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Enabling ISAC in Real World: Beam-Based User

Identification with Machine Learning
Umut Demirhan and Ahmed Alkhateeb

Abstract—Leveraging perception from radar data can assist
multiple communication tasks, especially in highly-mobile and
large-scale MIMO systems. One particular challenge, however,
is how to distinguish the communication user (object) from the
other mobile objects in the sensing scene. This paper formulates
this user identification problem and develops two solutions, a
baseline model-based solution that maps the angle of the object
from the radar scene to communication beams and a scalable
deep learning solution that is agnostic to the number of candidate
objects. Using the DeepSense 6G dataset, which has real-world
measurements, the developed deep learning approach achieves
more than 89% communication user identification accuracy on
the test set, highlighting a promising path for enabling integrated
radar-communication applications in the real world.

I. INTRODUCTION

Employing large antenna arrays in millimeter wave

(mmWave) communication systems is essential to provide

sufficient beamforming gains and receive power. Minimizing

the beam training overhead, however, is a challenging task

especially in highly-mobile applications. Towards addressing

this challenge, integrated sensing and communications (ISAC)

can be a keystone, where wireless communications are aided

by radar sensing information. This information can be utilized

to build perception of the environment and the target objects

that affect the communication channels. One main challenge

in this framework, however, is that the objects determined

in both the sensing and communication domains need to be

matched to facilitate accurate sensing aid to communication in

scenarios with multiple mobile objects in the sensing scenes.

We term this problem user identification. In this paper, we

investigate how to solve the user identification problem in the

radar sensing scenes via the use of selected beam information

and evaluate the feasibility using a real-world demonstration.

Various types of sensing information, e.g., camera images

[1], and radar [2]–[5], have been considered for aiding com-

munication objectives. In [1], images captured by a camera

attached to the basestation are considered for the beam and

blockage prediction. Similarly, the measurements from an out-

of-band radar have been studied for beam prediction [2], [3]

and blockage prediction [4]. To realize radar-aided systems in

the real world, however, there are many major questions to be

answered. To this end, although [3], [4] included an evaluation

in a real-world setup, they were limited to the single-target

scenarios, and the user identification has not been considered.

In the joint sensing and communication (ISAC) literature,

particularly where sensing and communication antennas are
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co-located, prior work has explored user identification [5]–

[7]. These approaches typically rely on metrics like Euclidean

distance [5] and Kullback-Leibler divergence [7] applied to

radar-estimated locations with the initial location from the

communication-based identification, which necessitates esti-

mating these locations through communication links. In [6],

a distributed vehicular setup leverages GPS position knowl-

edge of communication users. However, this body of work

diverges significantly from our approach in several key aspects.

Specifically, it has not: (i) considered an off-the-shelf external

radar, which presents unique challenges and opportunities;

(ii) evaluated performance in a real-world system, limiting its

practical applicability; (iii) utilized machine learning, a crucial

component for future ISAC systems as highlighted in [8]; and

(iv) employed only the readily available communication beam

index for identification, simplifying deployment and reducing

complexity. Our work addresses these gaps, offering a novel

and practical approach for ISAC user identification.

Therefore, in this work, we address the user identification

problem in radar-aided communication systems employing

out-of-band frequency-modulated continuous wave (FMCW)

radars. Specifically, we leverage radar-generated measure-

ments of detected objects and the communication beam indices

selected to serve each user, without requiring feedback or

additional state estimation. To solve this problem, we develop

a robust and scalable deep neural network (DNN) solution.

Crucially, the developed model is agnostic to the number of

detected objects, enabling it to operate effectively regardless

of object density. For evaluation, we constructed a real-

world dataset as part of the DeepSense 6G framework [9]

and benchmarked our approach against baseline solutions.

Our evaluations demonstrate that the proposed DNN solution

achieves 89.3% accuracy on the test set, representing a gain of

over 15− 25% compared to the baselines, and showcasing its

promising potential for real-world radar-aided communication

systems.

II. SYSTEM MODEL

For the system model, as illustrated in Fig. 1, we consider a

single mobile user served by a basestation, along with multiple

candidate targets. The mobile user carries a single antenna

mmWave receiver. Meanwhile, the basestation is equipped

with (i) a mmWave antenna array that is used to communicate

with the mobile user and (ii) an off-the-shelf FMCW radar that

is leveraged to aid the mmWave communication functions.

