Check for
Updates

Learning-Augmented Decentralized Online Convex
Optimization in Networks

PENGFEI LI, University of California, Riverside, United States
JIANYI YANG, University of Houston, United States

ADAM WIERMAN;, California Institute of Technology, United States
SHAOLEI REN, University of California, Riverside, United States

This paper studies learning-augmented decentralized online convex optimization in a networked multi-agent
system, a challenging setting that has remained under-explored. We first consider a linear learning-augmented
decentralized online algorithm (LADO-Lin) that combines a machine learning (ML) policy with a baseline
expert policy in a linear manner. We show that, while LADO-Lin can exploit the potential of ML predictions to
improve the average cost performance, it cannot have guaranteed worst-case performance. To address this
limitation, we propose a novel online algorithm (LADO) that adaptively combines the ML policy and expert
policy to safeguard the ML predictions to achieve strong competitiveness guarantees. We also prove the average
cost bound for LADO, revealing the tradeoff between average performance and worst-case robustness and
demonstrating the advantage of training the ML policy by explicitly considering the robustness requirement.
Finally, we run an experiment on decentralized battery management. Our results highlight the potential of ML
augmentation to improve the average performance as well as the guaranteed worst-case performance of LADO.

CCS Concepts: « Computing methodologies — Machine learning; Distributed computing methodolo-
gies.

ACM Reference Format:

Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren. 2024. Learning-Augmented Decentralized Online
Convex Optimization in Networks. Proc. ACM Meas. Anal. Comput. Syst. 8, 3, Article 38 (December 2024),
42 pages. https://doi.org/10.1145/3700420

1 Introduction

This paper studies the problem of decentralized online convex optimization in networks, where
inter-connected agents must individually select actions with sequentially-revealed local online
information and delayed feedback from their neighboring agents. We consider a setting where,
at each step, agents must decide on an action using local information while collectively seeking
to minimize a global cost consisting of the sum of (i) the agents’ node costs, which capture the
local instantaneous effects of the individual actions; (ii) temporal costs, which capture the (inertia)
effects of local temporal action changes; and (iii) spatial costs, which characterize the loss due to
unaligned actions of two connected neighboring agents in the network. This problem models a
wide variety of networked systems with numerous applications, such as decentralized control in

Pengfei Li, Jianyi Yang, and Shaolei Ren were supported in part by the NSF under grants CNS-2007115 and CCF-2324941.
Adam Wierman was supported by NSF grants CCF-2326609, CNS-2146814, CPS-2136197, CNS-2106403, and NGSDI-2105648
as well as funding from the Resnick Sustainability Institute.

Authors’ Contact Information: Pengfei Li, pli081@ucr.edu, University of California, Riverside, Riverside, California, United
States; Jianyi Yang, jyang239@ucr.edu, University of Houston, Houston, Texas, United States; Adam Wierman, adamw@
caltech.edu, California Institute of Technology, Pasadena, California, United States; Shaolei Ren, sren@ece.ucr.edu, University
of California, Riverside, Riverside, California, United States.

@ ®®@ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs Interna-
BY NC ND tional 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2476-1249/2024/12-ART38
https://doi.org/10.1145/3700420

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

https://doi.org/10.1145/3700420
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3700420
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3700420&domain=pdf&date_stamp=2024-12-13

38:2 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

power systems [1-3], spectrum management in multi-user wireless networks [4-6], multi-product
pricing in revenue management [7, 8], among many others.

While centralized algorithms can effectively minimize the global cost, decentralized optimization
offers advantages including resilience to single-point failure and lower computational complexity.
Despite the recent progress (e.g., [9, 10]), online optimization in decentralized settings is inherently
more challenging due to limited information availability. Agents must coordinate their actions
across the network to minimize the global cost, while they usually lack complete knowledge of
future costs or the actions of their neighbors. This information gap presents significant challenges
for decentralized online optimization, compared to its centralized counterparts [11, 12].

To address these challenges, decentralized online convex optimization has been studied under
various settings. For example, online algorithms for the special single-agent case [12-18] have
been utilized as the basis for decentralized optimization to minimize the worst-case regret or
competitive ratio in the multi-agent case [9, 10, 19-22]. However, because these algorithms must
make conservative decisions to mitigate potentially adversarial uncertainties, they often do not
perform well in terms of the average cost. In contrast, online optimizers based on machine learning
(ML) can improve the average performance by exploiting the distributional information for various
problems, e.g., [23-26], including multi-agent networked systems [27-29]. But, ML-based optimizers
typically lack robustness guarantees and can result in a very high cost in the worst case (due to,
e.g., out-of-distribution inputs), which makes them unsuitable for mission-critical applications.

The field of learning-augmented algorithms has emerged in recent years with the goal of providing
“best of both worlds” guarantees: near-optimal performance with accurate ML predictions and
guaranteed robustness with inaccurate predictions. These algorithms have demonstrated success
in various online settings e.g., [11, 30-34]. However, existing learning-augmented algorithms
[11, 31, 35] primarily focus on centralized scenarios, making their adaptation to decentralized setups
technically challenging due to spatial uncertainties arising from limited information availability.
Moreover, these algorithms predominantly focus on worst-case performance guarantees, with less
emphasis on average cost performance.

Contributions. We study the challenging and under-explored setting of decentralized online
optimization in networks. We first consider a linear learning-augmented decentralized online
optimization algorithm (LADO-Lin), which linearly combines a potentially untrusted ML policy
with a trusted baseline policy (called “expert”). We show that LADO-Lin can exploit the power of ML
predictions to improve the average cost performance when the ML predictions are of sufficiently
high quality, but it cannot offer guaranteed competitiveness or robustness in the worst case when
ML predictions are of arbitrarily low quality.

To overcome LADO-Lin’s lack of guaranteed competitiveness, we introduce and analyze a novel
algorithm, LADO, that adaptively combines an ML policy with an expert policy based on the actual
online costs. The key idea behind LADO is to leverage the baseline expert policy to safeguard online
actions to avoid too greedily following ML predictions that may not be robust. In a decentralized
setting, the primary design challenge is managing spatial information inefficiency, as agents lack
prior knowledge of their neighbors’ actions. More concretely, the spatial cost is dependent on the
actions of neighboring agents, making it difficult for a single agent to evaluate it in isolation. To
address this and associated spatial cost uncertainties, we propose a novel spatial cost decomposition
that adaptively splits the shared spatial cost between connected agents, enabling each agent to
safeguard its own actions based on local information. To ensure non-empty action sets and maintain
robustness when deviating from the trusted expert policy, we also introduce temporal reservation
costs to address worst-case future cost uncertainties.

Our main results provide worst-case and average cost bounds for LADO (see Theorems 5.1, 5.2,
and B.1). We also show the worst-case robustness and consistency of LADO-Lin and LADO (see

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:3

Corollary 3.4 and Theorem 5.3). Importantly, unlike most of the prior work that assumes a black-
box ML model trained as a standalone optimizer, our results also provide average cost bounds for
training ML by explicitly considering how the ML policy will be used. Our results quantify the
improvement obtained by explicitly accounting for the robustness step in ML training.

To evaluate the effectiveness of LADO-Lin and LADO, we conduct experiments on decentralized
battery management for sustainable data centers, with a networked battery system of up to 120
nodes. Our results demonstrate the empirical benefits of our algorithms over existing baselines
across various network topologies. Both LADO-Lin and LADO, when augmented with ML, consis-
tently achieve strong average cost performance under various network topologies. Moreover, LADO
offers guaranteed robustness even when the ML predictions have low quality.

To summarize, the main contributions of our work are as follows. First, unlike existing learning-
augmented algorithms, we focus on the more challenging setting of decentralized optimization,
where agents make online decisions with delayed information about their neighbors’ actions.
Second, to guarantee worst-case robustness of LADO against a given policy in our decentralized
setting, our design of robust action sets includes novel adaptive spatial cost splitting, which is
a novel technique and differs from the design in a centralized setting. Last but not least, we
rigorously analyze and also empirically show the performance of LADO-Lin and LADO in terms of
their average-case and worst-case costs.

2 Problem Formulation

We study the setting introduced in [36] (where there is no ML policy augmentation) and consider
decentralized online convex optimization in a network with V = || agents/nodes belonging to the
set V. If two agents have interactions with each other, there exists an edge between them. Thus,
the networked system can be represented by an undirected graph (V, &), with & being the set of
edges. Each problem instance (a.k.a. episode) consists of T sequential time steps.

Atstept = 1,---,T, each agent v selects an irrevocable action x; € R". We denote x; =
[x},--+,x)] as the action vector for all agents at step ¢, where the superscript v represents the

agent index whenever applicable. After x; is selected for step ¢, the network generates a global cost
g:(x;) which consists of the following three parts.

¢ Node cost f?(x}): Each individual agent incurs a node cost f°(x}), which only relies on the
action of a single agent v at step ¢ and measures the effect of the agent’s decision on itself.

e Temporal cost ¢} (x}, x{_,): It couples the two temporal-adjacent actions of a single agent v
and represents the effect of temporal interactions to smooth actions over time.

e Spatial cost sfu’”) (x7,x}'): It is incurred if an edge exists between two agents v and u, capturing
the loss due to unaligned actions of two connected agents.

This formulation applies directly to many real-world applications [36]. For example, in geo-
distributed cloud resource management, each data center is an agent whose server provisioning
decision (i.e., the number of on/off servers) incurs a node cost that captures its local operational
cost [37]. The temporal cost penalizes frequent servers on/off to avoid excessive wear-and-tear
(ak.a., switching costs) [37]. Meanwhile, each data center’s decision results in an environmental
footprint (e.g., carbon emission and water consumption) [38]. Thus, the added spatial cost mitigates
inequitable environmental impacts in different locations to achieve environmental justice, which is
a crucial consideration in many corporates’ Environmental, Social, and Governance (ESG) strate-
gies [39]. In Section 2.2, we provide more modeling details, and explore two other applications:
decentralized battery management for sustainable computing and multi-product dynamic pricing.

Next, we make the following common assumptions for online optimization, e.g., [36, 40].

Assumption 2.1. The node cost f°: R" — Ry is B-strongly convex and £r-smooth.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:4 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Assumption 2.2. The temporal interaction cost c}: R" X R" — Ry is convex and ¢r-smooth.
Assumption 2.3. The spatial interaction cost s;™: R" x R" — Ry is convex and {s-smooth.

The convexity assumption is needed for analysis, while smoothness (i.e., Lipschitz-continuous
gradients) ensures that the costs will not vary unboundedly when the actions change [36].
The networked agents collaboratively minimize the total global cost over T time steps defined as:
T

T T T
cost(xir) = D gi(xe) =) D FGD +), D ettt)+), D st (),

t=1 veV t=1 veV t=1 (vu)e&

where g, (x:) = 2peqy f2(x7) + Zpe 7 (X7, %)) + X(ou)ee st(u’u) (x7,x}') is the total cost at time ¢.
In practice, we consider a weighted sum of the node, temporal, and spatial costs. These weights
assigned to each cost component reflect their relative importance in the overall cost metric. For
the convenience of presentation, we normalize the weight of the node cost to 1 and incorporate
the remaining weights directly into the individual cost terms. With a slight abuse of notation,
we also denote g; = {f?, ¢}, st(”’”), v € V,(u,v) € E} as the cost function information for step t,
and g1.7 = [g1,- -, gr] € G as all the exogenously-determined information for the entire problem
instance where G is the set of all possible g;.7.

Our goal is to find a decentralized learning-augmented online policy 7, for each agent v that
maps the local available information (to be specified in Section 3.1) to its action x; at time ¢. For
notational convenience, we also denote 7 = [y, - - - , 1y] as the combined policy for the network.

2.1 Performance Metrics

We consider the following two performance metrics — average cost and A-competitiveness.

Definition 2.4 (Average cost). Given a decentralized online policy &= = [y, - , ny], the average
cost is AVG(r) = By, ; [cost(rm, gi.7)], where the information g,.7 follows a distribution Py, ..

Definition 2.5 (A-competitive to). For A > 0, an online policy & = [my,- - - , 7wy is A-competitive
against a baseline policy ¥ if cost(, g1.7) < (1+ A)cost(n', gi.1)) holds for any g1 € G.

The average cost measures the decision quality of the decentralized policy « in typical cases,
whereas the A-competitiveness shows the worst-case competitiveness in terms of the cost ratio of
the global cost of 7 to a given trusted baseline policy 77" (which is also referred to as an expert policy).
Our definition of A-competitiveness against ' is both general and common in the literature on
learning-augmented online algorithms as well as online control [11, 41, 42], where competitiveness
is defined against a given baseline policy #' [11, 30, 43]. Importantly, for our problem, there exist
various expert policies 7' (e.g., localized prediction control [36]) with bounded cost ratios against
the oracle policy OPT = x* that minimizes the global cost with all offline information. As a result, by
considering an expert policy with a competitive ratio of p,+ , our policy 7 is also competitive against
the optimal oracle, i.e., cost(r, g1.7) < p,i (1 + A)cost(OPT, g1.7)) for any g, € G. Alternatively,
the expert policy 7' can be viewed as a policy prior currently in use [44], while the new learning-
augmented policy 7 must no worse than (1 + 1)-times the policy prior in terms of the cost for any
problem instance.

The average cost and worst-case competitiveness metrics are different and complementary to
each other [11, 45]. Here, we take a competitiveness-constrained approach. Specifically, given both
an ML-based optimizer and an expert algorithm as advice, we aim to find a learning-augmented
policy 7 = [, -+, my] to minimize the average cost subject to the A-competitiveness constraint:

min Ey, . [cost(m, g1.7)], s.t., cost(m,gr7) < (1 +A)cost(7rT,glzT), Vg1 € G. (1)
T

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:5

While offline-trained ML-based policies (e.g., based on multi-agent reinforcement learning [27-
29]) can potentially minimize the average cost, they may not satisfy A-competitiveness in the
worst case. In fact, it is well-known that due to the statistical nature, ML-based policies can have
arbitrarily bad performance in certain (possibly rare) cases, especially when the testing problem
instance is very distinct from those training instances [35]. Thus, we adopt a learning-augmented
approach where we integrate an ML-based policy into decision-making while using a trusted expert
policy to safeguard our online decisions.

2.2 Application Examples

To make our model concrete, we present the following application examples. Readers are also
referred to [36] for additional examples.

Decentralized battery management for sustainable computing. Traditionally, data centers
rely on fossil fuels such as coal or natural gas to power their operation. Thus, with the proliferating
demand for cloud computing and artificial intelligence services, there have been increasing environ-
mental concerns with data centers’ growing carbon emissions. As such, it is important to find ways
to reduce data centers’ carbon footprint and mitigate their environmental impact — decarbonizing
data centers. While renewable energy sources, such as solar and wind, are natural alternatives for
sustainable data centers, their availability can be highly fluctuating subject to weather conditions,
thus imposing significant challenges to meet data centers’ energy demands. Consequently, large
energy storage consisting of multiple battery units has become essential to leverage intermittent
renewable energy to power data centers for sustainable computing. Nonetheless, it is challenging to
manage a large energy storage system to achieve optimal efficiency. Specifically, while each battery
unit is responsible for its own charging/discharging decisions to keep the energy level within a
desired range (e.g., 20-80%) in decentralized battery management, the state-of-charge (SoC) levels
across different battery units should also be maintained as uniform as possible to extend the overall
battery lifespan and energy efficiency [46]. This problem can be well captured by converting a
canonical form into our model: each battery unit decides its SoC level by charging/discharging and
incurs a node cost (i.e., SoC level deviating from the desired range) and a temporal cost (i.e., SoC
changes due to charging/discharging), and meanwhile there is a spatial cost due to SoC differences
across different battery units.

