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Enabling ISAC 1n Real World: Beam-Based User
Identification with Machine Learning

Umut Demirhan and Ahmed Alkhateeb

Abstract—Leveraging perception from radar data can assist
multiple communication tasks, especially in highly-mobile and
large-scale MIMO systems. One particular challenge, however,
is how to distinguish the communication user (object) from the
other mobile objects in the sensing scene. This paper formulates
this user identification problem and develops two solutions, a
baseline model-based solution that maps the angle of the object
from the radar scene to communication beams and a scalable
deep learning solution that is agnostic to the number of candidate
objects. Using the DeepSense 6G dataset, which has real-world
measurements, the developed deep learning approach achieves
more than 89% communication user identification accuracy on
the test set, highlighting a promising path for enabling integrated
radar-communication applications in the real world.

I. INTRODUCTION

Employing large antenna arrays in millimeter wave
(mmWave) communication systems is essential to provide
sufficient beamforming gains and receive power. Minimizing
the beam training overhead, however, is a challenging task
especially in highly-mobile applications. Towards addressing
this challenge, integrated sensing and communications (ISAC)
can be a keystone, where wireless communications are aided
by radar sensing information. This information can be utilized
to build perception of the environment and the target objects
that affect the communication channels. One main challenge
in this framework, however, is that the objects determined
in both the sensing and communication domains need to be
matched to facilitate accurate sensing aid to communication in
scenarios with multiple mobile objects in the sensing scenes.
We term this problem user identification. In this paper, we
investigate how to solve the user identification problem in the
radar sensing scenes via the use of selected beam information
and evaluate the feasibility using a real-world demonstration.

Various types of sensing information, e.g., camera images
[1], and radar [2]-[5], have been considered for aiding com-
munication objectives. In [1], images captured by a camera
attached to the basestation are considered for the beam and
blockage prediction. Similarly, the measurements from an out-
of-band radar have been studied for beam prediction [2], [3]
and blockage prediction [4]. To realize radar-aided systems in
the real world, however, there are many major questions to be
answered. To this end, although [3], [4] included an evaluation
in a real-world setup, they were limited to the single-target
scenarios, and the user identification has not been considered.

In the joint sensing and communication (ISAC) literature,
particularly where sensing and communication antennas are
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co-located, prior work has explored user identification [5]-
[7]. These approaches typically rely on metrics like Euclidean
distance [5] and Kullback-Leibler divergence [7] applied to
radar-estimated locations with the initial location from the
communication-based identification, which necessitates esti-
mating these locations through communication links. In [6],
a distributed vehicular setup leverages GPS position knowl-
edge of communication users. However, this body of work
diverges significantly from our approach in several key aspects.
Specifically, it has not: (i) considered an off-the-shelf external
radar, which presents unique challenges and opportunities;
(ii) evaluated performance in a real-world system, limiting its
practical applicability; (iii) utilized machine learning, a crucial
component for future ISAC systems as highlighted in [8]; and
(iv) employed only the readily available communication beam
index for identification, simplifying deployment and reducing
complexity. Our work addresses these gaps, offering a novel
and practical approach for ISAC user identification.

Therefore, in this work, we address the user identification
problem in radar-aided communication systems employing
out-of-band frequency-modulated continuous wave (FMCW)
radars. Specifically, we leverage radar-generated measure-
ments of detected objects and the communication beam indices
selected to serve each user, without requiring feedback or
additional state estimation. To solve this problem, we develop
a robust and scalable deep neural network (DNN) solution.
Crucially, the developed model is agnostic to the number of
detected objects, enabling it to operate effectively regardless
of object density. For evaluation, we constructed a real-
world dataset as part of the DeepSense 6G framework [9]
and benchmarked our approach against baseline solutions.
Our evaluations demonstrate that the proposed DNN solution
achieves 89.3% accuracy on the test set, representing a gain of
over 15 — 25% compared to the baselines, and showcasing its
promising potential for real-world radar-aided communication
systems.

II. SYSTEM MODEL

For the system model, as illustrated in Fig. 1, we consider a
single mobile user served by a basestation, along with multiple
candidate targets. The mobile user carries a single antenna
mmWave receiver. Meanwhile, the basestation is equipped
with (i) a mmWave antenna array that is used to communicate
with the mobile user and (ii) an off-the-shelf FMCW radar that
is leveraged to aid the mmWave communication functions.