A. Communication Model

For communications, we consider a MISO channel with N

element antenna array at the basestation. For simplicity, in
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Fig. 1. The system model, where a radar-equipped mmWave basestation
communicates with a user, while radar data to aid the communications is
collected from all the available targets in the environment.

the following, we assume that the transmitter antennas form a

uniform linear array (ULA). Nevertheless, this assumption can

easily be relaxed to accommodate other antenna formation.

Adopting a geometric channel model with P paths, we can

write [3]

h =
P
∑

p=1

αpa(θp), (1)

where αp and θp denote the complex coefficient and azimuth

angles of the p-th path. The function a(θ) is defined as the

array response vector of the basestation antenna array in the

direction of θ. At the downlink, the basestation applies a

beamforming vector f ∈ C
N to the information s and transmits

this signal over the channel. Hence, the signal received by the

user can be written as

y =
√
ρhH

fs+ n, (2)

with ρ being the transmitter power gain of the basestation

and n ∼ N (0, σ2) being the additive white Gaussian noise.

The beamforming vector f is selected from a codebook F

of B beams. The b-th beamforming vector of the codebook

is denoted by fb. With this model, the index of the optimal

beam can be obtained by the beamforming gain maximization

problem given as

b⋆ = argmax
b∈{1,...,B}

|hH
fb|2, (3)

where the optimal solution can be obtained by an exhaustive

search over the beams of the codebook.

B. Radar Model

As described, our system model adopts an FMCW radar at

the basestation. This radar aims to provide measurements to

aid the communication system. Specifically, the radar transmits

a sequence of linear up-chirps, given as [10]

stx
chirp(t) = sin(2π[fct+

µ

2
t2]), (4)

for t ∈ [0, Tc], and 0 otherwise. The chirp signal starts from

the frequency fc and goes up to fc + µTc with a constant

slope µ = B/Tc within the duration of the signal. B and Tc
represent the bandwidth and duration of a chirp signal.

The transmission of a sequence of chirps comprises a radar

frame. Specifically, a sequence of Mc chirps, with Tw waiting

time between two consecutive chirps, is transmitted in each

radar frame. With the transmission of a radar frame, the signal

is reflected from the objects in the environment and received

back at the receiver. The FMCW radar receiver mixes the

current transmit signal with the received signal. The resulting

signal is called an intermediate frequency (IF) signal. If there

is a single object in the environment at a distance d, the IF

signal from a single chirp can be written as

srx
chirp(t) =

√

EtEr exp
(

j2π
[

µτrtt+ fcτrt −
µ

2
τ2rt

])

, (5)

where Er is the channel gain comprised of the gain due to

the reflection/scattering and path-loss. τrt = 2d/c represents

the round-trip delay of the reflected signal with c being the

speed of light. The IF signal is sampled by an analog-to-

digital converter (ADC) at the sampling rate, fs, producing

Ms samples per chirp per RF chain. Given the Mc chirps per

frame and assuming a radar with Ma receiver antennas (with

an RF chain for each antenna), a radar measurement produces

MaMcMs ADC samples. We denote the ADC samples of each

radar measurement (of a frame) by X
r ∈ C

Ma×Mc×Ms .

Further, a classical object detection method (e.g., [10]) is

applied to the radar measurements, Xr, to detect the objects

as follows. (i) The range FFT, clutter cleaning, angle FFT, and

Doppler FFT are applied to obtain a radar cube. (ii) The CFAR

method detects the points with high power. (iii) These detected

points are clustered with DBSCAN to determine the groups

of detected points representing the candidate objects. (iv) The

range ork, angle oak, and Doppler velocity ovk of each cluster k
are estimated as the average of the cluster’s points. Thus, for

each object k, we have the properties ok = [ork, o
a
k, o

v
k]. After

this operation, we have K objects, which include the target.

III. PROBLEM DEFINITION: USER IDENTIFICATION WITH

BEAM INFORMATION

In this work, we aim to determine the communication target

within the radar measurement, which is an imperative task

for leveraging radar sensing in communication systems. An

important observation here is that this task requires a piece

of communication information for the mapping between the

radar and communication domains. For this purpose, we use

the optimal beam index of the communication target, which

may be obtained by initial access/channel estimation (mainly

at sub-6 GHz) or beam sweeping (at higher frequencies). Then,

given the beam index, we aim to find the communication user

within the radar targets.

To formalize the problem, we first denote the number of

samples by T and introduce the sub-index t to our notation.

