
Learning-Augmented Decentralized Online Convex
Optimization in Networks
PENGFEI LI, University of California, Riverside, United States

JIANYI YANG, University of Houston, United States

ADAM WIERMAN, California Institute of Technology, United States

SHAOLEI REN, University of California, Riverside, United States

This paper studies learning-augmented decentralized online convex optimization in a networked multi-agent

system, a challenging setting that has remained under-explored. We first consider a linear learning-augmented

decentralized online algorithm (LADO-Lin) that combines a machine learning (ML) policy with a baseline

expert policy in a linear manner. We show that, while LADO-Lin can exploit the potential of ML predictions to

improve the average cost performance, it cannot have guaranteed worst-case performance. To address this

limitation, we propose a novel online algorithm (LADO) that adaptively combines the ML policy and expert

policy to safeguard theML predictions to achieve strong competitiveness guarantees. We also prove the average

cost bound for LADO, revealing the tradeoff between average performance and worst-case robustness and

demonstrating the advantage of training the ML policy by explicitly considering the robustness requirement.

Finally, we run an experiment on decentralized battery management. Our results highlight the potential of ML

augmentation to improve the average performance as well as the guaranteed worst-case performance of LADO.

CCS Concepts: • Computing methodologies → Machine learning; Distributed computing methodolo-

gies.

ACM Reference Format:

Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren. 2024. Learning-Augmented Decentralized Online

Convex Optimization in Networks. Proc. ACM Meas. Anal. Comput. Syst. 8, 3, Article 38 (December 2024),

42 pages. https://doi.org/10.1145/3700420

1 Introduction
This paper studies the problem of decentralized online convex optimization in networks, where

inter-connected agents must individually select actions with sequentially-revealed local online

information and delayed feedback from their neighboring agents. We consider a setting where,

at each step, agents must decide on an action using local information while collectively seeking

to minimize a global cost consisting of the sum of (i) the agents’ node costs, which capture the

local instantaneous effects of the individual actions; (ii) temporal costs, which capture the (inertia)

effects of local temporal action changes; and (iii) spatial costs, which characterize the loss due to

unaligned actions of two connected neighboring agents in the network. This problem models a

wide variety of networked systems with numerous applications, such as decentralized control in

Pengfei Li, Jianyi Yang, and Shaolei Ren were supported in part by the NSF under grants CNS-2007115 and CCF-2324941.

Adam Wierman was supported by NSF grants CCF-2326609, CNS-2146814, CPS-2136197, CNS-2106403, and NGSDI-2105648

as well as funding from the Resnick Sustainability Institute.

Authors’ Contact Information: Pengfei Li, pli081@ucr.edu, University of California, Riverside, Riverside, California, United

States; Jianyi Yang, jyang239@ucr.edu, University of Houston, Houston, Texas, United States; Adam Wierman, adamw@

caltech.edu, California Institute of Technology, Pasadena, California, United States; Shaolei Ren, sren@ece.ucr.edu, University

of California, Riverside, Riverside, California, United States.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs Interna-

tional 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2476-1249/2024/12-ART38

https://doi.org/10.1145/3700420

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

https://doi.org/10.1145/3700420
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3700420
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3700420&domain=pdf&date_stamp=2024-12-13

38:2 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

power systems [1–3], spectrum management in multi-user wireless networks [4–6], multi-product

pricing in revenue management [7, 8], among many others.

While centralized algorithms can effectively minimize the global cost, decentralized optimization

offers advantages including resilience to single-point failure and lower computational complexity.

Despite the recent progress (e.g., [9, 10]), online optimization in decentralized settings is inherently

more challenging due to limited information availability. Agents must coordinate their actions

across the network to minimize the global cost, while they usually lack complete knowledge of

future costs or the actions of their neighbors. This information gap presents significant challenges

for decentralized online optimization, compared to its centralized counterparts [11, 12].

To address these challenges, decentralized online convex optimization has been studied under

various settings. For example, online algorithms for the special single-agent case [12–18] have

been utilized as the basis for decentralized optimization to minimize the worst-case regret or

competitive ratio in the multi-agent case [9, 10, 19–22]. However, because these algorithms must

make conservative decisions to mitigate potentially adversarial uncertainties, they often do not

perform well in terms of the average cost. In contrast, online optimizers based on machine learning

(ML) can improve the average performance by exploiting the distributional information for various

problems, e.g., [23–26], includingmulti-agent networked systems [27–29]. But, ML-based optimizers

typically lack robustness guarantees and can result in a very high cost in the worst case (due to,

e.g., out-of-distribution inputs), which makes them unsuitable for mission-critical applications.

The field of learning-augmented algorithms has emerged in recent yearswith the goal of providing

“best of both worlds” guarantees: near-optimal performance with accurate ML predictions and

guaranteed robustness with inaccurate predictions. These algorithms have demonstrated success

in various online settings e.g., [11, 30–34]. However, existing learning-augmented algorithms

[11, 31, 35] primarily focus on centralized scenarios, making their adaptation to decentralized setups

technically challenging due to spatial uncertainties arising from limited information availability.

Moreover, these algorithms predominantly focus on worst-case performance guarantees, with less

emphasis on average cost performance.

Contributions.We study the challenging and under-explored setting of decentralized online

optimization in networks. We first consider a linear learning-augmented decentralized online

optimization algorithm (LADO-Lin), which linearly combines a potentially untrusted ML policy

with a trusted baseline policy (called “expert”). We show that LADO-Lin can exploit the power of ML

predictions to improve the average cost performance when the ML predictions are of sufficiently

high quality, but it cannot offer guaranteed competitiveness or robustness in the worst case when

ML predictions are of arbitrarily low quality.

To overcome LADO-Lin’s lack of guaranteed competitiveness, we introduce and analyze a novel

algorithm, LADO, that adaptively combines an ML policy with an expert policy based on the actual

online costs. The key idea behind LADO is to leverage the baseline expert policy to safeguard online

actions to avoid too greedily following ML predictions that may not be robust. In a decentralized

setting, the primary design challenge is managing spatial information inefficiency, as agents lack

prior knowledge of their neighbors’ actions. More concretely, the spatial cost is dependent on the

actions of neighboring agents, making it difficult for a single agent to evaluate it in isolation. To

address this and associated spatial cost uncertainties, we propose a novel spatial cost decomposition

that adaptively splits the shared spatial cost between connected agents, enabling each agent to

safeguard its own actions based on local information. To ensure non-empty action sets and maintain

robustness when deviating from the trusted expert policy, we also introduce temporal reservation

costs to address worst-case future cost uncertainties.

Our main results provide worst-case and average cost bounds for LADO (see Theorems 5.1, 5.2,

and B.1). We also show the worst-case robustness and consistency of LADO-Lin and LADO (see

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:3

Corollary 3.4 and Theorem 5.3). Importantly, unlike most of the prior work that assumes a black-

box ML model trained as a standalone optimizer, our results also provide average cost bounds for

training ML by explicitly considering how the ML policy will be used. Our results quantify the

improvement obtained by explicitly accounting for the robustness step in ML training.

To evaluate the effectiveness of LADO-Lin and LADO, we conduct experiments on decentralized

battery management for sustainable data centers, with a networked battery system of up to 120

nodes. Our results demonstrate the empirical benefits of our algorithms over existing baselines

across various network topologies. Both LADO-Lin and LADO, when augmented with ML, consis-

tently achieve strong average cost performance under various network topologies. Moreover, LADO
offers guaranteed robustness even when the ML predictions have low quality.

To summarize, the main contributions of our work are as follows. First, unlike existing learning-

augmented algorithms, we focus on the more challenging setting of decentralized optimization,

where agents make online decisions with delayed information about their neighbors’ actions.

Second, to guarantee worst-case robustness of LADO against a given policy in our decentralized

setting, our design of robust action sets includes novel adaptive spatial cost splitting, which is

a novel technique and differs from the design in a centralized setting. Last but not least, we

rigorously analyze and also empirically show the performance of LADO-Lin and LADO in terms of

their average-case and worst-case costs.

2 Problem Formulation
We study the setting introduced in [36] (where there is no ML policy augmentation) and consider

decentralized online convex optimization in a network with𝑉 = |V| agents/nodes belonging to the
setV . If two agents have interactions with each other, there exists an edge between them. Thus,

the networked system can be represented by an undirected graph (V, E), with E being the set of

edges. Each problem instance (a.k.a. episode) consists of 𝑇 sequential time steps.

At step 𝑡 = 1, · · · ,𝑇 , each agent 𝑣 selects an irrevocable action 𝑥 𝑣𝑡 ∈ R𝑛 . We denote 𝑥𝑡 =

[𝑥1𝑡 , · · · , 𝑥𝑉𝑡] as the action vector for all agents at step 𝑡 , where the superscript 𝑣 represents the

agent index whenever applicable. After 𝑥𝑡 is selected for step 𝑡 , the network generates a global cost

𝑔𝑡 (𝑥𝑡) which consists of the following three parts.

• Node cost 𝑓 𝑣𝑡 (𝑥 𝑣𝑡): Each individual agent incurs a node cost 𝑓 𝑣𝑡 (𝑥 𝑣𝑡), which only relies on the

action of a single agent 𝑣 at step 𝑡 and measures the effect of the agent’s decision on itself.

• Temporal cost 𝑐𝑣𝑡 (𝑥 𝑣𝑡 , 𝑥 𝑣𝑡−1): It couples the two temporal-adjacent actions of a single agent 𝑣

and represents the effect of temporal interactions to smooth actions over time.

• Spatial cost 𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡): It is incurred if an edge exists between two agents 𝑣 and𝑢, capturing

the loss due to unaligned actions of two connected agents.

This formulation applies directly to many real-world applications [36]. For example, in geo-

distributed cloud resource management, each data center is an agent whose server provisioning

decision (i.e., the number of on/off servers) incurs a node cost that captures its local operational

cost [37]. The temporal cost penalizes frequent servers on/off to avoid excessive wear-and-tear

(a.k.a., switching costs) [37]. Meanwhile, each data center’s decision results in an environmental

footprint (e.g., carbon emission and water consumption) [38]. Thus, the added spatial cost mitigates

inequitable environmental impacts in different locations to achieve environmental justice, which is

a crucial consideration in many corporates’ Environmental, Social, and Governance (ESG) strate-

gies [39]. In Section 2.2, we provide more modeling details, and explore two other applications:

decentralized battery management for sustainable computing and multi-product dynamic pricing.

Next, we make the following common assumptions for online optimization, e.g., [36, 40].

Assumption 2.1. The node cost 𝑓 𝑣𝑡 : R
𝑛 → R≥0 is 𝛽-strongly convex and ℓ𝑓 -smooth.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:4 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Assumption 2.2. The temporal interaction cost 𝑐𝑣𝑡 : R
𝑛 × R𝑛 → R≥0 is convex and ℓ𝑇 -smooth.

Assumption 2.3. The spatial interaction cost 𝑠𝑣,𝑢𝑡 : R𝑛 × R𝑛 → R≥0 is convex and ℓ𝑆 -smooth.

The convexity assumption is needed for analysis, while smoothness (i.e., Lipschitz-continuous

gradients) ensures that the costs will not vary unboundedly when the actions change [36].

The networked agents collaboratively minimize the total global cost over𝑇 time steps defined as:

𝑐𝑜𝑠𝑡 (𝑥1:𝑇) =
𝑇∑︁
𝑡=1

𝑔𝑡 (𝑥𝑡) =
𝑇∑︁
𝑡=1

∑︁
𝑣∈V

𝑓 𝑣𝑡 (𝑥 𝑣𝑡) +
𝑇∑︁
𝑡=1

∑︁
𝑣∈V

𝑐𝑣𝑡 (𝑥 𝑣𝑡 , 𝑥 𝑣𝑡−1) +
𝑇∑︁
𝑡=1

∑︁
(𝑣,𝑢) ∈E

𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡),

where 𝑔𝑡 (𝑥𝑡) =
∑

𝑣∈V 𝑓 𝑣𝑡 (𝑥 𝑣𝑡) +
∑

𝑣∈V 𝑐𝑣𝑡 (𝑥 𝑣𝑡 , 𝑥 𝑣𝑡−1) +
∑

(𝑣,𝑢) ∈E 𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) is the total cost at time 𝑡 .

In practice, we consider a weighted sum of the node, temporal, and spatial costs. These weights

assigned to each cost component reflect their relative importance in the overall cost metric. For

the convenience of presentation, we normalize the weight of the node cost to 1 and incorporate

the remaining weights directly into the individual cost terms. With a slight abuse of notation,

we also denote 𝑔𝑡 = {𝑓 𝑣𝑡 , 𝑐𝑣𝑡 , 𝑠
(𝑢,𝑣)
𝑡 , 𝑣 ∈ V, (𝑢, 𝑣) ∈ E} as the cost function information for step 𝑡 ,

and 𝑔1:𝑇 = [𝑔1, · · · , 𝑔𝑇] ∈ G as all the exogenously-determined information for the entire problem

instance where G is the set of all possible 𝑔1:𝑇 .

Our goal is to find a decentralized learning-augmented online policy 𝜋𝑣 for each agent 𝑣 that

maps the local available information (to be specified in Section 3.1) to its action 𝑥 𝑣𝑡 at time 𝑡 . For

notational convenience, we also denote 𝜋 = [𝜋1, · · · , 𝜋𝑉] as the combined policy for the network.

2.1 Performance Metrics
We consider the following two performance metrics — average cost and 𝜆-competitiveness.

Definition 2.4 (Average cost). Given a decentralized online policy 𝜋 = [𝜋1, · · · , 𝜋𝑉], the average
cost is 𝐴𝑉𝐺 (𝜋) = E𝑔1:𝑇 [𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇)], where the information 𝑔1:𝑇 follows a distribution P𝑔1:𝑇 .

Definition 2.5 (𝜆-competitive to 𝜋†
). For 𝜆 > 0, an online policy 𝜋 = [𝜋1, · · · , 𝜋𝑉] is 𝜆-competitive

against a baseline policy 𝜋† if 𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇) ≤ (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑇)) holds for any 𝑔1:𝑇 ∈ G.

The average cost measures the decision quality of the decentralized policy 𝜋 in typical cases,

whereas the 𝜆-competitiveness shows the worst-case competitiveness in terms of the cost ratio of

the global cost of 𝜋 to a given trusted baseline policy 𝜋†
(which is also referred to as an expert policy).

Our definition of 𝜆-competitiveness against 𝜋†
is both general and common in the literature on

learning-augmented online algorithms as well as online control [11, 41, 42], where competitiveness

is defined against a given baseline policy 𝜋†
[11, 30, 43]. Importantly, for our problem, there exist

various expert policies 𝜋†
(e.g., localized prediction control [36]) with bounded cost ratios against

the oracle policy𝑂𝑃𝑇 = 𝜋∗
that minimizes the global cost with all offline information. As a result, by

considering an expert policy with a competitive ratio of 𝜌𝜋† , our policy 𝜋 is also competitive against

the optimal oracle, i.e., 𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇) ≤ 𝜌𝜋† (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝑂𝑃𝑇,𝑔1:𝑇)) for any 𝑔1:𝑇 ∈ G. Alternatively,
the expert policy 𝜋†

can be viewed as a policy prior currently in use [44], while the new learning-

augmented policy 𝜋 must no worse than (1 + 𝜆)-times the policy prior in terms of the cost for any

problem instance.

The average cost and worst-case competitiveness metrics are different and complementary to

each other [11, 45]. Here, we take a competitiveness-constrained approach. Specifically, given both

an ML-based optimizer and an expert algorithm as advice, we aim to find a learning-augmented

policy 𝜋 = [𝜋1, · · · , 𝜋𝑉] to minimize the average cost subject to the 𝜆-competitiveness constraint:

min

𝜋
E𝑔1:𝑇 [𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇)] , 𝑠 .𝑡 ., 𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇) ≤ (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑇), ∀𝑔1:𝑇 ∈ G. (1)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:5

While offline-trained ML-based policies (e.g., based on multi-agent reinforcement learning [27–

29]) can potentially minimize the average cost, they may not satisfy 𝜆-competitiveness in the

worst case. In fact, it is well-known that due to the statistical nature, ML-based policies can have

arbitrarily bad performance in certain (possibly rare) cases, especially when the testing problem

instance is very distinct from those training instances [35]. Thus, we adopt a learning-augmented

approach where we integrate an ML-based policy into decision-making while using a trusted expert

policy to safeguard our online decisions.