A. Communication Model

For communications, we consider a MISO channel with N
element antenna array at the basestation. For simplicity, in
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Fig. 1. The system model, where a radar-equipped mmWave basestation
communicates with a user, while radar data to aid the communications is
collected from all the available targets in the environment.

the following, we assume that the transmitter antennas form a
uniform linear array (ULA). Nevertheless, this assumption can
easily be relaxed to accommodate other antenna formation.
Adopting a geometric channel model with P paths, we can

write [3]
P
h= Z apa(by,), (1)
p=1

where o, and 60, denote the complex coefficient and azimuth
angles of the p-th path. The function a(f) is defined as the
array response vector of the basestation antenna array in the
direction of . At the downlink, the basestation applies a
beamforming vector f € C to the information s and transmits
this signal over the channel. Hence, the signal received by the
user can be written as

y= \/ﬁths—f—n, 2)

with p being the transmitter power gain of the basestation
and n ~ N(0,0?) being the additive white Gaussian noise.
The beamforming vector f is selected from a codebook F
of B beams. The b-th beamforming vector of the codebook
is denoted by f,. With this model, the index of the optimal
beam can be obtained by the beamforming gain maximization
problem given as

b* = argmax |h7f,|? 3)

be{l,...,B}

where the optimal solution can be obtained by an exhaustive
search over the beams of the codebook.

B. Radar Model

As described, our system model adopts an FMCW radar at
the basestation. This radar aims to provide measurements to
aid the communication system. Specifically, the radar transmits
a sequence of linear up-chirps, given as [10]

Ship(t) = sin(2m[fet + %), *

for t € [0,T.], and O otherwise. The chirp signal starts from
the frequency f. and goes up to f. + u7. with a constant
slope 1 = B/T, within the duration of the signal. B and T,
represent the bandwidth and duration of a chirp signal.

The transmission of a sequence of chirps comprises a radar
frame. Specifically, a sequence of M, chirps, with T}, waiting

time between two consecutive chirps, is transmitted in each
radar frame. With the transmission of a radar frame, the signal
is reflected from the objects in the environment and received
back at the receiver. The FMCW radar receiver mixes the
current transmit signal with the received signal. The resulting
signal is called an intermediate frequency (IF) signal. If there
is a single object in the environment at a distance d, the IF
signal from a single chirp can be written as

Shin (1) = VEE exp (327 |yt + for = E7A]) . )

where &, is the channel gain comprised of the gain due to
the reflection/scattering and path-loss. 7, = 2d/c represents
the round-trip delay of the reflected signal with ¢ being the
speed of light. The IF signal is sampled by an analog-to-
digital converter (ADC) at the sampling rate, fs, producing
M, samples per chirp per RF chain. Given the M, chirps per
frame and assuming a radar with M, receiver antennas (with
an RF chain for each antenna), a radar measurement produces
MM M, ADC samples. We denote the ADC samples of each
radar measurement (of a frame) by X" € CMaxMcxMs
Further, a classical object detection method (e.g., [10]) is
applied to the radar measurements, X", to detect the objects
as follows. (i) The range FFT, clutter cleaning, angle FFT, and
Doppler FFT are applied to obtain a radar cube. (ii) The CFAR
method detects the points with high power. (iii) These detected
points are clustered with DBSCAN to determine the groups
of detected points representing the candidate objects. (iv) The
range o, angle of, and Doppler velocity o}, of each cluster k
are estimated as the average of the cluster’s points. Thus, for
each object k, we have the properties oy = [0}, 0}, 0}]. After
this operation, we have K objects, which include the target.

III. PROBLEM DEFINITION: USER IDENTIFICATION WITH
BEAM INFORMATION

In this work, we aim to determine the communication target
within the radar measurement, which is an imperative task
for leveraging radar sensing in communication systems. An
important observation here is that this task requires a piece
of communication information for the mapping between the
radar and communication domains. For this purpose, we use
the optimal beam index of the communication target, which
may be obtained by initial access/channel estimation (mainly
at sub-6 GHz) or beam sweeping (at higher frequencies). Then,
given the beam index, we aim to find the communication user
within the radar targets.

