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ABSTRACT Millimeter-wave (mmWave) and terahertz (THz) communication systems require large

antenna arrays and use narrow directive beams to ensure sufficient receive signal power. However, selecting

the optimal beams for these large antenna arrays incurs a significant beam training overhead, making

it challenging to support applications involving high mobility. In recent years, machine learning (ML)

solutions have shown promising results in reducing the beam training overhead by utilizing various sensing

modalities such as GPS position and RGB images. However, the existing approaches are mainly limited

to scenarios with only a single object of interest present in the wireless environment and focus only

on co-located sensing, where all the sensors are installed at the communication terminal. This brings

key challenges such as the limited sensing coverage compared to the coverage of the communication

system and the difficulty in handling non-line-of-sight scenarios. To overcome these limitations, our paper

proposes the deployment of multiple distributed sensing nodes, each equipped with an RGB camera.

These nodes focus on extracting environmental semantics from the captured RGB images. The semantic

data, rather than the raw images, are then transmitted to the basestation. This strategy significantly

alleviates the overhead associated with the data storage and transmission of the raw images. Furthermore,

semantic communication enhances the system’s adaptability and responsiveness to dynamic environments,

allowing for prioritization and transmission of contextually relevant information. Experimental results on

the DeepSense 6G dataset demonstrate the effectiveness of the proposed solution in reducing the sensing

data transmission overhead while accurately predicting the optimal beams in realistic communication

environments.

INDEX TERMS Beamforming, camera, computer vision, deep learning, distributed sensing, environment

semantics, millimeter-wave, semantic communications.

I. INTRODUCTION

UTILIZING higher frequency bands, such as mmWave

in 5G and possibly sub-terahertz in 6G, is a key trend in

current and future communication systems. These frequency

ranges provide higher bandwidths, enabling the commu-

nication systems to efficiently meet the higher data rate

demands of emerging applications such as augmented/virtual

reality, autonomous vehicles, and smart cities [1], [2], [3].

However, these systems necessitate the deployment of large

antenna arrays and the use of narrow beams at both the

transmitter and receiver to ensure adequate receive signal

power. Selecting the best beams for these large antenna

arrays incurs a substantial training overhead, making it

challenging to satisfy the low-latency and high-reliability

requirements of these current and future applications. This

emphasizes the need to explore innovative approaches that

(i) reduce or mitigate the training overhead associated

with beam selection and (ii) enable highly mobile wireless

communication applications.

Several solutions have been proposed over the years to

reduce the beam training and channel estimation overhead

in mmWave communication systems [4], [5], [6], [7]. The

focus of these solutions has been mainly on: (i) The

development of beam training with adaptive/hierarchical

beam codebooks [4], [5]. (ii) The utilization of compressive

sensing tools [5] to estimate the full channel with a much

smaller number of measurements. This is motivated by the

sparsity nature of the mmWave channels, where only a few
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dominant paths typically exist between the transmitter and

receiver. (iii) The design of beam tracking techniques [6] that

leverages the user mobility information to predict the future

beams and hence reduce the exhaustive search beam training

overhead. These classical approaches, however, usually result

in a training overhead reduction of only one order of

magnitude, which is not sufficient for very large antenna

array systems and applications that require very low-latency.

The challenges faced by classical solutions have led to the

development of machine learning approaches that leverage

prior observation and additional sensing information [8], [9],

[10], [11], [12], [13], [14]. The additional sensing modalities

include position (GPS location) [9], RGB images [10], [11],

LiDAR [12], and radar [13], [14]. The additional sens-

ing information provides a crucial environmental context,

enabling an in-depth comprehension of the wireless envi-

ronment and its influence on channel characteristics. These

prior studies have demonstrated the potential of utilizing

additional side information in minimizing the beam training

overhead. However, these solutions have certain limitations.

Firstly, they are primarily designed for scenarios with a

single object of interest, which can be challenging when

scaling them to real-world situations with multiple objects.

Secondly, the additional sensors used in these solutions, such

as cameras, LiDAR, and radar, are positioned exclusively at

the basestation and have a limited range of approximately

60 − 80 meters [15]. This range is significantly shorter than

the typical range of the mmWave communication systems,

which is around 300 meters. Consequently, this limited

range of these additional sensing modalities significantly

impacts the effectiveness of these solutions in real-world

wireless communication tasks (such as beam prediction and

proactive blockage prediction). Additionally, these sensors do

not provide coverage for non-line-of-sight scenarios, further

restricting their applicability in diverse environments.

One promising solution to overcome these challenges is

deploying multiple nodes, each equipped with its own sen-

sors, to capture information about the wireless environment

in a coordinated manner. This distributed sensing approach

enhances coverage, reliability, and adaptability by strategi-

cally distributing sensors throughout the network [16], [17].

Instead of relying solely on sensors at the basestation, data

collected by these distributed nodes can be utilized by one or

more basestations to make informed decisions. This scalable

and robust approach leverages the collective sensing capabil-

ities of multiple nodes, providing a comprehensive view of

the wireless environment and optimizing tasks such as beam

prediction and proactive blockage prediction. However, as

the number of distributed nodes increases, challenges arise

in managing the growing volume of captured data, including

storage, processing, and transmission concerns. Furthermore,

the heightened data rate resulting from the increased number

of nodes necessitates robust data synchronization methods

to maintain temporal coherence.

One approach to address these challenges is to process

the data captured by the distributed nodes locally, either at

the edge or in the cloud. This processing involves extracting

essential information, referred to as semantics, from raw

sensor data and transmit these semantics to basestation.

Semantic communication systems are broadly classified into

two categories: source-oriented semantic communications

(SOSCs) and channel-oriented semantic communications

(COSCs) [18]. An SOSC system typically comprises a

semantic encoder at the transmitter and a semantic decoder

at the receiver. The semantic encoder, implemented as a deep

neural network, extracts semantic features based on the trans-

mitter’s background knowledge. The semantic decoder, also

a deep neural network, interprets these semantic features and

reconstructs the original source signals using the receiver’s

background knowledge. In SOSCs, the transmitted semantic

information consists of feature vectors produced by the

encoder’s deep neural network. For instance, [19] and [20]

utilize deep neural networks to extract feature vectors from

text and speech data, respectively, and transmit these feature

vectors as the semantic information of the source data.

Conversely, COSC systems extract channel semantics from

sensory information about the environment data such as

images, LiDAR, or radar [18]. This semantic information

is utilized for channel-related downstream tasks, includ-

ing blockage prediction, beam prediction, and basestation

handoff. In [21], the semantic information in channel-

oriented semantic communication system is divided into

two categories: (i) parameter semantics and (ii) environment

semantics. Parameter semantics include channel parameters

such as angle of arrival, angle of departure, number of paths,

and Doppler frequency offset, which can be obtained from

sensors like radar and GPS. Environment semantics, on the

other hand, refer to information about the environment, such

as the layout, shape, number, and category of objects present

in it [22]. The most effective form of semantic information

for channel-oriented semantic communication system would

depend on the sensor data modality and the communication

task to be performed at the basestation. In our work, which

involves using cameras at distributed nodes for vehicle-

to-infrastructure communication, we focus on extracting

environment semantics. Moreover, to extract environment

semantics from images, we can utilize powerful yet efficient

pre-trained deep learning models such as YOLOv7 [23],

eliminating the need to train models from scratch, as would

be required for parameter semantics.

While exploring distributed learning solutions, it is notable

that paradigms such as federated learning [24], [25] are

gaining traction. This method entails training models across

decentralized devices using local data, with the aggre-

gated insights refining the overall model while maintaining

data privacy and minimizing bandwidth use. In addition,

distributed artificial intelligence (AI) and edge computing

have shown potential in enhancing network functionalities.

These technologies, particularly edge computing, have been

effective in managing the data from distributed nodes,

addressing significant challenges in data processing and

storage [26], [27]. However, these advancements still need
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FIGURE 1. Overall system model of the proposed setup. The distributed nodes extract environment semantic information from the RGB images, which is subsequently

transmitted to the basestation. This semantic information is then utilized for beam prediction at the basestation.

to be explored in the context of distributed sensing-aided

vehicle-to-infrastructure (V2I) beam prediction and tracking.

To bridge this gap, we aim to investigate the utilization of

environment semantics in enabling distributed sensing-aided

wireless communication in real-world scenarios. Specifically,

we propose a novel approach that leverages environment

semantics in a distributed sensing scenario to predict optimal

beams in a real-world wireless communication setting

accurately. The main contributions of this paper can be

summarized as follows:

• Formulating the sensing-aided beam prediction problem

for vehicle-to-infrastructure (V2I) communication sce-

nario with multiple distributed nodes, each equipped

with an RGB camera to capture the wireless

environment.

• Developing a novel deep learning-based solution that

leverages images captured by cameras installed at

distributed nodes to accurately predict the optimal

beam index at the basestation in a V2I communication

scenario.

• Investigating various environment semantics that can be

extracted from images, such as object bounding boxes

and masks, with the aim of enabling distributed sensing-

aided wireless communication. We further perform

a comprehensive comparative study, evaluating the

performance, complexity, and practical feasibility of

these environment semantics for the specific task of

distributed sensing-aided beam prediction.

• Providing the first real-world evaluation of distributed

environment semantic-aided beam prediction based on

a new scenario in the DeepSense 6G dataset [28].

This scenario focuses explicitly on the distributed

aspect, capturing co-existing multi-modal data from the

basestation and two distributed units, enabling the study

of distributed sensing-aided wireless communication.

The paper is organized as follows: Section II provides

the system model and problem formulation for the proposed

solution. In Sections III and IV, we delve into the key

idea and the proposed solution, respectively. The testbed and

the DeepSense 6G dataset utilized in our experiments are

described in Section V. Finally, in Section VI we present a

detailed evaluation of the proposed solution.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the adopted system model and

formulate the distributed environment semantic-aided beam

prediction problem.

A. SYSTEM MODEL

Fig. 1 illustrates the proposed distributed sensing-aided com-

munication setup. N distributed nodes sense the environment.