More concretely, we consider an energy storage system that includes a set of battery units V
interconnected through physical connections &. For a battery unit v € V, the goal is to minimize
the difference between the current SoC and a nominal value X, plus a power grid’s usage cost,
which can be defined as a local objective: min, Zthl |10, — %02 + Zthl bl|&,.]1?, where &, is
the charging/discharging schedule from the power grid (i.e., &; > 0 means drawing energy from
the grid and &,; < 0 means returning energy to the grid) and b is the power grid’s usage penalty
cost. The time index for the first term starts at ¢ = 2 as we assume a given initial state x,; (i.e., the
SoC cost at t = 1 is already given). The canonical form of the battery SoC dynamics follows by
Xot = ApXpr—1 + By&yp + Cywy s, where A, denotes the self-degradation coefficient, B, denotes the
charging efficiency, w,; is the data center’s net energy demand from battery unit v (i.e., wys > 0
means the data center’s energy demand exceeds the available renewables and w,; < 0 otherwise),
C, denotes the conversion coefficient (inversely proportional to the capacity of battery unit v),
which translates the net energy demand to the change in battery SoC.

Based on the physical connection (u,v) € &, the SoC difference between battery units u and v
can lead to reduced performance and lifespan. For instance, the battery voltage difference caused by
different SoCs may cause overheating problems or even battery damage [46]. Thus, to penalize the
SoC difference between two interconnected battery units, we add a spatial cost 3’ (,) e ¢ [|Ixf —x¥ ||,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:6 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

where c is the SoC difference penalty coefficient. Thus, the total control cost is

T T T
omin >3 e =%l D) > bl) D elld - I @

t=1 veV t=1 veV t=1 (vu)e&

Next, we convert (2) into our formulation decentralized online convex optimization. At time
t, we define y,; = %, — Alx,; — Xf_ AL"ICyw,; as the context parameter determined by all the
previous states and online inputs, and a,; = Y./_; A,"'B,&,; as the corresponding node v’s online
action in our model. Then, we define the node cost for v as f”(ayr) = ||ans — Yo ll? = Ix0r — %oll?,
the temporal cost for v as ¢} (ays, Aps-1) = B%Haz,,t — Ayays-1]|? = b||&,.]1?, and the spatial cost for

edge (v,u) as s;U’u) = c||(@or — aur) = (Yor — Yur) + %o — Xy ||* = c||x? — x¥||%. By combining these

three costs together, the total global cost becomes

T
b
: 2 2
(o) § (§ llao: = yo.ll” + § _B2||av,t_Auav,t—1|| +

t=1 \ eV veVY 7Y (3)
D el(@ur = aue) = (o = yus) + %o — ull®),
(vu)eé&

which has the same form as our formulation (1) if we view a,, as node v’s online action at time t.

Geographic server provisioning with environmental equity. Online service providers
commonly rely on geographically distributed data centers in the proximity of end users to minimize
service latency. Nonetheless, data centers are notoriously energy-intensive. Thus, given time-
varying workload demands, the data center capacity (i.e., the number of active servers) needs to
be dynamically adjusted to achieve energy-proportional computing and minimize the operational
cost [37]. More specifically, each data center dynamically provisions its servers in a decentralized
manner, based on which the incoming workloads are scheduled [47]. Naturally, turning on more
servers in a data center can provide better service quality in general, but it also consumes more
energy and hence negatively results in a higher environmental footprint (e.g., carbon and water,
which both roughly increase with the energy consumption proportionally [38, 39]).

While it is important to reduce the total environmental footprint across geo-distributed data
centers, addressing environmental inequity — mitigating locational disparity in terms of negative
environmental consequences caused by data center operation — is also crucial as inequity can
create significant business risks and unintended societal impacts [48]. Indeed, the emergence of
data centers’ environmental inequity has been recently compared to “historical practices of settler
colonialism and racial capitalism” [49] and calls for attention from various environmental groups
and policy think tanks [50, 51].

To address environmental inequity, we view each data center as a node v in our model. The data
center v makes its own dynamic server provisioning decision x} (i.e., the number of active servers,
which can be treated as a continuous variable due to tens of thousands of servers in data centers),
and incurs a node cost f;°(x}) that captures the local energy cost, environmental footprint, and
service quality [37]. The temporal cost ¢} (x},x7 ;) = ||x] — x7_, ||? captures the negative impact
of switching servers on and off (e.g., wear-and-tear), which is also referred to as the switching
cost in the data center literature [37]. Additionally, the spatial cost s}v’u) (x7, x}') can be written as
s (x9, x4) = ||e¥x? — ex"||2 where e? is the weighted environmental “price” (e.g., water usage
efficiency scaled by the average per-server energy) in data center v. Thus, the spatial cost addresses
environmental justice concerns by penalizing difference between data center v and data center u
in terms of their environmental footprint. As a result, by considering weighted sums of the node

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:7

costs, temporal costs, and spatial costs, our model applies to the problem of geographic server
provisioning with environmental justice, which is emerging as a critical concern in the wake of
increasingly hyperscale data centers that may leave certain local communities to disproportionately
bear the negative environmental consequences.

Multi-product dynamic pricing. As digital marketplaces continue to grow, offering a diverse
range of products or services becomes inevitable for businesses that seek to cater to diverse consumer
preferences. As such, a dynamic multi-product pricing policy is vital for revenue management.
For instance, the online platform may modify product prices multiple times within a single day,
considering the estimated user demand, competitor prices and inventory dynamics. Nevertheless,
due to the intricate relationships products share within the marketplace, it is a challenging task to
set prices. For example, for complementary products (e.g. laptop vs headphones), a special offer on
a certain laptop may stimulate the demand for headphones and other accessories. Additionally,
customers may also observe historical prices, which affects their willingness to buy. In other words,
the current demand for a certain product can be temporally coupled with the previous prices [36].In
our framework, the temporal interaction and spatial interaction costs model the effects of multiple
product relationships and user behaviors, respectively. More specifically, at time ¢, suppose that the
price of product v is x}. Then, under a linear demand model, the total revenue is represented by

i[z xp(ay = kixf) +) (bl) + Y xf(fﬁ”’”xi‘)] (@)
t=1

veV veV (u,0)e&

where a} — k7x] models the nominal demand under price x;, b quantifies the effect of the previous
price, the coeflicient §§u’u) denotes the spatial relationships between a product pair (u, v). Under
realistic parameter settings, this problem can be converted into our model of decentralized online
convex optimization (see [36] for details).

3 LADO-Lin: Linearly Combining ML Advice and Expert Advice

To begin, we study a simple approach toward designing a learning-augmented algorithm, which uses
a fixed linear combination of ML-based untrusted policy and the trusted expert policy, i.e., Linear
Learning-Augmented Decentralized Online Optimization (LADO-Lin). We analyze the performance
of LADO-Lin and highlight its key limitation: the lack of guaranteed worst-case competitiveness.

3.1 Local Information Availability

Our goal is to effectively use both ML-based advice and expert advice to solve (1) in a decentralized
online manner. In our setting, each agent v € V has access to a decentralized online ML policy 7,
and a decentralized online expert policy nZ , which produce actions x7 and xf’T attimet=1,---,T,
respectively, based on local online information. Then, given X} and xf’%, the agent v chooses its
actual action x7 using LADO-Lin.

More specifically, the following online information is revealed to each agent v at step ¢: node

(ou)
t—-1 >

x;_, and their corresponding expert actions x;"jl for (v,u) € &. That is, at the beginning of step t,
each agent v receives its own node cost and temporal cost functions for time ¢, and also the spatial
cost along with the actual/expert actions from the neighboring agents connected to agent v for
time ¢ — 1. Thus, before choosing an action at time ¢, all the local information available to agent v

cost function f?, temporal cost function ¢}, spatial cost function s connected agents’ actions

can be summarized as
I =A{flclp Sfi’ﬂaxzt_pxﬁ’f_pzfg (o,u) € &}, (5)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:8 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Algorithm 1 Learning-Augmented Online Decentralized Optimization for Agent v € V

Require: Expert policy 7y, and ML policy 7,
1: fort=1,---,T do
2. Collect local online information I7.
3. Obtain ML prediction X} and expert action xf’" based on I}, respectively.
4. Choose the action x} = yx7 + (1 — y)xf’+ in LADO-Lin, and x; = ¢4 (X}) by (9) in LADO.
5. end for

where Z captures the other applicable information (e.g., agent v’s own actual/ML/expert actions in
the past). Moreover, knowledge of cost functions over the next k temporal steps and/or r-hop agents
in the network can further improve the competitiveness of expert policies [36] and, if available, be
included in Z7. Without loss of generality, we use I} as the locally available information for agent
v at time ¢. Additionally, the smoothness parameters £, £, and £ and robustness parameter A are
known to the agents as shared information.

Our information availability setting is in line with that considered by the prior literature on
decentralized online convex optimization [36], except that each agent has access to both the ML
advice and expert advice in our setting. Note also that there is a separate line of research of online
convex optimization that assumes the node cost function f is only revealed to the agent at the
end of time t [52], but they often have different design goals (e.g., sublinear regret compared to a
static baseline policy) than our worst-case competitiveness guarantees against a dynamic baseline
policy specified in Definition 2.5.

Most importantly, unlike in a centralized setting, an agent v must individually choose its ir-
revocable action x} on its own — it cannot communicate its action x; or its expert action x;”T
to its connected agent u until the next time step ¢t + 1. The one-step delayed feedback of the
spatial costs and the actual/expert actions from the connected agents is commonly studied in
decentralized online convex optimization [36] and crucially differentiates our work from the prior
centralized learning-augmented algorithms, adding challenges for ensuring the satisfaction of the
A-competitiveness requirement.

3.2 Algorithm Design

In our problem, each individual agent v € V is provided with the potentially untrusted ML advice
X7 and the trusted expert advice x;f at time time t € [1, T] based on its local online information I
specified in (5). The assumption of an offline-trained predictor (i.e., ML policy in our case) is standard
in learning-augmented algorithms [30, 32, 53, 54] as well as general learning-based optimizers
[23, 26, 55]. For our problem, approaches such as multi-agent reinforcement learning [27-29] can
be used to train ML policies for each agent. When the context is clear, we also interchangeably use
ML prediction to refer to the ML action or advice.

Had we known which policy — the ML policy 7 or the expert policy 7 — would be better for a
problem instance in advance, the problem would become trivial and we just need to choose the
better policy. But, this is not possible in an online setting. To exploit the potential of ML predictions
by augmenting the expert advice x;r with the ML advice X7, out first attempt is to construct a linear
combination of the two advice for each agent, which is defined as follows:

X=yE+ (-, YoeV (6)

where y € [0, 1] is the hyperparameter that reflects our confidence in ML predictions: the larger
Y € [0, 1], the more we trust the ML advice. We refer to this algorithm as LADO-Lin, which is also

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:9

described in Algorithm 1. Note that, in Algorithm 1, we run the expert policy (e.g., the localized
policy proposed in [36]) independently as if it is applied alone. Thus, the expert policy) does not
need to use all the information in I}.

3.3 Performance Analysis

We first analyze the performance of LADO-Lin in terms of its average cost bound as follows.
Theorem 3.1 (Average cost of LADO-Lin). Foranyy € [0, 1], the average cost of LADO-Lin is upper
bounded by

AVG(LADO-Lin) < min {yAVG(ir) +(1- }/)AVG(;T""),

2

T
— 14 +2[T+f5D . o
VAVG() + (1= 1)y By | Y > T2 = 51 }

t=1 veV 2
(7)

where AVG(7) and AVG(ﬂT) are the average costs of the ML policy and expert over the distribution
gi.1 ~ Pg,.r» respectively.

In Theorem 3.1, the cost bound for LADO-Lin is given by the minimum of two terms: the first
term is based on the convex property of the cost functions in our networked system, and the second
term is derived in terms of the expected total distance between the ML and expert actions based on
the smoothness of the costs. The proof is available in Appendix D.

Naturally, with a larger y € [0, 1], the cost of LADO-Lin is more determined by the cost of the
ML policy 7. In practice, the ML policy is often trained to minimize the average cost, while the
expert policy is conservatively designed to address the worst case. Thus, for a well-trained ML
policy, we typically have AVG(7) < AVG(x"). This means that to minimize the average cost, we
should choose y = 1, i.e., purely following the ML advice.

While LADO-Lin can successfully exploit the potential of ML predictions by setting a large
A € [0, 1], it hardly meets the A-competitiveness constraint (Definition 2.5). Indeed, unless the ML
policy itself is sufficiently close to the optimal policy for any problem instance g;.7 € G, LADO-Lin
cannot meet the A-competitiveness constraint. This is formalized as follows.

Theorem 3.2. Given any problem instance g1.v € G, denote X = [Xy,--+ ,Xr] and x* = [x],- - - ,x;]
as the actions produced by the ML model and the offline optimal policy, respectively, where we suppress
the dependency on gy.1 for notational convenience. Suppose that the cost of the offline optimal policy is
given by cost(r*, g1.7) For any linear combination hyperparametery € [0, 1], if LADO-Lin satisfies
the A-competitiveness constraint in Definition 2.5, we must have
| -x 2 2 (1-y 1 ’
cost(n*,grr) ~ P\ ¥ Ver —14 Y\/(l Do 1 ®

where > 0 is the strong convex parameter of the node cost functions in Assumption 2.1, A > 0 is the

. . _ cost(n%,gl;r) . s .
competitiveness constraint parameter, and p,+ = maxy, ;cg sty > LS the competitive ratio of

the expert policy n'.

Theorem 3.2 is proved in Appendix D.2 and provides a necessary condition for LADO-Lin to
fI%—x"|1?
cost(7*,91.7)

(8) measures the distance between the ML policy and the offline optimal policy (normalized by the
optimal cost) and is also commonly used by prior studies [35, 56] to characterize the ML prediction

satisfy the A-competitiveness constraint with respect to the expert policy. The metric in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:10 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

quality. Intuitively, as A > 0 increases, the competitiveness constraint becomes more relaxed, and
so does the requirement on the ML prediction quality. Additionally, as LADO-Lin relies less on the
ML policy (i.e., y € [0, 1] becomes smaller) and/or the expert policy itself has a higher competitive

(B

ratio p,+, there is a less stringent requirement on Cost(rgi)

for A-competitiveness with respect to
the expert.
Importantly, Theorem 3.2 highlights that, unless we completely ignore the ML advice (i.e.,

setting y = 0), the discrepancy between the ML policy and the optimal policy measured in terms of
ll%—x*]®

cost (7*,g1.1)

The larger y, the greater dependency on ML predictions to improve the average performance, but

the more difficult to meet the worst-case A-competitiveness constraint.

In practice, it is extremely challenging, if not impossible, to ensure that the ML predictions
satisfy (8) for any problem instance. It is well-known that, although a trained ML model can
perform well on average, its performance in certain (possibly rare) cases can have an arbitrarily bad
quality, especially when the testing problem instance is very distinct from those training instances.
This is also the key motivation for safeguarding ML predictions to guarantee the worst-case
competitiveness.

The performance of a learning-augmented algorithm is also analyzed under two extreme cases
when the ML policy is arbitrarily bad and when it is perfect (i.e., robustness-consistency analysis
[53, 57]). Next, we show the robustness and consistency of LADO-Lin.

must be upper bounded by (8) for A-competitiveness given any problem instance g;.r € G.

Definition 3.3 (Robustness-consistency). Suppose that the competitive ratios of the ML policy & and a
. . . (71,91 t(m.9::

learning-augmented online policy & are p; = maxy, ;cg % and p; = maxy ;cg %,

respectively, where * is the optimal offline policy. Then, p, is called the robustness of the policy &

when p; — oo, and the consistency when p; = 1.