2.2 Application Examples
To make our model concrete, we present the following application examples. Readers are also

referred to [36] for additional examples.

Decentralized battery management for sustainable computing. Traditionally, data centers

rely on fossil fuels such as coal or natural gas to power their operation. Thus, with the proliferating

demand for cloud computing and artificial intelligence services, there have been increasing environ-

mental concerns with data centers’ growing carbon emissions. As such, it is important to find ways

to reduce data centers’ carbon footprint and mitigate their environmental impact — decarbonizing

data centers. While renewable energy sources, such as solar and wind, are natural alternatives for

sustainable data centers, their availability can be highly fluctuating subject to weather conditions,

thus imposing significant challenges to meet data centers’ energy demands. Consequently, large

energy storage consisting of multiple battery units has become essential to leverage intermittent

renewable energy to power data centers for sustainable computing. Nonetheless, it is challenging to

manage a large energy storage system to achieve optimal efficiency. Specifically, while each battery

unit is responsible for its own charging/discharging decisions to keep the energy level within a

desired range (e.g., 20-80%) in decentralized battery management, the state-of-charge (SoC) levels

across different battery units should also be maintained as uniform as possible to extend the overall

battery lifespan and energy efficiency [46]. This problem can be well captured by converting a

canonical form into our model: each battery unit decides its SoC level by charging/discharging and

incurs a node cost (i.e., SoC level deviating from the desired range) and a temporal cost (i.e., SoC

changes due to charging/discharging), and meanwhile there is a spatial cost due to SoC differences

across different battery units.

More concretely, we consider an energy storage system that includes a set of battery unitsV
interconnected through physical connections E. For a battery unit 𝑣 ∈ V , the goal is to minimize

the difference between the current SoC and a nominal value 𝑥𝑣 plus a power grid’s usage cost,

which can be defined as a local objective: min𝑢𝑣,1:𝑇

∑𝑇
𝑡=1 ∥𝑥𝑣,𝑡 − 𝑥𝑣 ∥2 +

∑𝑇
𝑡=1 𝑏∥𝜉𝑣,𝑡 ∥2, where 𝜉𝑣,𝑡 is

the charging/discharging schedule from the power grid (i.e., 𝜉𝑣,𝑡 > 0 means drawing energy from

the grid and 𝜉𝑣,𝑡 < 0 means returning energy to the grid) and 𝑏 is the power grid’s usage penalty

cost. The time index for the first term starts at 𝑡 = 2 as we assume a given initial state 𝑥𝑣,1 (i.e., the

SoC cost at 𝑡 = 1 is already given). The canonical form of the battery SoC dynamics follows by

𝑥𝑣,𝑡 = 𝐴𝑣𝑥𝑣,𝑡−1 + 𝐵𝑣𝜉𝑣,𝑡 +𝐶𝑣𝑤𝑣,𝑡 , where 𝐴𝑣 denotes the self-degradation coefficient, 𝐵𝑣 denotes the

charging efficiency,𝑤𝑣,𝑡 is the data center’s net energy demand from battery unit 𝑣 (i.e.,𝑤𝑣,𝑡 > 0

means the data center’s energy demand exceeds the available renewables and𝑤𝑣,𝑡 < 0 otherwise),

𝐶𝑣 denotes the conversion coefficient (inversely proportional to the capacity of battery unit 𝑣),

which translates the net energy demand to the change in battery SoC.

Based on the physical connection (𝑢, 𝑣) ∈ E, the SoC difference between battery units 𝑢 and 𝑣

can lead to reduced performance and lifespan. For instance, the battery voltage difference caused by

different SoCs may cause overheating problems or even battery damage [46]. Thus, to penalize the

SoC difference between two interconnected battery units, we add a spatial cost

∑
(𝑣,𝑢) ∈E 𝑐 · ∥𝑥 𝑣𝑡 −𝑥𝑢𝑡 ∥2,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:6 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

where 𝑐 is the SoC difference penalty coefficient. Thus, the total control cost is

min

{𝑢𝑣,1:𝑇 ,∀𝑣∈V}

𝑇∑︁
𝑡=1

∑︁
𝑣∈V

∥𝑥𝑣,𝑡 − 𝑥𝑣 ∥2 +
𝑇∑︁
𝑡=1

∑︁
𝑣∈V

𝑏∥𝜉𝑣,𝑡 ∥2 +
𝑇∑︁
𝑡=1

∑︁
(𝑣,𝑢) ∈E

𝑐 ∥𝑥 𝑣𝑡 − 𝑥𝑢𝑡 ∥2 . (2)

Next, we convert (2) into our formulation decentralized online convex optimization. At time

𝑡 , we define 𝑦𝑣,𝑡 = 𝑥𝑣 − 𝐴𝑡
𝑣𝑥𝑣,1 −

∑𝑡
𝑖=1𝐴

𝑡−𝑖
𝑣 𝐶𝑣𝑤𝑣,𝑖 as the context parameter determined by all the

previous states and online inputs, and 𝑎𝑣,𝑡 =
∑𝑡

𝑖=1𝐴
𝑡−𝑖
𝑣 𝐵𝑣𝜉𝑣,𝑖 as the corresponding node 𝑣 ’s online

action in our model. Then, we define the node cost for 𝑣 as 𝑓 𝑣𝑡 (𝑎𝑣,𝑡) = ∥𝑎𝑣,𝑡 − 𝑦𝑣,𝑡 ∥2 = ∥𝑥𝑣,𝑡 − 𝑥𝑣 ∥2,
the temporal cost for 𝑣 as 𝑐𝑣𝑡 (𝑎𝑣,𝑡 , 𝑎𝑣,𝑡−1) = 𝑏

𝐵2

𝑣
∥𝑎𝑣,𝑡 −𝐴𝑣𝑎𝑣,𝑡−1∥2 = 𝑏∥𝜉𝑣,𝑡 ∥2, and the spatial cost for

edge (𝑣,𝑢) as 𝑠 (𝑣,𝑢)𝑡 = 𝑐 ∥(𝑎𝑣,𝑡 − 𝑎𝑢,𝑡) − (𝑦𝑣,𝑡 − 𝑦𝑢,𝑡) + 𝑥𝑣 − 𝑥𝑢 ∥2 = 𝑐 ∥𝑥 𝑣𝑡 − 𝑥𝑢𝑡 ∥2. By combining these

three costs together, the total global cost becomes

min

{𝑎𝑣,1:𝑇 ,∀𝑣∈V}

𝑇∑︁
𝑡=1

(∑︁
𝑣∈V

∥𝑎𝑣,𝑡 − 𝑦𝑣,𝑡 ∥2 +
∑︁
𝑣∈V

𝑏

𝐵2

𝑣

∥𝑎𝑣,𝑡 −𝐴𝑣𝑎𝑣,𝑡−1∥2+∑︁
(𝑣,𝑢) ∈E

𝑐 ∥(𝑎𝑣,𝑡 − 𝑎𝑢,𝑡) − (𝑦𝑣,𝑡 − 𝑦𝑢,𝑡) + 𝑥𝑣 − 𝑥𝑢 ∥2
)
,

(3)

which has the same form as our formulation (1) if we view 𝑎𝑣,𝑡 as node 𝑣 ’s online action at time 𝑡 .

Geographic server provisioning with environmental equity. Online service providers

commonly rely on geographically distributed data centers in the proximity of end users to minimize

service latency. Nonetheless, data centers are notoriously energy-intensive. Thus, given time-

varying workload demands, the data center capacity (i.e., the number of active servers) needs to

be dynamically adjusted to achieve energy-proportional computing and minimize the operational

cost [37]. More specifically, each data center dynamically provisions its servers in a decentralized

manner, based on which the incoming workloads are scheduled [47]. Naturally, turning on more

servers in a data center can provide better service quality in general, but it also consumes more

energy and hence negatively results in a higher environmental footprint (e.g., carbon and water,

which both roughly increase with the energy consumption proportionally [38, 39]).

While it is important to reduce the total environmental footprint across geo-distributed data

centers, addressing environmental inequity — mitigating locational disparity in terms of negative

environmental consequences caused by data center operation — is also crucial as inequity can

create significant business risks and unintended societal impacts [48]. Indeed, the emergence of

data centers’ environmental inequity has been recently compared to “historical practices of settler

colonialism and racial capitalism” [49] and calls for attention from various environmental groups

and policy think tanks [50, 51].

To address environmental inequity, we view each data center as a node 𝑣 in our model. The data

center 𝑣 makes its own dynamic server provisioning decision 𝑥 𝑣𝑡 (i.e., the number of active servers,

which can be treated as a continuous variable due to tens of thousands of servers in data centers),

and incurs a node cost 𝑓 𝑣𝑡 (𝑥 𝑣𝑡) that captures the local energy cost, environmental footprint, and

service quality [37]. The temporal cost 𝑐𝑣𝑡 (𝑥 𝑣𝑡 , 𝑥 𝑣𝑡−1) = ∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡−1∥2 captures the negative impact

of switching servers on and off (e.g., wear-and-tear), which is also referred to as the switching

cost in the data center literature [37]. Additionally, the spatial cost 𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) can be written as

𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) = ∥𝑒𝑣𝑡 𝑥 𝑣𝑡 − 𝑒𝑢𝑡 𝑥

𝑢
𝑡 ∥2 where 𝑒𝑣𝑡 is the weighted environmental “price” (e.g., water usage

efficiency scaled by the average per-server energy) in data center 𝑣 . Thus, the spatial cost addresses

environmental justice concerns by penalizing difference between data center 𝑣 and data center 𝑢

in terms of their environmental footprint. As a result, by considering weighted sums of the node

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:7

costs, temporal costs, and spatial costs, our model applies to the problem of geographic server

provisioning with environmental justice, which is emerging as a critical concern in the wake of

increasingly hyperscale data centers that may leave certain local communities to disproportionately

bear the negative environmental consequences.

Multi-product dynamic pricing. As digital marketplaces continue to grow, offering a diverse

range of products or services becomes inevitable for businesses that seek to cater to diverse consumer

preferences. As such, a dynamic multi-product pricing policy is vital for revenue management.

For instance, the online platform may modify product prices multiple times within a single day,

considering the estimated user demand, competitor prices and inventory dynamics. Nevertheless,

due to the intricate relationships products share within the marketplace, it is a challenging task to

set prices. For example, for complementary products (e.g. laptop vs headphones), a special offer on

a certain laptop may stimulate the demand for headphones and other accessories. Additionally,

customers may also observe historical prices, which affects their willingness to buy. In other words,

the current demand for a certain product can be temporally coupled with the previous prices [36]. In

our framework, the temporal interaction and spatial interaction costs model the effects of multiple

product relationships and user behaviors, respectively. More specifically, at time 𝑡 , suppose that the

price of product 𝑣 is 𝑥 𝑣𝑡 . Then, under a linear demand model, the total revenue is represented by

𝑇∑︁
𝑡=1

[∑︁
𝑣∈V

𝑥 𝑣𝑡 (𝑎𝑣𝑡 − 𝑘𝑣𝑡 𝑥
𝑣
𝑡) +

∑︁
𝑣∈V

𝑥 𝑣𝑡 (𝑏𝑣𝑡 𝑥 𝑣𝑡−1) +
∑︁

(𝑢,𝑣) ∈E
𝑥 𝑣𝑡 (𝜉

(𝑢,𝑣)
𝑡 𝑥𝑢𝑡)

]
(4)

where 𝑎𝑣𝑡 −𝑘𝑣𝑡 𝑥
𝑣
𝑡 models the nominal demand under price 𝑥𝑡 , 𝑏

𝑣
𝑡 quantifies the effect of the previous

price, the coefficient 𝜉
(𝑢,𝑣)
𝑡 denotes the spatial relationships between a product pair (𝑢, 𝑣). Under

realistic parameter settings, this problem can be converted into our model of decentralized online

convex optimization (see [36] for details).

3 LADO-Lin: Linearly Combining ML Advice and Expert Advice
To begin, we study a simple approach toward designing a learning-augmented algorithm, which uses

a fixed linear combination of ML-based untrusted policy and the trusted expert policy, i.e., Linear

Learning-Augmented Decentralized Online Optimization (LADO-Lin). We analyze the performance

of LADO-Lin and highlight its key limitation: the lack of guaranteed worst-case competitiveness.

3.1 Local Information Availability
Our goal is to effectively use both ML-based advice and expert advice to solve (1) in a decentralized

online manner. In our setting, each agent 𝑣 ∈ V has access to a decentralized online ML policy 𝜋̃𝑣

and a decentralized online expert policy 𝜋
†
𝑣 , which produce actions 𝑥 𝑣𝑡 and 𝑥

𝑣,†
𝑡 at time 𝑡 = 1, · · · ,𝑇 ,

respectively, based on local online information. Then, given 𝑥 𝑣𝑡 and 𝑥
𝑣,†
𝑡 , the agent 𝑣 chooses its

actual action 𝑥 𝑣𝑡 using LADO-Lin.
More specifically, the following online information is revealed to each agent 𝑣 at step 𝑡 : node

cost function 𝑓 𝑣𝑡 , temporal cost function 𝑐𝑣𝑡 , spatial cost function 𝑠
(𝑣,𝑢)
𝑡−1 , connected agents’ actions

𝑥𝑢𝑡−1 and their corresponding expert actions 𝑥
𝑢,†
𝑡−1 for (𝑣,𝑢) ∈ E. That is, at the beginning of step 𝑡 ,

each agent 𝑣 receives its own node cost and temporal cost functions for time 𝑡 , and also the spatial

cost along with the actual/expert actions from the neighboring agents connected to agent 𝑣 for

time 𝑡 − 1. Thus, before choosing an action at time 𝑡 , all the local information available to agent 𝑣

can be summarized as

𝐼 𝑣𝑡 = {𝑓 𝑣
1:𝑡 , 𝑐

𝑣
1:𝑡 , 𝑠

(𝑣,𝑢)
1:𝑡−1, 𝑥

𝑢
1:𝑡−1, 𝑥

𝑢,†
1:𝑡−1, 𝑍

𝑣
𝑡 , (𝑣,𝑢) ∈ E}, (5)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:8 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Algorithm 1 Learning-Augmented Online Decentralized Optimization for Agent 𝑣 ∈ V

Require: Expert policy 𝜋
†
𝑣 , and ML policy 𝜋̃𝑣

1: for 𝑡 = 1, · · · ,𝑇 do

2: Collect local online information 𝐼 𝑣𝑡 .

3: Obtain ML prediction 𝑥 𝑣𝑡 and expert action 𝑥
𝑣,†
𝑡 based on 𝐼 𝑣𝑡 , respectively.

4: Choose the action 𝑥 𝑣𝑡 = 𝛾𝑥 𝑣𝑡 + (1 − 𝛾)𝑥 𝑣,†𝑡 in LADO-Lin, and 𝑥𝑡 = 𝜓𝜆 (𝑥 𝑣𝑡) by (9) in LADO.
5: end for

where 𝑍 𝑣
𝑡 captures the other applicable information (e.g., agent 𝑣 ’s own actual/ML/expert actions in

the past). Moreover, knowledge of cost functions over the next 𝑘 temporal steps and/or 𝑟 -hop agents

in the network can further improve the competitiveness of expert policies [36] and, if available, be

included in 𝑍 𝑣
𝑡 . Without loss of generality, we use 𝐼 𝑣𝑡 as the locally available information for agent

𝑣 at time 𝑡 . Additionally, the smoothness parameters ℓ𝑓 , ℓ𝑐 , and ℓ𝑠 and robustness parameter 𝜆 are

known to the agents as shared information.