Each distributed node is equipped with an RGB camera.

Furthermore, the basestation is also equipped with an RGB

camera and 3 M-element uniform linear arrays (ULAs),

with each ULA having a field of view of around 90◦.

The three ULAs are positioned 90◦ apart from each other

and oriented towards the front, left, and right of the

basestation. Furthermore, the area served by the basestation

is divided into N + 1 subregions. The basestation camera

provides sensing information for the region directly in front

of the basestation while each distributed node provides

sensing information for one of the remaining N regions. We

strategically position the distributed nodes to enhance the
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combined camera coverage over the range of the mmWave

communication system.

The user is equipped with a single-antenna transmitter.

The basestation, for each ULA, uses (i) OFDM transmission

with K subcarriers and a cyclic prefix of length D, and (ii) a

pre-defined beam steering codebook F = {fq}
Q
q=1, where

fq ∈ C
M×1 is the qth beamforming vector and Q is the total

number of beamforming vectors. The beam steering beams

are uniformly spaced and jointly cover the ULA’s 90◦ field

of view. In the downlink, the received signal at the user

from the ULA that has the user in its field of view at the

kth sub-carrier and time t can be represented as

yk[t] = hTk [t]fq[t]x+ vk[t], (1)

where hk[t] ∈ C
M×1 denotes the channel between the

basestation and the mobile user, fq ∈ F is the beamforming

vector, and vk[t] represents noise sampled from a complex

Gaussian distribution NC(0, Ã 2). The transmitted complex

symbol x ∈ C satisfies the power constraint E[|x|2] = P,

where P is the average symbol power. Moreover, the

beamforming vector fq[t], at each time step t is selected from

the beam steering codebook F to maximize the average

receive SNR as follows

argmax
fq[t]∈F

1

K

K
∑

k=1

SNR
∣

∣

∣
hTk [t]fq[t]

∣

∣

∣

2
, (2)

where SNR is the transmit signal-to-noise ratio, SNR = P
Ã 2 .

At any time instant t, the receive power vector of effective

channel gain with codebook elements from the ULA that

has the user in its field of view can therefore be expressed

as p[t] = [p1[t], . . . , pQ[t]], where p[t] ∈ R
Q×1 and pq[t] is

defined as

pq[t] =
∣

∣

∣
hTk [t]fq[t]

∣

∣

∣

2
. q ∈ 1, . . . ..,Q (3)

In the next subsection, we formulate the distributed environ-

ment semantic-aided beam prediction problem.

B. PROBLEM FORMULATION

Given the system model presented above, the goal is to

select the optimal beam index (at the basestation for any

given time t) that maximizes the receive power using camera

images captured by the distributed node. Attaining this goal

involves a few key tasks. Firstly, we need to determine the

ULA that encompasses the user within its field of view.

Secondly, we have to identify the sub-region where the

user is located. Lastly, we must also discern the transmitter

vehicle from other vehicles present in the RGB images.

One potential solution to this problem is to leverage the

receive power vector derived from previous time instances.

Consequently, this work aims to develop a beam prediction

model that utilizes a sequence of available RGB images

and the ground truth receive power vector corresponding

to the time instant of the first image capture. The receive

power vector corresponding to the first image capture in the

sequence serves a dual role in our proposed solution. Initially,

it is used to identify the ULA and the sub-region where the

user is located. Subsequently, this receive power vector is

employed to facilitate the identification of the transmitter in

the scene. Let Xn[t] ∈ R
W×H×C represent the RGB image

captured at time t by the camera installed at the nth node,

where W, H, and C are the width, height, and the number

of color channels for the image, respectively. Further, let

p[t] ∈ R
1×Q denote the mmWave receive power vector from

the ULA that has the user in its field of view at time t.

At any given time instant t, the distributed node n, captures

a sequence of r RGB images, and the basestation collects

the mmWave receive power vector corresponding to the time

instant of the first image capture, S[t], defined as

S[t] =
{

{Xn[t]}t=Ä
t=Ä−r+1,p[Ä − r + 1]

}

, (4)

where r ∈ Z is the length of the input sequence or the

observation window to predict the optimal beam index. In

particular, at any given time instant t, the goal in this

work is to find a mapping function f� that utilizes the

available sensory data samples S[t] to predict (estimate) the

optimal beam index f̂[t] ∈ F with high fidelity. The mapping

function can be formally expressed as

f� : S[t] → f̂[t]. (5)

Let D = {(Sl, f
�
l )}

l=κ1

l=1 represent the available dataset

collected from the real-world wireless environment. The total

number of samples in the dataset is denoted by κ1. The goal

is to maximize the number of correct predictions over all the

samples in the dataset D. This can be formally written as

f ��� = argmax
�

κ1
∏

l=1

P
(

f�(Sl) = f�l
)

, (6)

where the joint probability distribution in (6) is due to the

implicit assumption that the samples in D are drawn from

an independent and identical distribution. The objective is

to find the optimal set of parameters �� that maximizes

the product of the probabilities of correct predictions. The

set of parameters �� can be learned from the dataset D

by utilizing a machine learning solution. During training, f�
can be considered random as the parameters change during

training based on the stochastic updates. The model f� is

deterministic once the parameters � are learned. The next

section presents the proposed deep learning-based solution

for the proposed distributed sensing-aided beam prediction.

III. KEY IDEA

In this section, we present the key idea behind setting up

distributed nodes and utilizing the environment semantics

from these distributed nodes for beam prediction at the

basestation.

Recent works [9], [10], [11], [12], [13], [14] demon-

strate the potential of using various sensing modalities

including position [9], LiDAR [12], radar [13], and RGB

images [10] for beam prediction. These works primarily

7770 VOLUME 5, 2024



focus on co-located sensing and communication, where

sensors are installed at the basestation. This approach

introduces various challenges that need to be addressed.

First, practical sensors have limited range capabilities.

When machine learning models process this sensor data

to detect distant objects, the resulting bounding boxes

and masks appear disproportionately small, giving the

impression of minimal movement even if the objects are

actually moving rapidly. Second, the sensors predomi-

nantly rely on line-of-sight (LOS) conditions for accurate

data capture [29]. Consequently, non-line-of-sight (NLOS)

scenarios, which are inherently challenging, significantly

impact the usability of these sensors. Achieving reliable

mmWave communication necessitates the development of

techniques that can effectively handle both LOS and NLOS

cases.

To unlock the full potential of additional sensing modal-

ities, adopting a distributed sensing approach is essential.

This approach entails deploying multiple distributed nodes,

each equipped with sensors such as camera, LiDAR, and

radar, to overcome limitations in range and expand the scope

of data collection to cover a broader area. Furthermore,

distributed sensing enables us to address NLOS scenarios

effectively by enhancing sensing coverage and capturing

diverse perspectives. By capitalizing on the synergistic

capabilities of multiple sensors deployed across the network,

we can elevate overall system performance and realize

advanced functionalities.

As the number of distributed nodes increases, there is

a corresponding increase in the volume of captured data,

which brings forth several challenges. Firstly, the substantial

size of the accumulated data presents significant obstacles

in terms of storage, processing, and transmission. Secondly,

the heightened data rate resulting from the increased number

of nodes calls for robust data synchronization mechanisms

to maintain temporal coherence and mitigate potential data

inconsistencies. Addressing these challenges associated with

the growing scale of data capture and synchronization over-

head is paramount to facilitate seamless operation and enable

the effective utilization of distributed sensing techniques in

mmWave communication systems. One promising approach

to overcome these challenges is reducing the data traffic

volume between the basestation and the distributed nodes

by selectively transferring only critical information. For

instance, in the case of a distributed node equipped with a

camera, rather than transmitting the entire image, a more

efficient strategy is to extract the environment semantics

locally. These environment semantics comprise relevant

information about the wireless environment, such as the

presence of different vehicles in the scene and their relative

locations. By focusing on transmitting only this critical

information, the data traffic between the distributed nodes

and the basestation can be significantly reduced, alleviating

the storage, processing, and transmission burdens.

To address the challenges mentioned above, this paper

focuses on designing efficient strategies for extracting

FIGURE 2. The selection process of the ULA, the sub-region, and the corresponding

distributed node.

environment semantics from RGB images (such as the

masks and bounding boxes of the objects of interest) to

facilitate the beam prediction process in a realistic V2I

communication scenario with two distributed nodes. In this

scenario, we consider a more complex environment with

multiple probable objects, requiring advanced techniques

for accurate prediction. Given the multi-candidate nature of

the scenario, our solution is designed to efficiently extract

environment semantics, identify the transmitter in the scene,

and predict the optimal beam in real time. To accomplish this,

we leverage a sequence of RGB images captured by the dis-

tributed nodes. However, one key challenge that still remains

is the latency associated with transferring these environment

semantics to the basestation for beam prediction. It is

important to note here that our solution can also be extended

to predict future beams, enhancing the proactive nature of

the system. By adopting a proactive approach and predicting

future beams, we can effectively overcome the latency issue,

ensuring timely and accurate beam prediction in distributed

sensing-based mmWave communication systems. Next, we

present the proposed solution in detail.

IV. PROPOSED SOLUTION

This section provides a comprehensive overview of the

proposed solution for distributed environment semantic-

aided communication. Note that our focus in this work is

primarily on mobile vehicles within the context of vehicle-to-

infrastructure communication. We divide the region served

by the basestation into three sub-regions, where each sub-

region corresponds to one of the phased arrays of the

basestation as shown in Fig. 2. Furthermore, we include two

distributed nodes in the system with one node located to the

left of the basestation and the other to the right. At any given

time t, the selection of sensing data for further processing

and beam prediction depends on the user’s location in the

wireless environment. For instance, if the user is situated in

the sub-region to the right of the basestation, the RGB images

captured by the right distributed node (distributed node 1) are

utilized for beam prediction. It is important to note here that

the selection of the distributed node for further processing

and beam prediction does not rely on the user’s position
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FIGURE 3. The different stages of the proposed solution. In the first stage, environment semantics are extracted from the raw RGB images at the distributed nodes. The

second stage, performed at the basestation, involves identifying the transmitter in the initial frame and tracking it across the subsequent frames. Finally, in the third stage, the

semantic information gathered in the second stage is used for beam prediction at the basestation.

data (GPS position). Instead, we utilize the receive power

vector, which provides valuable directional information that

aids in determining the optimal beam index. By utilizing

the optimal beam index, we can select one of the ULAs.