To formalize the problem, we first denote the number of
samples by T and introduce the sub-index ¢ to our notation.
We then assume that there are K; candidate objects in the
radar measurement Xj, which includes the communication
target. Let us denote the index of this communication target
by ki € {1,...,K;}. Recall that for each sample ¢ €
{1,...,T}, we have the radar measurements of the objects,
O, = [041,...,04,k,], and the optimal beam index of the
communication target, b. Given this information, our purpose
is to determine the index of the communication target, kj.

Mathematically, let us assume that there exists a function
of parameters © that maps the radar measurement O and the
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optimal communication beam index by to the index ki of the
communication target among K, radar-detected objects, i.e.,

fe(Ou,b7) = k. (6)

Then, our aim becomes to approximate this function and
parameters with minimal error, which can be formulated as

T
A 1
5 = argmin — E L(f(O, b)), k5), @)
) %,@ Tt_l (f( t,b7) t)

for a given loss function £. With this objective in mind,
different approaches could be developed. For instance, a
machine learning model can be trained using (7) directly. As
an alternative, classical signal processing-based solutions may
be proposed via the design of a fixed fg function. In the
following section, we present our solutions.

IV. PROPOSED SOLUTIONS

For the user identification problem, we develop two ap-
proaches: (i) A model-based baseline solution that maps the
angle of the object in the radar to the angle of the communi-
cation beam, and (ii) a scalable machine learning solution that
is agnostic to the number of candidate objects.

Baseline Solution: A key observation on the communi-
cation beamforming with the directional beams (e.g., DFT
codebook) is that they point to the quantized angle of the
communication object. Considering a line-of-sight channel,
this information can be directly mapped to the radar angle. In
this mapping, however, the angular misalignment of the radar
and communication antennas may cause a significant error.
Thus, we design a radar-to-communication angle mapping
solution. In this solution, the angle corresponding to the
communication beam index is mapped to the radar angle of
the communication target, and the candidate object with the
closest angle is selected as the communication target.

To formalize, we denote ], = of, and 17, as the radar
and communication angles of the k-th ’candidate’object in sam-
ple t. We also denote the pointing angles of the communication
beams by ¢, Vb € {1,..., B}. With the proposed model and
notation, the communication angle of the target object 1y ke
will have the minimum difference from the communication
beam angle, as selecting this beam maximizes the received
SNR. Therefore, we take zbﬁk? ~ ¢p;. This approximation
particularly holds with a large number of narrow beams.

To convert the communication angles of the candidate
objects to the radar angles, we adopt a simple model based
on the angle offset (misalignment) between the radar and
communication antennas. If ¥y denotes this angle offset, the
transformation between the communication and radar angles
of an object can be written as

Vi = %o + i g, YR €{1,... K} (8)
To estimate the offset, ¢y, we utilize mean squared error
(MSE) over the data samples of the communication targets.
Finally, to determine the index of the communication target,
we select the candidate object that has the smallest distance
to the radar angle of the target object, i.e.,

k= argmin |(do + dp) — U 4l. ©9)
kef{l,... K.}
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Fig. 2. The proposed DNN solution. Along with the communication beam
index, the radar estimated state of each user is respectively fed to the DNN.
The resulting outputs are collected together to select the communication target.