Our information availability setting is in line with that considered by the prior literature on

decentralized online convex optimization [36], except that each agent has access to both the ML

advice and expert advice in our setting. Note also that there is a separate line of research of online

convex optimization that assumes the node cost function 𝑓 𝑣𝑡 is only revealed to the agent at the

end of time 𝑡 [52], but they often have different design goals (e.g., sublinear regret compared to a

static baseline policy) than our worst-case competitiveness guarantees against a dynamic baseline
policy specified in Definition 2.5.

Most importantly, unlike in a centralized setting, an agent 𝑣 must individually choose its ir-

revocable action 𝑥 𝑣𝑡 on its own — it cannot communicate its action 𝑥 𝑣𝑡 or its expert action 𝑥
𝑣,†
𝑡

to its connected agent 𝑢 until the next time step 𝑡 + 1. The one-step delayed feedback of the

spatial costs and the actual/expert actions from the connected agents is commonly studied in

decentralized online convex optimization [36] and crucially differentiates our work from the prior

centralized learning-augmented algorithms, adding challenges for ensuring the satisfaction of the

𝜆-competitiveness requirement.

3.2 Algorithm Design
In our problem, each individual agent 𝑣 ∈ V is provided with the potentially untrusted ML advice

𝑥 𝑣𝑡 and the trusted expert advice 𝑥
†
𝑡 at time time 𝑡 ∈ [1,𝑇] based on its local online information 𝐼 𝑣𝑡

specified in (5). The assumption of an offline-trained predictor (i.e., ML policy in our case) is standard

in learning-augmented algorithms [30, 32, 53, 54] as well as general learning-based optimizers

[23, 26, 55]. For our problem, approaches such as multi-agent reinforcement learning [27–29] can

be used to train ML policies for each agent. When the context is clear, we also interchangeably use

ML prediction to refer to the ML action or advice.

Had we known which policy — the ML policy 𝜋̃ or the expert policy 𝜋†
— would be better for a

problem instance in advance, the problem would become trivial and we just need to choose the

better policy. But, this is not possible in an online setting. To exploit the potential of ML predictions

by augmenting the expert advice 𝑥
†
𝑡 with the ML advice 𝑥 𝑣𝑡 , out first attempt is to construct a linear

combination of the two advice for each agent, which is defined as follows:

𝑥 𝑣𝑡 = 𝛾𝑥 𝑣𝑡 + (1 − 𝛾)𝑥 𝑣,†𝑡 , ∀𝑣 ∈ V (6)

where 𝛾 ∈ [0, 1] is the hyperparameter that reflects our confidence in ML predictions: the larger

𝛾 ∈ [0, 1], the more we trust the ML advice. We refer to this algorithm as LADO-Lin, which is also

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:9

described in Algorithm 1. Note that, in Algorithm 1, we run the expert policy (e.g., the localized

policy proposed in [36]) independently as if it is applied alone. Thus, the expert policy 𝜋
†
𝑣 does not

need to use all the information in 𝐼 𝑣𝑡 .

3.3 Performance Analysis
We first analyze the performance of LADO-Lin in terms of its average cost bound as follows.

Theorem 3.1 (Average cost of LADO-Lin). For any 𝛾 ∈ [0, 1], the average cost of LADO-Lin is upper
bounded by

AVG(LADO-Lin) ≤ min

{
𝛾AVG(𝜋̃) + (1 − 𝛾)AVG(𝜋†),

©­«
√︁
AVG(𝜋̃) + (1 − 𝛾)

√√√
E𝑔1:𝑇

[𝑇∑︁
𝑡=1

∑︁
𝑣∈V

ℓ𝑓 + 2ℓ𝑇 + ℓ𝑆𝐷𝑣

2

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2

]ª®¬
2 }
(7)

where AVG(𝜋̃) and AVG(𝜋†) are the average costs of the ML policy and expert over the distribution
𝑔1:𝑇 ∼ P𝑔1:𝑇 , respectively.

In Theorem 3.1, the cost bound for LADO-Lin is given by the minimum of two terms: the first

term is based on the convex property of the cost functions in our networked system, and the second

term is derived in terms of the expected total distance between the ML and expert actions based on

the smoothness of the costs. The proof is available in Appendix D.

Naturally, with a larger 𝛾 ∈ [0, 1], the cost of LADO-Lin is more determined by the cost of the

ML policy 𝜋̃ . In practice, the ML policy is often trained to minimize the average cost, while the

expert policy is conservatively designed to address the worst case. Thus, for a well-trained ML

policy, we typically have AVG(𝜋̃) < AVG(𝜋†). This means that to minimize the average cost, we

should choose 𝛾 = 1, i.e., purely following the ML advice.

While LADO-Lin can successfully exploit the potential of ML predictions by setting a large

𝜆 ∈ [0, 1], it hardly meets the 𝜆-competitiveness constraint (Definition 2.5). Indeed, unless the ML

policy itself is sufficiently close to the optimal policy for any problem instance 𝑔1:𝑇 ∈ G, LADO-Lin
cannot meet the 𝜆-competitiveness constraint. This is formalized as follows.

Theorem 3.2. Given any problem instance 𝑔1:𝑇 ∈ G, denote 𝑥 = [𝑥1, · · · , 𝑥𝑇] and 𝑥∗ = [𝑥∗
1
, · · · , 𝑥∗

𝑇
]

as the actions produced by the ML model and the offline optimal policy, respectively, where we suppress
the dependency on 𝑔1:𝑇 for notational convenience. Suppose that the cost of the offline optimal policy is
given by 𝑐𝑜𝑠𝑡 (𝜋∗, 𝑔1:𝑇) For any linear combination hyperparameter 𝛾 ∈ [0, 1], if LADO-Lin satisfies
the 𝜆-competitiveness constraint in Definition 2.5, we must have

∥𝑥 − 𝑥∗∥2
𝑐𝑜𝑠𝑡 (𝜋∗, 𝑔1:𝑇)

≤ 2

𝛽

(
1 − 𝛾

𝛾

√︁
𝜌𝜋† − 1 + 1

𝛾

√︁
(1 + 𝜆)𝜌𝜋† − 1

)
2

(8)

where 𝛽 > 0 is the strong convex parameter of the node cost functions in Assumption 2.1, 𝜆 > 0 is the
competitiveness constraint parameter, and 𝜌𝜋† = max𝑔1:𝑇 ∈G

𝑐𝑜𝑠𝑡 (𝜋†,𝑔1:𝑇)
𝑐𝑜𝑠𝑡 (𝜋∗,,𝑔1:𝑇) > 1 is the competitive ratio of

the expert policy 𝜋†.

Theorem 3.2 is proved in Appendix D.2 and provides a necessary condition for LADO-Lin to

satisfy the 𝜆-competitiveness constraint with respect to the expert policy. The metric
∥𝑥̃−𝑥∗ ∥2

𝑐𝑜𝑠𝑡 (𝜋∗,𝑔1:𝑇) in

(8) measures the distance between the ML policy and the offline optimal policy (normalized by the

optimal cost) and is also commonly used by prior studies [35, 56] to characterize the ML prediction

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:10 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

quality. Intuitively, as 𝜆 > 0 increases, the competitiveness constraint becomes more relaxed, and

so does the requirement on the ML prediction quality. Additionally, as LADO-Lin relies less on the

ML policy (i.e., 𝛾 ∈ [0, 1] becomes smaller) and/or the expert policy itself has a higher competitive

ratio 𝜌𝜋† , there is a less stringent requirement on
∥𝑥̃−𝑥∗ ∥2

𝑐𝑜𝑠𝑡 (𝜋∗,𝑔1:𝑇) for 𝜆-competitiveness with respect to

the expert.

Importantly, Theorem 3.2 highlights that, unless we completely ignore the ML advice (i.e.,

setting 𝛾 = 0), the discrepancy between the ML policy and the optimal policy measured in terms of

∥𝑥̃−𝑥∗ ∥2
𝑐𝑜𝑠𝑡 (𝜋∗,𝑔1:𝑇) must be upper bounded by (8) for 𝜆-competitiveness given any problem instance𝑔1:𝑇 ∈ G.

The larger 𝛾 , the greater dependency on ML predictions to improve the average performance, but

the more difficult to meet the worst-case 𝜆-competitiveness constraint.

In practice, it is extremely challenging, if not impossible, to ensure that the ML predictions

satisfy (8) for any problem instance. It is well-known that, although a trained ML model can

perform well on average, its performance in certain (possibly rare) cases can have an arbitrarily bad

quality, especially when the testing problem instance is very distinct from those training instances.

This is also the key motivation for safeguarding ML predictions to guarantee the worst-case

competitiveness.

The performance of a learning-augmented algorithm is also analyzed under two extreme cases

when the ML policy is arbitrarily bad and when it is perfect (i.e., robustness-consistency analysis

[53, 57]). Next, we show the robustness and consistency of LADO-Lin.

Definition 3.3 (Robustness-consistency). Suppose that the competitive ratios of the ML policy 𝜋̃ and a
learning-augmented online policy 𝜋 are 𝜌𝜋̃ = max𝑔1:𝑇 ∈G

𝑐𝑜𝑠𝑡 (𝜋̃,𝑔1:𝑇)
𝑐𝑜𝑠𝑡 (𝜋∗,,𝑔1:𝑇) and 𝜌𝜋 = max𝑔1:𝑇 ∈G

𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇)
𝑐𝑜𝑠𝑡 (𝜋∗,,𝑔1:𝑇) ,

respectively, where 𝜋∗ is the optimal offline policy. Then, 𝜌𝜋 is called the robustness of the policy 𝜋

when 𝜌𝜋̃ → ∞, and the consistency when 𝜌𝜋̃ = 1.

Corollary 3.4 (Robustness-consistency of LADO-Lin). When 𝜌𝜋̃ → ∞, the robustness of LADO-Lin
is 𝜌LADO-Lin = ∞ for 𝛾 ∈ (0, 1] and 𝜌LADO-Lin = 𝜌𝜋† for 𝛾 = 0; when 𝜌𝜋̃ = 1, the consistency of
LADO-Lin is upper bounded by 𝜌LADO-Lin = 𝛾 + (1 − 𝛾)𝜌𝜋† where 𝜌𝜋† = max𝑔1:𝑇 ∈G

𝑐𝑜𝑠𝑡 (𝜋†,𝑔1:𝑇)
𝑐𝑜𝑠𝑡 (𝜋∗,,𝑔1:𝑇) > 1 is

the competitive ratio of the expert policy 𝜋†.

Corollary 3.4 shows that while LADO-Lin can improve the competitive ratio over the (best) expert

policy 𝜋†
for 𝛾 ∈ (0, 1], it has an unbounded robustness when the ML policy has an arbitrarily

high cost. This shows the tension between following ML predictions for improving the average

cost performance and staying close to the expert policy for worst-case robustness. Thus, both

Theorem 3.2 and Corollary 3.4 highlight the key limitation of LADO-Lin, i.e., lack of worst-case

performance guarantees.

4 LADO: Adaptively Combining ML Advice and Expert Advice
The previous section highlights that LADO-Linwith a fixed linear combination of the ML prediction

and expert advice cannot offer guaranteed competitiveness or robustness in the worst case when

ML predictions are of arbitrarily low quality. To address this limitation, this section proposes an

adaptive approach based on a novel spatial cost decomposition and temporal reservation cost.

Specifically, we present learning-augmented decentralized online optimization (LADO), an algorithm

that adaptively exploits the benefits of ML while guaranteeing 𝜆-competitiveness against any given

expert policy 𝜋†
in a network.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:11

4.1 Algorithm Design
We present our learning-augmented decentralized online algorithm, LADO, in Algorithm 1, where

an ML policy is trained offline and deployed online by each agent 𝑣 as in LADO-Lin.
To address the limitation of LADO-Lin and guarantee 𝜆-competitiveness to the expert, the

crux of LADO is to carefully leverage ML predictions while being close enough to expert actions.

Specifically, we design a novel robust action set that addresses the key challenge that only local

online information 𝐼 𝑣𝑡 is available to each agent 𝑣 in our decentralized setting. By choosing an

action that falls into the robust action set while staying close to the ML prediction, LADO guarantees
𝜆-competitiveness and exploits the benefits of ML predictions, achieving the best of both worlds.

Concretely, we project the ML prediction 𝑥 𝑣𝑡 into the robust action set denoted by X𝑣
𝜆,𝑡

as follows

𝑥 𝑣𝑡 = arg min

𝑥∈X𝑣
𝜆,𝑡

∥𝑥 − 𝑥 𝑣𝑡 ∥2, (9)

where the robust action set X𝑣
𝜆,𝑡

is convex and will be specified in Section 4.2. Thus, the projection

in (9) can be efficiently performed by solving convex optimization at each individual agent 𝑣 .

In contrast with the fixed linear combination of the ML prediction and expert advice in LADO-Lin
that is provably insufficient for competitiveness guarantees, the novel robust action set we design

for LADO is adaptively chosen based on the online costs of actual actions and the expert policy,

guaranteeing 𝜆-competitiveness for any 𝜆 > 0.

4.2 Designing a Robust Action Set
The core of LADO is an action set that “robustifies” ML predictions for 𝜆-competitiveness. This

is challenging due to the temporal and spatial information inefficiency — the 𝜆-competitiveness

requirement in (1) is imposed over the total global cost over 𝑇 steps, whereas each agent must

choose its action based on local and online information 𝐼 𝑣𝑡 .

To construct a robust action set X𝑣
𝜆,𝑡

locally computable by each agent, we first convert the

𝜆-competitiveness constraint over 𝑇 time steps to an equivalent anytime constraint below.

Proposition 4.1 (Anytime 𝜆-competitiveness). For any 𝜆 > 0, to guarantee the 𝜆-competitiveness
constraint 𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑡) ≤ (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑡), ∀𝑔1:𝑡 ∈ G, a sufficient and necessary condition is

𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑡) ≤ (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑡), ∀𝑡 ∈ [1,𝑇], (10)

where 𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑡) is the cumulative global cost of a policy 𝜋 up to time 𝑡 ∈ [1,𝑇].

Proof. The sufficient part in Proposition 4.1 is straightforward, while the necessary part can be

proved by constructing a counter-example as follows. Suppose that there is a time 𝑡 ∈ [1,𝑇 − 1]
such that 𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑡) ≥ (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑡) + 𝜖 , where 𝜖 > 0. It is possible that the expert’s

future total cost 𝑐𝑜𝑠𝑡 (𝜋†, 𝑔𝑡+1:𝑇) < 𝜖
1+𝜆 . Then, by the non-negativeness of the cost functions,

the policy 𝜋 ’s total cost 𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇) ≥ 𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑡) ≥ (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑡) + 𝜖 > (1 + 𝜆) ·[
𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑡) + 𝑐𝑜𝑠𝑡 (𝜋†, 𝑔𝑡+1:𝑇)

]
= (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑇), violating 𝜆-competitiveness. □

While Proposition 4.1 simplifies the 𝜆-competitiveness constraint, the spatial cost in (10) cannot be

locally computed by each agent in a decentralized manner without knowing its neighboring agents’

actions. Moreover, due to the future uncertainties and coupling of actions in online optimization, it

is very challenging to meet the constraints (10) for every 𝑡 ∈ [1,𝑇]. To address these challenges,
we propose novel adaptive spatial cost decomposition and introduce reservation costs to safeguard

online actions for 𝜆-competitiveness.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:12 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

𝑡∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣𝜏) +
𝑡∑︁

𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1) +
𝑡−1∑︁
𝜏=1

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 · 𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏) + 𝑅(𝑥 𝑣𝑡 , 𝑥 𝑣,†𝑡)

≤(1 + 𝜆)
(𝑡∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣,†𝜏) +
𝑡∑︁

𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣,†𝜏 , 𝑥
𝑣,†
𝜏−1) +

𝑡−1∑︁
𝜏=1

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 · 𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣,†𝜏 , 𝑥𝑢,†𝜏)

) (13)

4.2.1 Spatial Cost Decomposition. Due to the decentralized setting, we first decompose the global

cost 𝑔𝑡 (𝑥𝑡) at time 𝑡 into locally computable costs for individual agents 𝑣 ∈ V expressed as

𝑔𝑣𝑡 (𝑥 𝑣𝑡) =𝑓 𝑣𝑡 (𝑥 𝑣𝑡) + 𝑐𝑣𝑡 (𝑥 𝑣𝑡 , 𝑥 𝑣𝑡−1) +
∑︁

(𝑢,𝑣) ∈E
𝜅
(𝑣,𝑢)
𝑡 𝑠

(𝑢,𝑣)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡), (11)

where we use the weights 𝜅
(𝑣,𝑢)
𝑡 ≥ 0 and 𝜅

(𝑣,𝑢)
𝑡 ≥ 0, such that 𝜅

(𝑣,𝑢)
𝑡 + 𝜅 (𝑢,𝑣)

𝑡 = 1 for (𝑣,𝑢) ∈ E, to
adaptively split the shared spatial cost 𝑠

(𝑢,𝑣)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) between the two connected agents (i.e., 𝜅 (𝑢,𝑣)

for agent 𝑣 and 𝜅 (𝑣,𝑢)
for agent 𝑢). We specify the choice of the weight 𝜅

(𝑣,𝑢)
𝑡 in (14) later.