Next, depending on the selected ULA, we approximate the

sub-region where the user is located. This approximation, in

turn, helps identify the specific distributed node from which

to utilize the sensing data. This approach ensures efficient

utilization of the sensing data based on the user’s location

within the coverage area.

The proposed solution comprises three stages as depicted

in Fig. 3. The first stage would be carried out at the

distributed nodes, while the second and third stages would

take place at the basestation. In the first stage, object masks

and bounding boxes of potential users would be extracted

at the distributed nodes. In the second stage, executed

at the basestation, the received power vector would be

used to identify the transmitter from multiple candidates.

The transmitter would then be tracked over the subsequent

r − 1 frames using the nearest neighbor algorithm. Lastly,

in the third stage, the basestation would leverage the

transmitter’s semantic information from the current and past

r frames to predict the current optimal beam index. Since the

semantic information is very lightweight, the transmission

of semantic information from the distributed nodes to the

basestation is assumed to be instantaneous. A proposed real-

time communication system could be designed with each

distributed node equipped with a single antenna for uplink

transmission, while the basestation uses its ULAs to form a

beam for efficient reception of data from these nodes.

A. STAGE 1: ENVIRONMENT SEMANTICS EXTRACTION

The first stage of the proposed solution aims to extract

environment semantics from RGB images, as shown in

Fig. 4. The primary objective of this stage is to accurately

and efficiently capture information that represents the objects

of interest in the wireless environment while also minimizing

the required data storage compared to the original sensing

modality (i.e., the images themselves). To achieve this, we

utilize the state-of-the-art COCO [30] pre-trained object

detection and image segmentation model, YOLOv7 [23]. In

particular, we aim to extract two crucial types of environment

semantics: bounding boxes and binary masks. Bounding

boxes, denoted as XBBox[t] ∈ R
U×4, serve as representations

for potential users within the wireless environment, where

U is the total number of detected objects in the RGB

image. Each row of XBBox[t] contains a bounding box

vector [xc, yc,w, h], where xc, yc, w, and h denote the x-

center, y-center, width, and height of the detected object,

respectively. These bounding boxes provide essential spatial

information about the potential users. Additionally, we

generate binary masks, represented as XMask[t] ∈ R
Ŵ×Ĥ ,

where Ŵ and Ĥ correspond to the downsampled width

and height of the image mask, respectively. These masks

offer more detailed and fine-grained depictions of the spatial

extent of the potential users within the wireless environment.

Furthermore, the image segmentation model employed in our

solution not only outputs the binary masks but also provides

the bounding box information for the detected objects. Let

XB-Mask[t] ∈ R
U×4 denote the bounding boxes extracted

during the image segmentation.
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FIGURE 4. The environment semantics extraction stage in our proposed solution. A camera installed at the distributed node captures real-time images of the wireless

environment, which a machine learning model then processes to extract the bounding boxes and masks of the mobile objects present in the images.

FIGURE 5. The transmitter identification and object association-based tracking module. The transmitter is identified in the first frame using the receive power vector and then

tracked for the remaining frames using the nearest neighbor algorithm.

B. STAGE 2: TRANSMITTER IDENTIFICATION AND

TRACKING

By adopting YOLOv7, which allows the simultaneous

generation of bounding boxes and masks, we eliminate

the need for separate runs, resulting in faster inference

speed. Moreover, YOLOv7 achieves a significant reduc-

tion of approximately 40% in parameter size compared

to other real-time object detectors, leading to enhanced

computational efficiency. Utilizing pre-trained models based

on the COCO dataset is advantageous as they can detect

most of the relevant objects commonly encountered in

wireless environments, such as cars, bikes, and people. We

now present the second stage of our proposed solution.

Specifically, two tasks must be accomplished to predict

the optimal beam index. Firstly, the transmitter must be

identified among the detected objects, and secondly, the

transmitter needs to be tracked over the subsequent r − 1

samples. To address these challenges, we introduce a two-

stage solution encompassing transmitter identification and

object association-based tracking, as presented in Fig. 5.

In the following sections, we provide a comprehensive

description of our proposed transmitter identification and

object association-based tracking solution.

1) TRANSMITTER IDENTIFICATION

It refers to accurately determining the transmitter’s location

within the wireless environment using the extracted semantic

information. The adopted image segmentation model not

only provides binary masks but also outputs the bounding

box information for the detected objects. In the task of
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transmitter identification, we leverage the extracted bounding

boxes from both types of environment semantics. Therefore,

the objective is to leverage the receive power vector p[Ä −

r + 1] from the ULA that has the user in its field of view

and the semantic information of masks and bounding boxes

at time t = Ä − r + 1 to predict the center coordinates of

the transmitter’s bounding box bTx[Ä − r+1] ∈ R
2×1 within

the image. For this, we employ a prediction function gη,

parameterized by a set of parameters η, which maps the

receive power vector to the predicted bounding box center

coordinates b̂Tx. Mathematically, this can be expressed as:

gη : p[t] → ˆbTx[t]. (7)

To train the prediction function, we construct a dataset

D2 comprising pairs of mmWave receive power vectors pv
and their corresponding ground-truth bounding box center

coordinates of the transmitter bTxv. This dataset is a subset

of the larger dataset D, and it contains V samples, such that

D2 = {(pv,bTxv)}
V
v=1. We do not have access to ground-

truth bounding box coordinates for the transmitter vehicle,

which are required to construct the dataset D2. To address

this issue, we manually select samples that contain only

the transmitting vehicle. These samples are then processed

using the YOLOv7 deep learning model, and the resulting

bounding boxes are manually reviewed for accuracy. The

bounding boxes generated by YOLOv7 for images containing

only the transmitter vehicle are subsequently used as the

ground-truth annotations for the dataset D2. The goal is to

minimize the error between the predicted and ground-truth

center coordinates of the transmitter’s bounding box across

all the samples in D2. This optimization problem can be

formulated as:

g�
η� = argmin

gη

1

V

V
∑

v=1

∥

∥

∥

ˆbTxv − bTxv

∥

∥

∥

2
, (8)

where g�
η� represents the optimal prediction function that

minimizes the squared l2 norm of the error between the

predicted and ground-truth bounding box center coordinates.

To learn gη, we use a two-layered fully connected neural

network with 512 nodes in each layer. The obtained bTx from

gη is not intended to be the final prediction but rather only

an initial estimate. We utilize this initial estimate together

with the semantic information at that time instant to identify

the bounding box and mask of the object responsible for

the received signal. The bounding box of the transmitter is

identified by locating the bounding box in XBBox[Ä − r+ 1]

and XB-Mask[Ä − r + 1] whose center coordinate is closest

to b̂Tx[Ä − r+ 1]. For instance, consider an image with two

candidates for transmitter, each with its own bounding box.

Let d1 and d2 represent the distances between b̂Tx[Ä −r+1]

and the bounding boxes of the first and second candidates,

respectively, as shown in Fig. 5. The bounding box with

the smaller distance, min(d1, d2), will be selected as that

corresponding to the transmitter. Furthermore, we determine

the transmitter’s mask by identifying the group of pixels

within the transmitter’s bounding box. It is worth noting

here that we assume a transmitter is present in the wireless

environment at each time step t. The next step involves

tracking the bounding box and mask of the transmitter for

the next r − 1 samples.

2) OBJECT ASSOCIATION BASED TRACKING

In the previous step, we successfully identified the trans-

mitter in the first image sample (in a sequence of r

images). However, to predict the current optimal beam

index, tracking the transmitter’s location throughout the

remaining r−1 samples is essential. This section presents two

distinct approaches for transmitter tracking for the different

environment semantics: (i) Bbox-based object tracking and

(ii) mask-based object tracking.

(i) Bbox-based Object Tracking: Numerous state-of-the-

art algorithms [31], [32], [33] have been proposed in the

field of multiple object tracking (MOT). However, consid-

ering the emphasis of this work on V2I communication,

primarily involving mobile vehicles, a simple Euclidean

distance-based object association algorithm is adopted [34].

This algorithm determines the transmitter in the next sample

by finding the bounding box in XBBox (of the following

sample) with the closest center coordinate to the bounding

box in the current sample as shown in Fig. 5. The key

underlying idea is that, for two consecutive image samples,

the distance between the center coordinates of the bounding

box will be the smallest for the same object compared to

other objects in the scene.

(ii) Mask-based Object Tracking: To facilitate object

association-based tracking using masks, the median color

value of mobile vehicles can be utilized. Using binary masks,

we extract the color information of all the detected vehicles

at the distributed nodes. This is achieved by performing

a Hadamard product between the binary mask and the

RGB image, followed by calculating the mean value of the

pixels where the binary mask contains a 1. We filter out

the vehicles whose color does not match with that of the

transmitter identified in the first sample. Let ρ ∈ R
3 denote

the median RGB color value of a probable candidate. Let

ρTx and ρz further represent the median RGB color values

of the transmitter and the zth potential user in the mask,

respectively. The potential user is considered a candidate for

subsequent object association if the following criterion is

satisfied

‖ρTx − ρz‖F ≤ ε, (9)

where ε is a tunable threshold. The decision of which

candidate will be retained in the list of potential users

depends on the choice of ε, which we have kept as 20. In

the context of this paper, we refer to this filtering step that

utilizes color information as “semantic-aided filtering”. To

identify the transmitter’s mask in the subsequent sample, we

select the mask of the vehicle with the shortest distance to

the transmitter’s mask in the previous frame as the nearest

neighbor. Consequently, this selected mask is designated
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as the transmitter’s mask in the subsequent frame. By

incorporating color similarity as a refining criterion in the

object association process, we enhance the accuracy of the

tracking algorithm.