We note that the approach developed in this section assumes
a line-of-sight channel and considers no other error than the
misalignment of the radar and communication antennas. This
approach could be expected to perform well in simulation-
based models. In real systems, however, various imperfections
(e.g., beam gain response of the actual hardware), in addition
to the potential angle detection errors of the radar targets, may
cause the approach to perform poorly. In the following, we aim
to develop a robust solution that can adapt to these errors.
Deep Learning Solution: As mentioned, different types
of imperfections, including object detection errors, may be
present in real-world systems. To develop a robust solution, in
this section, we propose a deep neural network model. This
way, the imperfections can be learned and accommodated by
the DNN models. Further, the additional information that has
not been utilized in the baseline, i.e., the range and Doppler
velocity of the objects, can be beneficial. Although the DNNs
adapt to the imperfections by taking advantage of the available
data, their design for this problem is not a straightforward task.
There are two important challenges with the design: (i)
The number of candidate objects, K, is a sample-dependent
parameter and can have various values at different instances.
For this, one can design a model taking a predetermined
maximum number of given objects as the input and append
zeros to have an input of the predetermined size. Such an ap-
proach, however, could be a burden on the model’s complexity.
(i) A desirable property of such a solution is permutation
invariance. A solution that takes the information of all objects
at once as an input may also utilize the ordering information
of the objects, which is not desirable. Although this may be
resolved by generating more samples by mixing the order of
the objects, it possibly requires significantly more training for
a large number of objects. Overcoming both challenges, we
propose our solution, where the radar information of each
candidate object and the optimal communication beam index
are respectively fed to the same neural network. This network
then returns the likelihood of the candidate object being
the communication target. These soft predictions (likelihood
ratios) are collected together for each candidate object, and the
object with the maximum probability is returned as the target.
In this solution, the neural network takes four values as the
input, i.e., the optimal beam index b}, and range, angle, and
Doppler velocity, oy, ;. As shown in Fig. 2, in the architecture,
we adopt a set of 7 layers with the given number of hidden
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Fig. 3. A sample from the dataset is shown with the corresponding camera image and range-Doppler map. In this sample, the beam with the index 28
corresponds to the optimal beam. The targets are determined using this visual, based on a sequence of samples by tracking through time.

nodes, resulting in a total of 32,801 parameters. The network
uses two parallel streams of three fully connected layers to ex-
tract features from radar data and beam indices. These features
are then combined in a fourth layer. Subsequent layers reduce
dimensionality for prediction. For the training of the model, we
. 1 T K *
use argming =z » ;¢ > _p—q £(90(0¢ .k, b}), ys,k) Where ge
represents the neural network function and constructs the func-
tion defined in (6) by fo(Oy,b}) = argmax, go(o¢k, b}).
The variable y; . is the indicator of the candidate object being
the communication target, ie., y,, = 1 if k = kf and O
otherwise. From the objective, it can be seen that different
candidate objects are treated as different samples. As the loss
function, we utilize the MSE loss function.

For the complexity of the model, we point out that it linearly
scales with the number of candidate objects, as each object is
processed as a separate input. Similarly, the proposed model
can be scaled to multiple users, where candidate objects and
each user’s beam information can be utilized as different
inputs, with the cost of linearly scaling the complexity with
the number of candidate objects. These issues, however, can
be partially mitigated through batch processing techniques.

V. DATASET

For a real-world evaluation of the proposed user identifica-
tion solutions, we built a dataset using a hardware testbed with
co-existing radar and wireless mmWave equipment, following
the DeepSense dataset structure [9]. Then, by processing the
collected measurements/raw dataset, we built our development
dataset for user identification in radar signatures. In this
section, we describe our testbed and development dataset.

Testbed: We adopt Testbed 5 of the DeepSense 6G dataset
[9] for the data collection, similar to [3], [4]. Testbed 5
comprises two units: (i) Unit 1, a fixed receiver acting as a
basestation, and (ii) Unit 2, a mobile transmitter representing
the target object. The rest of the details can be found in [3].
Differently from this work, the radar chirp parameters are
selected for long-range performance, providing a maximum
range of 249m and velocity of 82 km/h. The chirp frame covers
B = 310 MHz bandwidth with a slope of p = 10 MHz/us
over L = 250 chirps/frame and S = 512 samples/chirp.

Development Dataset: We construct Scenario 35 of the
DeepSense dataset [9]. In this scenario, a base station is placed
on the second floor of a parking structure, directed towards
a road with dense traffic. With this placement, we aimed to
create a challenging data collection scenario representative of
base station deployments. During the collection, a car with the
transmitter is driven through the road in both directions. The
received power via each beamforming vector and radar mea-
surements are saved continuously at the rate of 9 samples/s,
to be processed later. For the construction of the dataset, the
index of the beam providing the highest received power is
saved as the optimal beam index (b}).

During processing, we used the optimal beam’s power
to identify samples where the communication target was
within the scene and in line-of-sight, ensuring radar detectabil-
ity. Specifically, long sequences containing sufficient receive
power and a roughly linear optimal beam index pattern are
included in the dataset. This intermediate dataset without
labels contained 3045 samples. For the labels of the target
objects, we applied a classical object detection solution. We
then visually inspected the radar maps along with the RGB
images. Through the evaluation of the samples over time,
the objects that could be certainly identified as the target
objects are marked. The final dataset contained 2158 samples.
To prevent overfitting to specific trajectories, the 80/20%
training/test split was performed on unique passes of the com-
munication target through the radar’s field of view, rather than
on individual samples. There are 43 unique passes, leading to
34/9 passes and 1581/381 samples in the training/test sets.