We then assume that there are Kt candidate objects in the

radar measurement X
r
t , which includes the communication

target. Let us denote the index of this communication target

by kct ∈ {1, . . . ,Kt}. Recall that for each sample t ∈
{1, . . . , T}, we have the radar measurements of the objects,

Ot = [ot,1, . . . ,ot,Kt
], and the optimal beam index of the

communication target, b⋆t . Given this information, our purpose

is to determine the index of the communication target, kct .

Mathematically, let us assume that there exists a function

of parameters Θ that maps the radar measurement Ot and the
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optimal communication beam index b⋆t to the index kct of the

communication target among Kt radar-detected objects, i.e.,

fΘ(Ot, b
⋆
t ) = kct . (6)

Then, our aim becomes to approximate this function and

parameters with minimal error, which can be formulated as

f̂
Θ̂

= argmin
f,Θ

1

T

T
∑

t=1

L
(

f(Ot, b
⋆
t ), k

c
t

)

, (7)

for a given loss function L. With this objective in mind,

different approaches could be developed. For instance, a

machine learning model can be trained using (7) directly. As

an alternative, classical signal processing-based solutions may

be proposed via the design of a fixed fΘ function. In the

following section, we present our solutions.

IV. PROPOSED SOLUTIONS

For the user identification problem, we develop two ap-

proaches: (i) A model-based baseline solution that maps the

angle of the object in the radar to the angle of the communi-

cation beam, and (ii) a scalable machine learning solution that

is agnostic to the number of candidate objects.

Baseline Solution: A key observation on the communi-

cation beamforming with the directional beams (e.g., DFT

codebook) is that they point to the quantized angle of the

communication object. Considering a line-of-sight channel,

this information can be directly mapped to the radar angle. In

this mapping, however, the angular misalignment of the radar

and communication antennas may cause a significant error.

Thus, we design a radar-to-communication angle mapping

solution. In this solution, the angle corresponding to the

communication beam index is mapped to the radar angle of

the communication target, and the candidate object with the

closest angle is selected as the communication target.

To formalize, we denote ψr
t,k = oat,k and ψc

t,k as the radar

and communication angles of the k-th candidate object in sam-

ple t. We also denote the pointing angles of the communication

beams by φb, ∀b ∈ {1, . . . , B}. With the proposed model and

notation, the communication angle of the target object ψc
t,kc

t

will have the minimum difference from the communication

beam angle, as selecting this beam maximizes the received

SNR. Therefore, we take ψc
t,kc

t

≈ φb⋆
t
. This approximation

particularly holds with a large number of narrow beams.

To convert the communication angles of the candidate

objects to the radar angles, we adopt a simple model based

on the angle offset (misalignment) between the radar and

communication antennas. If ψ0 denotes this angle offset, the

transformation between the communication and radar angles

of an object can be written as

ψr
t,k = ψ0 + ψc

t,k, ∀k ∈ {1, . . . ,Kt}. (8)

To estimate the offset, ψ0, we utilize mean squared error

(MSE) over the data samples of the communication targets.

Finally, to determine the index of the communication target,

we select the candidate object that has the smallest distance

to the radar angle of the target object, i.e.,

k̂ct = argmin
k∈{1,...,Kt}

|(ψ0 + φb⋆
t
)− ψr

t,k|. (9)
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Fig. 2. The proposed DNN solution. Along with the communication beam
index, the radar estimated state of each user is respectively fed to the DNN.
The resulting outputs are collected together to select the communication target.

We note that the approach developed in this section assumes

a line-of-sight channel and considers no other error than the

misalignment of the radar and communication antennas. This

approach could be expected to perform well in simulation-

based models. In real systems, however, various imperfections

(e.g., beam gain response of the actual hardware), in addition

to the potential angle detection errors of the radar targets, may

cause the approach to perform poorly. In the following, we aim

to develop a robust solution that can adapt to these errors.

Deep Learning Solution: As mentioned, different types

of imperfections, including object detection errors, may be

present in real-world systems. To develop a robust solution, in

this section, we propose a deep neural network model. This

way, the imperfections can be learned and accommodated by

the DNN models. Further, the additional information that has

not been utilized in the baseline, i.e., the range and Doppler

velocity of the objects, can be beneficial. Although the DNNs

adapt to the imperfections by taking advantage of the available

data, their design for this problem is not a straightforward task.

There are two important challenges with the design: (i)

The number of candidate objects, Kt, is a sample-dependent

parameter and can have various values at different instances.