Corollary 3.4 (Robustness-consistency of LADO-Lin). When p;z — oo, the robustness of LADO-Lin
is pLapo-Lin = ©0 fory € (0,1] and piapo-Lin = Pyt for y = 0; when pz = 1, the consistency of
cost(n',g1.1)

LADO-Lin is upper bounded by piapo-Lin = ¥ + (1 — y) p,+ where p,+ = maxy, ,cg wostrgn > LS

the competitive ratio of the expert policy ="

Corollary 3.4 shows that while LADO-Lin can improve the competitive ratio over the (best) expert
policy 7" for y € (0,1], it has an unbounded robustness when the ML policy has an arbitrarily
high cost. This shows the tension between following ML predictions for improving the average
cost performance and staying close to the expert policy for worst-case robustness. Thus, both
Theorem 3.2 and Corollary 3.4 highlight the key limitation of LADO-Lin, i.e., lack of worst-case
performance guarantees.

4 LADO: Adaptively Combining ML Advice and Expert Advice

The previous section highlights that LADO-Lin with a fixed linear combination of the ML prediction
and expert advice cannot offer guaranteed competitiveness or robustness in the worst case when
ML predictions are of arbitrarily low quality. To address this limitation, this section proposes an
adaptive approach based on a novel spatial cost decomposition and temporal reservation cost.
Specifically, we present learning-augmented decentralized online optimization (LADO), an algorithm
that adaptively exploits the benefits of ML while guaranteeing A-competitiveness against any given
expert policy 7' in a network.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:11

4.1 Algorithm Design

We present our learning-augmented decentralized online algorithm, LADO, in Algorithm 1, where
an ML policy is trained offline and deployed online by each agent v as in LADO-Lin.

To address the limitation of LADO-Lin and guarantee A-competitiveness to the expert, the
crux of LADO is to carefully leverage ML predictions while being close enough to expert actions.
Specifically, we design a novel robust action set that addresses the key challenge that only local
online information I} is available to each agent v in our decentralized setting. By choosing an
action that falls into the robust action set while staying close to the ML prediction, LADO guarantees
A-competitiveness and exploits the benefits of ML predictions, achieving the best of both worlds.

Concretely, we project the ML prediction X} into the robust action set denoted by X 1 as follows

x; = arg min ||x —)EflIz, 9)
xeX;’,t

where the robust action set X7, is convex and will be specified in Section 4.2. Thus, the projection
in (9) can be efficiently perforfned by solving convex optimization at each individual agent v.

In contrast with the fixed linear combination of the ML prediction and expert advice in LADO-Lin
that is provably insufficient for competitiveness guarantees, the novel robust action set we design
for LADO is adaptively chosen based on the online costs of actual actions and the expert policy,
guaranteeing A-competitiveness for any A > 0.

4.2 Designing a Robust Action Set

The core of LADO is an action set that “robustifies” ML predictions for A-competitiveness. This
is challenging due to the temporal and spatial information inefficiency — the A-competitiveness
requirement in (1) is imposed over the total global cost over T steps, whereas each agent must
choose its action based on local and online information I7.

To construct a robust action set X /{’ ; locally computable by each agent, we first convert the
A-competitiveness constraint over T time steps to an equivalent anytime constraint below.

Proposition 4.1 (Anytime A-competitiveness). For any A > 0, to guarantee the A-competitiveness
constraint cost(m,g1.4) < (1+ A)cost(nT,glzt), Vg1 € G, a sufficient and necessary condition is

cost(m, gr4) < (1+ Acost(n',gry), Vi € [1,T], (10)
where cost (7, g1.+) is the cumulative global cost of a policy & up to timet € [1,T].

Proor. The sufficient part in Proposition 4.1 is straightforward, while the necessary part can be
proved by constructing a counter-example as follows. Suppose that there is a time ¢ € [1,T — 1]
such that cost(r,g1.;) = (1 + A)cost(x,g1.;) + €, where € > 0. It is possible that the expert’s
future total cost Cost(ﬂ-‘-,gt.'.l;’]") < ﬁ Then, by the non-negativeness of the cost functions,
the policy 7’s total cost cost(r,gi11) > cost(m,gie) > (1 + A)cost(n',giy) +€ > (1+A) -
[cost(n’f,gl;t) + cost(nT,ng;T)] =(1+ A)cost(ﬂT,gLT), violating A-competitiveness.]

While Proposition 4.1 simplifies the A-competitiveness constraint, the spatial cost in (10) cannot be
locally computed by each agent in a decentralized manner without knowing its neighboring agents’
actions. Moreover, due to the future uncertainties and coupling of actions in online optimization, it
is very challenging to meet the constraints (10) for every t € [1, T]. To address these challenges,
we propose novel adaptive spatial cost decomposition and introduce reservation costs to safeguard
online actions for A-competitiveness.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:12 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

t t t—1
DL + Y)+ Y DT s (e x) + R(x, 1)
7=1 7=1 =1 (ou)e&

(13)
t t t—1
<)Y+ Y e txt)+ 3 DT ks (e x)
=1 =1

=1 (o,u)e&

4.2.1 Spatial Cost Decomposition. Due to the decentralized setting, we first decompose the global
cost g¢(x;) at time t into locally computable costs for individual agents v € V expressed as

Gy =fE) + Gt xf)+) ae s (xf x), (11)
(u,v)e&

where we use the weights x\”*) > 0 and k") > 0, such that x**) + x{**) = 1 for (v,u) € &, to
adaptively split the shared spatial cost st(”’v) (x?, x) between the two connected agents (i.e., k(%2
for agent v and k(®*) for agent u). We specify the choice of the weight Kt(v’u) in (14) later.

Based on the cost decomposition in (11), the anytime A-competitiveness constraint in (10) can be

guaranteed if the action of each node v satisfies the following local constraint:

Zgl.”(x;’) <(1 +A)Zg;’(xfﬁ), Vt € [1,T]. (12)
i=1 i=1

At step t, however, agent v cannot evaluate its local cost g7 (x}), because it has no access to the
actions x} and expert actions x;” of its connected neighbors u and hence cannot calculate the
actual or expert’s spatial costs for (v,u) € &.

Additionally, even if agent v has the knowledge of g7 (x}), simply satisfying (12) at time ¢ cannot
guarantee that a feasible action exists to satisfy the local constraints for future steps t +1,---, T
due to the temporal cost. To see this, consider a toy example with T = 2 and ¢} = [|x? — x?_, ||*.
Assume that x] is selected such that the first-step local constraint is satisfied by equality, i.e.,
gl (x7) = (1+ A)gf(xf’T). Then, at the second step ¢ = 2, it can happen that the node costs satisfy
fz”(xfj) = 0 and f;(x{) > 0, while the spatial costs are all zero. Then, with the expert action
x;’T = xf’T, it follows that g3(x3) > (1+ A)g;’(x;”) = 0 for any x{ € X, thus violating the local
constraint (12) for agent v. By the same reasoning, the A-competitiveness constraint can be violated
for the whole network.

4.2.2 Robust Action Sets via Reservation Costs. To ensure non-empty sets of feasible actions
satisfying the local constraints (12) for each time step t, we propose a reservation cost that safeguards
each agent v’s action against any possible uncertainties (e.g., connected agent #’s current actions
and future cost functions). Compared to a centralized setting [30, 35], designing a proper reservation
cost in a decentralized creates substantial challenges, as it needs to hedge against both spatial and
future temporal uncertainties.

With only local online information I available to agent v, the key insight of our added reservation
cost at each time step ¢ is to bound the maximum possible cost difference between agent v’s cost
i g7 (x7) and its corresponding cost constraint (1 + A) > g7 (x; ’T) for future time steps. More
concretely, we use a new constraint in (13) to define the robust action set for agent v at step ¢. In

(vu)

constraint (13), the weight Kiv’u) (attributed to agent v) for adaptively splitting the spatial cost s;

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:13

between agent v and agentu forr=1,---,t —1is
X0 — XU,T 2
K(z;,u) - ”TT T “ . (14)
lIx2 = 2" II% + [l = x7"]|2
Additionally, the reservation cost! is
tr+4€s- D 1
R(xf,) = === (1%)lxf = x| (15)
0

where f7 and £s are smoothness parameters for the temporal and spatial cost functions, D, is
the degree of agent v (i.e., the number of agents connected to agent v), and 0 < 1y < Adisa
hyperparameter to adjust the size of the robust action set (and will be optimally chosen as Ay =
Vi+A1- 1 in Theorems 5.2 and B.1). In the special case when both x? = x, " and xp = x;" 7, we set
K(U ¥ = 5 in (14).

Importantly, the new constraint (13) for agent v can be calculated purely based on local online
information I}; it only depends on the cumulative node and temporal costs up to time ¢, as well as
the spatial costs (including the feedback of the connected neighboring agents’ actions and their
expert actions) up to time ¢t — 1. Thus, the overall cost to share information between two connected
agents in the network is small. Moreover, the reservation cost R(x?, x ’T) safeguards agent v’s action
not only against uncertainties in future temporal cost functions in online optimization, but also
against delayed spatial costs resulting from decentralized optimization, which we further explain
as follows.

e Temporal uncertainties. The temporal cost couples each agent’s actions over time, but the
online action needs to be chosen without knowing all the future costs. Consequently, as shown in
the example in Section 4.2.1, simply satisfying the A-competitiveness in terms of the cumulative
cost up to t does not necessarily ensure A-competitiveness in the future. To hedge against temporal
uncertainties, our reservation cost R(x7, xf’T) in (15) includes the term f—T(l + t)llxt - xt ||2

xf) = (L4 Dep (e x) <

is always a feasible robust action for agent v at time ¢ + 1.

which bounds the maximum cost disadvantage for agent v: ¢f (x7,
Z(1+ A—ll})||x;’—xf’T||2.Thus, x%, xtJrl

e Spatial uncertainties. In our decentralized setting, agent v chooses its action based on the
local online information I7, which creates spatial uncertainties regarding its connected neighboring
(M) in (14) and the term
%(1 + /1—0)||xt_1 - t_1||2 included in the reservation cost in (15) at tlme t — 1, we ensure that
our constraint in (13), if satisfied, can always guarantee the local constraint in (12) and hence also
the A-competitiveness constraint, due to the following inequality:

Z Kﬁ;‘)((Uu)(xt 1 X 1)_(1"'/1)3(0”)(3% X)

agents’ actions and spatial costs. In our design, with the splitting weight «,

(vu)eé&
£ 5 : ts-D 1 :
< Y o= (1+—)(lef_1—xf’_1I|2+I|x}‘_1—x;"_‘lllz)=Z 21+ =)l - I
2 Ao
(ou)e& veV

(16)

Note that, as the degree D, of node v increases, more agents are connected to agent v and hence
spatial uncertainties also naturally increase, resulting in an increased reservation cost in (15).

!Despite the one-step delayed feedback of the neighbors’ actions, knowing the spatial cost function s;** (-, -) at the beginning
of time ¢ is still helpful. For example, the reservation cost for spatial cost uncertainties can be reduced if the smoothness
constant of ;" (-, -) is smaller than .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:14 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

In summary, our novel robust action set for agent v at time step ¢ is designed as
3 = 1x} | x} satisfies (13) for step t}, (17)

which, by convexity of cost functions, is convex and leads to computationally-efficient projection
(9). For example, in our experiments, it takes about 1 second to run inference for 1000+ instances
on a laptop.

5 Performance Bounds for LADO

We now analyze LADO in terms of its competitiveness, average cost, and robustness-consistency,
proving that LADO is A-competitive against any given expert and simultaneously achieves finite
consistency.

5.1 A-Competitiveness

We state A-competitiveness of LADO as follows. The proof is provided in Appendix E.

Theorem 5.1. (A-competitiveness of LADO) Given any ML policy # and expert policy 7', for any
A > 0and Ay € (0,1] in the robust action set in (17), the cost of LADO satisfies cost(LADO, g1.7) <
(1+) - cost(n', g.7) for any problem instance g,.1 € G.

Theorem 5.1 guarantees that, for any problem instance g;.7 € G, the total global cost of LADO is
always upper bounded by (1 + 1) times the global cost of the expert policy 7', regardless of the
quality of ML predictions. This competitiveness guarantee is the first in the context of decentralized
learning-augmented algorithms and attributed to our novel design of locally computable robust
action sets in (17), based on which each agent individually safeguards its own online actions.
Moreover, for our setting, there exist online policies (e.g., localized policy for multi-agent networks
[36]) that have bounded competitive ratios against the offline oracle and hence can be readily
applied as expert policies in LADO. Thus, their competitive ratios immediately translate with a
scaling factor of (1 + A) into competitiveness of LADO against the offline oracle.

5.2 Average Cost

A key goal of utilizing an ML policy is to improve the average performance over the expert policy.
Thus, we first consider the average performance of LADO under a general ML policy. We rewrite
LADO as LADO(7) to highlight its dependency on 7 when applicable. The results are shown in
Theorem 5.2, whose proof relies on the spatial cost decomposition developed in Section 4.2.1 and is
deferred to Appendix F.1.

Theorem 5.2. (Average Cost of LADO(#)) Given an expert policy =" and any ML policy 7, for the
context distribution Py, ., we define AVG(rn"), AVG(7) as the average costs of the expert policy and

ML policy. For any A > 0, by optimally setting Ay = V1 + A — 1, the average cost of LADO(7) is upper
bounded by

2
AVG(LADO(#)) < min { (1+)AVG(x"), (\/AVG(& + /Z wv(/l,iz,ﬂ)) ,
veV

: Dy |~] . .
Mﬂxf —xPTE - (VI A -1)2. costz,,] } in which D,

2
is the degree of node v and costz’t denotes the sum of hitting cost and switching cost for the expert n'.

where w,(A, 7, n") = By, + {Zthl [

Theorem 5.2 quantifies the tradeoff between exploiting the ML policy for average cost perfor-
mance and following the expert policy for worst-case competitiveness in a decentralized setting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:15

Specifically, the average cost bound of LADO(%) is a minimum of two terms. The first term holds
due to the guaranteed A-competitiveness against the expert policy. The second term shows that,
due to the competitiveness requirement, LADO(7) can deviate from the ML policy and hence have a
higher average cost than AVG(#). The cost difference is primarily driven by the sum of w, (4, 7, 7")
for all nodes in the set V, which measures how well LADO follows the ML policy. For each node v,
wy(A, 7, ") is upper bounded by the expected distance between actions made by LADO and actions
made by the pure ML policy. Naturally, as we impose a less stringent competitiveness constraint
(ie., smaller A > 0) or the expert policy 7" and the ML policy 7 are better aligned (i.e., smaller
action distance ||X] — xf’T), we can better exploit the power of the ML policy 7 with a reduced
wy(A, 7, nT). Another insight is that w,(4, 7, nT) decreases when the expert policy has a higher
cost, which naturally provides more freedom to LADO to follow ML while still being able to satisfy
the A-competitiveness requirement.

Impact of network topologies. Given the same set of nodes but different numbers of node
connections, the spatial costs can be significantly different. This impact is also captured by the

. br+bs-Dy | - § 1 .
term w, (A, 7, 71) = By, {ZL [%nxf X (VIF A= 1) costl,,t] } where D, is

the degree of agent v. Specifically, when agent v is connected with more nodes (i.e., greater D,) while
the other factors are held constant, the spatial costs and uncertainties also increase accordingly.
The competitiveness guarantees compel agent v to more conservatively follow the expert policy
and potentially deviate more from the ML policy. In other words, the cost gap bound between LADO
and the ML policy w, (4, 7, JTT) increases with the increased node degree. Thus, in general, when
the graph density increases with more node connections, the total cost bound compared to the
ML policy also increases because of more spatial cost uncertainties and hence potentially more
perturbations added to the ML advice.

