model. As such, the LSTM model, due
to its superior computational complexity, is better suited to
manage varying data rates and synchronization demands,
justifying its choice for sequence-based beam prediction. It is
important to note here that our solution can also be extended
to predict future beams, enhancing the proactive nature of
the system. By adopting a proactive approach and predicting
future beams, we can further overcome the latency issue,
ensuring timely and accurate beam prediction in distributed
sensing-based mmWave communication systems.

How does the distance between the transmitter and the
distributed node affect beam prediction accuracy?

Fig. 13 illustrates the top-1 beam prediction accuracies
plotted against the distance from the distributed node for both
units 2 and 3, comparing the performance of the bounding
box-based LSTM model and the mask-based LSTM model.
We observe that for unit 2, except for the 10-20 meter
distance range, the top-1 beam prediction accuracy from the
mask-based LSTM model decreases as distance increases.
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FIGURE 14. Histogram showing the number of sequences falling within various
distance ranges for the two distributed nodes. Unit 3 has significantly more
sequences compared to unit 2.

FIGURE 15. The mobile vehicle observed from the basestation at about 10 m from
the distributed node of Unit 2. Within the 10-20 m range, some trees partially obstruct
the LOS path between the basestation and the mobile vehicle, leading to a
degradation in beam prediction for Unit 2 in this range.

On the other hand, for unit 3, except for the 60-70 meter
distance range, the top-1 beam prediction accuracy from
the bounding box-based LSTM model decreases as distance
increases. We further note that the top-1 beam prediction
accuracies from the bounding box-based LSTM model of
unit 2 and the mask-based LSTM model of unit 3 fluctuate
across different distance ranges without showing a consistent
trend. Furthermore, it is only in the distance ranges of
10-20 meters and 60-70 meters that both the bounding box-
based and mask-based LSTM models of either distributed
node achieve significantly better beam prediction accuracy
over the other. These observations hold true even though a
considerably larger number of sequences are available for
unit 3 than for unit 2 across all distance ranges, as shown
in Fig. 14.

Environmental factors and vehicle dynamics influence the
observed accuracy variations. In the 10-20 meter range, both
LSTM models of unit 3 achieve better beam prediction
accuracy compared to unit 2. Fig. 15 reveals that within
this range, trees partially obstruct the line-of-sight path
between the base station and the mobile vehicle, leading
to degraded beam prediction for unit 2. Conversely, in
the 50-60 meter range, both LSTM models of unit 2
outperform those of unit 3. Fig. 16 shows the mobile vehicle
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FIGURE 16. The mobile vehicle as observed from the distributed node of Unit 3. The
vehicle is approximately 65 meters away from the distributed node. Upon reaching this

distance, it stops at a stop sign and then ates. This ation makes it
challenging for the machine learning model to predict the beam at the 5™ time stamp.
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FIGURE 17. Variation of the top-1 beam prediction accuracies of the LSTM models
with the number of mobile objects present in the wireless environment for both units 2
and 3. We observe that the beam prediction accuracies remain stable and, in some
cases, even improve as the average number of objects in the wireless environment
increases.

at approximately 65 meters from unit 3’s distributed node.
In this scenario, the vehicle’s dynamics—stopping at a stop
sign and then accelerating—affect prediction accuracy. Beam
prediction at the 5™ time instance is more accurate when
the vehicle maintains constant velocity or remains station-
ary, compared to periods of acceleration. The acceleration
observed in the 50-60 meter range from unit 3 contributes to
reduced prediction accuracy in this region. To address these
challenges, particularly in scenarios with variable vehicle
velocities, increasing the number of images in the sequence
or expanding the training dataset could potentially enhance
prediction accuracy.

How does the average number of objects of interest
present in the wireless environment affect beam
prediction accuracy?

Fig. 17 shows how the top-1 beam prediction accuracies
from the LSTM models vary with the average number
of objects of interest present in the wireless environment
for both units 2 and 3. The average is determined by
considering the total number of relevant objects across
the five image samples in the sequence. We note that
the beam prediction accuracies remain stable and even
increase in some instances as the average number of objects
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FIGURE 18. Number of image sequences versus the average number of objects of
interest present within those sequences. We observe that unit 3 has a considerably
larger number of sequences.

in the wireless environment increases. This underscores
the efficacy of the proposed transmitter identification and
tracking solution and demonstrates the overall effectiveness
of the proposed beam prediction solution in a multi-candidate
scenario. Fig. 18 depicts the relationship between the number
of image sequences and the average number of relevant
objects present within those sequences. However, we do not
see a proportional increase in beam prediction accuracies
for unit 3 compared to unit 2 across the average number of
objects categories. One might expect higher beam prediction
accuracies for unit 3 compared to unit 2 across various
categories of the average number of objects in the wireless
environment, as a larger number of sequences typically
results in better-trained beam prediction models.

However, it is important to recognize that beam prediction
accuracy is influenced by additional factors. These include
the camera angle at which the image is captured, the type of
environment semantic information transmitted to the bases-
tation, and the distance between the mobile vehicle and the
basestation. Our earlier investigation into how the distance
between the transmitter and the distributed node affects
beam prediction accuracy revealed that certain semantic
representations are more effective in specific regions than in
others. For instance, when the transmitter vehicle is located
50-60 meters from the distributed node and is correctly
identified in a multi-candidate scenario, unit 2 will achieve
higher beam prediction accuracy than unit 3, as shown in
Fig. 13. This is the case even though more data sequences
are available for unit 3 at this distance than for unit 2.
Consequently, we observe that unit 3 does not consistently
obtain better beam prediction accuracies than unit 2 across
various categories of the average number of objects in the
wireless environment.

VII. CONCLUSION

This paper presents a distributed sensing-aided beamforming
approach. The proposed solution involves deploying multiple
distributed nodes, which extract masks and bounding boxes
of potential users from raw RGB images. We effectively
reduce the storage and transmission requirements by trans-
mitting these semantics to the basestation instead of raw
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RGB images. We also propose a transmitter identifica-
tion and tracking solution at the basestation, enabling the
proposed solution to operate in a multi-candidate setting.
Experimental results on the DeepSense 6G dataset demon-
strate the effectiveness of the proposed solution in identifying
and tracking the transmitter over multiple frames. The
results further show that the proposed solution can predict
the optimal beam effectively and demonstrates robustness
against both increasing distances from the distributed nodes
and a higher number of objects of interest present in the
wireless environment. These findings highlight the potential
of utilizing environment semantics to facilitate distributed
sensing-aided communication. In future work, we plan to
utilize sensors other than cameras at the distributed nodes and
transmit diverse semantic information to construct a digital
twin at the basestation. This digital twin can be utilized
to predict future beams, further enhancing the proactive
capabilities of the system. By predicting future beams, we
aim to address the latency challenges and ensure timely
and accurate beam prediction in distributed sensing-based
mmWave communication systems.
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