For this, one can design a model taking a predetermined

maximum number of given objects as the input and append

zeros to have an input of the predetermined size. Such an ap-

proach, however, could be a burden on the model’s complexity.

(ii) A desirable property of such a solution is permutation

invariance. A solution that takes the information of all objects

at once as an input may also utilize the ordering information

of the objects, which is not desirable. Although this may be

resolved by generating more samples by mixing the order of

the objects, it possibly requires significantly more training for

a large number of objects. Overcoming both challenges, we

propose our solution, where the radar information of each

candidate object and the optimal communication beam index

are respectively fed to the same neural network. This network

then returns the likelihood of the candidate object being

the communication target. These soft predictions (likelihood

ratios) are collected together for each candidate object, and the

object with the maximum probability is returned as the target.

In this solution, the neural network takes four values as the

input, i.e., the optimal beam index b⋆t , and range, angle, and

Doppler velocity, ok,t. As shown in Fig. 2, in the architecture,

we adopt a set of 7 layers with the given number of hidden
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Fig. 3. A sample from the dataset is shown with the corresponding camera image and range-Doppler map. In this sample, the beam with the index 28

corresponds to the optimal beam. The targets are determined using this visual, based on a sequence of samples by tracking through time.

nodes, resulting in a total of 32,801 parameters. The network

uses two parallel streams of three fully connected layers to ex-

tract features from radar data and beam indices. These features

are then combined in a fourth layer. Subsequent layers reduce

dimensionality for prediction. For the training of the model, we

use argminΘ
1

T

∑T

t=1

∑Kt

k=1
L(gΘ(ot,k, b

⋆
t ), yt,k) where gΘ

represents the neural network function and constructs the func-

tion defined in (6) by fΘ(Ot, b
⋆
t ) = argmaxk gΘ(ot,k, b

⋆
t ).

The variable yt,k is the indicator of the candidate object being

the communication target, i.e., yt,k = 1 if k = kct and 0
otherwise. From the objective, it can be seen that different

candidate objects are treated as different samples. As the loss

function, we utilize the MSE loss function.

For the complexity of the model, we point out that it linearly

scales with the number of candidate objects, as each object is

processed as a separate input. Similarly, the proposed model

can be scaled to multiple users, where candidate objects and

each user’s beam information can be utilized as different

inputs, with the cost of linearly scaling the complexity with

the number of candidate objects. These issues, however, can

be partially mitigated through batch processing techniques.

V. DATASET

For a real-world evaluation of the proposed user identifica-

tion solutions, we built a dataset using a hardware testbed with

co-existing radar and wireless mmWave equipment, following

the DeepSense dataset structure [9]. Then, by processing the

collected measurements/raw dataset, we built our development

dataset for user identification in radar signatures. In this

section, we describe our testbed and development dataset.

Testbed: We adopt Testbed 5 of the DeepSense 6G dataset

[9] for the data collection, similar to [3], [4]. Testbed 5

comprises two units: (i) Unit 1, a fixed receiver acting as a

basestation, and (ii) Unit 2, a mobile transmitter representing

the target object. The rest of the details can be found in [3].

Differently from this work, the radar chirp parameters are

selected for long-range performance, providing a maximum

range of 249m and velocity of 82 km/h. The chirp frame covers

B = 310 MHz bandwidth with a slope of µ = 10 MHz/µs

over L = 250 chirps/frame and S = 512 samples/chirp.

Development Dataset: We construct Scenario 35 of the

DeepSense dataset [9]. In this scenario, a base station is placed

on the second floor of a parking structure, directed towards

a road with dense traffic. With this placement, we aimed to

create a challenging data collection scenario representative of

base station deployments. During the collection, a car with the

transmitter is driven through the road in both directions. The

received power via each beamforming vector and radar mea-

surements are saved continuously at the rate of 9 samples/s,

to be processed later. For the construction of the dataset, the

index of the beam providing the highest received power is

saved as the optimal beam index (b⋆t ).

During processing, we used the optimal beam’s power

to identify samples where the communication target was

within the scene and in line-of-sight, ensuring radar detectabil-

ity. Specifically, long sequences containing sufficient receive

power and a roughly linear optimal beam index pattern are

included in the dataset. This intermediate dataset without

labels contained 3045 samples. For the labels of the target

objects, we applied a classical object detection solution. We

then visually inspected the radar maps along with the RGB

images. Through the evaluation of the samples over time,

the objects that could be certainly identified as the target

objects are marked. The final dataset contained 2158 samples.