Interestingly, even given the same number of node connections (i.e., edges) and the same number
of nodes, how the nodes are connected (e.g., linear chain vs. star graphs in Fig. 3) can play a role
in the cost. For example, when every node has a small degree in a linear chain graph and the
competitiveness constraint A > 0 is not too small, w,(4, 7, 7T+) is generally smaller due to the ReLu
operation, making it easier to follow the ML policy in LADO; on the other hand, when a node has a
very high degree (in a star graph), the term w, (A, 7, 77) for the high-degree node is likely to be
positive (unless A is sufficiently large), i.e., this node’s action likely deviates significantly from its ML
policy. Consequently, when the other factors are held constant, LADO can more effectively adhere
to the ML policy and achieve better average performance in a linear chain graph compared to a
star graph, despite the identical number of spatial connections in both graghs. This phenomenon is
empirically observed and discussed in our experiments, as illustrated in Figure 1.

To further highlight the impact of node connections, we extend the design and cost analysis of
LADO from an undirected graph to a directed graph. The results are available in Appendix A.

5.3 Robustness and Consistency

We now show the robustness and consistency (Definition 3.3) for LADO as follows.

Theorem 5.3 (Robustness-consistency of LADO). Define pj, p,+ and p_apo as the competitive ratios of
the ML policy 7, expert policy x' and LADO against the offline optimal policy n*, and £ = w
as the gradient Lipschitz constant of the global cost function, respectively. When p; — oo, the robustness
of LADO is upper bounded by piapo < (14 A)p,+ for any A > 0; when p; = 1, the consistency of LADO

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:16 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

is upper bounded by

A +

Soew iy [fllx = 2 = (VIH A= 12 - cost],

< min{ |1+ 4| max ,(1+)p,
PLADO a8 cost(x} 7 g1.1) 1+

) 2
< min 1+21/%'(p,ﬁ—1)) , (L+) py
(18)

where § > 0 is the strong convex parameter (Assumption 2.1) and costz,t is the expert’s cost of node
veVattimet € [1,T].

Theorem 5.3 is proved in Appendix F.3 and highlights that LADO can achieve both finite robustness
and consistency simultaneously. In contrast with LADO-Lin which fails to provide finite robustness,
LADO prioritizes the worst-case competitiveness guarantees as a constraint parameterized by 1 > 0.
Nonetheless, in general cases, LADO does not have a better consistency than LADO-Lin or the best
expert policy when the ML predictions are perfect. While it remains an open problem to achieve
the optimal robustness-consistency tradeoff (except for a few specific problems) in the learning-
augmented literature [57], we note that our result is consistent with the fundamental impossibility
in our problem setting. Specifically, even in the special single-agent case for our problem setting,
the prior studies [35] have shown that it is impossible to achieve finite robustness while still having
a consistency better than the best expert’s competitive ratio p,+ without further assumptions. As a
result, LADO-Lin achieves a better consistency than best expert’s competitive ratio (Theorem 3.4)
and hence cannot guarantee finite robustness; LADO guarantees finite robustness (Theorem 5.1) and
hence cannot offer a better consistency in general cases. Nonetheless, by making an additional
assumption that the expert’s costz,t of each node v € V is always strictly positive at time ¢ € [1,T],
we see from the first inequality in (18) that LADO can achieve a lower consistency by increasing
A > 0 and even simultaneously 1-consistency and finite robustness when A > 0 is sufficiently large
(which pushes the term [f”xf’* 2 - (VIFA—1)2 costz’tr — 0in (18)).

Importantly, the robustness and consistency analysis is still for the worst case. By utilizing a
well-trained ML model in LADO-Lin and LADO, we can still improve the average cost performance
compared to the pure expert policy, highlighting the key advantage of ML predictions. This is
discussed in Theorem 3.1 and Theorem 5.2, and also empirically demonstrated in Section 6.3.

Theorem 5.2 applies to any ML models, including ML models that are trained as standalone
optimizers without considering the design of LADO and hence may have training-testing objective
mismatches. To further improve the average cost performance, we consider a projection-aware ML
policy 7; that is optimally trained to minimize the actual cost with explicit consideration of the
downstream projection in LADO. Our performance analysis formally demonstrates the benefits of
using 7; in LADO for average cost reduction and is available in Appendix B.

6 Case Study: Decentralized Battery Management for Sustainable Computing

To demonstrate the empirical benefits of LADO-Lin and LADO, we carry out experiments with
the application of decentralized battery management for sustainable computing, as introduced
in Section 2.2. Our results show that with learning augmentation, both LADO-Lin and LADO can
empirically achieve a good average cost performance. Meanwhile, compared to LADO-Lin that lacks
guaranteed competitiveness, LADO is less sensitive to the potentially low quality of ML predictions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:17

6.1 Experimental Setup

The recent surge in computing demands, such as large Al models for language services, has placed
an urgent emphasis on decarbonizing data centers for sustainability. To highlight the potential of
LADO for managing decentralized batteries in the context of sustainable data centers, we use a trace-
based simulation in our experiments following the common practice in the literature [37, 58]. The
data center workload trace is taken from Microsoft Azure [59], which contains the CPU utilization
of 2,695,548 virtual machines (VM) for each 5-minute window. We estimate the energy consumption
P4 by summing up the CPU utilization of all VMs.

The weather-related parameters, i.e., wind speed, solar radiation and temperature data, are all
collected from the National Solar Radiation Database [60]. Based on the weather information, we use
empirical equations to model the wind and solar renewables generated at time step ¢. Specifically, the
amount of solar energy generated at step t is given based on [61] by Pgglars = %KsolarAarrayIrad,t(l -
0.05 * (Temp, — 25)), where Ayr,y is the solar array area (m?), Laq, is the solar radiation (kW /m?),
and Temp, is the temperature (°C) at time t, and Koy is the conversion efficiency (%) of the solar

panel. The amount of wind energy is modeled based on [62] as Pyind+ = %KwindQAswepthiin 4 Where

o is the air density (kg/m?), Agwept is the swept area of the turbine (m?), Kwing is the conversion
efficiency (%) of wind energy, and Viying,; is the wind speed (kW /m?) at time t. Thus, at time ¢, the
total energy generated by the solar and wind renewables is Py ; = Pyind+ + Psolar,t- By subtracting
the renewables P,; from the data center’s energy demand P, we obtain the net demand as
P, = Py — P.s, which is then normalized to [-1, 1].

In our case study, we evaluate the performance of LADO and LADO-Lin on a diverse set of
experimental settings, including heterogeneous graph nodes with various graph topologies. To
represent the range of battery health, we assign different self-degradation coefficients A, to these
battery units. Beyond self-degradation coefficients, we further consider heterogeneity in the storage
capacities and rated output powers from real-world energy storage systems. We begin with a fully
connected graph of 3 battery units, then expand our experiments to 15-node graphs, exploring
representative topologies (e.g., star, linear) and a variety of randomly generated graphs with varying
densities. To assess the scalability of our algorithm, we generate fully-connected graphs with up to
120 nodes. More details on the extended experiments can be found in Appendix C.

6.2 Baselines

We compare LADO-Lin and LADO with the following baselines. In addition, we also evaluate
LADO-OPT that uses the optimal projection-aware ML policy (Appendix B). These representa-
tive baselines are closely related to our problem and range from the simplest Greedy to the most
powerful oracle OPT.

¢ Offline optimal (OPT): OPT obtains the offline optimal solution to (3) with the complete infor-
mation for each problem instance.

o Expert: The state-of-the-art online algorithm for our problem is the localized prediction policy
[36]. Here, we set the prediction window as 1 and refer to it as Expert.

o ML optimizer (ML): ML uses the same recursive neural network (RNN) model used by LADO, but
is trained as a standalone policy without considering LADO.

¢ Hitting cost optimizer (HitOnly): HitOnly solely optimizes the node cost for each node, which
aims at tracking the nominal SoC value exactly.

o Single-step cost optimizer (Greedy): Greedy myopically minimizes the node cost and temporal
cost at each time for each node.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:18 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

6.3 Results for Networks with 3 Nodes

Considering a simple 3-node network, we show the empirical average (AVG) and competitive ratio
(CR) values in Table 1, where the best empirical AVG and CR values are marked in bold font. The
CR values are the empirically worst cost ratio of an algorithm’s cost to OPT’s cost in our testing
dataset. We see that LADO-Lin with y = 0.1 achieves the best empirical CR, but unlike LADO, the
empirical advantage does not have any theoretical guarantees. This is also partly because the
empirical CR value can be affected by a single bad problem instance and hence is more volatile. For
example, when we increase the reliance of LADO-Lin on the ML policy by increasing y € [0, 1],
the empirical of CR achieved by LADO-Lin also increases quickly and becomes higher than that
of Expert and LADO-OPT. Although the pure ML-based optimizer achieves better average cost by
leveraging historical data, its CR is significantly higher than Expert and even higher than Greedy.

LADO
A=02]A=05] A=1 A=2
AVG 134.61 108.09 139.07 200.61 115.17 109.59 108.11 107.92
CR 1.738 5.294 8.993 3.264 1.843 2.174 2.535 3.617

Expert ML HitOnly | Greedy

LADO-Lin LADO-OPT
y=01]y=03] y=05 [y=09 [A=02] A=05] A=1] A=2
AVG | 12725 | 11568 | 10829 | 10604 | 11376 | 10696 | 105.33 | 105.06
CR | 1.668 | 1914 2.506 4587 1812 | 1972 | 2451 | 3.032

Table 1. Default case for a network with 3 nodes. The average cost of OPT in the testing dataset is 88.10.

By projecting the ML actions into carefully designed robust action sets, LADO can significantly
reduce the CR compared to ML, while improving the average cost performance compared to Expert.
Our analysis in Theorem 5.2 proves that, with a larger A, the average cost of LADO is closer to that
of ML, while the guaranteed competitiveness becomes weaker.

Interestingly, in Table 1 by setting A = 2, LADO can even achieve a lower average cost than
ML, while still having a lower CR. The reason is that Expert performs much better than ML for
some problem instances. Thus, the inclusion of Expert in LADO avoids those instances that would
otherwise have a high cost if ML were used, and meanwhile a large A = 2 also provides enough
flexibility for LADO to exploit the benefits of ML in most other cases. Moreover, by training an
ML policy that is explicitly aware of the projection, LADO-OPT can further reduce the average cost
compared to LADO while having the same robustness guarantees. Additional results on different
testing distributions are available in Appendix C.1.

6.4 Results for Larger Networks

We now consider larger networks with more nodes to assess LADO. The setup is available in
Appendix C.2.1. For three representative graph topologies (i.e., complete graph, star graph, and
linear chain graph), the empirical average node, temporal, and spatial costs for each algorithm in a
15-node network are shown in Fig. 1.

Notably, for these three graph topologies, the complete and star graphs have the same maximum
node degree, while the star graph and linear chain graph share the same number of edges (or graph
density). By comparing algorithm performance on these two pairs, we can gain insights into the
impact of graph topologies. For example, the significantly lower graph density in a star graph than
in a complete graph explains why all the algorithms considered exhibit lower total spatial costs
on the star graph. This is consistent with our new theoretical analysis of the cost performance in
Theorem 5.2. Compared to the complete graph, the spatial cost uncertainties are reduced due to
fewer connections in the star graph. Thus, LADO can more effectively leverage the power of ML
predictions, which leads to improved performance in both node cost and temporal cost of LADO.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks

(a) Complete graph

38:19

(b) Star graph (c) Linear chain graph

900

600

300

N Expert EEN LADO
ML == HitOnly

== Greedy

900
600

300

s LADO
== Hitonly

s LADO
== Hitonly

== Expert = Greedy

ML

= Expert
ML

== Greedy

900

600

300

1] V] o

Node Spatial ‘

Node Temporal Node Temporal

Spatial Temporal Spatial

(d) Individual Costs (complete graph) (e) Individual Costs (star graph) (f) Individual Costs (chain graph)

Fig. 1. The evaluation of LADO and baseline algorithms in terms of the node, temporal and spatial costs, with
various graph topologies. By default, the competitiveness requirement A is set to 1in LADO for all the graphs.

In contrast to the linear chain graph, the star graph concentrates node degrees on a single
node, resulting in distinct cost behaviors. As Theorem 5.2 indicates, the more uniform node degree
distribution in the chain graph affords our algorithm greater flexibility to follow the ML policy by
deviating more from the expert policy, ultimately reducing the cost increase term w, (A, #, 7"). Our
empirical findings align with this theoretical analysis, demonstrating significantly lower overall
costs for our algorithm in the linear chain graph due to its more effective exploitation of the ML
policy. As presented in Fig. 1(f), the effect of reduced spatial costs is more pronounced for LADO in
the linear chain graph.

Next, we evaluate LADO on graphs with the same number of nodes but varying random graph
topologies. Starting from the star graph, we gradually add random edges between nodes to increase
the graph density until the graph is fully connected. Additionally, we also consider different
competitiveness requirements in these graph topologies.

Zr - 2 Fun - 200
ey | 1 T T T T 1T T 1 1 e FACEE | | 150
3 0.6 1 1 1 | g osHEIN 100
0.4 o4l

s 600 s

2 o2 WM S o2 50
,3 star- [l 500 G Star- 0

0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0

Competitive requirement A Competitive requirement A

(a) Total cost of LADO (b) Regret of LADO compared to ML

Fig. 2. Impact of graph density and competitiveness requirement A on the overall cost of LADO, along with
the additional cost (regret) associated with the projection process compared to the ML policy.

As shown in Fig. 2, the total cost of LADO increases with graph density due to the additional spatial
uncertainties introduced by denser connections. As Theorem 5.2 suggests, these increased spatial
cost uncertainties lead to higher costs for LADO compared to the ML policy. To clarify this further, we

compare the regret of LADO to the ML policy, defined as By, ;. [cost(LADO(&)) —cost(7) |. This regret

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:20 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

quantifies the additional cost incurred due to the projection process required for competitiveness
guarantees. As shown in Fig. 2(b), the regret of LADO typically increases with graph density, as
denser graphs introduce more spatial cost uncertainties, making it more challenging to closely
follow the ML policy. Similarly, with the same graph density (e.g. fully connected), the cost of LADO
also increases as graph size increase from 3 to 120 nodes, shown as Fig. 5. This is because the growth
of graph size naturally leads to more spatial connections, leading to elevated regret and overall
cost, where detailed results can be found in Appendix C.2. Moreover, stricter competitiveness
requirements necessitate a closer adherence to the expert, further hindering LADO’s ability to follow
the ML policy and resulting in higher regret.

7 Related Work

Smoothed online convex optimization. Smoothed online convex optimization in a centralized
single-agent setting is a classic problem for which many algorithms have been designed to bound
the worst-case performance, e.g., [12, 14-18]. Recently, a growing literature has begun to study
online convex optimization in a decentralized networked system [10, 19, 36, 63]. Compared to the
centralized setting, the decentralized setting is significantly more challenging, since an agent has
no access to the information of other agents before making its action at each step. In this context, a
recent work [36] proposes an online algorithm with a bounded competitive ratio and shows the
dependency of the competitive ratio on cost predictions. Several other studies [10, 19-22] propose
algorithms with bounded regrets. In all cases, these studies focus on the worst-case performance,
which leads to conservative algorithms that may not achieve a low average global cost. To address
this limitation, in this work we exploit the benefits of untrusted ML predictions to improve the
average cost performance, while leveraging a robust policy to achieve the worst-case robustness.