Based on the cost decomposition in (11), the anytime 𝜆-competitiveness constraint in (10) can be

guaranteed if the action of each node 𝑣 satisfies the following local constraint:

𝑡∑︁
𝑖=1

𝑔𝑣𝑖 (𝑥 𝑣𝑖) ≤ (1 + 𝜆)
𝑡∑︁
𝑖=1

𝑔𝑣𝑖 (𝑥
𝑣,†
𝑖

), ∀𝑡 ∈ [1,𝑇] . (12)

At step 𝑡 , however, agent 𝑣 cannot evaluate its local cost 𝑔𝑣𝑡 (𝑥 𝑣𝑡), because it has no access to the

actions 𝑥𝑢𝑡 and expert actions 𝑥
𝑢,†
𝑡 of its connected neighbors 𝑢 and hence cannot calculate the

actual or expert’s spatial costs for (𝑣,𝑢) ∈ E.
Additionally, even if agent 𝑣 has the knowledge of 𝑔𝑣𝑡 (𝑥 𝑣𝑡), simply satisfying (12) at time 𝑡 cannot

guarantee that a feasible action exists to satisfy the local constraints for future steps 𝑡 + 1, · · · ,𝑇
due to the temporal cost. To see this, consider a toy example with 𝑇 = 2 and 𝑐𝑣𝑡 = ∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡−1∥2.
Assume that 𝑥 𝑣

1
is selected such that the first-step local constraint is satisfied by equality, i.e.,

𝑔𝑣
1
(𝑥 𝑣

1
) = (1 + 𝜆)𝑔𝑣𝑖 (𝑥

𝑣,†
1
). Then, at the second step 𝑡 = 2, it can happen that the node costs satisfy

𝑓 𝑣
2
(𝑥 𝑣,†

1
) = 0 and 𝑓 𝑣

2
(𝑥 𝑣

1
) > 0, while the spatial costs are all zero. Then, with the expert action

𝑥
𝑣,†
2

= 𝑥
𝑣,†
1
, it follows that 𝑔𝑣

2
(𝑥 𝑣

2
) > (1 + 𝜆)𝑔𝑣

2
(𝑥 𝑣,†

2
) = 0 for any 𝑥 𝑣

2
∈ X, thus violating the local

constraint (12) for agent 𝑣 . By the same reasoning, the 𝜆-competitiveness constraint can be violated

for the whole network.

4.2.2 Robust Action Sets via Reservation Costs. To ensure non-empty sets of feasible actions

satisfying the local constraints (12) for each time step 𝑡 , we propose a reservation cost that safeguards
each agent 𝑣 ’s action against any possible uncertainties (e.g., connected agent 𝑢’s current actions

and future cost functions). Compared to a centralized setting [30, 35], designing a proper reservation

cost in a decentralized creates substantial challenges, as it needs to hedge against both spatial and
future temporal uncertainties.

With only local online information 𝐼 𝑣𝑡 available to agent 𝑣 , the key insight of our added reservation

cost at each time step 𝑡 is to bound the maximum possible cost difference between agent 𝑣 ’s cost∑𝑡
𝑖=1 𝑔

𝑣
𝑖 (𝑥 𝑣𝑖) and its corresponding cost constraint (1 + 𝜆)∑𝑡

𝑖=1 𝑔
𝑣
𝑖 (𝑥

𝑣,†
𝑖

) for future time steps. More

concretely, we use a new constraint in (13) to define the robust action set for agent 𝑣 at step 𝑡 . In

constraint (13), the weight 𝜅
(𝑣,𝑢)
𝜏 (attributed to agent 𝑣) for adaptively splitting the spatial cost 𝑠

(𝑣,𝑢)
𝜏

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:13

between agent 𝑣 and agent 𝑢 for 𝜏 = 1, · · · , 𝑡 − 1 is

𝜅
(𝑣,𝑢)
𝜏 =

∥𝑥 𝑣𝜏 − 𝑥
𝑣,†
𝜏 ∥2

∥𝑥 𝑣𝜏 − 𝑥
𝑣,†
𝜏 ∥2 + ∥𝑥𝑢𝜏 − 𝑥

𝑢,†
𝜏 ∥2

. (14)

Additionally, the reservation cost
1
is

𝑅(𝑥 𝑣𝑡 , 𝑥 𝑣,†𝑡) = ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

(1 + 1

𝜆0
)∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2, (15)

where ℓ𝑇 and ℓ𝑆 are smoothness parameters for the temporal and spatial cost functions, 𝐷𝑣 is

the degree of agent 𝑣 (i.e., the number of agents connected to agent 𝑣), and 0 < 𝜆0 ≤ 𝜆 is a

hyperparameter to adjust the size of the robust action set (and will be optimally chosen as 𝜆0 =√
1 + 𝜆 − 1 in Theorems 5.2 and B.1). In the special case when both 𝑥 𝑣𝑡 = 𝑥

𝑣,†
𝑡 and 𝑥𝑢𝑡 = 𝑥

𝑢,†
𝑡 , we set

𝜅
(𝑣,𝑢)
𝜏 = 1

2
in (14).

Importantly, the new constraint (13) for agent 𝑣 can be calculated purely based on local online

information 𝐼 𝑣𝑡 ; it only depends on the cumulative node and temporal costs up to time 𝑡 , as well as

the spatial costs (including the feedback of the connected neighboring agents’ actions and their

expert actions) up to time 𝑡 − 1. Thus, the overall cost to share information between two connected

agents in the network is small. Moreover, the reservation cost 𝑅(𝑥 𝑣𝑡 , 𝑥
𝑣,†
𝑡) safeguards agent 𝑣 ’s action

not only against uncertainties in future temporal cost functions in online optimization, but also

against delayed spatial costs resulting from decentralized optimization, which we further explain

as follows.

• Temporal uncertainties. The temporal cost couples each agent’s actions over time, but the

online action needs to be chosen without knowing all the future costs. Consequently, as shown in

the example in Section 4.2.1, simply satisfying the 𝜆-competitiveness in terms of the cumulative

cost up to 𝑡 does not necessarily ensure 𝜆-competitiveness in the future. To hedge against temporal

uncertainties, our reservation cost 𝑅(𝑥 𝑣𝑡 , 𝑥
𝑣,†
𝑡) in (15) includes the term

ℓ𝑇
2
(1 + 1

𝜆0
)∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2,

which bounds the maximum cost disadvantage for agent 𝑣 : 𝑐𝑣𝑡 (𝑥 𝑣𝑡 , 𝑥 𝑣𝑡+1) − (1 + 𝜆)𝑐𝑣𝑡 (𝑥
𝑣,†
𝑡 , 𝑥

𝑣,†
𝑡+1) ≤

ℓ𝑇
2
(1 + 1

𝜆0
)∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2. Thus, 𝑥 𝑣𝑡+1 = 𝑥

𝑣,†
𝑡+1 is always a feasible robust action for agent 𝑣 at time 𝑡 + 1.

• Spatial uncertainties. In our decentralized setting, agent 𝑣 chooses its action based on the

local online information 𝐼 𝑣𝑡 , which creates spatial uncertainties regarding its connected neighboring

agents’ actions and spatial costs. In our design, with the splitting weight 𝜅
(𝑣,𝑢)
𝑡−1 in (14) and the term

ℓ𝑆 ·𝐷𝑣

2
(1 + 1

𝜆0
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥2 included in the reservation cost in (15) at time 𝑡 − 1, we ensure that

our constraint in (13), if satisfied, can always guarantee the local constraint in (12) and hence also

the 𝜆-competitiveness constraint, due to the following inequality:∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1

(
𝑠
(𝑣,𝑢)
𝑡−1 (𝑥 𝑣𝑡−1, 𝑥𝑢𝑡−1) − (1 + 𝜆)𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣,†
𝑡−1, 𝑥

𝑢,†
𝑡−1)

)
≤

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1

ℓ𝑆

2

(1 + 1

𝜆0
)
(
∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2 + ∥𝑥𝑢𝑡−1 − 𝑥
𝑢,†
𝑡−1∥

2

)
=

∑︁
𝑣∈V

ℓ𝑆 · 𝐷𝑣

2

(1 + 1

𝜆0
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2.

(16)

Note that, as the degree 𝐷𝑣 of node 𝑣 increases, more agents are connected to agent 𝑣 and hence

spatial uncertainties also naturally increase, resulting in an increased reservation cost in (15).

1
Despite the one-step delayed feedback of the neighbors’ actions, knowing the spatial cost function 𝑠

𝑣,𝑢
𝑡 (·, ·) at the beginning

of time 𝑡 is still helpful. For example, the reservation cost for spatial cost uncertainties can be reduced if the smoothness

constant of 𝑠
𝑣,𝑢
𝑡 (·, ·) is smaller than ℓ𝑠 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:14 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

In summary, our novel robust action set for agent 𝑣 at time step 𝑡 is designed as

X𝑣
𝜆,𝑡

= {𝑥 𝑣𝑡 | 𝑥 𝑣𝑡 satisfies (13) for step 𝑡}, (17)

which, by convexity of cost functions, is convex and leads to computationally-efficient projection

(9). For example, in our experiments, it takes about 1 second to run inference for 1000+ instances

on a laptop.

5 Performance Bounds for LADO
We now analyze LADO in terms of its competitiveness, average cost, and robustness-consistency,

proving that LADO is 𝜆-competitive against any given expert and simultaneously achieves finite

consistency.

5.1 𝜆-Competitiveness
We state 𝜆-competitiveness of LADO as follows. The proof is provided in Appendix E.

Theorem 5.1. (𝜆-competitiveness of LADO) Given any ML policy 𝜋̃ and expert policy 𝜋†, for any
𝜆 > 0 and 𝜆0 ∈ (0, 𝜆] in the robust action set in (17), the cost of LADO satisfies 𝑐𝑜𝑠𝑡 (LADO, 𝑔1:𝑇) ≤
(1 + 𝜆) · 𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑇) for any problem instance 𝑔1:𝑇 ∈ G.

Theorem 5.1 guarantees that, for any problem instance 𝑔1:𝑇 ∈ G, the total global cost of LADO is

always upper bounded by (1 + 𝜆) times the global cost of the expert policy 𝜋†
, regardless of the

quality of ML predictions. This competitiveness guarantee is the first in the context of decentralized

learning-augmented algorithms and attributed to our novel design of locally computable robust

action sets in (17), based on which each agent individually safeguards its own online actions.

Moreover, for our setting, there exist online policies (e.g., localized policy for multi-agent networks

[36]) that have bounded competitive ratios against the offline oracle and hence can be readily

applied as expert policies in LADO. Thus, their competitive ratios immediately translate with a

scaling factor of (1 + 𝜆) into competitiveness of LADO against the offline oracle.

5.2 Average Cost
A key goal of utilizing an ML policy is to improve the average performance over the expert policy.

Thus, we first consider the average performance of LADO under a general ML policy. We rewrite

LADO as LADO(𝜋̃) to highlight its dependency on 𝜋̃ when applicable. The results are shown in

Theorem 5.2, whose proof relies on the spatial cost decomposition developed in Section 4.2.1 and is

deferred to Appendix F.1.

Theorem 5.2. (Average Cost of LADO(𝜋̃)) Given an expert policy 𝜋† and any ML policy 𝜋̃ , for the
context distribution P𝑔1:𝑇 , we define 𝐴𝑉𝐺 (𝜋†), 𝐴𝑉𝐺 (𝜋̃) as the average costs of the expert policy and
ML policy. For any 𝜆 > 0, by optimally setting 𝜆0 =

√
1 + 𝜆 − 1, the average cost of LADO(𝜋̃) is upper

bounded by

𝐴𝑉𝐺 (LADO(𝜋̃)) ≤ min

(1 + 𝜆)𝐴𝑉𝐺 (𝜋†),
(√︁

AVG(𝜋̃) +
√︄∑︁

𝑣∈V
𝜔𝑣 (𝜆, 𝜋̃, 𝜋†)

)
2
 ,

where 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) = E𝑔1:𝑇
{∑𝑇

𝑡=1

[
ℓ𝑓 +2·ℓ𝑇 +ℓ𝑆 ·𝐷𝑣

2
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − (

√
1 + 𝜆 − 1)2 · cost†𝑣,𝑡

]+}
, in which 𝐷𝑣

is the degree of node 𝑣 and cost†𝑣,𝑡 denotes the sum of hitting cost and switching cost for the expert 𝜋†.

Theorem 5.2 quantifies the tradeoff between exploiting the ML policy for average cost perfor-

mance and following the expert policy for worst-case competitiveness in a decentralized setting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:15

Specifically, the average cost bound of LADO(𝜋̃) is a minimum of two terms. The first term holds

due to the guaranteed 𝜆-competitiveness against the expert policy. The second term shows that,

due to the competitiveness requirement, LADO(𝜋̃) can deviate from the ML policy and hence have a

higher average cost than𝐴𝑉𝐺 (𝜋̃). The cost difference is primarily driven by the sum of𝜔𝑣 (𝜆, 𝜋̃, 𝜋†)
for all nodes in the setV , which measures how well LADO follows the ML policy. For each node 𝑣 ,

𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) is upper bounded by the expected distance between actions made by LADO and actions

made by the pure ML policy. Naturally, as we impose a less stringent competitiveness constraint

(i.e., smaller 𝜆 > 0) or the expert policy 𝜋†
and the ML policy 𝜋̃ are better aligned (i.e., smaller

action distance ∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥), we can better exploit the power of the ML policy 𝜋̃ with a reduced

𝜔𝑣 (𝜆, 𝜋̃, 𝜋†). Another insight is that 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) decreases when the expert policy has a higher

cost, which naturally provides more freedom to LADO to follow ML while still being able to satisfy

the 𝜆-competitiveness requirement.

Impact of network topologies. Given the same set of nodes but different numbers of node

connections, the spatial costs can be significantly different. This impact is also captured by the

term 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) = E𝑔1:𝑇
{∑𝑇

𝑡=1

[
ℓ𝑓 +2·ℓ𝑇 +ℓ𝑆 ·𝐷𝑣

2
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − (

√
1 + 𝜆 − 1)2 · cost†𝑣,𝑡

]+}
, where 𝐷𝑣 is

the degree of agent 𝑣 . Specifically, when agent 𝑣 is connected withmore nodes (i.e., greater𝐷𝑣) while

the other factors are held constant, the spatial costs and uncertainties also increase accordingly.

The competitiveness guarantees compel agent 𝑣 to more conservatively follow the expert policy

and potentially deviate more from the ML policy. In other words, the cost gap bound between LADO
and the ML policy 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) increases with the increased node degree. Thus, in general, when

the graph density increases with more node connections, the total cost bound compared to the

ML policy also increases because of more spatial cost uncertainties and hence potentially more

perturbations added to the ML advice.

Interestingly, even given the same number of node connections (i.e., edges) and the same number

of nodes, how the nodes are connected (e.g., linear chain vs. star graphs in Fig. 3) can play a role

in the cost. For example, when every node has a small degree in a linear chain graph and the

competitiveness constraint 𝜆 ≥ 0 is not too small, 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) is generally smaller due to the ReLu

operation, making it easier to follow the ML policy in LADO; on the other hand, when a node has a

very high degree (in a star graph), the term 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) for the high-degree node is likely to be

positive (unless 𝜆 is sufficiently large), i.e., this node’s action likely deviates significantly from its ML

policy. Consequently, when the other factors are held constant, LADO can more effectively adhere

to the ML policy and achieve better average performance in a linear chain graph compared to a

star graph, despite the identical number of spatial connections in both graghs. This phenomenon is

empirically observed and discussed in our experiments, as illustrated in Figure 1.