It is important to note that the proposed transmitter

identification and object association-based tracking are not

fully effective in all conditions, particularly when the

transmitter vehicle is occluded. In cases of vehicle overlap,

stage 1 of environment semantics extraction remains largely

unaffected, as YOLOv7 is robust to partial occlusion

and can provide bounding boxes and masks unless the

vehicle is heavily occluded. Occlusion poses a greater

challenge during transmitter identification and tracking. If

the occluding vehicle is closer to the predicted coordinates,

the transmitter may be incorrectly identified. This issue is

mitigated when the transmitter and occluding vehicles are

traveling in the same lane and direction, as a misidentified

transmitter may still result in a sub-optimal beam for the

transmitter vehicle with a reasonable rate. Semantic-aided

filtering further mitigates incorrect transmitter identification

in association based tracking by filtering out vehicles whose

color does not match the initially identified transmitter. The

rate performance together with the advantages and limitations

of semantic-aided filtering are discussed in Section VI. In

our future work, we can focus on utilizing multiple camera

views to improve robustness against occlusion by providing

additional perspectives of the transmitter vehicle, which will

help in accurately identifying and tracking the transmitter

even in challenging conditions.

C. STAGE 3: BEAM PREDICTION

This section introduces the final step of our proposed

solution, which aims to predict the optimal beam index

for the transmitter. The goal is to use the sequence of

bounding-box coordinates or image masks obtained from

the previous object association-based tracking to make this

prediction. However, since we are interested in predicting

the current optimal beam index rather than future ones,

it may be sufficient to use the available semantics for

the current time step only. In order to address this, we

propose two approaches: (i) Single instance-based beam

prediction and (ii) Sequence-based beam prediction. In the

single instance-based approach, we use the bounding box

or mask at the current time step t to predict the optimal

beams. For the sequence-based approach, we utilize the

sequence of r available environment semantics to make

the prediction. Next, we present both of these proposed

solutions.

1) SINGLE INSTANCE-BASED BEAM PREDICTION

Due to the distinct nature of the environment semantics

(bounding box and image mask), each requires a specific

approach for predicting the optimal beam index. We present

both solutions, highlighting their effectiveness in utilizing

the corresponding environment semantic for accurate beam

prediction.

1) Bounding Box-based Beam Prediction: This baseline

model takes the user’s bounding box at the current

time instant t as input and predicts the corresponding

beam index. Mathematically, we can express this as

ω : xbbox[t] → f̂[t], (10)

where ω represents the mapping function and

xbbox[t] ∈ R
2×1 represents the center coordinate of

the transmitter vehicle’s bounding box at time t. This

mapping function takes the form of a two-layered

fully connected neural network with 512 neurons in

each layer as our baseline model. Fully connected

neural networks (FCNNs) excel at handling structured

data by leveraging the network weights to capture

the relationships among input elements. Additionally,

FCNNs establish dense connections between adjacent

layers, enabling them to learn intricate associations

between input elements.

2) Mask-based Beam Prediction: In this step, similar

to bounding box-based beam prediction, we utilize

another mapping function that takes the transmitter

vehicle’s mask at the current time instant t as input

and predicts the corresponding beam index as follows

³ : xmask[t] → f̂[t], (11)

where ³ represents the mapping function for this

task and xmask[t] ∈ R
Ŵ×Ĥ represents the transmitter

vehicle’s mask at time t. We note that convolutional

neural networks (CNNs) have demonstrated superior

performance and robustness in leveraging spatial rela-

tionships among neighboring pixels in image data.

Therefore, the mapping function ³ for this baseline

model of mask-based beam prediction takes the form

of a simple CNN model, similar to LeNet [35],

consisting of two convolutional layers followed by five

fully connected layers.

2) SEQUENCE-BASED BEAM PREDICTION

We use a recurrent neural network (RNN) [36], [37] which

processes a sequence of semantic representations of the

transmitter and predicts the optimal beam index. We chose

the RNN architecture for two reasons. First, RNNs have

achieved good accuracy in various sequential modeling tasks,

such as natural language processing and speech recognition,

due to their ability to extract crucial information from

previous sensory data. This allows the model to capture

the temporal dependencies and patterns in the semantic

information, enabling accurate beam prediction. Second,

as compared to other neural network architectures like

Transformers [38], RNNs offer advantages in terms of

computational complexity and inference time. In this section,

we present the two different solutions developed to target

the different semantic modalities.

1) Bounding Box-based Beam Prediction: We utilize a

mapping function that takes a sequence of the trans-

mitter vehicle’s bounding boxes over r consecutive
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FIGURE 6. The proposed RNN models for beam prediction. The first RNN model, shown in (a), takes the bounding boxes of the transmitter as input. Each unit consists of an

LSTM block and a classifier block. The RNN model shown in (b) takes masks of the transmitter as input. Each unit consists of an embedding block, an LSTM block, and a

classifier block.

time stamps and predicts the corresponding beam index

at the last time step. Mathematically, we can express

this as

´ : {xbbox[t]}t=Ä
t=Ä−r+1 → f̂[Ä ]}, (12)

where ´ represents the mapping function for bounding

box sequence-based beam prediction. The mapping

function ´ takes the shape of a RNN model. In

Fig. 6(a), we present the block diagram of the

proposed RNN model for beam prediction using

bounding boxes as inputs. This model comprises r

repeated blocks, each consisting of a single layer Long

Short-Term Memory (LSTM) unit. LSTM is a type of

RNN specifically developed to address the challenge

of learning long-term dependencies in sequence data.

By incorporating gates and memory cells, LSTMs

effectively manage information flow over time steps

and mitigate the vanishing gradient issue encountered

in conventional RNNs. The center coordinates of the

bounding box vector, xbbox[t] ∈ R
2×1, are directly fed

as input into the LSTM block. Following the LSTM

unit, a fully connected layer acts as the classifier. The

output of the classifier block is a score vector ξ =

[ξ1, ξ2, . . . , ξM]. At the output of this fully connected

layer, we utilize the cross-entropy activation function.

The mth element of the score vector corresponds to

the mth beam in the codebook. The beam index with

the highest score is the predicted beam.

2) Mask-based Beam Prediction: Similar to bounding box

sequence based-beam prediction, we utilize a mapping

function that takes a sequence of the transmitter vehicle

masks over r consecutive time stamps and predicts the

beam index at the last time step. We can formally

express this as

ψ : {xmask[t]}t=Ä
t=Ä−r+1 → f̂[Ä ]}, (13)

where ψ represents the mapping function for this task.

This mapping function again takes the shape of a RNN

as shown in Fig. 6(b). This model also consists of

r repeated blocks, each comprising an LSTM unit.

Due to the structural differences between masks and

bounding boxes in terms of semantic representation, an

additional embedding block is included in this model.

The embedding block transforms the high-dimensional

semantic mask xmask[t] into a low-dimensional vector

x[t] ∈ R
ν×1, where ν denotes the input state size of the

LSTM, reducing the trainable parameters of the model.

The input state size of the LSTM unit is ν = 64. The

embedding block utilizes a simple CNN model, similar

to LeNet [35], consisting of two convolutional layers

and three fully connected layers. The output from the

final layer in the embedding block is used as input to

the LSTM unit. The remaining components, including

the LSTM block and the classifier block with the cross-

entropy activation function, are kept same as that in

the bounding box-based model.

In conclusion, we propose two different models designed

to effectively capture the relevant information from the

semantic representations and predict the optimal beams

accurately.

D. BASELINE SOLUTIONS

In order to evaluate the accuracy of our proposed transmitter

identification solution and the subsequent object associa-

tion step, it is important to have ground-truth bounding

box center coordinates of the transmitter in cases where

there are multiple mobile vehicles as potential candidates

for the transmitter. We shall refer to these instances as

multi-candidate scenarios. Unfortunately, we do not have

access to ground-truth bounding box coordinates of the

transmitter vehicle. In Section IV-B1, we addressed this

limitation by manually selecting the samples that contain
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only the transmitter vehicle. These selected samples are

then processed using the YOLOv7 deep learning model, and

the resulting bounding boxes are manually validated. These

bounding boxes generated by YOLOv7 are subsequently

used as the ground-truth bounding boxes for training the

transmitter identification model. However, these bounding

boxes are only available for cases where only the transmitter

vehicle is present in the image, not for multi-candidate

scenarios. We note that the dataset used in this study provides

highly accurate position data of the transmitter. This position

data offers reliable and granular information about the trans-

mitter’s location, enabling the model to make more precise

predictions. Therefore, to test the accuracy of the proposed

transmitter identification solution and the subsequent object

association step, we utilize a position-aided transmitter

identification approach. In this approach, a machine-learning

model predicts the center coordinates of the transmitter’s

bounding box based on its GPS position. The network

architecture for this position-aided identification is identical

to the receive power vector-aided model. Both consist of a

two-layered fully connected neural network with 512 neurons

in each layer. However, unlike the receive power-aided

transmitter identification solution, which involved identifying

the transmitter only at the initial time step and subsequently

tracking it across the subsequent frames, position-aided

transmitter identification performs transmitter identification

at every time step of the sequence. The results obtained

from the position-aided transmitter identification will serve

as a baseline for evaluating the performance of (i) the

proposed transmitter identification model using the metric

of comparative accuracy and (ii) the subsequent object

association-based transmitter tracking using the metric of

association accuracy. Both these metrics are defined in detail

in Section VI.

E. SCALABILITY AND COMPUTATIONAL EFFICIENCY

The effectiveness of our sequence-based beam prediction

solution depends on both its accuracy and its ability to man-

age distributed nodes efficiently while meeting the real-time

latency requirements of V2I communication. As presented in

Section V, our current testbed implementation demonstrates

this capability in a controlled, asynchronous environment.