ML-based optimizers. ML policies have been used for exploiting the statistical information and
improve the average performance of various (online) optimization problems, including scheduling,
resource management, and secretary problems [23-26]. There also exist ML-based optimizers, such
as multi-agent learning [27-29], in the context of decentralized optimization where agents have
limited or delayed communications. However, a crucial drawback of pure ML-based optimizers is
that they may have very high or even unbounded costs in the worst case, making them unsuitable
for mission-critical applications. We provide an approach to empowering such ML-based algorithms
with worst-case robustness guarantees.

Learning-augmented algorithms. Learning-augmented algorithms have been proposed as
a way to add worst-case robustness guarantees on top of ML policies in a variety of settings,
e.g., [11, 30-32, 32-34]. To guarantee worst-case competitiveness, it is crucial to address the
potential risks associated with following the ML predictions, which is also the key challenge
for learning-augmented algorithm designs. More recently, learning-augmented algorithms have
been designed for smoothed online optimization with switching costs [11, 56, 57, 64]. However,
learning-augmented algorithm designs in decentralized settings remain largely unexplored and are
more challenging due to limited information availability. Thus, our study addresses this gap by
introducing a novel, worst-case guaranteed learning-augmented algorithm specifically designed
for decentralized environments.

Our work differs from the standard constrained online optimization (e.g., [13]) in that LADO is a
meta algorithm leveraging one robust policy to safeguard another policy which can potentially
perform better on average. Additionally, besides our novel decentralized setting and algorithm
design based on spatial cost decomposition, LADO considers worst-case robustness and hence
substantially differs from conservative bandits/reinforcement learning that focus on average or
high-probability performance constraints [65-67].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:21

8 Concluding Remarks

This paper studies learning-augmented decentralized online convex optimization in networks.
We begin with LADO-Lin by linearly combining the ML policy and the expert policy. It is proved
that, while LADO-Lin can exploit the potential of ML to improve the average cost performance,
it does not have guaranteed worst-case performance. Then, we propose LADO, a novel algorithm
that improves the average performance while guaranteeing worst-case robustness. LADO addresses
the key challenges of temporal and spatial information inefficiency and constructs novel robust
action sets that allow agents to choose individual actions based on local online information. We
prove bounds on the guaranteed competitiveness and the average performance of LADO. Finally,
we run an experiment of decentralized battery management for sustainable computing. Our results
highlight the potential of ML augmentation to improve the average performance in LADO-Lin and
LADO as well as the guaranteed worst-case performance of LADO.

References

[1] Hamidreza Shahbazi and Farid Karbalaei. Decentralized voltage control of power systems using multi-agent systems.
Journal of Modern Power Systems and Clean Energy, 8(2):249-259, 2020.
[2] Yuanyuan Shi, Guannan Qu, Steven Low, Anima Anandkumar, and Adam Wierman. Stability constrained reinforcement
learning for real-time voltage control. arXiv preprint arXiv:2109.14854, 2021.
[3] Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi. Online distributed convex optimization on dynamic networks.
IEEE Transactions on Automatic Control, 61(11):3545-3550, 2016.
[4] Amal Feriani and Ekram Hossain. Single and multi-agent deep reinforcement learning for ai-enabled wireless networks:
A tutorial. IEEE Communications Surveys & Tutorials, 23(2):1226-1252, 2021.
[5] Yasar Sinan Nasir and Dongning Guo. Multi-agent deep reinforcement learning for dynamic power allocation in
wireless networks. IEEE Journal on Selected Areas in Communications, 37(10):2239-2250, 2019.
[6] Fugiang Yao and Luliang Jia. A collaborative multi-agent reinforcement learning anti-jamming algorithm in wireless
networks. IEEE wireless communications letters, 8(4):1024-1027, 2019.
[7] Felipe Caro and Jérémie Gallien. Clearance pricing optimization for a fast-fashion retailer. Operations research,
60(6):1404-1422, 2012.
[8] Ozan Candogan, Kostas Bimpikis, and Asuman Ozdaglar. Optimal pricing in networks with externalities. Operations
Research, 60(4):883-905, 2012.
[9] Kaixiang Lin, Shu Wang, and Jiayu Zhou. Collaborative deep reinforcement learning. arXiv preprint arXiv:1702.05796,
2017.
[10] Xuanyu Cao and Tamer Basar. Decentralized online convex optimization with feedback delays. IEEE Transactions on
Automatic Control, 67(6):2889-2904, 2021.
[11] Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies and functions with black-box
advice. In COLT, 2022.
[12] Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: An optimal algorithm
for smoothed online optimization. In NeurIPS, volume 32, 2019.
[13] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: Online convex optimization with long
term constraints. J. Mach. Learn. Res., 13(1):2503-2528, sep 2012.
[14] Gautam Goel and Adam Wierman. An online algorithm for smoothed online convex optimization. SIGMETRICS
Perform. Eval. Rev., 47(2):6-8, December 2019.
[15] Lijun Zhang, Wei Jiang, Shiyin Lu, and Tianbao Yang. Revisiting smoothed online learning. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.
[16] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman. Online optimization with memory and
competitive control. Advances in Neural Information Processing Systems, 33:20636—-20647, 2020.
[17] Weici Pan, Guanya Shi, Yiheng Lin, and Adam Wierman. Online optimization with feedback delay and nonlinear
switching cost. Proc. ACM Meas. Anal. Comput. Syst., 6(1), Feb 2022.
[18] Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex optimization in high dimensions via
online balanced descent. In COLT, 2018.
[19] Alec Koppel, Felicia Y. Jakubiec, and Alejandro Ribeiro. A saddle point algorithm for networked online convex
optimization. IEEE Transactions on Signal Processing, 63(19):5149-5164, 2015.
[20] Xiuxian Li, Xinlei Yi, and Lihua Xie. Distributed online convex optimization with an aggregative variable. IEEE
Transactions on Control of Network Systems, 2021.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:22 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

[21]
[22]
[23]
[24]
[25]

[26

—

[27

—

[28

—

[29

—

[30

—

[31]
[32]
[33]

[34
[35

—_

[36

—

[37]

[38]

[39]
[40

[t

[41

—

[42]
[43]

[44]

[45]

[46]

Xuanyu Cao and Tamer Bagar. Decentralized online convex optimization based on signs of relative states. Automatica,
129:109676, 2021.

Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi. Online distributed convex optimization on dynamic networks.
IEEE Transactions on Automatic Control, 61(11):3545-3550, 2016.

Weiwei Kong, Christopher Liaw, Aranyak Mehta, and D. Sivakumar. A new dog learns old tricks: RL finds classic
optimization algorithms. In ICLR, 2019.

Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combinatorial optimization with
reinforcement learning. In AAAI 2020.

Han Zhang, Wenzhong Li, Shachua Gao, Xiaoliang Wang, and Baoliu Ye. Reles: A neural adaptive multipath scheduler
based on deep reinforcement learning. In INFOCOM, 2019.

Zhihui Shao, Jianyi Yang, Cong Shen, and Shaolei Ren. Learning for robust combinatorial optimization: Algorithm and
application. In INFOCOM, 2022.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-agent reinforcement
learning with networked agents. In International Conference on Machine Learning, pages 5872-5881. PMLR, 2018.
Kaiqing Zhang, Zhuoran Yang, and Tamer Bagar. Multi-agent reinforcement learning: A selective overview of theories
and algorithms. Handbook of Reinforcement Learning and Control, pages 321-384, 2021.

Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement learning. Applied
Intelligence, pages 1-46, 2022.

Pengfei Li, Jianyi Yang, and Shaolei Ren. Robustified learning for online optimization with memory costs. In INFOCOM,
2023.

Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented online algorithms.
In NeurIPS, 2020.

Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W. Mikkelsen. Online algorithms with
advice: A survey. SIGACT News, 47(3):93-129, August 2016.

Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning augmented algorithms.
Advances in Neural Information Processing Systems, 33:20083-20094, 2020.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. 7. ACM, 68(4), July 2021.
Daan Rutten, Nicolas Christianson, Debankur Mukherjee, and Adam Wierman. Smoothed online optimization with
unreliable predictions. Proc. ACM Meas. Anal. Comput. Syst., 7(1), mar 2023.

Yiheng Lin, Judy Gan, Guannan Qu, Yash Kanoria, and Adam Wierman. Decentralized online convex optimization in
networked systems. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 13356-13393. PMLR, 17-23 Jul 2022.

M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic right-sizing for power-proportional data centers. In
INFOCOM, 2011.

Mohammad A. Islam, Kishwar Ahmed, Hong Xu, Nguyen H. Tran, Gang Quan, and Shaolei Ren. Exploiting spatio-
temporal diversity for water saving in geo-distributed data centers. IEEE Transactions on Cloud Computing, 6(3):734-746,
2018.

Meta. Sustainability report. https://sustainability.fb.com/, 2021.

Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: An optimal algorithm
for smoothed online optimization. Advances in Neural Information Processing Systems, 32, 2019.

Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick. Control regularization
for reduced variance reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
1141-1150. PMLR, 09-15 Jun 2019.

Hoang M. Le, Andrew Kang, Yisong Yue, and Peter Carr. Smooth imitation learning for online sequence prediction. In
ICML, 2016.

Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness
guarantees. In ICML, 2023.

Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang, and
Simon Shaolei Du. A reduction-based framework for conservative bandits and reinforcement learning. In International
Conference on Learning Representations, 2022.

Jakub Chledowski, Adam Polak, Bartosz Szabucki, and Konrad Tomasz Zola. Robust learning-augmented caching:
An experimental study. In ICML, 2021.

Le Yi Wang, Caisheng Wang, George Yin, Feng Lin, Michael P. Polis, Caiping Zhang, and Jiuchun Jiang. Balanced control
strategies for interconnected heterogeneous battery systems. IEEE Transactions on Sustainable Energy, 7(1):189-199,
2016.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

https://sustainability.fb.com/

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:23

[47]

[48]

[49]
[50]

[51]
[52]

[53]
[54]
[55]
[56]
[57]

[58]

[59]

[60]
[61]
[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]
[70]

[71]

Ana Radovanovi¢, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre Duarte, Binz Roy, Diyue Xiao, Maya
Haridasan, Patrick Hung, Nick Care, Saurav Talukdar, Eric Mullen, Kendal Smith, MariEllen Cottman, and Walfredo
Cirne. Carbon-aware computing for datacenters. IEEE Transactions on Power Systems, 38(2):1270-1280, 2023.
Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren. Towards environmentally equitable Al via geographical
load balancing. In e-Energy, 2024.

Amba Kak and Sarah Myers West. AI Now 2023 landscape: Confronting tech power. Al Now Institute, April 2023.
Alejandro Garofali Acosta, Shaun Riordan, and Mario Torres Jarrin. The environmental and ethical challenges of
artificial intelligence. ThinkTwenty (T20) Policy Brief, July 2023.

UNESCO. Recommendation on the ethics of artificial intelligence. In Policy Recommendation, 2022.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization, 2(3-4):157-325,
2016.

Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. A regression approach to learning-augmented online
algorithms. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions. In NeurIPS, 2018.
Goran Zuzic, Di Wang, Aranyak Mehta, and D. Sivakumar. Learning robust algorithms for online allocation problems
using adversarial training. In https://arxiv.org/abs/2010.08418, 2020.

Pengfei Li, Jianyi Yang, and Shaolei Ren. Expert-calibrated learning for online optimization with switching costs. In
SIGMETRICS, 2022.

Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon. Online metric algorithms
with untrusted predictions. In ICML, 2020.

Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and Rajini Wijayawardana. Reducing
the carbon impact of generative Al inference (today and in 2035). In Proceedings of the 2nd Workshop on Sustainable
Computer Systems, HotCarbon 23, New York, NY, USA, 2023. Association for Computing Machinery.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo Bianchini. Resource
central: Understanding and predicting workloads for improved resource management in large cloud platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles, pages 153-167, 2017.

Manajit Sengupta, Yu Xie, Anthony Lopez, Aron Habte, Galen Maclaurin, and James Shelby. The national solar
radiation data base (nsrdb). Renewable and sustainable energy reviews, 89:51-60, 2018.

Can Wan, Jian Zhao, Yonghua Song, Zhao Xu, Jin Lin, and Zechun Hu. Photovoltaic and solar power forecasting for
smart grid energy management. CSEE Journal of Power and Energy Systems, 1(4):38-46, 2015.

Asis Sarkar and Dhiren Kumar Behera. Wind turbine blade efficiency and power calculation with electrical analogy.
International Journal of Scientific and Research Publications, 2(2):1-5, 2012.

Zhipeng Tu, Xi Wang, Yiguang Hong, Lei Wang, Deming Yuan, and Guodong Shi. Distributed online convex optimiza-
tion with compressed communication. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 34492-34504. Curran Associates, Inc., 2022.
Daan Rutten, Nico Christianson, Debankur Mukherjee, and Adam Wierman. Online optimization with untrusted
predictions. CoRR, abs/2202.03519, 2022.

Yifan Wu, Roshan Shariff, Tor Lattimore, and Csaba Szepesvari. Conservative bandits. In International Conference on
Machine Learning, pages 1254-1262. PMLR, 2016.

Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang, and
Simon Shaolei Du. A reduction-based framework for conservative bandits and reinforcement learning. In International
Conference on Learning Representations, 2021.

Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta. Conservative exploration in
reinforcement learning. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
1431-1441. PMLR, 26-28 Aug 2020.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter. Differentiable
convex optimization layers. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Noelle Walsh. How Microsoft measures datacenter water and energy use to improve Azure Cloud sustainability.
Microsoft Azure Blog, April 2022.

Tesla. Tesla powerwall 2 datasheet - North America. https://www.tesla.com/sites/default/files/pdfs/powerwall/
Powerwall%202_AC_Datasheet_en_northamerica.pdf.

LG Electronics. LG electronics home series energy storage system datasheet. https://www.lg.com/us/ess/pdf/Resi_
LGEUS_Home_8_Spec_0524.pdf.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

https://arxiv.org/abs/2010.08418
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
https://www.lg.com/us/ess/pdf/Resi_LGEUS_Home_8_Spec_0524.pdf
https://www.lg.com/us/ess/pdf/Resi_LGEUS_Home_8_Spec_0524.pdf

38:24 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

[72] SolarEdge. Solaredge energy bank datasheet. https://knowledge-center.solaredge.com/sites/kc/files/se-energy-bank-
battery-datasheet-nam.pdf.

[73] 1IQ Battery System. IQ battery 10t datasheet. https://www.switchsolarusa.com/wp-content/uploads/2023/02/1Q-
Battery-10T-DS-EN-US-10-25-2021.pdf.

[74] FranklinWH. Franklin home power datasheet, https://www.franklinwh.com/document/franklin-home-power-v11-
datasheet.

[75] Moritz Hardt and Max Simchowitz. Convex optimization and approximation. https://ee227c.github.io/notes/ee227c-
notes.pdf, 2018.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

https://knowledge-center.solaredge.com/sites/kc/files/se-energy-bank-battery-datasheet-nam.pdf
https://knowledge-center.solaredge.com/sites/kc/files/se-energy-bank-battery-datasheet-nam.pdf
https://www.switchsolarusa.com/wp-content/uploads/2023/02/IQ-Battery-10T-DS-EN-US-10-25-2021.pdf
https://www.switchsolarusa.com/wp-content/uploads/2023/02/IQ-Battery-10T-DS-EN-US-10-25-2021.pdf
https://www.franklinwh.com/document/franklin-home-power-v11-datasheet
https://www.franklinwh.com/document/franklin-home-power-v11-datasheet
https://ee227c.github.io/notes/ee227c-notes.pdf
https://ee227c.github.io/notes/ee227c-notes.pdf

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:25

A Extension of LADO to Directed Graphs

In some real-world applications (e.g., wireless networks), the connections between nodes are
directional, instead of the bi-directional connections in undirected graphs. Thus, we extend LADO to
a directed graph setting. We first show how to modify the design of adaptive spatial cost splitting
and reservation cost for a directed graph, followed by an average cost performance bound.