To further highlight the impact of node connections, we extend the design and cost analysis of

LADO from an undirected graph to a directed graph. The results are available in Appendix A.

5.3 Robustness and Consistency
We now show the robustness and consistency (Definition 3.3) for LADO as follows.

Theorem 5.3 (Robustness-consistency of LADO). Define 𝜌𝜋̃ , 𝜌𝜋† and 𝜌LADO as the competitive ratios of
the ML policy 𝜋̃ , expert policy 𝜋† and LADO against the offline optimal policy 𝜋∗, and ℓ = ℓ𝑓 +2ℓ𝑇 +ℓ𝑆𝐷max

2

as the gradient Lipschitz constant of the global cost function, respectively.When 𝜌𝜋̃ → ∞, the robustness
of LADO is upper bounded by 𝜌LADO ≤ (1 + 𝜆)𝜌𝜋† for any 𝜆 > 0; when 𝜌𝜋̃ = 1, the consistency of LADO

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:16 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

is upper bounded by

𝜌LADO ≤ min


1 +

√√√√
max

𝑔1:𝑇 ∈G

∑
𝑣∈V

∑𝑇
𝑡=1

[
ℓ ∥𝑥 𝑣,∗𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − (

√
1 + 𝜆 − 1)2 · 𝑐𝑜𝑠𝑡†𝑣,𝑡

]+
𝑐𝑜𝑠𝑡 (𝑥∗

1:𝑇
, 𝑔1:𝑇)


2

, (1 + 𝜆)𝜌𝜋†


≤ min


(
1 + 2

√︄
ℓ

𝛽
· (𝜌𝜋† − 1)

)2
, (1 + 𝜆)𝜌𝜋†

 .

(18)

where 𝛽 > 0 is the strong convex parameter (Assumption 2.1) and 𝑐𝑜𝑠𝑡†𝑣,𝑡 is the expert’s cost of node
𝑣 ∈ V at time 𝑡 ∈ [1,𝑇].

Theorem 5.3 is proved in Appendix F.3 and highlights that LADO can achieve both finite robustness
and consistency simultaneously. In contrast with LADO-Lin which fails to provide finite robustness,

LADO prioritizes the worst-case competitiveness guarantees as a constraint parameterized by 𝜆 > 0.

Nonetheless, in general cases, LADO does not have a better consistency than LADO-Lin or the best
expert policy when the ML predictions are perfect. While it remains an open problem to achieve

the optimal robustness-consistency tradeoff (except for a few specific problems) in the learning-

augmented literature [57], we note that our result is consistent with the fundamental impossibility

in our problem setting. Specifically, even in the special single-agent case for our problem setting,

the prior studies [35] have shown that it is impossible to achieve finite robustness while still having
a consistency better than the best expert’s competitive ratio 𝜌𝜋† without further assumptions. As a

result, LADO-Lin achieves a better consistency than best expert’s competitive ratio (Theorem 3.4)

and hence cannot guarantee finite robustness; LADO guarantees finite robustness (Theorem 5.1) and

hence cannot offer a better consistency in general cases. Nonetheless, by making an additional

assumption that the expert’s 𝑐𝑜𝑠𝑡
†
𝑣,𝑡 of each node 𝑣 ∈ V is always strictly positive at time 𝑡 ∈ [1,𝑇],

we see from the first inequality in (18) that LADO can achieve a lower consistency by increasing

𝜆 > 0 and even simultaneously 1-consistency and finite robustness when 𝜆 > 0 is sufficiently large

(which pushes the term

[
ℓ ∥𝑥 𝑣,∗𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − (

√
1 + 𝜆 − 1)2 · 𝑐𝑜𝑠𝑡†𝑣,𝑡

]+
→ 0 in (18)).

Importantly, the robustness and consistency analysis is still for the worst case. By utilizing a

well-trained ML model in LADO-Lin and LADO, we can still improve the average cost performance

compared to the pure expert policy, highlighting the key advantage of ML predictions. This is

discussed in Theorem 3.1 and Theorem 5.2, and also empirically demonstrated in Section 6.3.

Theorem 5.2 applies to any ML models, including ML models that are trained as standalone

optimizers without considering the design of LADO and hence may have training-testing objective

mismatches. To further improve the average cost performance, we consider a projection-aware ML

policy 𝜋̃◦
𝜆
that is optimally trained to minimize the actual cost with explicit consideration of the

downstream projection in LADO. Our performance analysis formally demonstrates the benefits of

using 𝜋̃◦
𝜆
in LADO for average cost reduction and is available in Appendix B.

6 Case Study: Decentralized Battery Management for Sustainable Computing
To demonstrate the empirical benefits of LADO-Lin and LADO, we carry out experiments with

the application of decentralized battery management for sustainable computing, as introduced

in Section 2.2. Our results show that with learning augmentation, both LADO-Lin and LADO can

empirically achieve a good average cost performance. Meanwhile, compared to LADO-Lin that lacks
guaranteed competitiveness, LADO is less sensitive to the potentially low quality of ML predictions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:17

6.1 Experimental Setup
The recent surge in computing demands, such as large AI models for language services, has placed

an urgent emphasis on decarbonizing data centers for sustainability. To highlight the potential of

LADO for managing decentralized batteries in the context of sustainable data centers, we use a trace-

based simulation in our experiments following the common practice in the literature [37, 58]. The

data center workload trace is taken from Microsoft Azure [59], which contains the CPU utilization

of 2,695,548 virtual machines (VM) for each 5-minute window. We estimate the energy consumption

𝑃𝑑,𝑡 by summing up the CPU utilization of all VMs.

The weather-related parameters, i.e., wind speed, solar radiation and temperature data, are all

collected from the National Solar Radiation Database [60]. Based on the weather information, we use

empirical equations to model the wind and solar renewables generated at time step 𝑡 . Specifically, the

amount of solar energy generated at step 𝑡 is given based on [61] by 𝑃solar,𝑡 =
1

2
𝜅solar𝐴array𝐼rad,𝑡 (1 −

0.05 ∗ (Temp𝑡 − 25)), where 𝐴array is the solar array area (𝑚2
), 𝐼rad,𝑡 is the solar radiation (𝑘𝑊 /𝑚2

),

and Temp𝑡 is the temperature (
◦
C) at time 𝑡 , and 𝜅solar is the conversion efficiency (%) of the solar

panel. The amount of wind energy is modeled based on [62] as 𝑃wind,𝑡 =
1

2
𝜅wind𝜚𝐴swept𝑉

3

wind,𝑡
, where

𝜚 is the air density (𝑘𝑔/𝑚3
), 𝐴swept is the swept area of the turbine (𝑚

2
), 𝜅wind is the conversion

efficiency (%) of wind energy, and 𝑉wind,𝑡 is the wind speed (𝑘𝑊 /𝑚2
) at time 𝑡 . Thus, at time 𝑡 , the

total energy generated by the solar and wind renewables is 𝑃r,𝑡 = 𝑃wind,𝑡 + 𝑃solar,𝑡 . By subtracting

the renewables 𝑃𝑟,𝑡 from the data center’s energy demand 𝑃𝑑,𝑡 , we obtain the net demand as

𝑃𝑛,𝑡 = 𝑃𝑑,𝑡 − 𝑃𝑟,𝑡 , which is then normalized to [−1, 1].
In our case study, we evaluate the performance of LADO and LADO-Lin on a diverse set of

experimental settings, including heterogeneous graph nodes with various graph topologies. To

represent the range of battery health, we assign different self-degradation coefficients 𝐴𝑣 to these

battery units. Beyond self-degradation coefficients, we further consider heterogeneity in the storage

capacities and rated output powers from real-world energy storage systems. We begin with a fully

connected graph of 3 battery units, then expand our experiments to 15-node graphs, exploring

representative topologies (e.g., star, linear) and a variety of randomly generated graphs with varying

densities. To assess the scalability of our algorithm, we generate fully-connected graphs with up to

120 nodes. More details on the extended experiments can be found in Appendix C.

6.2 Baselines
We compare LADO-Lin and LADO with the following baselines. In addition, we also evaluate

LADO-OPT that uses the optimal projection-aware ML policy (Appendix B). These representa-

tive baselines are closely related to our problem and range from the simplest Greedy to the most

powerful oracle OPT.

• Offline optimal (OPT): OPT obtains the offline optimal solution to (3) with the complete infor-

mation for each problem instance.

• Expert: The state-of-the-art online algorithm for our problem is the localized prediction policy

[36]. Here, we set the prediction window as 1 and refer to it as Expert.

•ML optimizer (ML): ML uses the same recursive neural network (RNN) model used by LADO, but
is trained as a standalone policy without considering LADO.
• Hitting cost optimizer (HitOnly): HitOnly solely optimizes the node cost for each node, which

aims at tracking the nominal SoC value exactly.

• Single-step cost optimizer (Greedy): Greedy myopically minimizes the node cost and temporal

cost at each time for each node.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:18 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

6.3 Results for Networks with 3 Nodes
Considering a simple 3-node network, we show the empirical average (AVG) and competitive ratio

(CR) values in Table 1, where the best empirical AVG and CR values are marked in bold font. The

CR values are the empirically worst cost ratio of an algorithm’s cost to OPT’s cost in our testing

dataset. We see that LADO-Lin with 𝛾 = 0.1 achieves the best empirical CR, but unlike LADO, the
empirical advantage does not have any theoretical guarantees. This is also partly because the

empirical CR value can be affected by a single bad problem instance and hence is more volatile. For

example, when we increase the reliance of LADO-Lin on the ML policy by increasing 𝛾 ∈ [0, 1],
the empirical of CR achieved by LADO-Lin also increases quickly and becomes higher than that

of Expert and LADO-OPT. Although the pure ML-based optimizer achieves better average cost by

leveraging historical data, its CR is significantly higher than Expert and even higher than Greedy.

Expert ML HitOnly Greedy
LADO

𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 134.61 108.09 139.07 200.61 115.17 109.59 108.11 107.92

CR 1.738 5.294 8.993 3.264 1.843 2.174 2.535 3.617

LADO-Lin LADO-OPT
𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.9 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 127.25 115.68 108.29 106.04 113.76 106.96 105.33 105.06

CR 1.668 1.914 2.506 4.587 1.812 1.972 2.451 3.032

Table 1. Default case for a network with 3 nodes. The average cost of OPT in the testing dataset is 88.10.

By projecting the ML actions into carefully designed robust action sets, LADO can significantly

reduce the CR compared to ML, while improving the average cost performance compared to Expert.

Our analysis in Theorem 5.2 proves that, with a larger 𝜆, the average cost of LADO is closer to that

of ML, while the guaranteed competitiveness becomes weaker.

Interestingly, in Table 1 by setting 𝜆 = 2, LADO can even achieve a lower average cost than

ML, while still having a lower CR. The reason is that Expert performs much better than ML for

some problem instances. Thus, the inclusion of Expert in LADO avoids those instances that would
otherwise have a high cost if ML were used, and meanwhile a large 𝜆 = 2 also provides enough

flexibility for LADO to exploit the benefits of ML in most other cases. Moreover, by training an

ML policy that is explicitly aware of the projection, LADO-OPT can further reduce the average cost

compared to LADO while having the same robustness guarantees. Additional results on different

testing distributions are available in Appendix C.1.

6.4 Results for Larger Networks
We now consider larger networks with more nodes to assess LADO. The setup is available in

Appendix C.2.1. For three representative graph topologies (i.e., complete graph, star graph, and

linear chain graph), the empirical average node, temporal, and spatial costs for each algorithm in a

15-node network are shown in Fig. 1.

Notably, for these three graph topologies, the complete and star graphs have the same maximum

node degree, while the star graph and linear chain graph share the same number of edges (or graph

density). By comparing algorithm performance on these two pairs, we can gain insights into the

impact of graph topologies. For example, the significantly lower graph density in a star graph than

in a complete graph explains why all the algorithms considered exhibit lower total spatial costs

on the star graph. This is consistent with our new theoretical analysis of the cost performance in

Theorem 5.2. Compared to the complete graph, the spatial cost uncertainties are reduced due to

fewer connections in the star graph. Thus, LADO can more effectively leverage the power of ML

predictions, which leads to improved performance in both node cost and temporal cost of LADO.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:19

4

9
3

13

5

10

8

0
14

2

11

6 7

12

1

(a) Complete graph

5

11
1

8

14

7

13

4

10

6

0

92

12

3

(b) Star graph

0
1

9
10

1314

2

11

3
4

12

6 75

8

(c) Linear chain graph

Node Temporal Spatial 0

300

600

900

1200
Expert
ML

LADO
HitOnly

Greedy

(d) Individual Costs (complete graph)

Node Temporal Spatial 0

300

600

900

1200
Expert
ML

LADO
HitOnly

Greedy

(e) Individual Costs (star graph)

Node Temporal Spatial 0

300

600

900

1200
Expert
ML

LADO
HitOnly

Greedy

(f) Individual Costs (chain graph)

Fig. 1. The evaluation of LADO and baseline algorithms in terms of the node, temporal and spatial costs, with
various graph topologies. By default, the competitiveness requirement 𝜆 is set to 1 in LADO for all the graphs.

In contrast to the linear chain graph, the star graph concentrates node degrees on a single

node, resulting in distinct cost behaviors. As Theorem 5.2 indicates, the more uniform node degree

distribution in the chain graph affords our algorithm greater flexibility to follow the ML policy by

deviating more from the expert policy, ultimately reducing the cost increase term 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†). Our
empirical findings align with this theoretical analysis, demonstrating significantly lower overall

costs for our algorithm in the linear chain graph due to its more effective exploitation of the ML

policy. As presented in Fig. 1(f), the effect of reduced spatial costs is more pronounced for LADO in

the linear chain graph.

Next, we evaluate LADO on graphs with the same number of nodes but varying random graph

topologies. Starting from the star graph, we gradually add random edges between nodes to increase

the graph density until the graph is fully connected. Additionally, we also consider different

competitiveness requirements in these graph topologies.

0.0 0.4 0.8 1.2 1.6 2.0
Competitive requirement λ

Star
0.2
0.4
0.6
0.8
Full

G
ra

ph
 d

en
si

ty

500

600

700

800

(a) Total cost of LADO

0.0 0.4 0.8 1.2 1.6 2.0
Competitive requirement λ

Star
0.2
0.4
0.6
0.8
Full

G
ra

ph
 d

en
si

ty

0

50

100

150

200

(b) Regret of LADO compared to ML

Fig. 2. Impact of graph density and competitiveness requirement 𝜆 on the overall cost of LADO, along with
the additional cost (regret) associated with the projection process compared to the ML policy.

As shown in Fig. 2, the total cost of LADO increases with graph density due to the additional spatial
uncertainties introduced by denser connections. As Theorem 5.2 suggests, these increased spatial

cost uncertainties lead to higher costs for LADO compared to the ML policy. To clarify this further, we

compare the regret of LADO to the ML policy, defined as E𝑔1:𝑇

[
𝑐𝑜𝑠𝑡 (LADO(𝜋̃)) −𝑐𝑜𝑠𝑡 (𝜋̃)

]
. This regret

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:20 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

quantifies the additional cost incurred due to the projection process required for competitiveness

guarantees. As shown in Fig. 2(b), the regret of LADO typically increases with graph density, as

denser graphs introduce more spatial cost uncertainties, making it more challenging to closely

follow the ML policy. Similarly, with the same graph density (e.g. fully connected), the cost of LADO
also increases as graph size increase from 3 to 120 nodes, shown as Fig. 5. This is because the growth

of graph size naturally leads to more spatial connections, leading to elevated regret and overall

cost, where detailed results can be found in Appendix C.2. Moreover, stricter competitiveness

requirements necessitate a closer adherence to the expert, further hindering LADO’s ability to follow
the ML policy and resulting in higher regret.