To prevent overfitting to specific trajectories, the 80/20%
training/test split was performed on unique passes of the com-

munication target through the radar’s field of view, rather than

on individual samples. There are 43 unique passes, leading to

34/9 passes and 1581/381 samples in the training/test sets.

Generalization: We highlight that both the baseline and

proposed DNN models are site- and equipment-specific, de-

pending on factors like antenna placement and alignment.

Therefore, accurately identifying the communication target’s

index is essential, particularly when deploying to new environ-

ments or with different equipment. While this work uses man-

ual radar data annotation for labeling, practical applications

require more scalable methods. One promising technique is to

have the target transmit unique radar-frequency signals (e.g.,

downchirps versus upchirps), allowing the receiver to identify

the target alongside standard radar reflections. We leave the

development of such methods to future work.
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Fig. 4. The visualization of the data samples and the baseline solutions. Most
of the samples follow a linear pattern with a relatively large variance.

VI. RESULTS

In this section, we evaluate the proposed solutions. In

addition, we generalize the baseline solution and include

three additional approaches: (i) Angle-based linear regression,

where we use ψr
t,k = ψ0+αψ

c
t,k for a parameter α instead of

(8), (ii) linear regression for the whole radar state (range, an-

gle, and Doppler velocity), and (iii) beam-radar angle lookup

table, where each beam is mapped to the average radar angle

of training samples, and the candidate object with the closest

angle to the beam angle is selected as the target. For these,

we estimate the parameters by utilizing the training set. For

training the DNN solution, we employed the ADAM algorithm

with a learning rate of 0.001. A learning rate step decay

of 0.1 was applied at epochs 50 and 80. The network was

trained for 100 epochs using a batch size of 128. To observe

the impact of the small dataset size, we implemented 10-fold

cross-validation. Within each fold, the training data was further

partitioned into 80% training and 20% validation subsets. The

model’s average performance on these sets is also reported 1.

First, in Fig. 4, we illustrate the radar and beam angles of the

samples in our dataset, alongside the performance of baseline

approaches. The data samples exhibit an average linear trend,

supporting the design of linear models. However, we observe

variations in the samples, likely due to detection inaccuracies,

the radar’s limited angular resolution, and other real-world

errors. These variations can lead to performance degradation,

particularly for linear solutions. Consequently, we anticipate

that the DNN solution, with its ability to adapt to non-linear

patterns, will achieve superior performance.

In Table I, we present the user identification accuracy among

the candidates. The angle-based linear regression and angle

offset solutions yield similar results, primarily highlighting

the offset as the dominant challenge. Incorporating Doppler

and range information offers a marginal improvement to linear

regression. Similarly, the lookup table approach demonstrates

comparable performance, suggesting that angular error is

largely independent of the communication angle. The DNN so-

lution achieves a 15−25% improvement across different sets,

with a low cross-validation standard deviation, demonstrating

1The implementation is available at https://github.com/umut-
demirhan/radar-user-identification

TABLE I
USER IDENTIFICATION PERFORMANCE

Test Data 10-Fold Cross Validation

Solution Accuracy Avg. Acc. Std. Dev.

Angle Offset (Baseline) 64.24 69.06 8.31

Linear Regression (Angle) 63.78 69.01 7.03

Linear Regression (3D) 67.43 70.82 8.34

Lookup Table 64.69 69.33 6.88

Deep Learning 89.29 85.81 4.14

the significance of capturing non-linear effects. Notably, the

DNN performs slightly better on the test set compared to

the cross-validation results, which is likely attributable to the

smaller dataset size. Given that user identification is tightly

coupled with potential radar-aided communication solutions,

errors in this stage can be amplified throughout the system, po-

tentially rendering the approach infeasible. Therefore, the high

accuracy of our proposed deep learning approach is crucial for

enabling practical radar-aided communication solutions.

VII. CONCLUSION

Radar-aided communications can be essential in advancing

the performance of communication systems. One particular

problem in aiding the communication with the radar is deter-

mining the relevant radar data to the communication target. In

this paper, we formulated this problem and developed alterna-

tive solutions, including a DNN-based scalable approach. The

DNN solution achieved 89% accuracy on the test set by sig-

nificantly outperforming the baseline solutions and presented

a promising result for enabling radar-aided communication.
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