Generalization: We highlight that both the baseline and
proposed DNN models are site- and equipment-specific, de-
pending on factors like antenna placement and alignment.
Therefore, accurately identifying the communication target’s
index is essential, particularly when deploying to new environ-
ments or with different equipment. While this work uses man-
ual radar data annotation for labeling, practical applications
require more scalable methods. One promising technique is to
have the target transmit unique radar-frequency signals (e.g.,
downchirps versus upchirps), allowing the receiver to identify
the target alongside standard radar reflections. We leave the
development of such methods to future work.
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Fig. 4. The visualization of the data samples and the baseline solutions. Most
of the samples follow a linear pattern with a relatively large variance.

VI. RESULTS

In this section, we evaluate the proposed solutions. In
addition, we generalize the baseline solution and include
three additional approaches: (i) Angle-based linear regression,
where we use ¢y . = o + arpy ;, for a parameter « instead of
(8), (ii) linear regression for the whole radar state (range, an-
gle, and Doppler velocity), and (iii) beam-radar angle lookup
table, where each beam is mapped to the average radar angle
of training samples, and the candidate object with the closest
angle to the beam angle is selected as the target. For these,
we estimate the parameters by utilizing the training set. For
training the DNN solution, we employed the ADAM algorithm
with a learning rate of 0.001. A learning rate step decay
of 0.1 was applied at epochs 50 and 80. The network was
trained for 100 epochs using a batch size of 128. To observe
the impact of the small dataset size, we implemented 10-fold
cross-validation. Within each fold, the training data was further
partitioned into 80% training and 20% validation subsets. The
model’s average performance on these sets is also reported '.

First, in Fig. 4, we illustrate the radar and beam angles of the
samples in our dataset, alongside the performance of baseline
approaches. The data samples exhibit an average linear trend,
supporting the design of linear models. However, we observe
variations in the samples, likely due to detection inaccuracies,
the radar’s limited angular resolution, and other real-world
errors. These variations can lead to performance degradation,
particularly for linear solutions. Consequently, we anticipate
that the DNN solution, with its ability to adapt to non-linear
patterns, will achieve superior performance.

In Table I, we present the user identification accuracy among
the candidates. The angle-based linear regression and angle
offset solutions yield similar results, primarily highlighting
the offset as the dominant challenge. Incorporating Doppler
and range information offers a marginal improvement to linear
regression. Similarly, the lookup table approach demonstrates
comparable performance, suggesting that angular error is
largely independent of the communication angle. The DNN so-
lution achieves a 15 — 25% improvement across different sets,
with a low cross-validation standard deviation, demonstrating

'The implementation is available at https:/github.com/umut-

demirhan/radar-user-identification

TABLE I
USER IDENTIFICATION PERFORMANCE

Test Data | 10-Fold Cross Validation
Solution Accuracy Avg. Acc. Std. Dev.
Angle Offset (Baseline) 64.24 69.06 8.31
Linear Regression (Angle) 63.78 69.01 7.03
Linear Regression (3D) 67.43 70.82 8.34
Lookup Table 64.69 69.33 6.88
Deep Learning 89.29 85.81 4.14

the significance of capturing non-linear effects. Notably, the
DNN performs slightly better on the test set compared to
the cross-validation results, which is likely attributable to the
smaller dataset size. Given that user identification is tightly
coupled with potential radar-aided communication solutions,
errors in this stage can be amplified throughout the system, po-
tentially rendering the approach infeasible. Therefore, the high
accuracy of our proposed deep learning approach is crucial for
enabling practical radar-aided communication solutions.

VII. CONCLUSION

Radar-aided communications can be essential in advancing
the performance of communication systems. One particular
problem in aiding the communication with the radar is deter-
mining the relevant radar data to the communication target. In
this paper, we formulated this problem and developed alterna-
tive solutions, including a DNN-based scalable approach. The
DNN solution achieved 89% accuracy on the test set by sig-
nificantly outperforming the baseline solutions and presented
a promising result for enabling radar-aided communication.
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