7 Related Work
Smoothed online convex optimization. Smoothed online convex optimization in a centralized

single-agent setting is a classic problem for which many algorithms have been designed to bound

the worst-case performance, e.g., [12, 14–18]. Recently, a growing literature has begun to study

online convex optimization in a decentralized networked system [10, 19, 36, 63]. Compared to the

centralized setting, the decentralized setting is significantly more challenging, since an agent has

no access to the information of other agents before making its action at each step. In this context, a

recent work [36] proposes an online algorithm with a bounded competitive ratio and shows the

dependency of the competitive ratio on cost predictions. Several other studies [10, 19–22] propose

algorithms with bounded regrets. In all cases, these studies focus on the worst-case performance,

which leads to conservative algorithms that may not achieve a low average global cost. To address

this limitation, in this work we exploit the benefits of untrusted ML predictions to improve the

average cost performance, while leveraging a robust policy to achieve the worst-case robustness.

ML-based optimizers.ML policies have been used for exploiting the statistical information and

improve the average performance of various (online) optimization problems, including scheduling,

resource management, and secretary problems [23–26]. There also exist ML-based optimizers, such

as multi-agent learning [27–29], in the context of decentralized optimization where agents have

limited or delayed communications. However, a crucial drawback of pure ML-based optimizers is

that they may have very high or even unbounded costs in the worst case, making them unsuitable

for mission-critical applications. We provide an approach to empowering such ML-based algorithms

with worst-case robustness guarantees.

Learning-augmented algorithms. Learning-augmented algorithms have been proposed as

a way to add worst-case robustness guarantees on top of ML policies in a variety of settings,

e.g., [11, 30–32, 32–34]. To guarantee worst-case competitiveness, it is crucial to address the

potential risks associated with following the ML predictions, which is also the key challenge

for learning-augmented algorithm designs. More recently, learning-augmented algorithms have

been designed for smoothed online optimization with switching costs [11, 56, 57, 64]. However,

learning-augmented algorithm designs in decentralized settings remain largely unexplored and are

more challenging due to limited information availability. Thus, our study addresses this gap by

introducing a novel, worst-case guaranteed learning-augmented algorithm specifically designed

for decentralized environments.

Our work differs from the standard constrained online optimization (e.g., [13]) in that LADO is a

meta algorithm leveraging one robust policy to safeguard another policy which can potentially

perform better on average. Additionally, besides our novel decentralized setting and algorithm

design based on spatial cost decomposition, LADO considers worst-case robustness and hence

substantially differs from conservative bandits/reinforcement learning that focus on average or

high-probability performance constraints [65–67].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:21

8 Concluding Remarks
This paper studies learning-augmented decentralized online convex optimization in networks.

We begin with LADO-Lin by linearly combining the ML policy and the expert policy. It is proved

that, while LADO-Lin can exploit the potential of ML to improve the average cost performance,

it does not have guaranteed worst-case performance. Then, we propose LADO, a novel algorithm
that improves the average performance while guaranteeing worst-case robustness. LADO addresses

the key challenges of temporal and spatial information inefficiency and constructs novel robust

action sets that allow agents to choose individual actions based on local online information. We

prove bounds on the guaranteed competitiveness and the average performance of LADO. Finally,
we run an experiment of decentralized battery management for sustainable computing. Our results

highlight the potential of ML augmentation to improve the average performance in LADO-Lin and

LADO as well as the guaranteed worst-case performance of LADO.

References
[1] Hamidreza Shahbazi and Farid Karbalaei. Decentralized voltage control of power systems using multi-agent systems.

Journal of Modern Power Systems and Clean Energy, 8(2):249–259, 2020.
[2] Yuanyuan Shi, Guannan Qu, Steven Low, Anima Anandkumar, and AdamWierman. Stability constrained reinforcement

learning for real-time voltage control. arXiv preprint arXiv:2109.14854, 2021.
[3] Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi. Online distributed convex optimization on dynamic networks.

IEEE Transactions on Automatic Control, 61(11):3545–3550, 2016.
[4] Amal Feriani and Ekram Hossain. Single and multi-agent deep reinforcement learning for ai-enabled wireless networks:

A tutorial. IEEE Communications Surveys & Tutorials, 23(2):1226–1252, 2021.
[5] Yasar Sinan Nasir and Dongning Guo. Multi-agent deep reinforcement learning for dynamic power allocation in

wireless networks. IEEE Journal on Selected Areas in Communications, 37(10):2239–2250, 2019.
[6] Fuqiang Yao and Luliang Jia. A collaborative multi-agent reinforcement learning anti-jamming algorithm in wireless

networks. IEEE wireless communications letters, 8(4):1024–1027, 2019.
[7] Felipe Caro and Jérémie Gallien. Clearance pricing optimization for a fast-fashion retailer. Operations research,

60(6):1404–1422, 2012.

[8] Ozan Candogan, Kostas Bimpikis, and Asuman Ozdaglar. Optimal pricing in networks with externalities. Operations
Research, 60(4):883–905, 2012.

[9] Kaixiang Lin, Shu Wang, and Jiayu Zhou. Collaborative deep reinforcement learning. arXiv preprint arXiv:1702.05796,
2017.

[10] Xuanyu Cao and Tamer Başar. Decentralized online convex optimization with feedback delays. IEEE Transactions on
Automatic Control, 67(6):2889–2904, 2021.

[11] Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies and functions with black-box

advice. In COLT, 2022.
[12] Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: An optimal algorithm

for smoothed online optimization. In NeurIPS, volume 32, 2019.

[13] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: Online convex optimization with long

term constraints. J. Mach. Learn. Res., 13(1):2503–2528, sep 2012.

[14] Gautam Goel and Adam Wierman. An online algorithm for smoothed online convex optimization. SIGMETRICS
Perform. Eval. Rev., 47(2):6–8, December 2019.

[15] Lijun Zhang, Wei Jiang, Shiyin Lu, and Tianbao Yang. Revisiting smoothed online learning. In A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.
[16] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman. Online optimization with memory and

competitive control. Advances in Neural Information Processing Systems, 33:20636–20647, 2020.
[17] Weici Pan, Guanya Shi, Yiheng Lin, and Adam Wierman. Online optimization with feedback delay and nonlinear

switching cost. Proc. ACM Meas. Anal. Comput. Syst., 6(1), Feb 2022.
[18] Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex optimization in high dimensions via

online balanced descent. In COLT, 2018.
[19] Alec Koppel, Felicia Y. Jakubiec, and Alejandro Ribeiro. A saddle point algorithm for networked online convex

optimization. IEEE Transactions on Signal Processing, 63(19):5149–5164, 2015.
[20] Xiuxian Li, Xinlei Yi, and Lihua Xie. Distributed online convex optimization with an aggregative variable. IEEE

Transactions on Control of Network Systems, 2021.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:22 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

[21] Xuanyu Cao and Tamer Başar. Decentralized online convex optimization based on signs of relative states. Automatica,
129:109676, 2021.

[22] Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi. Online distributed convex optimization on dynamic networks.

IEEE Transactions on Automatic Control, 61(11):3545–3550, 2016.
[23] Weiwei Kong, Christopher Liaw, Aranyak Mehta, and D. Sivakumar. A new dog learns old tricks: RL finds classic

optimization algorithms. In ICLR, 2019.
[24] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combinatorial optimization with

reinforcement learning. In AAAI, 2020.
[25] Han Zhang, Wenzhong Li, Shaohua Gao, Xiaoliang Wang, and Baoliu Ye. Reles: A neural adaptive multipath scheduler

based on deep reinforcement learning. In INFOCOM, 2019.

[26] Zhihui Shao, Jianyi Yang, Cong Shen, and Shaolei Ren. Learning for robust combinatorial optimization: Algorithm and

application. In INFOCOM, 2022.

[27] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-agent reinforcement

learning with networked agents. In International Conference on Machine Learning, pages 5872–5881. PMLR, 2018.

[28] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective overview of theories

and algorithms. Handbook of Reinforcement Learning and Control, pages 321–384, 2021.
[29] Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement learning. Applied

Intelligence, pages 1–46, 2022.
[30] Pengfei Li, Jianyi Yang, and Shaolei Ren. Robustified learning for online optimization with memory costs. In INFOCOM,

2023.

[31] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented online algorithms.

In NeurIPS, 2020.
[32] Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W. Mikkelsen. Online algorithms with

advice: A survey. SIGACT News, 47(3):93–129, August 2016.
[33] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning augmented algorithms.

Advances in Neural Information Processing Systems, 33:20083–20094, 2020.
[34] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. J. ACM, 68(4), July 2021.

[35] Daan Rutten, Nicolas Christianson, Debankur Mukherjee, and Adam Wierman. Smoothed online optimization with

unreliable predictions. Proc. ACM Meas. Anal. Comput. Syst., 7(1), mar 2023.

[36] Yiheng Lin, Judy Gan, Guannan Qu, Yash Kanoria, and Adam Wierman. Decentralized online convex optimization in

networked systems. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,

editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 13356–13393. PMLR, 17–23 Jul 2022.

[37] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic right-sizing for power-proportional data centers. In

INFOCOM, 2011.

[38] Mohammad A. Islam, Kishwar Ahmed, Hong Xu, Nguyen H. Tran, Gang Quan, and Shaolei Ren. Exploiting spatio-

temporal diversity for water saving in geo-distributed data centers. IEEE Transactions on Cloud Computing, 6(3):734–746,
2018.

[39] Meta. Sustainability report. https://sustainability.fb.com/, 2021.

[40] Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: An optimal algorithm

for smoothed online optimization. Advances in Neural Information Processing Systems, 32, 2019.
[41] Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick. Control regularization

for reduced variance reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
1141–1150. PMLR, 09–15 Jun 2019.

[42] Hoang M. Le, Andrew Kang, Yisong Yue, and Peter Carr. Smooth imitation learning for online sequence prediction. In

ICML, 2016.
[43] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness

guarantees. In ICML, 2023.
[44] Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang, and

Simon Shaolei Du. A reduction-based framework for conservative bandits and reinforcement learning. In International
Conference on Learning Representations, 2022.

[45] Jakub Chłędowski, Adam Polak, Bartosz Szabucki, and Konrad Tomasz Żołna. Robust learning-augmented caching:

An experimental study. In ICML, 2021.
[46] Le YiWang, CaishengWang, George Yin, Feng Lin, Michael P. Polis, Caiping Zhang, and Jiuchun Jiang. Balanced control

strategies for interconnected heterogeneous battery systems. IEEE Transactions on Sustainable Energy, 7(1):189–199,
2016.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

https://sustainability.fb.com/

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:23

[47] Ana Radovanović, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre Duarte, Binz Roy, Diyue Xiao, Maya

Haridasan, Patrick Hung, Nick Care, Saurav Talukdar, Eric Mullen, Kendal Smith, MariEllen Cottman, and Walfredo

Cirne. Carbon-aware computing for datacenters. IEEE Transactions on Power Systems, 38(2):1270–1280, 2023.
[48] Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren. Towards environmentally equitable AI via geographical

load balancing. In e-Energy, 2024.
[49] Amba Kak and Sarah Myers West. AI Now 2023 landscape: Confronting tech power. AI Now Institute, April 2023.
[50] Alejandro Garofali Acosta, Shaun Riordan, and Mario Torres Jarrín. The environmental and ethical challenges of

artificial intelligence. ThinkTwenty (T20) Policy Brief, July 2023.

[51] UNESCO. Recommendation on the ethics of artificial intelligence. In Policy Recommendation, 2022.
[52] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization, 2(3-4):157–325,

2016.

[53] Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. A regression approach to learning-augmented online

algorithms. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[54] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions. In NeurIPS, 2018.
[55] Goran Zuzic, Di Wang, Aranyak Mehta, and D. Sivakumar. Learning robust algorithms for online allocation problems

using adversarial training. In https://arxiv.org/abs/2010.08418, 2020.
[56] Pengfei Li, Jianyi Yang, and Shaolei Ren. Expert-calibrated learning for online optimization with switching costs. In

SIGMETRICS, 2022.
[57] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon. Online metric algorithms

with untrusted predictions. In ICML, 2020.
[58] Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and Rajini Wijayawardana. Reducing

the carbon impact of generative AI inference (today and in 2035). In Proceedings of the 2nd Workshop on Sustainable
Computer Systems, HotCarbon ’23, New York, NY, USA, 2023. Association for Computing Machinery.

[59] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo Bianchini. Resource

central: Understanding and predicting workloads for improved resource management in large cloud platforms. In

Proceedings of the 26th Symposium on Operating Systems Principles, pages 153–167, 2017.
[60] Manajit Sengupta, Yu Xie, Anthony Lopez, Aron Habte, Galen Maclaurin, and James Shelby. The national solar

radiation data base (nsrdb). Renewable and sustainable energy reviews, 89:51–60, 2018.
[61] Can Wan, Jian Zhao, Yonghua Song, Zhao Xu, Jin Lin, and Zechun Hu. Photovoltaic and solar power forecasting for

smart grid energy management. CSEE Journal of Power and Energy Systems, 1(4):38–46, 2015.
[62] Asis Sarkar and Dhiren Kumar Behera. Wind turbine blade efficiency and power calculation with electrical analogy.

International Journal of Scientific and Research Publications, 2(2):1–5, 2012.
[63] Zhipeng Tu, Xi Wang, Yiguang Hong, Lei Wang, Deming Yuan, and Guodong Shi. Distributed online convex optimiza-

tion with compressed communication. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,

Advances in Neural Information Processing Systems, volume 35, pages 34492–34504. Curran Associates, Inc., 2022.

[64] Daan Rutten, Nico Christianson, Debankur Mukherjee, and Adam Wierman. Online optimization with untrusted

predictions. CoRR, abs/2202.03519, 2022.
[65] Yifan Wu, Roshan Shariff, Tor Lattimore, and Csaba Szepesvári. Conservative bandits. In International Conference on

Machine Learning, pages 1254–1262. PMLR, 2016.

[66] Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang, and

Simon Shaolei Du. A reduction-based framework for conservative bandits and reinforcement learning. In International
Conference on Learning Representations, 2021.

[67] Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta. Conservative exploration in

reinforcement learning. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
1431–1441. PMLR, 26–28 Aug 2020.

[68] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter. Differentiable

convex optimization layers. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[69] Noelle Walsh. How Microsoft measures datacenter water and energy use to improve Azure Cloud sustainability.

Microsoft Azure Blog, April 2022.
[70] Tesla. Tesla powerwall 2 datasheet - North America. https://www.tesla.com/sites/default/files/pdfs/powerwall/

Powerwall%202_AC_Datasheet_en_northamerica.pdf.

[71] LG Electronics. LG electronics home series energy storage system datasheet. https://www.lg.com/us/ess/pdf/Resi_

LGEUS_Home_8_Spec_0524.pdf.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

https://arxiv.org/abs/2010.08418
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
https://www.lg.com/us/ess/pdf/Resi_LGEUS_Home_8_Spec_0524.pdf
https://www.lg.com/us/ess/pdf/Resi_LGEUS_Home_8_Spec_0524.pdf

38:24 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

[72] SolarEdge. Solaredge energy bank datasheet. https://knowledge-center.solaredge.com/sites/kc/files/se-energy-bank-

battery-datasheet-nam.pdf.

[73] IQ Battery System. IQ battery 10t datasheet. https://www.switchsolarusa.com/wp-content/uploads/2023/02/IQ-

Battery-10T-DS-EN-US-10-25-2021.pdf.

[74] FranklinWH. Franklin home power datasheet, https://www.franklinwh.com/document/franklin-home-power-v11-

datasheet.