Each distributed node in the testbed is equipped with a

camera and GPS receiver, capturing visual data and precise

timing information asynchronously. Data synchronization

is achieved through post-processing, where we align data

from different nodes and the basestation. This asynchronous

approach allows us to utilize data from only one distributed

node at a time, based on the user’s location, effectively

managing the current scale of our system without real-

time constraints. However, real-world deployment scenarios

present additional considerations beyond our current asyn-

chronous testbed. These include managing real-time data

from multiple nodes simultaneously and handling potential

overlapping sensor coverages. The complexity increases in

multi-transmitter scenarios, where real-time decision-making

becomes crucial. While our current asynchronous approach

effectively manages some of these aspects through post-

processing, real-world deployments may require further

adaptations to address these challenges. The exploration of

these real-time adaptations and scaling strategies will be the

focus of our future work.

Computational Complexity Analysis: Next, we analyze

the computational complexities of each step in our proposed

solution based on our current post-processing implemen-

tation. This analysis provides insights into the system’s

performance and its potential for future real-time operation

in more complex environments. In our current asynchronous

testbed, all processing occurs offline after data collection.

The environment semantic extraction step, performed during

post-processing to simulate distributed node computations,

uses the YOLOv7 model and requires approximately 29.5 ms

per frame when run on an Nvidia T4 GPU. The beam

prediction step, simulating basestation processing, uses our

proposed machine learning models and takes about 1-2 ms

per prediction when executed on an Nvidia RTX A5000

GPU during post-processing. Data transmission time is not

explicitly measured in our current setup, as data from

distributed nodes is collected and processed offline. However,

this aspect will be crucial for real-time implementations and

is a key area for future investigation and optimization. The

sub-region selection process, based on the user’s location, has

a complexity of O(k) for k sub-regions, with its latency being

negligible compared to other steps in our post-processing

pipeline. While these measurements are obtained during

post-processing and don’t reflect real-time performance, they

suggest that our proposed solution has the potential to meet

real-time requirements in future implementations. However,

they also highlight areas where further optimization may be

necessary for real-time deployment, particularly in managing

simultaneous data from multiple nodes and handling real-

time decision-making in multi-transmitter scenarios.

Storage and Transmission Efficiency: We now discuss

how utilizing environment semantics lowers the storage and

transmission requirements. Four integer values can represent

the bounding box of a vehicle. A high-definition RGB

image captured at the distributed node is approximately

5.93 MB in size. If there are four vehicles in the image,

the bounding boxes of these vehicles can be represented

by 16 integer values, occupying just 64 bytes of storage.

This is about five orders of magnitude smaller than the

storage and transmission requirements of the full RGB

image. The storage and transmission requirements of the

masks would depend on the camera angle. Fig. 4 shows a

mask of the image captured at unit 3. The image contains

four vehicles. This mask can be efficiently stored and

transmitted by encoding only the mask pixel values and the

vehicles’ bounding boxes. This approach reduces storage and

transmission requirements by approximately three orders of

magnitude compared to transmitting the entire RGB image.

Overlapping Sensor Coverage: We now present strate-

gies to manage sensor coverage overlap at distributed nodes,
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TABLE 1. Complexity analysis: Time taken (ms).

which can cause variations in optimal beam prediction due

to differences in the semantic information provided by each

node. Recall that in the current setup, we have the optimal

beam index information at the first time stamp and predict

the beam at the rth timestamp, where r is the length of the

observation window. Further recall that the region served by

the basestation is divided into sub-regions. Using the optimal

beam index at the first timestamp, we select the sub-region

and the corresponding distributed node whose semantic data

is used for beam prediction at the rth timestamp. The current

setup has minimal overlap between the sub-regions covered

by the distributed nodes and their camera fields of view

such that, at a given time instant, only semantic data from

a single distributed node is utilized for beam prediction at

the basestation. However, we expect that when systems try

to densify the sensor network, then increasing the number

of nodes could lead to more overlaps. This can result in

variations in beam predictions due to the different semantic

information provided by each node. Addressing this issue

remains an open problem and warrants further investigation.

In the next paragraph, we briefly discuss some directions for

potential solutions.

An initial solution for the problem discussed above may

involve training the node-specific beam prediction models

with additional data samples from their respective coverage

areas, particularly in the overlapping regions. By including

sufficient training samples from these overlapping areas,

along with their associated ground truth beam indices,

each model will learn to make consistent beam predictions

regardless of which node’s perspective is used. An alternative

future approach to address the variations in beam predictions,

due to the differing semantic information from each node,

could be to transition from individual models to a unified

machine learning model that performs sensor fusion across

all distributed nodes. The key idea is to incorporate learnable

parameters in the neural network architecture to learn optimal

weights for combining features from different distributed

nodes based on the user’s location (identified from the first

beam). One promising way to achieve that is through an

attention layer, where the network would learn to generate

attention weights for each distributed node’s features based

on the user’s location. For instance, if the user is in a

region covered by both node 1 and node 2, the attention

mechanism would learn to assign appropriate weights to

features from both nodes for beam prediction. These weights,

learned during training, would help the model determine how

to best combine features from multiple nodes in overlapping

regions, while naturally focusing on a single node’s features

in non-overlapping regions. This structured approach to

learning feature combination weights enables sophisticated

feature fusion, potentially leading to more accurate beam

predictions in complex scenarios with multiple overlapping

node coverage.

Latency Mitigation Strategies: Finally, we discuss

the strategies to mitigate the latency challenges in the

proposed solution. The time taken for extracting environment

semantics can be significantly reduced by using more

computationally efficient models such as MobileNetv2 [22],

which utilizes about 3.5 million parameters compared to

YOLOv7’s 37.5 million parameters. Note that the time

taken for transmitting environment semantics will depend

on the type of environment semantic information being

transmitted, with bounding boxes requiring less time than

masks. At the basestation, beam prediction takes about

1-2 ms, which is relatively low. It is important to highlight

here that our solution can also be extended to predict future

beams, enhancing the proactive nature of the system. By

adopting a proactive approach and predicting future beams,

we can effectively overcome the latency issue, ensuring

timely and accurate beam prediction in distributed sensing-

based mmWave communication systems.

V. TESTBED DESCRIPTION AND AI-READY DATASET

To assess the effectiveness of our proposed distributed

sensing-aided beam prediction solution, we employ the

DeepSense 6G dataset [28]. DeepSense 6G is a com-

prehensive real-world dataset specifically designed for

sensing-aided wireless communication applications. It

encompasses diverse multi-modal data, including vision,

mmWave wireless communication, GPS, LiDAR, and radar.

In this section, we provide an overview of scenario

41 adopted from the DeepSense 6G dataset and subse-

quently analyze the AI-ready dataset used to evaluate the

performance of our proposed solution.

A. DEEPSENSE 6G TESTBED

The study adopts scenario 41 of the DeepSense 6G dataset

specifically designed to study distributed sensing-aided com-

munication in a multi-user scenario. The hardware testbed

and the locations for collecting this data are shown in

Fig. 7. The DeepSense testbed 7 is utilized for this data

collection. It consists of (i) three stationary units, one acting

as the basestation and the other two acting as the distributed

nodes, and (ii) a mobile transmitter. All the stationary units,

namely the basestation (unit 1), the first distributed node

(unit 2), and the second distributed node (unit 3), are

equipped with an RGB camera. The distributed units are also

equipped with a GPS receiver. The basestation further adopts

three 16-element (M=16) 60 GHz-band phased arrays, and

it receives the transmitted signal using an over-sampled
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FIGURE 7. The testbed setup for the DeepSense 6G AI-ready dataset used in our experiments. It consists of a stationary unit (unit 1), acting as the basestation, a mobile unit

(unit 4), acting as the transmitter, and two distributed nodes (unit 2 and unit 3).

codebook of 64 pre-defined beams (Q = 64). The mobile

unit (unit 4) is a vehicle equipped with a mmWave transmitter

and GPS antenna/receiver. The transmitter consists of a

quasi-omni antenna constantly transmitting (omnidirectional)

at the 60 GHz band.

It is crucial to note that this setup reflects our data

collection process, not a real-time system implementation.

Our current testbed implementation uses an asynchronous

data collection approach in which all data processing occurs

after data collection. Each distributed node and the base

station are equipped with a camera and a GPS receiver. At

each node, cameras capture images at 60 frames per second,

while the GPS receiver operates at 10 samples per second.

Additionally, at the base station, receive power measurements

are recorded at 10 Hz. During data collection, each sample

from every modality (images, GPS data, and receive power

measurements) is recorded with its corresponding UTC

timestamp. We align the sensor data collected at different

time instances and sampling rates to create a uniform set

of samples at a single sampling rate of 10 Hz. The GPS

receiver serves as the reference modality, with data from

other sensors aligned by selecting the nearest sample to each

GPS timestamp. The maximum synchronization error for

each modality (except the GPS) is given by 1
2Fs

, where Fs

represents the sampling frequency of the modality. For more

information regarding the data collection setup, testbed, and

synchronization method, please refer to [28].

B. DEEPSENSE 6G AI-READY DATASET

The evaluation of the proposed distributed sensing-aided

beam prediction solution necessitates real-world data

obtained from a wireless environment. As such, we utilize

scenario 41 of the DeepSense 6G dataset. This dataset is

collected at McAllister Ave., Tempe, during the daytime.

The speed limit on the road where this testbed was deployed

was about 48.3 km/h. Images at the distributed nodes are

available at a frequency of 10 Hz, meaning one image is

available for every 100 ms. The time duration between

timestamp Ä and Ä − 1 is therefore 100 ms. Throughout

the data collection process, the road was actively utilized

by other vehicles, pedestrians, and cyclists. The raw dataset

includes RGB images from both the basestation (unit 1) and

the distributed nodes (unit 2 and unit 3), receive power

vectors from the three ULAs, and the user’s GPS position.

Fig. 8 shows the sample dataset images from each unit.

We process the RGB images from unit 2 and unit 3 using

a sliding window of size r = 5, generating time-series

sequences of RGB images for each unit. The AI-ready

dataset comprises these processed RGB image sequences,

along with the receive power at the initial time step,

p[Ä − r + 1], and the optimal beam index f� at the last

time step of each sequence. Furthermore, it also incorporates

the transmitter’s GPS position at every time instant. Only

the sequences where the transmitter car is present in the

camera’s field of view are retained in the AI-ready dataset.