Consider a network with a finite set V of nodes. We model the network as a directed graph,
denoted by (V, &), where & represents the set of directional edges between nodes in V. For each
edge (v, u) € &, the spatial cost is denoted as stv") (x7,x}), which depends on the actions of the
node v and u at time ¢. Since the edge is directional, the spatial cost 3: o) (x7, x}) may not be equal
to the cost stu +0) (x}, x7) incurred in the opposite direction.

In a directed graph, the locally computable constraint in Eqn. (13) for A-competitiveness can be
rewritten as below

Zﬂ(x”)+z el (X2 1>+Z(DRy e Y s (xkx2))

=1 (vu)e& (u,0)e&

t t-1
+R(xt“,xf’1')s(1+A)(fo(x$*)+Zc§(x?"“,x;’f1)+2(D, s et e
=1 =1

=1 (ou)eé
+ Z Kﬁu,v) (uv)(xr Xy)))

(u,v)e&

(19)

where the weight KTU) for splitting the spatial cost s(v) i adaptively chosen as

x? — U,T 2
K(U,u) — ||TT ” — (20)
”xr - X ”2 + ”xr Xz ”2
and the reservation cost is
tr +ts - (D" + D" 1 ;
Rt ey = TEEDEEDE) (1 Lty e
0

where D" and D%/ denote the in-degree and out-degree of node v. In other words, D" represents
the number of edges directed towards node v and D! is the number of edges directed from node .
Additionally, based on Assumptions 2.1 - 2.3, the temporal and spatial costs are #7- and £s-smooth
with respect to the actions, respectively.

If there exist bi-directional edges between node u and v, the weights for splitting spatial costs
s(v) and s(u) are identical. This is because the weight K(U ") allocates the spatial cost according
to the potentlal risk of spatial cost increases due to nodes v and u, as measured by the distances
between their actions to the expert advice. Since the risk is independent of the direction, the spatial
cost splitting weight k2" remains the same regardless of the edge direction.

Next, we analyze the average cost of LADO in a directed graph.

Corollary A.1. (Average Cost of LADO(7) for directed graph) Given any ML policy 7, for any A > 0,
by optimally setting A\ = V1 + A — 1, the average cost of LADO(1) is bounded by

2
AVG(LADO(#)) < min (1+/1)AVG(;1T),(\/AVG(;% + Zwu(/l,fr,ﬂ)) ,

veV

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:26 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

where AVG(r") and AVG(#) are the average costs of the expert policy and the ML policy, respectively,
§ in out +
and w, (A, #,7%) = By, {Zle [[”2 frtts (PP |10 — 3T 2 — (VT4 4 — 1)2cost], } in which

costz,t is the expert’s node and temporal cost for node v at time t.

In Corollary A.1, the average cost of LADO is bounded by the expert’s average cost scaled by
(1+ A) and the average cost of learning-based policy 7 along with an additional cost introduced by
the projection process, corresponding to the two terms in the min operators, respectively. When
relaxing the parameter A in the competitiveness guarantee, it grants more freedom for LADO to
follow the ML policy with less restrictive constraints, resulting in a smaller w, (4, 7, n’l') for all nodes
in V. Additionally, the node degree plays an important role, along with the overall action distance
between the expert and ML policies. Importantly, the spatial cost is shared by connected nodes,
according to the adaptive spatial cost splitting weight Kfu’u). Therefore, the spatial uncertainty
of node v is determined jointly by the spatial connections originating from and directed towards
that specific node. For the nodes with greater spatial uncertainties (quantified by the sum of in-
and out-degrees) and/or larger policy misalignment in terms of ||x} — x; 11, it is more challenging
to adopt the ML policy, potentially incurring a higher cost during the projection. As the graph
density increases, more spatial uncertainties are introduced to the connected nodes, thus increasing
wy(A, #, 7) incurred by the projection process. However, with the competitiveness guarantee, the
average cost of LADO can always be bounded by the expert’s cost up to a scaling factor of (1 + A1),
regardless of the graph topology or the chosen ML policy.

B Optimal Projection-Aware ML Training

Theorem 5.2 applies to any ML models, including ML models that are trained as standalone
optimizers without considering the design of LADO and hence may have training-testing objective
mismatches. To improve the average cost performance, we consider the following ML policy 7
that is optimally trained with explicit consideration of the downstream projection in LADO:

iy = arg mgn Eg,.r [cost(LADO(7), g1.7)], (22)
where the projected ML prediction by LADO is explicitly used as the action in the cost. The policy
7, can be trained offline using implicit differentiation (i.e., the added projection in Line 4 for
LADO in Algorithm 1 can be implicitly differentiated based on KKT conditions) [68]. Like in other
learning-augmented algorithms [11], we consider that 7] is already available for online inference

by individual agents. Next, we use LADO(7;) to emphasize the usage of 7] in LADO, and show its
average cost bound. The proof is deferred to Appendix F.4.

Corollary B.1 (Average cost of LADO(7Z})). Given the optimal projection-aware ML policy 73, for
any A > 0, by optimally setting Ag = V1 + A — 1, the average cost of LADO(7}) is upper bounded by

AVG(LADO(%)) < mln:(l - 0)AVG(n") + ; AVG(7Y),

(23)
\/AVG(]‘[+ f wy(A, 7T, 7T)
veV

where AVG(n") and AVG(#*) are the average costs of the expert and the optimal projection-unaware

ML policy i* = arg min, By, ;. [cost(x, gi.7)], respectively, ay = min {(Vl +A-1), /m -G, 1}

Wwith Dpax = maxyey D, being the maximum degree in the network and the expert’s minimum

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:27

single-node cumulative cost normalized by the cumulative expert-ML action distance is defined as

i

A . . costy (x}7]) .

C = ming, ;cg MiNgey se[1,7] m Besides, we define
i=1 i i

ff+2~fT+f5~Dz,”

.
. =x P - (Ve A= 1? costl,t] } (24)

T
wy (A, 77, ”T) = ZE%;T {
t=1

where costz’t is the expert’s node and temporal cost for node v at time t.

Corollary B.1 formally demonstrates the benefits of using the optimal projection-aware ML policy
(22) compared to the optimal projection-unaware ML policy 7* = arg min, By, [cost(r, g1.7)].
Specifically, by the optimality of AVG(7%*) that does not consider A-competitiveness, we naturally
have AVG(#*) < AVG(x"). Thus, the first term in (23) shows that, the average cost of LADO(7
is no greater than the expert by using the projection-aware ML policy 7;. This is because the
expert policy is intuitively a feasible solution in our A-competitiveness ML policy space, while the
policy 7; in (22) is the optimal one that specifically minimizes the average cost of LADO(73). By
contrast, even by using the optimal projection-unaware ML policy 77, the average cost of LADO(7*)
is bounded by (1 + A)AVG(x") in the first term of Theorem 5.2, since the added projection during
actual inference can void the optimality of 7% and result in a higher average cost up to (1 + A times
of the expert’s cost. The root reason for the advantage of the optimal projection-aware ML policy
(22) in terms of the average cost is that its ML prediction is specifically customized to LADO. On the
other hand, even though 7* = arg min, B, ;. [cost(7, g1.7)] is the optimal-unconstrained ML policy
on its own, its optimality can no longer hold when modified by LADO for A-competitiveness during
actual online inference.

Finally, the second term inside min in Corollary B.1 shows that the average cost of LADO(7;
with the optimal projection-aware ML policy 7; in (22) is upper bounded by that of LADO(7)),
since LADO(7;) is a feasible policy satisfying A-competitiveness by our design. Like in Theorem 5.2,
it reinforces the insight that LADO can better exploit the potential of ML predictions for average
performance improvement when A > 0 increases.

C Additional Experiments for Decentralized Battery Management

In this section, we present more results on different testing distributions in 3-node network and
an extended set of experiments for large networks incorporating a wider variety of battery units.
Beyond the self-degradation coefficient A,, each battery unit also exhibits unique characteristics in
terms of the storage capacity and maximum continuous discharge current. These values for the bat-
tery units are derived from publicly available data on energy storage systems. We further investigate
the impact of network topology, on the overall cost of LADO and other baseline algorithms.

C.1 ML Model Architecture and More Results for Networks with 3 Nodes

C.1.1 ML Model Architecture. The ML predictions used in our algorithm are computed using a
RNN with 2 recurrent layers, each with 8 hidden features. In all of our experiments, each problem
instance spans 24 hours, and each time step represents one hour. For the training processes, we
used the net energy demand trace from the first two months of 2015, which contains 1440 hourly
data samples and produces a total of 1416 24-hour sequences. The ML model is optimized by Adam
with a learning rate of 10~ for 60 epochs in total. After training, the weights of the ML model are
shared between all nodes with different coefficients A,. On average, the training process takes 3
minutes on a 2020 MacBook Air with 8GB memory, and our testing process takes about 1 second.
For testing, we use the net demand traces from April to March in the default case.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:28 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

C.1.2 Results. Based on the setup in Section 6.1, we choose 3 fully connected battery units, where
the self-degradation coefficients A, of the battery units are set as 0.9, 0.93, 0.95, respectively. We
present more results on different testing distributions in 3-node network.

In-distribution testing. First, we consider an ideal case, called in-distribution testing, where the
ML model is trained and tested on the same data distribution. Naturally, the ML model is expected
to perform very well. Table 2 shows that the ML model outperforms the expert in terms of the
empirical CR. By increasing y, LADO-Lin follows the ML more closely and hence also achieves
a better average cost. Nonetheless, its advantage in terms of the average cost comes without
competitiveness guarantees. By contrast, LADO and LADO-OPT can achieve both good average costs
and guaranteed competitiveness simultaneously.

Expert ML HitOnly | Greedy T= 0z T 1= OLgDO T=T T 1=3

AVG 127.79 95.45 119.06 192.11 106.53 98.93 96.41 95.66

CR 1.738 1.487 2.021 3.264 1.431 1.446 1.490 1.488
LADO-Lin LADO-OPT

y=01]y=03] y=05 y=09 [A=02]A=05]A=1]A=2

AVG 120.20 107.91 99.50 94.32 105.33 97.46 95.47 95.00

CR 1.668 1.546 1.449 1.446 1.420 1.400 1416 1.420

Table 2. In-distribution testing for a 3-node network. The average cost of OPT is 83.37.

Out-of-distribution testing. Next, we inject large Gaussian noise into the testing dataset
and consider the out-of-distribution testing case where the testing and training distributions are
different. The results are shown in Table 3. In this case, the ML model has a higher average cost
as well as empirical CR than Expert. While LADO-Lin can reduce the average cost by slightly
incorporating the ML prediction into its action (y = 0.1), this advantage quickly vanishes as y
increases. On the other hand, by training the ML model in a projection-aware manner, LADO-OPT
can keep its average cost low while still offering guaranteed competitiveness.

Expert ML HitOnly | Greedy T=o0Z T I= OF:DO =TT I=32

AVG 141.08 188.86 320.20 200.03 138.93 156.71 174.00 | 184.80

CR 1.623 5.452 10.488 2.748 1.808 2.188 2.857 3.969
LADO-Lin LADO-OPT

Y=01]y=03] y=05] y=09 |[A=02] A=05] A=1] A1=2

AVG 136.73 134.12 139.62 174.95 137.60 145.93 150.89 | 152.98

CR 1.605 1.881 2.501 4.706 1.783 2.198 2.650 3.162

Table 3. Out-of-distribution testing for a 3-node network. The average cost of OPT is 95.77.

C.2 Results for Large Networks

We present an extended set of experiments for large networks utilizing a variety of battery units.

C.2.1 Experimental Setup. Following a similar experimental setup in the experiment of a 3-node
network, the data center’s energy demand Py, is derived using the hourly workload trace from [69]
and the renewable energy generation P, ; is estimated with the weather-related statistics from [60]
. The net energy demand of the data center, P,; = Py, — P, is then served by the energy storage
system, powered by a pool of battery units. Then, we use a sliding window to generate 24-hour net
demand sequences as the datasets, where each sequence has 25 successive normalized net demands
(from hour 0 to hour 24). In this experiment, we derive the storage capacity and rated output power

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks

38:29

Usable battery | Rated Charging | Rated Discharging | Peak Discharge
capacity (kWh) Power (kW) Power(kW) Power (kW)
Tesla Powerwall 2 [70] 13.50 5.00 5.00 7.00
LG ESS (Home 8) [71] 14.40 5.40 7.50 9.00
Solar Edge (BAT-10K1D) [72] 9.70 5.00 5.00 7.50
1Q Battery 10T [73] 10.08 3.84 3.84 5.76
FranklinWH [74] 13.60 5.00 5.00 10.00

Table 4. Specifications of the commercially available home energy storage systems used in the experiment.

= Expert === LADO
ML = LADO-Lin

= Hitonly
= Greedy ML

== = LADO
w==_LADO-Lin

=+ Hitonly
== Greedy ML

==« LADO
w===_LADO-Lin

=+ HitOnly
= Greedy

.0 0.0
2500 500 2500 500

500 1000

1500
Total cost

2000 1000 1500

Total cost

2000 1000 1500

Total cost

2000 2500

(a) Total cost (complete graph) (b) Total cost (star graph) (c) Total cost (chain graph)

Fig. 3. The total cost distribution of LADO and baseline algorithms with various graph topologies (15-node
network). By default, the competitiveness requirement A is set to 1in LADO for all graphs.

from five different commercially available battery storage systems, including Tesla Powerwall+, LG
ESS, Solar Edge, Enphase IQ and FranklinWH, where the detailed specifications can be found in
Table 4. We normalize their storage capacity and continuous output power relative to the Tesla
Powerwall+ for easy comparison. For an easy comparison, their relative storage capacities are
1, 1.07, 0.72, 0.78, 1.01, and their relative continuous output powers are 1, 1.07, 0.71, 0.55, 0.71,
respectively. To account for variations in the battery health of these battery units, we employ three
self-degradation coefficients A,, set as 0.9, 0.93, 0.95, consistent with the main experiment. By
default, we set b = 5 and ¢ = 2 as the weights for the temporal and spatial costs, respectively. In
total, by considering the various battery characteristics along with the self-degradation coefficients,
we create 15 distinct battery node configurations for our experiment.

C.2.2 Results. For the three representative network topologies (i.e., the complete graph, star graph,
and linear chain graph), the empirical distribution of the total cost for each algorithm compared
is shown in Fig. 3. Moreover, Tables [5,6,7] summarize the average total costs and competitive
ratios of all considered algorithms for the three representative topologies, respectively. Both the
complete graph and the star graph have the same maximum node degree, whereas the graph density
of the star graph is significantly lower. This explains why all the algorithms considered exhibit
lower costs on the star graph, which is also consistent with our new theoretical analysis of the
cost performance in Theorem 5.2. Furthermore, LADO can leverage the power of ML policy more
efficiently with the reduced spatial cost uncertainties associated with fewer connections in the star
graph.