[75] Moritz Hardt and Max Simchowitz. Convex optimization and approximation. https://ee227c.github.io/notes/ee227c-

notes.pdf, 2018.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

https://knowledge-center.solaredge.com/sites/kc/files/se-energy-bank-battery-datasheet-nam.pdf
https://knowledge-center.solaredge.com/sites/kc/files/se-energy-bank-battery-datasheet-nam.pdf
https://www.switchsolarusa.com/wp-content/uploads/2023/02/IQ-Battery-10T-DS-EN-US-10-25-2021.pdf
https://www.switchsolarusa.com/wp-content/uploads/2023/02/IQ-Battery-10T-DS-EN-US-10-25-2021.pdf
https://www.franklinwh.com/document/franklin-home-power-v11-datasheet
https://www.franklinwh.com/document/franklin-home-power-v11-datasheet
https://ee227c.github.io/notes/ee227c-notes.pdf
https://ee227c.github.io/notes/ee227c-notes.pdf

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:25

A Extension of LADO to Directed Graphs
In some real-world applications (e.g., wireless networks), the connections between nodes are

directional, instead of the bi-directional connections in undirected graphs. Thus, we extend LADO to
a directed graph setting. We first show how to modify the design of adaptive spatial cost splitting

and reservation cost for a directed graph, followed by an average cost performance bound.

Consider a network with a finite set V of nodes. We model the network as a directed graph,

denoted by (V, E), where E represents the set of directional edges between nodes in V . For each

edge (𝑣,𝑢) ∈ E, the spatial cost is denoted as 𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡), which depends on the actions of the

node 𝑣 and 𝑢 at time 𝑡 . Since the edge is directional, the spatial cost 𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) may not be equal

to the cost 𝑠
(𝑢,𝑣)
𝑡 (𝑥𝑢𝑡 , 𝑥 𝑣𝑡) incurred in the opposite direction.

In a directed graph, the locally computable constraint in Eqn. (13) for 𝜆-competitiveness can be

rewritten as below

𝑡∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣𝜏) +
𝑡∑︁

𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1) +
𝑡−1∑︁
𝜏=1

(∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 · 𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏) +

∑︁
(𝑢,𝑣) ∈E

𝜅
(𝑢,𝑣)
𝜏 · 𝑠 (𝑢,𝑣)𝜏 (𝑥𝑢𝜏 , 𝑥 𝑣𝜏)

)
+ 𝑅(𝑥 𝑣𝑡 , 𝑥 𝑣,†𝑡) ≤ (1 + 𝜆)

(𝑡∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣,†𝜏) +
𝑡∑︁

𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣,†𝜏 , 𝑥
𝑣,†
𝜏−1) +

𝑡−1∑︁
𝜏=1

(∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 · 𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣,†

𝜏−1, 𝑥
𝑢,†
𝜏)

+
∑︁

(𝑢,𝑣) ∈E
𝜅
(𝑢,𝑣)
𝜏 · 𝑠 (𝑢,𝑣)

𝜏−1 (𝑥𝑢,†𝜏 , 𝑥 𝑣,†𝜏)
))
,

(19)

where the weight 𝜅
(𝑣,𝑢)
𝜏 for splitting the spatial cost 𝑠

(𝑣,𝑢)
𝜏 is adaptively chosen as

𝜅
(𝑣,𝑢)
𝜏 =

∥𝑥 𝑣𝜏 − 𝑥
𝑣,†
𝜏 ∥2

∥𝑥 𝑣𝜏 − 𝑥
𝑣,†
𝜏 ∥2 + ∥𝑥𝑢𝜏 − 𝑥

𝑢,†
𝜏 ∥2

(20)

and the reservation cost is

𝑅(𝑥 𝑣𝑡 , 𝑥 𝑣,†𝑡) = ℓ𝑇 + ℓ𝑆 · (𝐷𝑖𝑛
𝑣 + 𝐷𝑜𝑢𝑡

𝑣)
2

(1 + 1

𝜆0
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2) (21)

where 𝐷𝑖𝑛
𝑣 and 𝐷𝑜𝑢𝑡

𝑣 denote the in-degree and out-degree of node 𝑣 . In other words, 𝐷𝑖𝑛
𝑣 represents

the number of edges directed towards node 𝑣 and 𝐷𝑜𝑢𝑡
𝑣 is the number of edges directed from node 𝑣 .

Additionally, based on Assumptions 2.1 - 2.3, the temporal and spatial costs are ℓ𝑇 - and ℓ𝑆 -smooth

with respect to the actions, respectively.

If there exist bi-directional edges between node 𝑢 and 𝑣 , the weights for splitting spatial costs

𝑠
(𝑣,𝑢)
𝑡−1 and 𝑠

(𝑢,𝑣)
𝑡−1 are identical. This is because the weight 𝜅

(𝑣,𝑢)
𝜏 allocates the spatial cost according

to the potential risk of spatial cost increases due to nodes 𝑣 and 𝑢, as measured by the distances

between their actions to the expert advice. Since the risk is independent of the direction, the spatial

cost splitting weight 𝜅
𝑣,𝑢
𝜏 remains the same regardless of the edge direction.

Next, we analyze the average cost of LADO in a directed graph.

Corollary A.1. (Average Cost of LADO(𝜋̃) for directed graph) Given any ML policy 𝜋̃ , for any 𝜆 > 0,
by optimally setting 𝜆0 =

√
1 + 𝜆 − 1, the average cost of LADO(𝜋̃) is bounded by

𝐴𝑉𝐺 (LADO(𝜋̃)) ≤ min

(1 + 𝜆)𝐴𝑉𝐺 (𝜋†),
(√︁

AVG(𝜋̃) +
√︄∑︁

𝑣∈V
𝜔𝑣 (𝜆, 𝜋̃, 𝜋†)

)
2
 ,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:26 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

where𝐴𝑉𝐺 (𝜋†) and𝐴𝑉𝐺 (𝜋̃) are the average costs of the expert policy and the ML policy, respectively,

and 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) = E𝑔1:𝑇
{∑𝑇

𝑡=1

[
ℓ𝑓 +2·ℓ𝑇 +ℓ𝑆 · (𝐷𝑖𝑛

𝑣 +𝐷𝑜𝑢𝑡
𝑣)

2
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − (

√
1 + 𝜆 − 1)2cost†𝑣,𝑡

]+}
in which

cost†𝑣,𝑡 is the expert’s node and temporal cost for node 𝑣 at time 𝑡 .

In Corollary A.1, the average cost of LADO is bounded by the expert’s average cost scaled by

(1 + 𝜆) and the average cost of learning-based policy 𝜋̃ along with an additional cost introduced by

the projection process, corresponding to the two terms in the min operators, respectively. When

relaxing the parameter 𝜆 in the competitiveness guarantee, it grants more freedom for LADO to

follow the ML policy with less restrictive constraints, resulting in a smaller𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) for all nodes
in V . Additionally, the node degree plays an important role, along with the overall action distance

between the expert and ML policies. Importantly, the spatial cost is shared by connected nodes,

according to the adaptive spatial cost splitting weight 𝜅
(𝑣,𝑢)
𝑡 . Therefore, the spatial uncertainty

of node 𝑣 is determined jointly by the spatial connections originating from and directed towards

that specific node. For the nodes with greater spatial uncertainties (quantified by the sum of in-

and out-degrees) and/or larger policy misalignment in terms of ∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥, it is more challenging

to adopt the ML policy, potentially incurring a higher cost during the projection. As the graph

density increases, more spatial uncertainties are introduced to the connected nodes, thus increasing

𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) incurred by the projection process. However, with the competitiveness guarantee, the

average cost of LADO can always be bounded by the expert’s cost up to a scaling factor of (1 + 𝜆),
regardless of the graph topology or the chosen ML policy.

B Optimal Projection-Aware ML Training
Theorem 5.2 applies to any ML models, including ML models that are trained as standalone

optimizers without considering the design of LADO and hence may have training-testing objective

mismatches. To improve the average cost performance, we consider the following ML policy 𝜋̃◦
𝜆

that is optimally trained with explicit consideration of the downstream projection in LADO:

𝜋̃◦
𝜆
= argmin

𝜋
E𝑔1:𝑇 [𝑐𝑜𝑠𝑡 (LADO(𝜋), 𝑔1:𝑇)] , (22)

where the projected ML prediction by LADO is explicitly used as the action in the cost. The policy

𝜋̃◦
𝜆
can be trained offline using implicit differentiation (i.e., the added projection in Line 4 for

LADO in Algorithm 1 can be implicitly differentiated based on KKT conditions) [68]. Like in other

learning-augmented algorithms [11], we consider that 𝜋̃◦
𝜆
is already available for online inference

by individual agents. Next, we use LADO(𝜋̃◦
𝜆
) to emphasize the usage of 𝜋̃◦

𝜆
in LADO, and show its

average cost bound. The proof is deferred to Appendix F.4.

Corollary B.1 (Average cost of LADO(𝜋̃◦
𝜆
)). Given the optimal projection-aware ML policy 𝜋̃◦

𝜆
, for

any 𝜆 > 0, by optimally setting 𝜆0 =
√
1 + 𝜆 − 1, the average cost of LADO(𝜋̃◦

𝜆
) is upper bounded by

𝐴𝑉𝐺 (LADO(𝜋̃◦
𝜆
)) ≤ min

{
(1 − 𝛼𝜆)𝐴𝑉𝐺 (𝜋†) + 𝛼𝜆𝐴𝑉𝐺 (𝜋̃∗),(√︁

AVG(𝜋̃∗) +
√︄∑︁

𝑣∈V
𝜔𝑣 (𝜆, 𝜋̃∗, 𝜋†)

)
2
} (23)

where 𝐴𝑉𝐺 (𝜋†) and 𝐴𝑉𝐺 (𝜋̃∗) are the average costs of the expert and the optimal projection-unaware

ML policy 𝜋̃∗ = argmin𝜋 E𝑔1:𝑇 [𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇)], respectively,𝛼𝜆 = min

{
(
√
1 + 𝜆 − 1)

√︃
2

ℓ𝑇 +ℓ𝑓 +𝐷max ·ℓ𝑆 ·𝐶, 1
}

with 𝐷max = max𝑣∈V 𝐷𝑣 being the maximum degree in the network and the expert’s minimum

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:27

single-node cumulative cost normalized by the cumulative expert-ML action distance is defined as

𝐶 = min𝑔1:𝑇 ∈G min𝑣∈V,𝑡 ∈[1,𝑇]
cost𝑣 (𝑥𝑣,†

1:𝑡
)∑𝑡

𝑖=1 ∥𝑥
𝑣,†
𝑖

−𝑥̃𝑣,∗
𝑖

∥2
. Besides, we define

𝜔𝑣 (𝜆, 𝜋̃∗, 𝜋†) =
𝑇∑︁
𝑡=1

E𝑔1:𝑇

{[
ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

∥𝑥 𝑣,∗𝑡 − 𝑥
𝑣,†
𝑡 ∥2 − (

√
1 + 𝜆 − 1)2 · cost†𝑣,𝑡

]+}
, (24)

where cost†𝑣,𝑡 is the expert’s node and temporal cost for node 𝑣 at time 𝑡 .

Corollary B.1 formally demonstrates the benefits of using the optimal projection-awareML policy

(22) compared to the optimal projection-unaware ML policy 𝜋̃∗ = argmin𝜋 E𝑔1:𝑇 [𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇)].
Specifically, by the optimality of 𝐴𝑉𝐺 (𝜋̃∗) that does not consider 𝜆-competitiveness, we naturally

have 𝐴𝑉𝐺 (𝜋̃∗) ≤ 𝐴𝑉𝐺 (𝜋†). Thus, the first term in (23) shows that, the average cost of LADO(𝜋̃◦
𝜆
)

is no greater than the expert by using the projection-aware ML policy 𝜋̃◦
𝜆
. This is because the

expert policy is intuitively a feasible solution in our 𝜆-competitiveness ML policy space, while the

policy 𝜋̃◦
𝜆
in (22) is the optimal one that specifically minimizes the average cost of LADO(𝜋̃◦

𝜆
). By

contrast, even by using the optimal projection-unaware ML policy 𝜋̃∗
, the average cost of LADO(𝜋̃∗)

is bounded by (1 + 𝜆)𝐴𝑉𝐺 (𝜋†) in the first term of Theorem 5.2, since the added projection during

actual inference can void the optimality of 𝜋̃∗
and result in a higher average cost up to (1 + 𝜆 times

of the expert’s cost. The root reason for the advantage of the optimal projection-aware ML policy

(22) in terms of the average cost is that its ML prediction is specifically customized to LADO. On the

other hand, even though 𝜋̃∗ = argmin𝜋 E𝑔1:𝑇 [𝑐𝑜𝑠𝑡 (𝜋,𝑔1:𝑇)] is the optimal-unconstrained ML policy

on its own, its optimality can no longer hold when modified by LADO for 𝜆-competitiveness during

actual online inference.

Finally, the second term inside min in Corollary B.1 shows that the average cost of LADO(𝜋̃◦
𝜆
)

with the optimal projection-aware ML policy 𝜋̃◦
𝜆
in (22) is upper bounded by that of LADO(𝜋̃∗

𝜆
),

since LADO(𝜋̃∗
𝜆
) is a feasible policy satisfying 𝜆-competitiveness by our design. Like in Theorem 5.2,

it reinforces the insight that LADO can better exploit the potential of ML predictions for average

performance improvement when 𝜆 > 0 increases.

C Additional Experiments for Decentralized Battery Management
In this section, we present more results on different testing distributions in 3-node network and

an extended set of experiments for large networks incorporating a wider variety of battery units.

Beyond the self-degradation coefficient 𝐴𝑣 , each battery unit also exhibits unique characteristics in

terms of the storage capacity and maximum continuous discharge current. These values for the bat-

tery units are derived from publicly available data on energy storage systems. We further investigate

the impact of network topology, on the overall cost of LADO and other baseline algorithms.

C.1 ML Model Architecture and More Results for Networks with 3 Nodes
C.1.1 ML Model Architecture. The ML predictions used in our algorithm are computed using a

RNN with 2 recurrent layers, each with 8 hidden features. In all of our experiments, each problem

instance spans 24 hours, and each time step represents one hour. For the training processes, we

used the net energy demand trace from the first two months of 2015, which contains 1440 hourly

data samples and produces a total of 1416 24-hour sequences. The ML model is optimized by Adam

with a learning rate of 10
−3

for 60 epochs in total. After training, the weights of the ML model are

shared between all nodes with different coefficients 𝐴𝑣 . On average, the training process takes 3

minutes on a 2020 MacBook Air with 8GB memory, and our testing process takes about 1 second.

For testing, we use the net demand traces from April to March in the default case.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:28 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

C.1.2 Results. Based on the setup in Section 6.1, we choose 3 fully connected battery units, where

the self-degradation coefficients 𝐴𝑣 of the battery units are set as 0.9, 0.93, 0.95, respectively. We

present more results on different testing distributions in 3-node network.

In-distribution testing. First, we consider an ideal case, called in-distribution testing, where the

ML model is trained and tested on the same data distribution. Naturally, the ML model is expected

to perform very well. Table 2 shows that the ML model outperforms the expert in terms of the

empirical CR. By increasing 𝛾 , LADO-Lin follows the ML more closely and hence also achieves

a better average cost. Nonetheless, its advantage in terms of the average cost comes without

competitiveness guarantees. By contrast, LADO and LADO-OPT can achieve both good average costs

and guaranteed competitiveness simultaneously.

Expert ML HitOnly Greedy
LADO

𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 127.79 95.45 119.06 192.11 106.53 98.93 96.41 95.66

CR 1.738 1.487 2.021 3.264 1.431 1.446 1.490 1.488

LADO-Lin LADO-OPT
𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.9 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 120.20 107.91 99.50 94.32 105.33 97.46 95.47 95.00

CR 1.668 1.546 1.449 1.446 1.420 1.400 1.416 1.420

Table 2. In-distribution testing for a 3-node network. The average cost of OPT is 83.37.

Out-of-distribution testing. Next, we inject large Gaussian noise into the testing dataset

and consider the out-of-distribution testing case where the testing and training distributions are

different. The results are shown in Table 3. In this case, the ML model has a higher average cost

as well as empirical CR than Expert. While LADO-Lin can reduce the average cost by slightly

incorporating the ML prediction into its action (𝛾 = 0.1), this advantage quickly vanishes as 𝛾

increases. On the other hand, by training the ML model in a projection-aware manner, LADO-OPT
can keep its average cost low while still offering guaranteed competitiveness.