There are 2991 and 5476 image sequences for unit 2 and

unit 3, respectively, which are further split into training,

validation, and testing categories with a ratio of 70:20:10.

Our previous works [10], [11], [22] have indicated that the

accuracy of vision-based beam prediction solutions using

RGB images captured at night can approach that achieved

with daytime images, with some additional processing of
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FIGURE 8. The RGB image samples captured at the basestation (unit 1) and the

distributed nodes (units 2 and 3), illustrating both single-candidate and

multi-candidate scenarios.

the nighttime data. Therefore, we anticipate that the beam

prediction accuracy for images from scenario 41 will not

significantly degrade under night conditions. In future work,

we are considering collecting a similar dataset for night-

time scenarios and using it to validate this study’s findings

further.

For the transmitter identification models, we construct

separate datasets for each node. The training dataset for

the position-aided transmitter identification models consists

of pairs of GPS positions and the corresponding center

coordinates of the transmitter’s bounding box. Similarly,

the training dataset for the receive power-aided transmitter

identification models includes pairs of receive power vectors

and their corresponding bounding box center coordinates. It

is important to note there that we do not have access to

ground-truth bounding box coordinates for the transmitter

vehicle. To address this issue, we manually select samples

that contained only the transmitting vehicle. These samples

are then processed using the YOLOv7 deep learning model,

and the resulting bounding boxes were manually reviewed

for accuracy. The bounding boxes generated by YOLOv7

for images containing only the transmitter vehicle are

subsequently used as the dataset for training the transmitter

identification models. We have 343 and 1124 such samples

for unit 2 and unit 3, respectively.

VI. PERFORMANCE EVALUATION

This section focuses on evaluating the performance of the

proposed distributed sensing-aided beam prediction solu-

tion. In Section VI-A, we provide a description of the

experimental setup utilized in this work. We then analyze

the results of the proposed solution in Section VI-B.

A. EXPERIMENTAL SETUP

We first outline the neural network training parameters of

the machine learning models adopted in this work. Next, we

discuss the evaluation metrics which we utilize to assess the

performance of different stages of the proposed solution.

Network Training: As described in Section IV, the

proposed distributed sensing-aided beam prediction solution

consists of three steps: 1) environment semantics extraction

2) transmitter identification and tracking and 3) beam

prediction. In the transmitter identification and tracking

stage, we use a two-layered fully connected neural network

with 512 neurons in each layer to predict the center

coordinates of the transmitter’s bounding box within the

image. For the beam prediction stage, we employ distinct

LSTM models for bounding box-based beam prediction and

mask-based beam prediction, as elaborated in Section IV-C.

In the case of bounding-box based beam prediction, we

employ a baseline model consisting of a two-layered FCNN

with 512 neurons in each layer. For mask-based beam

prediction, we evaluate the LSTM model for it against the

LeNet CNN model. In the beam prediction classification

task, the LSTM models and their respective baselines are

trained using cross entropy loss. On the other hand, the

receive power-aided transmitter identification FCNN and

its corresponding baseline FCNN are trained using mean

squared error loss. In the transmitter identification regression

task, both the FCNNs, one taking receive power vector as

input and the other taking position as input, are trained using

mean squared error loss. We use Adam optimizer to train

all the aforementioned models. The detailed hyperparameters

used to fine-tune each model are presented in Table 2.

Evaluation Metrics: The evaluation metric used to assess

the proposed beam prediction solution is the top-k accuracy,

which measures the percentage of test samples where the

ground-truth beam falls within the top-k predicted beams. In

this work, we present the top-1, top-2 and top-3 accuracies

to evaluate the performance of the beam prediction stage.

We further assess the performance of the proposed solution

using the metric of achievable rate R defined as

R = log2(1 + SNR). (14)

We use the evaluation metric of comparative accuracy to

assess the proposed transmitter identification solution. We

define comparative accuracy as the percentage of samples

in which the transmitter identified by the receive power-

aided FCNN matches the one predicted by the position-aided

FCNN. Whereas comparative accuracy is used to evaluate

the performance of the proposed transmitter identification

solution, the metric of association accuracy is used to evalu-

ate the performance of tracking transmitter across subsequent

frames after initial identification. Once the transmitter is

identified in the first frame, the association accuracy for each

following frame represents the percentage of samples where
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TABLE 2. Beam prediction: Design and training hyper-parameters.

the transmitter identified by object association-based tracking

(detailed in Section IV-B) matches the transmitter identified

by the position-aided FCNN. Note that association accuracy

varies across frames and assumes that the transmitter was

correctly identified in the first frame, where both the

receive power-based and position-based FCNNs identify the

same object as the transmitter. For example, an association

accuracy of 97% at the second frame indicates that, after

the initial identification, the transmitter predicted by object

association-based tracking aligns with the position-aided

FCNN prediction 97% of the times in the second frame.

In computing association accuracy, it is important to note

that we do not include the sequences where the difference

between the predicted center coordinates by the position-

aided FCNN and the center coordinate of the closest

bounding box in XBBox and XB-Mask exceeds a specified

threshold.

B. NUMERICAL RESULTS

This section presents a detailed evaluation of the results from

the proposed solution.

How accurately can the proposed transmitter iden-

tification and tracking solution identify and track the

transmitter?

The proposed transmitter identification solution involves

using a neural network to predict the center coordinates of

the transmitter in the first sample in the sequence using the

optimal receive power vector at that time instant. The bound-

ing box and the mask closest to the predicted coordinates is

identified as that of the transmitter. The proposed transmitter

identification model achieves a comparative accuracy of 82%

and 92.42% for unit 2 and 3, respectively. Fig. 9 shows how

the association accuracy varies against the sequence length

with and without semantic-aided filtering for both unit 2 and

unit 3. We observe that the association accuracy for unit 3

decreases only marginally as the sequence length increases

and remains above 99% for the whole length of the sequence.

However, the association accuracy for unit 2 decreases as

the sequence length increases. This may be attributed to

the different environmental conditions that the cameras of

each unit face. These environmental conditions can include

anything from lighting conditions to traffic stoppages.

The semantic-aided filtering method aims to enhance

association accuracy by utilizing the physical appearance of

vehicles across frames. This approach offers advantages such

FIGURE 9. The variation of the association accuracy with sequence length for both

units 2 and 3 with and without semantic-aided filtering. We observe that

semantic-aided filtering has contrasting effects on the association accuracy from both

units 2 and 3 across all sequence lengths. Semantic-aided filtering increases the

association accuracy for unit 2 while decreasing it for unit 3.

as improved accuracy in scenarios with partial occlusion

of the transmitter vehicle. It further has the potential for

enhanced performance when incorporating additional seman-

tic information like vehicle type or color. However, it also has

several limitations. The method is sensitive to environmental

factors such as lighting conditions and camera angles, which

can affect the perceived appearance of vehicles. Maintaining

consistent performance across varying conditions is chal-

lenging due to the reliance on appearance-based features.

Additionally, determining an optimal threshold (ε) that works

effectively across different scenarios presents difficulties.

The efficacy of semantic-aided filtering is contingent on the

quality and consistency of the visual data obtained. While it

can significantly improve accuracy in favorable conditions,

particularly in complex scenarios involving multiple vehicles,

its performance may degrade in challenging environmental

conditions or when visual distinctions between vehicles are

minimal. These factors highlight the trade-offs involved in

implementing semantic-aided filtering for vehicle association

in diverse real-world environments.

Can the environment semantics extracted from dis-

tributed nodes be used for beam prediction at the

basestation?
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FIGURE 10. Beam prediction accuracies of the proposed LSTM models for both

units 2 and 3. Overall, the LSTM models, which consider a sequence of environment

semantic information as input, achieve better beam prediction accuracy than the

solutions that only use the last sample’s semantic information as input.

Fig. 10(a) and 10(b) show the top-1, top-2, and top-

3 beam prediction accuracies obtained for units 2 and 3

respectively. We observe that for both units 2 and 3, the

LSTM model that takes bounding boxes as input achieves

better top-1, top-2, and top-3 beam prediction accuracies

than the corresponding FCNN model. On the other hand,

the LSTM model that takes masks as input achieves better

top-2 and top-3 accuracies for unit 2 and top-1, top-2, and

top-3 accuracies for unit 3 compared to the corresponding

LeNet model. The top-1 accuracy obtained by the mask-

based LSTM model of unit 2 is only marginally less than

that obtained by the corresponding LeNet model. We further

note that the top-3 accuracy obtained from both the bounding

box-based and mask-based LSTM models is more than 75%

for both units 2 and 3. This means that using either of the

proposed LSTM beam prediction model, the basestation can

find the optimal beam in over 75% of instances for both units

2 and 3, thereby significantly reducing the beam training

overhead to just three in the case of exhaustive search.

Fig. 11(a) and 11(b) show the achievable rate performance

for units 2 and 3. The results show that LSTM models

generally achieve higher rates compared to single instance

models. An exception is the mask-based LSTM for unit 2,

where the rate is only marginally less than the corresponding

LeNet model. Additionally, we observe that unit 3 exhibits

more outliers in achievable rate performance compared to

unit 2 across all machine learning models. However, the

FIGURE 11. Achievable rate obtained by the proposed LSTM models for units 2 and

3. Overall, the LSTM models, which process a sequence of environment semantic

information as input, outperform solutions that rely solely on the semantic information

from the most recent sample in terms of achievable rate.

median rates for unit 3 are consistently higher than those

for unit 2 across all models. The interquartile range of

achievable rates for unit 3 is also smaller than that for

unit 2 across all models. This difference can be attributed

to the disparity in the number of training sequences, with

unit 2 having significantly fewer training sequences than

unit 3. The improved accuracies and rates obtained using

LSTM models can be attributed to their ability to capture

better the temporal dependencies in the semantic information,

enabling more accurate beam prediction. We observe that the

bounding box-based LSTM model performs better for unit 3,

while the mask-based LSTM model performs better for unit 2

in terms of beam prediction accuracy and achievable rate.