Interestingly, the star graph and linear chain graph share the same number of edges (or graph
density), while the star graph concentrates node degrees, leading to distinct cost behaviors. This
is evident when comparing the average cost distributions in Fig. 3(b) and Fig. 3(c). The uniform
node degree distribution in the chain graph allows LADO to leverage the power of learning-based
policy more efficiently and further reduce the total cost in the linear chain graph. This empirical

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:30

Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Expert ML HitOnly | Greedy T=03 T I= O.LSADOA =3 =3

AVG 662.38 489.03 613.73 1054.87 559.59 519.75 500.63 491.86

CR 2.065 4.653 7.380 4.227 1.948 2.234 2.422 3.068
LADO-Lin LADO-OPT

y=01]y=03] y=05] y=09 | A=02] A=05] A=1] X=2

AVG 618.72 548.95 502.58 480.04 555.77 509.92 488.91 | 481.59

CR 1.972 2.021 2.382 4.042 1.912 2.032 2.186 2.639

Table 5. AVG and CR comparison between different algorithms for a 15-node chain graph
of OPT in the testing dataset is 405.37.

. The average cost

Expert ML HitOnly | Greedy T=o07 T I= OAI:,,ADO =71 =3

AVG 656.98 499.12 613.73 1030.78 610.87 606.46 583.98 539.01

CR 1.891 4.679 7.295 3.748 1.916 2.262 2.477 3.109
LADO-Lin LADO-OPT

y=01]y=03] y=05] y=09 |A=02 | A=05] A=1] A=2

AVG 614.60 547.57 504.18 497.77 602.06 571.04 528.68 | 497.29

CR 1.802 1.889 2.309 4.614 1.882 2.039 2.225 2.666

Table 6. AVG and CR comparison between different algorithms for a 15-node star graph, shown as Fig. 1(b) .
The average cost of OPT in the testing dataset is 411.06.

Expert ML HitOnly | Greedy T 07 T I= O.I;ADO =1 =3
AVG 991.99 630.41 613.73 2401.08 839.00 767.09 727.77 | 687.17
CR 3.245 3.619 4.048 11.577 2.614 3.026 3.469 3.595
LADO-Lin LADO-OPT
y=01]y=03] y=05 | y=09 | A=02 | A=05] A=1] A=2
AVG 914.90 787.99 697.48 625.63 650.70 637.81 632.44 | 622.09
CR 3.042 2.718 2.670 3.377 2.047 2.090 2.478 2.901

Table 7. AVG and CR comparison between different algorithms for a 15-node complete graph. The average
cost of OPT in the testing dataset is 524.79.

[Expert
= M
1100

BB LADO (A =0.2)
BN LADO (A =0.5)

= LADO (A=1)
= LADO (A=2)

900

700

Total cost

500

300

Chain

Star

Full

(a) Total cost with different A

Competitive ratio

o
)

w
=)

-
o

LADO (A =1)
LADO (A =2)

BN Expert [N LADO(A=02) [
= ML EEE LADO (A =0.5) @Em
} i ' 1
. . [I
j L N
1]
3tf] «atd]

Chain

Star

Full

(b) Competitive ratio with different A

Fig. 4. The comparison of total cost and competitive ratio distribution between LADO and other baseline
algorithms for a 15-node network.

observation aligns with Theorem 5.2, which suggests a more distributed node degree reduces a
lower term w, (A, 7, 77) due to perturbations to the ML policy.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:31

Impact of competitiveness requirement A: Next, we empirically evaluate the robustness-
consistency trade-off of LADO under different graph topologies. For all the three graphs, the empirical
average cost of learning-based policy (ML) outperforms the state-of-the-art expert policy, which
highlights the importance of reducing the deviation of LADO from the ML policy to improve the
average cost performance. As suggested by Theorem 5.2, reducing the spatial cost uncertainty
(fewer node connections) or relaxing the competitiveness requirement (larger 1) leads to a smaller
deviation of LADO from the ML policy, which in turn reduces the perturbations to the ML policy
because of projection. Fig. 4(a) clearly illustrates this trend by comparing the average cost of
LADO under different settings. However, such performance improvement comes at an expense
in terms of the competitiveness guarantees. As illustrated in Fig. 4(b), a larger 1 weakens the
competitiveness guarantees of LADO, reducing its worst-case protection and potentially leading to
a higher competitive ratio.

Impact of network topologies: In this experiment, we first evaluate LADO on graphs with the
same number of nodes but varying random graph topologies. Specifically, we consider 15 battery
units with varying characteristics and randomly selected spatial connections between these nodes.
The minimum number of edges is set the same as a star graph instead of zero, since otherwise the
nodes’ decisions would become uncorrelated without any spatial connections. Starting from the
star graph, we gradually add random edges between nodes to increase the graph density until the
graph is fully connected. Additionally, we experiment with different competitiveness requirements
under these graph topologies. The total cost and regret of LADO compared to the ML policy are
shown in Fig. 2.

As the graph density increases with more spatial connections between nodes, the total cost of
LADO rises monotonically, showing a direct correlation between increased node connectivity and
greater spatial cost uncertainties. To focus on the impacts solely due to the projection process, we
compare the regret of LADO against the ML policy, where both algorithms are evaluated under the
same graph topologies. As shown in Fig. 2(b), the increased spatial cost uncertainty associated with
denser graphs increases the difficulty for LADO to follow the ML policy, leading to a larger regret or
cost increase compared to the ML policy. Moreover, as the competitiveness requirement becomes
more stringent and LADO needs to stay closer to the expert, it is more difficult for LADO to closely
follow the ML policy.

160 102

8 120- | I N B R o 120- NN I D D
= 60N I D e o 2 6o I I I |
o 30N N N . e— <~ 30N N . |
o 15N N — — — S 15[N R [100
g o- I I 40 O o I
3 ‘ ‘ ! ‘ Lo O 3 ‘ ‘ ‘ 10
0.0 0.2 0.5 1.0 2.0 0.0 0.2 0.5 1.0 2.0
Competitive requirement A Competitive requirement A
(a) Total cost of LADO (b) Regret of LADO compared to ML

Fig. 5. Impact of graph sizes and competitiveness requirement A on the overall cost of LADO, along with the
additional cost (regret) incurred by the projection process compared to the ML policy. The overall cost and
regret are normalized by the number of nodes for a consistent comparison across different graph sizes.

Impact of graph sizes: Next, we conduct a comprehensive comparison between the overall cost
and regret of LADO (compared to the ML policy) over a wide range of graph sizes, ranging from 3 to
120 nodes. For consistency, all the graphs are fully connected. We normalize the overall costs and
regrets by the number of nodes. As illustrated in Fig. 5, this normalization enables a meaningful
comparison between algorithms over different graph sizes. Similar to our previous findings, the total

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:32 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

cost and regret of LADO compared to the ML policy decrease as the competitiveness requirement
relaxes with greater A, even for the largest graph. In fully-connected graphs, a larger graph implies
a higher degree of node connectivity. As indicated by the term w, (A, 7, 7#") in Theorem 5.2, a larger
node degree makes it more difficult for LADO to follow the ML policy. Consequently, given a fixed
competitiveness requirement A, the larger graph sizes, the greater node degrees, and the higher
regret of LADO compared to the ML policy as suggested by Theorem 5.2.

600 = (5,2) @@= (5,1) Wmm (5,0) W (54) W (3,2) wmw (7,2)

400

200

Expert LADO LADO-Lin Expert LADO LADO-Lin Expert LADO LADO-Lin
Node Cost Temporal Cost Spatial Cost

(a) Complete graph

= (5,2) @== (5,1) Wm (5,0) W (54) W (3,2) Wmw (7,2)

600

400

200

o

Expert LADO LADO-Lin Expert LADO LADO-Lin Expert LADO LADO-Lin |
Node Cost Temporal Cost Spatial Cost

(b) Star graph

600 . (5,2) e (5,1) . (5,0) . (5,4) . (3,2) . (7,2)

400

200

o

Expert LADO LADO-Lin Expert LADO LADO-Lin Expert LADO LADO-Lin |
Node Cost Temporal Cost Spatial Cost

(c) Linear chain graph

Fig. 6. Comparison of node, temporal, and spatial costs for LADO with varying weights (b, ¢) in the decentral-
ized battery management formulation (shown as Eqn. (2)). By default, we consider a 15-node network and set
the competitiveness requirement A as 1. To enhance visual clarity, the temporal costs are scaled up by 10 to
align with the scale of node and spatial costs. Results for LADO-Lin and Expert are also included for reference.

LADO with different weights for temporal and spatial costs: As shown in Eqn. (2), the
total cost is parameterized by the weights for the temporal and spatial costs, denoted as (b, c)
respectively. By normalizing the node cost weight to 1, the magnitudes of b and ¢ directly reflect
the relative importance of temporal and spatial decision smoothness versus reducing the node cost
for achieving the desired state of charge at each battery node. It is crucial to note that these weights
represent relative preferences rather than absolute cost scales. For instance, even if we set both b
and c as 1, the temporal and spatial costs are necessarily equal to the node cost.

We compare the performance of LADO, LADO-Lin and Expert under a variety of weight combi-
nations, as shown in Fig. 6. In this experiment, the ML algorithm is not fine-tuned based on the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:33

weights of b and ¢ for the temporal and spatial costs, and the other baseline algorithms are not
affected by these weights. By keeping the weight of switching cost constant, a greater c prioritizes
the spatial cost, thus leading to reduced spatial costs for all the algorithms. Conversely, a smaller ¢
gives more emphasis to the temporal cost. Additionally, LADO exhibits less sensitivity to weight
variations (b, ¢c) compared to LADO-Lin and Expert, which is more evident in the complete graph.
This robustness stems from LADO’s design, where the expert advice constructs a robust action set.
Consequently, LADO’s spatial cost is less influenced by the Expert policy changes than the static
linear combination in LADO-Lin.

In practice, the spatial cost parameter is adjusted to strike a balance between two competing
objectives: the local performance of each node (measured by node and temporal costs) and the
spatial consistency among connected nodes. For the graphs with heterogeneous nodes, these
objectives may conflict. Prioritizing spatial consistency can make it more difficult to achieve
optimal local performance for individual nodes compared to the scenario where each node operates
independently. As shown in Fig. 7, by increasing the spatial cost parameter ¢, LADO enhances SoC
consistency among connected battery units. To directly compare the actual SoC difference between
battery units across different scenarios, spatial costs are evaluated using a constant parameter of
¢ = 1. Consequently, for all the three graph topologies, we observe that the local costs (e.g. node and
temporal costs) of individual nodes increase as the spatial difference decreases. Moreover, graphs
with more spatial connections, such as the complete graph in Fig 7(a), exhibit a greater sensitivity to
the spatial cost parameter c. This is because introducing additional spatial considerations between
nodes amplifies the impact of ¢ on local costs.

60 10.0 4.5
§ 55 'g 9.5 Haz2
o
Q50 o 20 U3
E 45 E 8.5 E
+ 40 ‘i 8.0 s 3.6
©
Q.35 [-% 2.3.3
7.5
(1] 30 (1)))
N 7.0 3.0
2 0 482 484 486 488 490 492 480.5 480.6 480.7 480.8 480.9 480 481 482 483 484 485
Node + Temporal Cost Node + Temporal Cost Node + Temporal Cost
(a) Complete graph (b) Star graph (c) Linear chain graph

Fig. 7. The tradeoff curve between spatial cost and the sum of node and temporal cost of LADO by adjusting
the coefficient ¢ in spatial cost, which penalizes the SoC difference between connected battery units. The
parameter b for the temporal cost is set as 1 by default.

D Proofs of Results in Section 3

We begin with a technical lemma.

Lemma D.1. Ifthe spatial cost is non-negative, convex and {s-smooth wyr,t the vector (x,, x,), then
forany A > 0, it holds that

[S 1 T
St(v,u) (xf, x;;) _ (1 + A)SEU,U) (x;),T, x;"T) < ?(1 + z) (“xf - xf, ||2 + ”x? - x;l’T“Z) . (25)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:34 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren
Proor. By the definition of smoothness, we have
st ()
<5 (x0T x4y 4 < Vs (22T xT), (x? — %%, x¥ — x4y > +5 ||(x,, x4y — (x0T, x4 y)|12
s@%ﬁxnh+w$wu;,,mnufmtmfmﬁm+—Ma,)—m,nhw

Qmmﬁm+|mwmpMWun>4mm%mmmw

(26)

The second inequality comes from the property of inner product. The third inequality is based

on AM-QM inequality. Besides, if (X7, x}’) is a minimizer of the spatial cost, by Lemma 2.9 in [75],
we have

- 1 -
st G 2 s G 04 19 DI 2 uv GNP (@)
By substituting Eqn (27) back to Eqn (26), we have

, Is T i
s (2, x) < (14 2) s (T) (1 S)E(H(xf—xf’ 1P+ Dl = 1% (28)
]

D.1 Proof of Theorem 3.1

Since LADO-Lin selects action as x} = yx? + (1 —y)x; " at each round, by convexity of the global
cost, we have

cost(LADO-Lin, g1.7) < ycost(#, gi1) + (1 — y)cost(ﬂT,gl;T). (29)
By taking expectation on both sides, the cost of LADO-Lin is bounded by the first term in the min
operator. Next, we prove the cost of LADO-Lin is also bounded by the second term in the min

operator.
First, we can write the norm of the difference between the actions of LADO-Lin and expert 7' as

I = &7 = (1 = Pl = 711 (30)

Based on Lemma D.1, for any A; > 0, for any v € &, we have

T T T T
(Zﬁ%ﬂZﬁMﬁJ%UM%Zﬁ@HZﬂﬁﬁ»
=1 =1 =1 =1

1 [f T [T T [T T-1
il J v _ ~0))2 e v _ o2 -1 o _ ~o|2
SUUJZZWTMHZZWTMHZZWTMI (31)
1 l’f+2 tr o2 tr+2-tr L0112
<(+ 4 Zw H<Uym+ﬂ Zw - %7l

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:35

By summing up the spacial costs over time, we have

Z isgy’u)(xf,x?) —(1+1y) Z Z (Uu)(xf, Xy

(vu)eé& =1 (vu)e& =1
T

1 4 v~ 2 0 _ ~o|2
_ _ 2
<(1+ Az) 2 Z 2 (Il = 27N + llx7 = £2117) (32)

(vu)e& =1
f T
~ S ~
X -FIP < (1-p)Pa+ —) 3 2 I A
7=1

veV 7=1 veV

By adding Eqn (32) to Eqn (31), we can bound the sum cost error as

tr+2-tr+Dy - L
cost(LADO-Lin) — (1 + Ap)cost(7) < (1 —y)2(1 +)Z ! T2 S an -k
eV =1

(33)
By taking expectation on both sides, we have

1
AVG(LADO-Lin) — (1+ A2)AVG(#) < (1 —y)*(1 + A—)Egﬂ
2

b +2- by +Dy - L ZT: ;
D [E%
veV 2 =1

(34)

. . E+2-8r+D, - .
By optimally setting A, = \/(1 - V)?Ey,; [Zveq/ w et - xflIZ] W, we can

bound the sum cost as

T
Cr + 207 + Dyt
cost(LADO-Lin) < [VAVG(7) + (1 - y) EW[Z P e N % —x;”||2] (35)
t=1 veV 2
D.2 Proof of Proposition 3.2
If LADO-Lin satisfies the A—competitiveness constraint, we have
cost(LADO-Lin) < (1+ A)cost(') < (1+A)p,icost(n*) (36)

Since the cost function cost is f—strongly convex, the gradient of cost at x* is Vcost(x*) = 0 and it
holds that

cost(LADO-Lin) > cost(rx") + §||y32t +(1-— y)xtT - x*|)?
(37)

= cost(r) + Dy~) + (1=] —)2
Substituting (37) to (36), we have
Ly —x) + (1)] = x)IP < (14 D)pss = D eost (). (59)

By taking the squared root for both sides and applying triangle inequality for the left hand side, it
holds that

ly e = %) = 11 = y) (xf = x| < \/% ((1+) pyt — 1) cost(cost(r*). (39)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

-

38:36 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Since the cost function is f—strongly convex, we have

Pl

cost(*) + Sllx" - x*||2 < cost(x) < picost(n™). (40)

Substituting (40) into (39), we have

1% - x| < [= (p,,-;-—1)3+1\/3<<1+A>p”-z-—1> Veost (). (41)
Y B y\pB

The proposition is proved by moving items in the above inequality.

E Proof of Robustness in Theorem 5.1

To prove Theorem 5.1, the key point is to guarantee the robust action set (17) is non-empty. We
will prove this through induction. For ¢ = 1, it is obvious that x¥ = x ' satisfies the constraint. We
assume that the robustness constraint is satisfied up to time step ¢ — 1, which is

ou ou fT+(5'D 1 4
Zﬂ(x”)+z 2 ks) £ T (1) I =

=1 =1 (vu)eé& 2

t—1 t—1 t—1 t—2
F)l al) < (1+ A)(Z F e I e R D DI R Py)

=1 =1 =1 =1 (vu)eé&
(42)

: llacg_, = 112
Based on Lemma D.1 and Kt(ff) = L2 i &5

AT we have

llx;_, _x;)fl 12+l =224 |

fs 1
K (512 (i) = (L s (i)) < S+ DIk =< @)

For time step t, if we choose x} = xfj, by the smoothness assumption, we have
(T xl) = (L + D)l (2T 1) < —(1 +)IIxt il & (44)

Since the node cost is non-negative, by (43) and (44), we have

- ' tr+4s-D 1
FD 0 s G)+ e G) = T (U)l = P
(vu)eé& 0
SO+ ety w0)
(v,u)eé&
{r + s - tr+{s -
<TEE D01 Dl - - T(H—)llxtl—x I
<0

>

(45)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:37

where the last inequality holds by A > A¢. By adding Eqn (45) back to Eqn (42) and moving items,
we recover the robustness constraint for time step # if x? = x;"',

t
(,) : r+ts-D 1 :
Zf;(x”)+z O RS)+ D et)+ T (L)l P

=1 (vu)e& 7=1 2

t t-1
<(1+2) (Z PN+ Y ety e 0 T s (i)
=1 =1

=1 (vu)e&
(46)
In other words, the expert’s action x;’ T is always an action in the corresponding robust action set
(17). Thus the robust action set is non-empty.
Since K;U’u) + Kt(u’u) = 1 holds for (v,u) € &, if all the nodes select actions from the robust action

set (17) at each step, we can guarantee that cost(LADO, gi.7) < (1+A) - cost(', g1.7) is satisfied.

F Proof of Average Cost Bounds and Robust-Consistency of LADO
F.1 Proof of Theorem 5.2

We begin by stating and proving a technical lemma and then move to the proof of Theorem 5.2.

Lemma F.1. We denote the actual actions from LADO as xf:T = (x7,--- ,x?), the squared distance
between actual action and ML advice is bounded by

T T

- - A=A 2
Dl =R < 3 I8 =T = T e ot
=1 =1 1+/1_0 f T S v

where A, Ay, D, and p are defined in Theorem 5.2.

Proor. To prove this lemma, we first construct a sufficient condition to satisfy the original
constraint in Eqn (13). Then we prove a distance bound in this sufficient condition, where the
bound still holds for the original problem.

At time step t, we know the constraint in time step ¢ — 1 is already satisfied, so we obtain the
following sufficient condition of the satisfaction of (13) as

, r +4€s -D 1 +
G+ Y ks (i) + T (1) (Il = i =)
(vu)e& 0
+cf (xf,xp_)) < (1+/1)(f, (x})+cf(x;”T,xf;1)+ Z K(Uu) (Uu)(X, x)
(vu)eé&
(47)
With the convexity and smoothness assumptions, we have
T 1 . ‘

G) = (1 Aa)ef et < T) (= I+ Dy = w2)

(48)

Y] v/ 07T ff 1 v 0,712
() = (1+A0)f7(x,) < E(1+ /1_0)”xt =x |l

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:38 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Then a sufficient condition that (47) holds becomes

br+2-tr+ 05Dy ts - D
Z t(viz) (vu) (xf_pxp_)+ (1+ p)) (5 llx? - xf’THZ - Tvﬂqu - x;},_Tlnz
(ou)e& ’

< Q=2)(FeN + G ta) + e 2) 3 s
(v,u)e&
(49)
From Eqn (43), we can further cancel out the spatial costs and get the sufficient condition of Eqn (49),
shown as below

tr+2- -ty +¢€s-D, .
(1 o) [g -
; (50)
< A= Q)(FGED + ety + 3 s)
(vu)e&

For the expert policy 7" at time t, we define the sum of node cost and temporal cost as costj},t =
fP(xp T) + cf(xt X, 1) Therefore, a sufficient condition of Eqn (49) is
.t ”2 < A=A . 2
1+Al0 bp+2-tr+Ls- Dy

llxf = x7 - costy,, (51)
By summarizing the sufficient condition in Eqn (47-51), we conclude that for any x; satisfying
Eqn (51) must satisfy the original constraint Eqn (13). If the ML advice X} satisfies the inequality
in Eqn (51), we can completely follow ML advice without any modification for node o. Otherwise,

we construct a £° achieves equity in Eqn (51) and satisfies ||£° — 7| = [|x% — x;"|| — [|%? — 2|l
Therefore, the distance between the constructed action x; and ML advice is given by
A-2 :
: - Ao 2
%2 = %2|| = | 1x2 = x> - = - cost], (52)
1+/1—0 ff+2'[7"+f5~D1,

Since x; is obtained by minimizing its distance to ML action x} under the original constraint in
Eqn (13), it’s obvious that ||x} — x7|| < [|X} — X7 ||. Besides, we have the following inequality

+\ 2
||3Ef—xf’1'|| Y il : 2 -costzt
1+/1—10 ff+2-fT+f5~DU ’

N (53)
A=A 2 N
< |1%F - x; T|| = - cost,,
1+ 4 [f+2'fT+f5~DU
0
By summing up the inequalities over time, we complete the proof. O
Proor oF THEOREM 5.2. Based on Lemma D.1, for any 4, > 0 we have
T T T T
(Zﬁ@ﬂZﬁwﬂJ}UMJZﬁwnZaﬁﬁﬂ
=1 =1 =1 =1
1 (e T P T
- J v _ ~op2 . L o _ o2 L v _ o2
St | 2l =R 5 Dl = 2P+ 5 D s = & (54)
=1 7=1 7=0
1 b +2-br &
< NS v _ ~o2
(14) ZH% ol

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:39

By summing up the spacial costs over time, we have

> isﬁv’”(xg,xz)-(lmz) > isﬁv’”(;zg,fc;*)

(vu)e& 7=1 (vu)ed 7=1

1 4s d

s _ o2 v _ ~o|2
<1+)5 D0 D7 (e = #2012 - 22112 (55)

(ou)e& =1
D, t’s -
=(1+ —) Z Z xp - x7|I?
veV 7=1

By adding Eqn (54) and Eqn (55), we can bound the cost error of node v as

tr+2-fr+Dy- L
cost(xy.7) — (1+ Ap)cost(F7) < (1+—)Z T San —#IP (56)
2 veV =1

where Dyx = max,ep Dy is the maximum degree of nodes. By substituting Lemma F.1 into Eqn (56),
we have

br+2-tr+1€s- . 3 A=A
cost(xir) = (1+ Ap)cost(Frr) < <1+—)ZZ — ”||x;’—xf’1||2—1+—i

0eV t=1 Ao

- cost!
cost,,

(57)
where the right-hand side captures the cost increase brought by the robustification process, which
is minimized by setting 40 = Y1+ A — 1. By taking the expectation of Eqn (57) over the context

distribution Py, ,., we have
AVG(LADO(7)) — (1+ 1) AVG(#) < (1+ —) 3 o4 7 7) (58)
2 veV
N o +
where wy(4, 7, 77) = By, , {ZLI [MH — XM (Viea-1)2. costl,,t] }.By optimally

: Zoev Wo (A7)
setting Az = | = UpE T

F.2 Proof of Corollary A.1

To prove the Corollary A.1, we first show the robustness is also guaranteed under the setting of
directed graphs. Secondly, we will provide the upper bound of the distance between actual action
taken by LADO and ML advice. Finally, we translate the action distance to the cost increase associated
with the projection. Since most of the proof steps are similar to the problem with undirected graphs,
we only highlight the difference here.

(ou) _ gy =g, 12
t—-1 =

]

we have

Based on Lemma D.1 and k - 5 >
”xz—l_x[—l” +llxj —xg 1“

out

DY¥ g s
D (8 Gttt) = (D G x)) £ P2 Dl — xR (59
(vu)eé&

Z Kt(f’lv) ((uv)(xt X 1)—(1+/1)s(u0)(xt X
(u,v)€&

) < 228 s

(1+)“xt 17 (60)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:40 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

By plugging the inequality back to Eqn (45), we can prove that if action constraint in Eqn (19) is
satisfied up to time ¢ — 1, the expert action xf’T is a feasible solution for the directed graph G. In
other words, the action set constructed by the constraint in Eqn (19) is nonempty for all ¢ € [1,T].

If the constraint in Eqn. (19) is satisfied at time ¢ — 1, a sufficient condition of the constraint at

time t is formulated as

1 ff +2- [T + [5 . (Dm Dout)
(14— It =2 12) < (= 20 (2 G+
Ao 2 (61)
G AR Y R e R S e i ot oun)
(vu)e& (w,0)e&
By defining cost = fR(x; M+ cf(x fjl) as the sum of expert’s node cost and temporal cost
for node v at time t, a sufficient condltlon of Eqn (61) is
¥ A=A 2 +

%2 — %272 < . costl,,t (62)

T4k 2ttt (DY + DY)

By substituting the action distance to Eqn (53) and summing up the distance over the horizon ¢ and
the entire graph, we obtain the total action distance between LADO and ML policy in the directed
graph. Then we finish the proof by translating the distance to the cost increase ncaccording to the
smoothness assumption of these three costs (Assumption 2.1 - 2.3)

F.3 Proof of Theorem 5.3

2642+ br+5 Dinax
Denote ¢ = % By (57), when ML gives the offline-optimal actions, i.e. X.7 = x] ;, W

have for any sequence gy.r,
cost(xy.r) — (1 + Az)cost(x] 1)
e 1 N (63)
<1+—t’§ E —xPME == (V1+21-1)%-cost]
(: eV t=1 [”x Xt I e ()" cos wt

By optimally setting A,, we have

T
cost(xy.7) < [qfcost(x] ;) + 4| Z

veV t=1

. 1 ’
I = = 5 (VI A= 1)2- costz,t} (64)

which translates to a competitive ratio of

N +
Taew Bl [ff” =22 I = (VI+ 2= 1)2 - cost], |
< min{ |1+14| max (14 Do
PLADO reG cost(X] 1, 91.1) (o

(65)

By B—strongly convexity of the cost function, we have Vcost(x] ;) = 0 and

cost(n") > cost(n*) + = Z Z ||x . (66)

ve(th

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:41

Thus, the competitive ratio can be simplified as

2
T 0%)12
Doy Z{—l ”x;) - X I
Lapo < |1+ 4/max 2¢ —
P \/ qiT cost (X} r» g1.1)

2

T *

4f cost(x, 1, g11) — cost(x] 1, gi.r)

1+ 4| max — 1791 - 1 91 (67)
gur cost(x; 1, g1.1)

(1+21f% (Pt —1)))

F.4 Proof of Corollary B.1

In Corollary B.1, we assume that x; in Eqn. (22) is used in LADO. To bound the average cost of
LADO(7}), we construct a policy that satisfies the constraint (13) for each step in each sequence. Then
the average cost bound of the constructed policy is also the average cost upper bound of LADO(7})
since LADO(7;) is the policy that minimizes average cost while satisfying the constraint (13) for
each step in each sequence if we assume that the ML model can represent any policy. The feasible
policy is constructed as # = (1 — a)7" + a#* which gives action x=(1- ot)x;”T +ax],a € [0,1],
where xI, X; denotes expert action and the prediction from projection-unaware ML model 7%,
respectively. We need to find the o that guarantees the satisfaction of the constraint (11). To do
that, we rewrite the constraint as

IA

IA

t t—1
Z(f“(x“) = (A fEGD) + 3 (@R - 2T+ 3T ST
=1 =1 =1 (ou)eé&
(5654 (2,2 = (1 20 (xpxt) (14) 2B =

t t t-1
<G=20) (et Y ety + 3 D s (e) ve e [1.T]
7=1 =1

=1 (ou)eé&
(68)
Based on the smoothness assumption, we have
) _ 1 b
JOED = A M) <t)l =P

R = 1+ A (5 <14 50 T (132 =TI+ 152 = 5 (69)

(v,u) (vu) (20 su _ A (ou) < V2 L1112

e, (57 (87, %) = (14 20)s,™ (T 6T) <(1 +) (H 2%

Then, a sufficient condition of Eqn (68) is
1 ff + Z[T + D,ts .

1+) —— Z 1122 = %2712 < (A = Ag)costy (x)), Vit € [1,T] (70)

Since Dyax = maxyeqy Dy is the maximum node degree in the whole graph, then the sufficient
condition becomes

t
2 /1—/1
2 0 vT 2 0 o,
o E X costy(x;’!),Vt € [1,T 71

_ 1%z I < € + 207 + Dinax - {s 1+—A10 o(*r) (171 (71)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:42 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

cost, (xf})

LTz

2 A-Xo 4
a <minq1, . IO-C =ay (72)
Lf + 267 + Diax -+ £s 1+ 5

We define C = MiNgey re[1,T] 5 as the minimum normalized baseline cost, then we

can have

In other words, as long as @ € [0, @], the robustness constraint is always satisfied. Based on the
convex assumption on hitting cost, temporal cost and spatial cost, we have

: +ax®) < (1- a)costv(xf:’:) + a - costy(X7,). (73)

costy(%7,,) = costy((1 — a)x;) e

By setting a = @ and taking expectation of both side over the data distribution, we finish the proof
of the first term in Theorem B.1. O

Received August 2024; revised September 2024; accepted October 2024

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Performance Metrics
	2.2 Application Examples

	3 LADO-Lin: Linearly Combining ML Advice and Expert Advice
	3.1 Local Information Availability
	3.2 Algorithm Design
	3.3 Performance Analysis

	4 LADO: Adaptively Combining ML Advice and Expert Advice
	4.1 Algorithm Design
	4.2 Designing a Robust Action Set

	5 Performance Bounds for LADO
	5.1 -Competitiveness
	5.2 Average Cost
	5.3 Robustness and Consistency

	6 Case Study: Decentralized Battery Management for Sustainable Computing
	6.1 Experimental Setup
	6.2 Baselines
	6.3 Results for Networks with 3 Nodes
	6.4 Results for Larger Networks

	7 Related Work
	8 Concluding Remarks
	References
	A Extension of LADO to Directed Graphs
	B Optimal Projection-Aware ML Training
	C Additional Experiments for Decentralized Battery Management
	C.1 ML Model Architecture and More Results for Networks with 3 Nodes
	C.2 Results for Large Networks

	D Proofs of Results in Section 3
	D.1 Proof of Theorem 3.1
	D.2 Proof of Proposition 3.2

	E Proof of Robustness in Theorem 5.1
	F Proof of Average Cost Bounds and Robust-Consistency of LADO
	F.1 Proof of Theorem 5.2
	F.2 Proof of Corollary A.1
	F.3 Proof of Theorem 5.3
	F.4 Proof of Corollary B.1