This suggests that specific semantic representations may be

more effective in certain regions than in others. For instance,

masks can capture the user’s shape and orientation, which

may be more beneficial for beam prediction in certain regions

than in others.

Fig. 12(a) and 12(b) show the confusion matrix plots

for unit 2, utilizing masks and bounding boxes as input,

respectively. We note that for unit 2, the mask-based LSTM

model gives more correct predictions than the bounding box-

based LSTM model. Fig. 12(c) and 12(d) show the confusion

matrix plots for unit 3 utilizing masks and bounding boxes as

input, respectively. We observe that for unit 3, the bounding

box-based LSTM model gives more correct predictions

than the mask-based LSTM model. We further note that

the confusion matrices of the mask-based LSTM model
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FIGURE 12. Fig. (a) and (b) present the confusion matrix plots for unit 2, showing the results obtained from the mask-based LSTM model and bounding box-based LSTM

model, respectively. On the other hand, Fig. (c) and (d) present the confusion matrix plots for unit 3, showing the results obtained from the mask-based LSTM model and

bounding box-based LSTM model, respectively. The mask-based LSTM model for unit 2 gives more correct predictions than the bounding box-based LSTM model. For unit 3,

however, the bounding box-based LSTM model gives more correct predictions than the mask-based LSTM model.

for unit 2 and the bounding box-based LSTM model for

unit 3 show a more pronounced concentration of elements

near the diagonal. The mask-based and bounding box-based

LSTM models demonstrate varying performance for units

2 and 3. This variation is influenced by factors such as

camera angle during image capture and the distance between

the transmitter and distributed node. Our analysis of the

impact of transmitter-node distance on beam prediction

accuracy shows that certain semantic representations are

more effective in specific regions than in others. It is also

important to note that unit 3 has a significantly larger number

of training sequences than unit 2, with each unit capturing

different conditions in the wireless environment.

Can the proposed sequence-based beam prediction

solution meet real-time latency requirements?

Table 1 shows the computational complexity, in terms

of time taken (milliseconds), of the deployed machine

learning models. The time taken to extract the semantic

information of BBox and mask from the image by using

YOLOv7 model is about 29.5 millisecond. The semantic

information is extracted and transmitted to the basestation

before the next image is taken. When the last image in

the sequence is captured, the semantic information from

previous images is assumed to have already been received

at the basestation. We assume that the communication from

the distributed node to the basestation is instantaneous. At

the basestation, transmitter identification step takes only

0.037 millisecond. An additional 1-2 ms is needed for

beam prediction at the basestation. The total time for

beam prediction using the mask-based LSTM model at

the basestation starting from the point of the last image

capture is around 31.5 ms, significantly less than the duration

of the timestamp, which is 100 ms. These measurements

suggest that our current implementation has the potential

to meet real-time requirements. We note that the mask-

based LSTM model does not take significantly more time

than the mask-based CNN model. Moreover, the bounding

box-based LSTM model actually takes less time than the

bounding box-based FCNN model. We selected an RNN

model for sequence-based beam prediction instead of other

neural network architectures such as Transformers because

FIGURE 13. Top-1 beam prediction accuracy of LSTM models versus distance from

the distributed node for units 2 and 3. We note that the mask-based LSTM model

achieves higher beam prediction accuracy for certain distances, while the bounding

box-based LSTM model performs better for other distances. This shows that certain

semantic representations may be more effective in certain regions than in others.

RNNs offer advantages in computational complexity. For

example, a Transformer model with the same hidden state

size, 8 attention heads, and 6 encoder layers, processing

the sequence of masks as input, would take about 3.43 ms

to predict the beam, which is more than twice the time

taken by the LSTM model. As such, the LSTM model, due

to its superior computational complexity, is better suited to

manage varying data rates and synchronization demands,

justifying its choice for sequence-based beam prediction. It is

important to note here that our solution can also be extended

to predict future beams, enhancing the proactive nature of

the system. By adopting a proactive approach and predicting

future beams, we can further overcome the latency issue,

ensuring timely and accurate beam prediction in distributed

sensing-based mmWave communication systems.

How does the distance between the transmitter and the

distributed node affect beam prediction accuracy?

Fig. 13 illustrates the top-1 beam prediction accuracies

plotted against the distance from the distributed node for both

units 2 and 3, comparing the performance of the bounding

box-based LSTM model and the mask-based LSTM model.

We observe that for unit 2, except for the 10-20 meter

distance range, the top-1 beam prediction accuracy from the

mask-based LSTM model decreases as distance increases.
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FIGURE 14. Histogram showing the number of sequences falling within various

distance ranges for the two distributed nodes. Unit 3 has significantly more

sequences compared to unit 2.

FIGURE 15. The mobile vehicle observed from the basestation at about 10 m from

the distributed node of Unit 2. Within the 10-20 m range, some trees partially obstruct

the LOS path between the basestation and the mobile vehicle, leading to a

degradation in beam prediction for Unit 2 in this range.

On the other hand, for unit 3, except for the 60-70 meter

distance range, the top-1 beam prediction accuracy from

the bounding box-based LSTM model decreases as distance

increases. We further note that the top-1 beam prediction

accuracies from the bounding box-based LSTM model of

unit 2 and the mask-based LSTM model of unit 3 fluctuate

across different distance ranges without showing a consistent

trend. Furthermore, it is only in the distance ranges of

10-20 meters and 60-70 meters that both the bounding box-

based and mask-based LSTM models of either distributed

node achieve significantly better beam prediction accuracy

over the other. These observations hold true even though a

considerably larger number of sequences are available for

unit 3 than for unit 2 across all distance ranges, as shown

in Fig. 14.

Environmental factors and vehicle dynamics influence the

observed accuracy variations. In the 10-20 meter range, both

LSTM models of unit 3 achieve better beam prediction

accuracy compared to unit 2. Fig. 15 reveals that within

this range, trees partially obstruct the line-of-sight path

between the base station and the mobile vehicle, leading

to degraded beam prediction for unit 2. Conversely, in

the 50-60 meter range, both LSTM models of unit 2

outperform those of unit 3. Fig. 16 shows the mobile vehicle

FIGURE 16. The mobile vehicle as observed from the distributed node of Unit 3. The

vehicle is approximately 65 meters away from the distributed node. Upon reaching this

distance, it stops at a stop sign and then accelerates. This acceleration makes it

challenging for the machine learning model to predict the beam at the 5th time stamp.

FIGURE 17. Variation of the top-1 beam prediction accuracies of the LSTM models

with the number of mobile objects present in the wireless environment for both units 2

and 3. We observe that the beam prediction accuracies remain stable and, in some

cases, even improve as the average number of objects in the wireless environment

increases.

at approximately 65 meters from unit 3’s distributed node.

In this scenario, the vehicle’s dynamics–stopping at a stop

sign and then accelerating–affect prediction accuracy. Beam

prediction at the 5th time instance is more accurate when

the vehicle maintains constant velocity or remains station-

ary, compared to periods of acceleration. The acceleration

observed in the 50-60 meter range from unit 3 contributes to

reduced prediction accuracy in this region. To address these

challenges, particularly in scenarios with variable vehicle

velocities, increasing the number of images in the sequence

or expanding the training dataset could potentially enhance

prediction accuracy.

How does the average number of objects of interest

present in the wireless environment affect beam

prediction accuracy?

Fig. 17 shows how the top-1 beam prediction accuracies

from the LSTM models vary with the average number

of objects of interest present in the wireless environment

for both units 2 and 3. The average is determined by

considering the total number of relevant objects across

the five image samples in the sequence. We note that

the beam prediction accuracies remain stable and even

increase in some instances as the average number of objects
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FIGURE 18. Number of image sequences versus the average number of objects of

interest present within those sequences. We observe that unit 3 has a considerably

larger number of sequences.

in the wireless environment increases. This underscores

the efficacy of the proposed transmitter identification and

tracking solution and demonstrates the overall effectiveness

of the proposed beam prediction solution in a multi-candidate

scenario. Fig. 18 depicts the relationship between the number

of image sequences and the average number of relevant

objects present within those sequences. However, we do not

see a proportional increase in beam prediction accuracies

for unit 3 compared to unit 2 across the average number of

objects categories. One might expect higher beam prediction

accuracies for unit 3 compared to unit 2 across various

categories of the average number of objects in the wireless

environment, as a larger number of sequences typically

results in better-trained beam prediction models.

However, it is important to recognize that beam prediction

accuracy is influenced by additional factors. These include

the camera angle at which the image is captured, the type of

environment semantic information transmitted to the bases-

tation, and the distance between the mobile vehicle and the

basestation. Our earlier investigation into how the distance

between the transmitter and the distributed node affects

beam prediction accuracy revealed that certain semantic

representations are more effective in specific regions than in

others. For instance, when the transmitter vehicle is located

50-60 meters from the distributed node and is correctly

identified in a multi-candidate scenario, unit 2 will achieve

higher beam prediction accuracy than unit 3, as shown in

Fig. 13. This is the case even though more data sequences

are available for unit 3 at this distance than for unit 2.

Consequently, we observe that unit 3 does not consistently

obtain better beam prediction accuracies than unit 2 across

various categories of the average number of objects in the

wireless environment.

VII. CONCLUSION

This paper presents a distributed sensing-aided beamforming

approach. The proposed solution involves deploying multiple

distributed nodes, which extract masks and bounding boxes

of potential users from raw RGB images. We effectively

reduce the storage and transmission requirements by trans-

mitting these semantics to the basestation instead of raw

RGB images. We also propose a transmitter identifica-

tion and tracking solution at the basestation, enabling the

proposed solution to operate in a multi-candidate setting.

Experimental results on the DeepSense 6G dataset demon-

strate the effectiveness of the proposed solution in identifying

and tracking the transmitter over multiple frames. The

results further show that the proposed solution can predict

the optimal beam effectively and demonstrates robustness

against both increasing distances from the distributed nodes

and a higher number of objects of interest present in the

wireless environment. These findings highlight the potential

of utilizing environment semantics to facilitate distributed

sensing-aided communication. In future work, we plan to

utilize sensors other than cameras at the distributed nodes and

transmit diverse semantic information to construct a digital

twin at the basestation. This digital twin can be utilized

to predict future beams, further enhancing the proactive

capabilities of the system. By predicting future beams, we

aim to address the latency challenges and ensure timely

and accurate beam prediction in distributed sensing-based

mmWave communication systems.

REFERENCES

[1] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep
learning coordinated beamforming for highly-mobile millimeter wave
systems,” IEEE Access, vol. 6, pp. 37328–37348, 2018.

[2] T. S. Rappaport et al., “Wireless communications and applica-
tions above 100 GHz: Opportunities and challenges for 6G and
beyond,” IEEE Access, vol. 7, pp. 78729–78757, 2019.

[3] Z. MacHardy, A. Khan, K. Obana, and S. Iwashina, “V2X access
technologies: Regulation, research, and remaining challenges,” IEEE
Commun. Surveys Tuts., vol. 20, no. 3, pp. 1858–1877, 3rd Quart.,
2018.

[4] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Multilevel millimeter wave beamforming for wireless
backhaul,” in Proc. IEEE GLOBECOM Workshops (GC Wkshps),
2011, pp. 253–257.

[5] A. Alkhateeb, O. El Ayach, G. Leus, and R. Heath, “Channel estima-
tion and hybrid precoding for millimeter wave cellular systems,” IEEE
J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.

[6] S. Jayaprakasam, X. Ma, J. W. Choi, and S. Kim, “Robust beam-
tracking for mmWave mobile communications,” IEEE Commun. Lett.,
vol. 21, no. 12, pp. 2654–2657, Dec. 2017.

[7] M. Saquib Khan, Q. Sultan, and Y. Soo Cho, “Position and machine
learning-aided beam prediction and selection technique in millimeter-
wave cellular system,” in Proc. Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), 2020, pp. 603–605.

[8] A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision
and research directions for 6G and beyond,” IEEE Commun. Mag.,
vol. 61, no. 11, pp. 128–134, Nov. 2023.

[9] J. Morais, A. Bchboodi, H. Pezeshki, and A. Alkhateeb, “Position-
aided beam prediction in the real world: How useful GPS
locations actually are?” in Proc. IEEE Int. Conf. Commun., 2023,
pp. 1824–1829.

[10] G. Charan, T. Osman, A. Hredzak, N. Thawdar, and A. Alkhateeb,
“Vision-position multi-modal beam prediction using real millimeter
wave datasets,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
2022, pp. 2727–2731.

[11] G. Charan, M. Alrabeiah, T. Osman, and A. Alkhateeb, “Camera
based mmWave beam prediction: Towards multi-candidate real-world
scenarios,” 2023, arXiv:2308.06868.

[12] S. Jiang, G. Charan, and A. Alkhateeb, “LiDAR aided future beam
prediction in real-world millimeter wave V2I communications,” IEEE
Wireless Commun. Lett., vol. 12, no. 2, pp. 212–216, Feb. 2023.

[13] U. Demirhan and A. Alkhateeb, “Radar aided 6G beam prediction:
Deep learning algorithms and real-world demonstration,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), 2022, pp. 2655–2660.

VOLUME 5, 2024 7785



IMRAN et al.: ENVIRONMENT SEMANTIC COMMUNICATION

[14] U. Demirhan and A. Alkhateeb, “Integrated sensing and communica-
tion for 6G: Ten key machine learning roles,” IEEE Commun. Mag.,
vol. 61, no. 5, pp. 113–119, May 2023.

[15] M. Lötscher, N. Baumann, E. Ghignone, A. Ronco, and M. Magno,
“Assessing the robustness of LiDAR, radar and depth cameras against
III-reflecting surfaces in autonomous vehicles: An experimental study,”
2023, arXiv:2309.10504.

[16] J. Park et al., “Communication-efficient and distributed learning over
wireless networks: Principles and applications,” Proc. IEEE, vol. 109,
no. 5, pp. 796–819, May 2021.

[17] W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and
M. Debbah, “Edge learning for B5G networks with distributed signal
processing: Semantic communication, edge computing, and wireless
sensing,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 1, pp. 9–39,
Jan. 2023.

[18] Y. Yang, F. Gao, X. Tao, G. Liu, and C. Pan, “Environment semantics
aided wireless communications: A case study of mmWave beam
prediction and blockage prediction,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 7, pp. 2025–2040, Jul. 2023.

[19] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” IEEE Trans. Signal Process.,
vol. 69, pp. 2663–2675, Apr. 2021.

[20] Z. Weng and Z. Qin, “Semantic communication systems for
speech transmission,” IEEE J. Sel. Areas Commun., vol. 39, no. 8,
pp. 2434–2444, Aug. 2021.

[21] Z. Qin, F. Gao, B. Lin, X. Tao, G. Liu, and C. Pan, “A generalized
semantic communication system: From sources to channels,” IEEE
Wireless Commun., vol. 30, no. 3, pp. 18–26, Jun. 2023.

[22] S. Imran, G. Charan, and A. Alkhateeb, “Environment seman-
tic aided communication: A real world demonstration for beam
prediction,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC
Workshops), 2023, pp. 48–53.

[23] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
2022, arXiv:2207.02696.

[24] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wire-
less communications: Motivation, opportunities, and challenges,” IEEE
Wireless Commun. Mag., vol. 58, no. 6, pp. 46–51, Jun. 2020.

[25] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communica-
tion networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3,
pp. 1935–1949, Mar. 2021.

[26] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen,
“In-edge AI: Intelligentizing mobile edge computing, caching and
communication by federated learning,” IEEE Netw., vol. 33, no. 5,
pp. 156–165, Sep./Oct. 2019.

[27] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand
accelerating deep neural network inference via edge computing,” IEEE
Trans. Wireless Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[28] A. Alkhateeb et al., “Deepsense 6G: A large-scale real-world multi-
modal sensing and communication dataset,” IEEE Commun. Mag.,
vol. 61, no. 9, pp. 122–128, Sep. 2023.

[29] S. Wu, C. Chakrabarti, and A. Alkhateeb, “Proactively predicting
dynamic 6G link blockages using LiDAR and in-band signa-
tures,” IEEE Open J. Commun. Soc., vol. 4, pp. 392–412, 2023.

[30] T.-Y. Lin et al., “Microsoft COCO: Common objects in con-
text,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[31] W. Min, M. Fan, X. Guo, and Q. Han, “A new approach to
track multiple vehicles with the combination of robust detection and
two classifiers,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1,
pp. 174–186, Jan. 2018.

[32] L. Zheng, M. Tang, Y. Chen, G. Zhu, J. Wang, and H. Lu, “Improving
multiple object tracking with single object tracking,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021,
pp. 2453–2462.

[33] Z. Weng, Y. Zhu, Z. Lin, and H. Li, “Real-time multiple object tracking
with discriminative features,” in Proc. 16th Int. Conf. Control, Autom.,
Robot. Vis. (ICARCV), 2020, pp. 309–314.

[34] G. Charan and A. Alkhateeb, “User identification: A key enabler
for multi-user vision-aided communications,” IEEE Open J. Commun.
Soc., vol. 5, pp. 472–488, 2024.

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffne, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[36] K. Cho et al., “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” 2014, arXiv:1406.1078.

[37] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space odyssey,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[38] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

SHOAIB IMRAN received the B.S. degree (with
Distinction) in electrical engineering from the
Lahore University of Management Sciences,
Lahore, Pakistan, in 2021. He is currently pursuing
the Ph.D. degree in electrical engineering with
Arizona State University, Tempe, AZ, USA. He
was included on the Dean’s Honor List with
LUMS from 2018 to 2021. From July 2021
to November 2022, he worked as a Machine
Learning Researcher with the Smart Data Systems
and Applications Laboratory, Lahore. His research

interests encompass wireless communications, wireless sensing, and
machine learning.

GOURANGA CHARAN received the B.Tech. degree
in instrumentation engineering from the Indian
Institute of Technology Kharagpur, India, in 2015,
the M.S. degree in electrical engineering from
Arizona State University, USA, in 2021, and
the Ph.D. degree in electrical engineering from
Arizona State University in 2024. From July 2015
to June 2017, he was an IC Design Engineer with
Broadcom Inc., Bengaluru, India. He is currently a
Postdoctoral Research Scholar with Arizona State
University, Tempe, AZ, USA. He has completed

three research internships with Nokia Bell Labs, Murray Hills, NJ, USA;
META (formerly Facebook), Redmond, WA, USA; and Apple, Seattle,
WA, USA. His current research interests include studying the different
applications of deep learning in computer vision, wireless communications,
and wireless sensing, with my primary focus on sensing-aided wireless
communication.

AHMED ALKHATEEB received the B.S. degree
(Distinction with Hons.) and the M.S. degree
in electrical engineering from Cairo University,
Egypt, in 2008 and 2012, respectively, and the
Ph.D. degree in electrical engineering from The
University of Texas at Austin, USA, in August
2016. From September 2016 to December 2017, he
was a Wireless Communications Researcher with
the Connectivity Lab, Facebook, Menlo Park, CA,
USA. He joined Arizona State University in Spring
2018, where he is currently an Associate Professor

with the School of Electrical, Computer and Energy Engineering. He has
held Research and Development Internships with FutureWei Technologies,
Chicago, IL, USA, and Samsung Research America, Dallas, TX, USA.
His research interests are in the broad areas of wireless communications,
communication theory, signal processing, machine learning, and applied
math. He is the recipient of the 2012 MCD Fellowship from The University
of Texas at Austin, the 2016 IEEE Signal Processing Society Young Author
Best Paper Award for his work on hybrid precoding and channel estimation
in millimeter wave communication systems, and the 2021 NSF CAREER
Award.

7786 VOLUME 5, 2024