Expert ML HitOnly Greedy
LADO

𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 141.08 188.86 320.20 200.03 138.93 156.71 174.00 184.80

CR 1.623 5.452 10.488 2.748 1.808 2.188 2.857 3.969

LADO-Lin LADO-OPT
𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.9 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 136.73 134.12 139.62 174.95 137.60 145.93 150.89 152.98

CR 1.605 1.881 2.501 4.706 1.783 2.198 2.650 3.162

Table 3. Out-of-distribution testing for a 3-node network. The average cost of OPT is 95.77.

C.2 Results for Large Networks
We present an extended set of experiments for large networks utilizing a variety of battery units.

C.2.1 Experimental Setup. Following a similar experimental setup in the experiment of a 3-node

network, the data center’s energy demand 𝑃𝑑,𝑡 is derived using the hourly workload trace from [69]

and the renewable energy generation 𝑃𝑟,𝑡 is estimated with the weather-related statistics from [60]

. The net energy demand of the data center, 𝑃𝑛,𝑡 = 𝑃𝑑,𝑡 − 𝑃𝑟,𝑡 is then served by the energy storage

system, powered by a pool of battery units. Then, we use a sliding window to generate 24-hour net

demand sequences as the datasets, where each sequence has 25 successive normalized net demands

(from hour 0 to hour 24). In this experiment, we derive the storage capacity and rated output power

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:29

Usable battery

capacity (kWh)

Rated Charging

Power (kW)

Rated Discharging

Power(kW)

Peak Discharge

Power (kW)

Tesla Powerwall 2 [70] 13.50 5.00 5.00 7.00

LG ESS (Home 8) [71] 14.40 5.40 7.50 9.00

Solar Edge (BAT-10K1P) [72] 9.70 5.00 5.00 7.50

IQ Battery 10T [73] 10.08 3.84 3.84 5.76

FranklinWH [74] 13.60 5.00 5.00 10.00

Table 4. Specifications of the commercially available home energy storage systems used in the experiment.

500 1000 1500 2000 2500
Total cost

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Expert
ML

LADO
LADO-Lin

HitOnly
Greedy

(a) Total cost (complete graph)

500 1000 1500 2000 2500
Total cost

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
Expert
ML

LADO
LADO-Lin

HitOnly
Greedy

(b) Total cost (star graph)

500 1000 1500 2000 2500
Total cost

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Expert
ML

LADO
LADO-Lin

HitOnly
Greedy

(c) Total cost (chain graph)

Fig. 3. The total cost distribution of LADO and baseline algorithms with various graph topologies (15-node
network). By default, the competitiveness requirement 𝜆 is set to 1 in LADO for all graphs.

from five different commercially available battery storage systems, including Tesla Powerwall+, LG

ESS, Solar Edge, Enphase IQ and FranklinWH, where the detailed specifications can be found in

Table 4. We normalize their storage capacity and continuous output power relative to the Tesla

Powerwall+ for easy comparison. For an easy comparison, their relative storage capacities are

1, 1.07, 0.72, 0.78, 1.01, and their relative continuous output powers are 1, 1.07, 0.71, 0.55, 0.71,

respectively. To account for variations in the battery health of these battery units, we employ three

self-degradation coefficients 𝐴𝑣 , set as 0.9, 0.93, 0.95, consistent with the main experiment. By

default, we set 𝑏 = 5 and 𝑐 = 2 as the weights for the temporal and spatial costs, respectively. In

total, by considering the various battery characteristics along with the self-degradation coefficients,

we create 15 distinct battery node configurations for our experiment.

C.2.2 Results. For the three representative network topologies (i.e., the complete graph, star graph,

and linear chain graph), the empirical distribution of the total cost for each algorithm compared

is shown in Fig. 3. Moreover, Tables [5,6,7] summarize the average total costs and competitive

ratios of all considered algorithms for the three representative topologies, respectively. Both the

complete graph and the star graph have the same maximum node degree, whereas the graph density

of the star graph is significantly lower. This explains why all the algorithms considered exhibit

lower costs on the star graph, which is also consistent with our new theoretical analysis of the

cost performance in Theorem 5.2. Furthermore, LADO can leverage the power of ML policy more

efficiently with the reduced spatial cost uncertainties associated with fewer connections in the star

graph.

Interestingly, the star graph and linear chain graph share the same number of edges (or graph

density), while the star graph concentrates node degrees, leading to distinct cost behaviors. This

is evident when comparing the average cost distributions in Fig. 3(b) and Fig. 3(c). The uniform

node degree distribution in the chain graph allows LADO to leverage the power of learning-based

policy more efficiently and further reduce the total cost in the linear chain graph. This empirical

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:30 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Expert ML HitOnly Greedy
LADO

𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 662.38 489.03 613.73 1054.87 559.59 519.75 500.63 491.86

CR 2.065 4.653 7.380 4.227 1.948 2.234 2.422 3.068

LADO-Lin LADO-OPT
𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.9 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 618.72 548.95 502.58 480.04 555.77 509.92 488.91 481.59

CR 1.972 2.021 2.382 4.042 1.912 2.032 2.186 2.639

Table 5. AVG and CR comparison between different algorithms for a 15-node chain graph. The average cost
of OPT in the testing dataset is 405.37.

Expert ML HitOnly Greedy
LADO

𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 656.98 499.12 613.73 1030.78 610.87 606.46 583.98 539.01

CR 1.891 4.679 7.295 3.748 1.916 2.262 2.477 3.109

LADO-Lin LADO-OPT
𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.9 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 614.60 547.57 504.18 497.77 602.06 571.04 528.68 497.29

CR 1.802 1.889 2.309 4.614 1.882 2.039 2.225 2.666

Table 6. AVG and CR comparison between different algorithms for a 15-node star graph, shown as Fig. 1(b) .
The average cost of OPT in the testing dataset is 411.06.

Expert ML HitOnly Greedy
LADO

𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 991.99 630.41 613.73 2401.08 839.00 767.09 727.77 687.17

CR 3.245 3.619 4.048 11.577 2.614 3.026 3.469 3.595

LADO-Lin LADO-OPT
𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.9 𝜆 = 0.2 𝜆 = 0.5 𝜆 = 1 𝜆 = 2

AVG 914.90 787.99 697.48 625.63 650.70 637.81 632.44 622.09

CR 3.042 2.718 2.670 3.377 2.047 2.090 2.478 2.901

Table 7. AVG and CR comparison between different algorithms for a 15-node complete graph. The average
cost of OPT in the testing dataset is 524.79.

Chain Star Full
300

500

700

900

1100

To
ta

l c
os

t

Expert
ML

LADO (λ=0.2)
LADO (λ=0.5)

LADO (λ=1)
LADO (λ=2)

(a) Total cost with different 𝜆

Chain Star Full

1.0

3.0

5.0

C
om

pe
tit

iv
e

ra
tio

Expert
ML

LADO (λ=0.2)
LADO (λ=0.5)

LADO (λ=1)
LADO (λ=2)

(b) Competitive ratio with different 𝜆

Fig. 4. The comparison of total cost and competitive ratio distribution between LADO and other baseline
algorithms for a 15-node network.

observation aligns with Theorem 5.2, which suggests a more distributed node degree reduces a

lower term 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) due to perturbations to the ML policy.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:31

Impact of competitiveness requirement 𝜆: Next, we empirically evaluate the robustness-

consistency trade-off of LADO under different graph topologies. For all the three graphs, the empirical

average cost of learning-based policy (ML) outperforms the state-of-the-art expert policy, which

highlights the importance of reducing the deviation of LADO from the ML policy to improve the

average cost performance. As suggested by Theorem 5.2, reducing the spatial cost uncertainty

(fewer node connections) or relaxing the competitiveness requirement (larger 𝜆) leads to a smaller

deviation of LADO from the ML policy, which in turn reduces the perturbations to the ML policy

because of projection. Fig. 4(a) clearly illustrates this trend by comparing the average cost of

LADO under different settings. However, such performance improvement comes at an expense

in terms of the competitiveness guarantees. As illustrated in Fig. 4(b), a larger 𝜆 weakens the

competitiveness guarantees of LADO, reducing its worst-case protection and potentially leading to

a higher competitive ratio.

Impact of network topologies: In this experiment, we first evaluate LADO on graphs with the

same number of nodes but varying random graph topologies. Specifically, we consider 15 battery

units with varying characteristics and randomly selected spatial connections between these nodes.

The minimum number of edges is set the same as a star graph instead of zero, since otherwise the

nodes’ decisions would become uncorrelated without any spatial connections. Starting from the

star graph, we gradually add random edges between nodes to increase the graph density until the

graph is fully connected. Additionally, we experiment with different competitiveness requirements

under these graph topologies. The total cost and regret of LADO compared to the ML policy are

shown in Fig. 2.

As the graph density increases with more spatial connections between nodes, the total cost of

LADO rises monotonically, showing a direct correlation between increased node connectivity and

greater spatial cost uncertainties. To focus on the impacts solely due to the projection process, we

compare the regret of LADO against the ML policy, where both algorithms are evaluated under the

same graph topologies. As shown in Fig. 2(b), the increased spatial cost uncertainty associated with

denser graphs increases the difficulty for LADO to follow the ML policy, leading to a larger regret or

cost increase compared to the ML policy. Moreover, as the competitiveness requirement becomes

more stringent and LADO needs to stay closer to the expert, it is more difficult for LADO to closely

follow the ML policy.

0.0 0.2 0.5 1.0 2.0
Competitive requirement λ

3
9

15
30
60

120

G
ra

ph
 s

iz
e

0

40

80

120

160

(a) Total cost of LADO

0.0 0.2 0.5 1.0 2.0
Competitive requirement λ

3
9

15
30
60

120

G
ra

ph
 s

iz
e

10−1

100

101

102

(b) Regret of LADO compared to ML

Fig. 5. Impact of graph sizes and competitiveness requirement 𝜆 on the overall cost of LADO, along with the
additional cost (regret) incurred by the projection process compared to the ML policy. The overall cost and
regret are normalized by the number of nodes for a consistent comparison across different graph sizes.

Impact of graph sizes: Next, we conduct a comprehensive comparison between the overall cost

and regret of LADO (compared to the ML policy) over a wide range of graph sizes, ranging from 3 to

120 nodes. For consistency, all the graphs are fully connected. We normalize the overall costs and

regrets by the number of nodes. As illustrated in Fig. 5, this normalization enables a meaningful

comparison between algorithms over different graph sizes. Similar to our previous findings, the total

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:32 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

cost and regret of LADO compared to the ML policy decrease as the competitiveness requirement

relaxes with greater 𝜆, even for the largest graph. In fully-connected graphs, a larger graph implies

a higher degree of node connectivity. As indicated by the term 𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) in Theorem 5.2, a larger

node degree makes it more difficult for LADO to follow the ML policy. Consequently, given a fixed

competitiveness requirement 𝜆, the larger graph sizes, the greater node degrees, and the higher

regret of LADO compared to the ML policy as suggested by Theorem 5.2.

Node Cost Temporal Cost Spatial Cost
Expert LADO LADO-Lin Expert LADO LADO-Lin Expert LADO LADO-Lin0

200

400

600 (5,2) (5,1) (5,0) (5,4) (3,2) (7,2)

(a) Complete graph

Node Cost Temporal Cost Spatial Cost
Expert LADO LADO-Lin Expert LADO LADO-Lin Expert LADO LADO-Lin0

200

400

600 (5,2) (5,1) (5,0) (5,4) (3,2) (7,2)

(b) Star graph

Node Cost Temporal Cost Spatial Cost
Expert LADO LADO-Lin Expert LADO LADO-Lin Expert LADO LADO-Lin0

200

400

600 (5,2) (5,1) (5,0) (5,4) (3,2) (7,2)

(c) Linear chain graph

Fig. 6. Comparison of node, temporal, and spatial costs for LADO with varying weights (𝑏, 𝑐) in the decentral-
ized battery management formulation (shown as Eqn. (2)). By default, we consider a 15-node network and set
the competitiveness requirement 𝜆 as 1. To enhance visual clarity, the temporal costs are scaled up by 10 to
align with the scale of node and spatial costs. Results for LADO-Lin and Expert are also included for reference.

LADO with different weights for temporal and spatial costs: As shown in Eqn. (2), the

total cost is parameterized by the weights for the temporal and spatial costs, denoted as (𝑏, 𝑐)
respectively. By normalizing the node cost weight to 1, the magnitudes of 𝑏 and 𝑐 directly reflect

the relative importance of temporal and spatial decision smoothness versus reducing the node cost

for achieving the desired state of charge at each battery node. It is crucial to note that these weights

represent relative preferences rather than absolute cost scales. For instance, even if we set both 𝑏

and 𝑐 as 1, the temporal and spatial costs are necessarily equal to the node cost.

We compare the performance of LADO, LADO-Lin and Expert under a variety of weight combi-

nations, as shown in Fig. 6. In this experiment, the ML algorithm is not fine-tuned based on the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:33

weights of 𝑏 and 𝑐 for the temporal and spatial costs, and the other baseline algorithms are not

affected by these weights. By keeping the weight of switching cost constant, a greater 𝑐 prioritizes

the spatial cost, thus leading to reduced spatial costs for all the algorithms. Conversely, a smaller 𝑐

gives more emphasis to the temporal cost. Additionally, LADO exhibits less sensitivity to weight

variations (𝑏, 𝑐) compared to LADO-Lin and Expert, which is more evident in the complete graph.

This robustness stems from LADO’s design, where the expert advice constructs a robust action set.

Consequently, LADO’s spatial cost is less influenced by the Expert policy changes than the static

linear combination in LADO-Lin.
In practice, the spatial cost parameter is adjusted to strike a balance between two competing

objectives: the local performance of each node (measured by node and temporal costs) and the

spatial consistency among connected nodes. For the graphs with heterogeneous nodes, these

objectives may conflict. Prioritizing spatial consistency can make it more difficult to achieve

optimal local performance for individual nodes compared to the scenario where each node operates

independently. As shown in Fig. 7, by increasing the spatial cost parameter 𝑐 , LADO enhances SoC

consistency among connected battery units. To directly compare the actual SoC difference between

battery units across different scenarios, spatial costs are evaluated using a constant parameter of

𝑐 = 1. Consequently, for all the three graph topologies, we observe that the local costs (e.g. node and

temporal costs) of individual nodes increase as the spatial difference decreases. Moreover, graphs

with more spatial connections, such as the complete graph in Fig 7(a), exhibit a greater sensitivity to

the spatial cost parameter 𝑐 . This is because introducing additional spatial considerations between

nodes amplifies the impact of 𝑐 on local costs.

480 482 484 486 488 490 492
Node + Temporal Cost

25
30
35
40
45
50
55
60

Sp
at

ia
l C

os
t

(a) Complete graph

480.5 480.6 480.7 480.8 480.9
Node + Temporal Cost

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Sp
at

ia
l C

os
t

(b) Star graph

480 481 482 483 484 485
Node + Temporal Cost

3.0

3.3

3.6

3.9

4.2

4.5

Sp
at

ia
l C

os
t

(c) Linear chain graph

Fig. 7. The tradeoff curve between spatial cost and the sum of node and temporal cost of LADO by adjusting
the coefficient 𝑐 in spatial cost, which penalizes the SoC difference between connected battery units. The
parameter 𝑏 for the temporal cost is set as 1 by default.

D Proofs of Results in Section 3
We begin with a technical lemma.

Lemma D.1. If the spatial cost is non-negative, convex and ℓ𝑆 -smooth w,r,t the vector (𝑥𝑣, 𝑥𝑢), then
for any 𝜆 > 0, it holds that

𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) − (1 + 𝜆)𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡) ≤ ℓ𝑆

2

(1 + 1

𝜆
)
(
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 + ∥𝑥𝑢𝑡 − 𝑥

𝑢,†
𝑡 ∥2

)
. (25)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:34 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Proof. By the definition of smoothness, we have

𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡)

≤𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥
𝑢,†
𝑡)+ < ∇𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡), (𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 , 𝑥𝑢𝑡 − 𝑥

𝑢,†
𝑡) > + ℓ𝑆

2

∥(𝑥 𝑣𝑡 , 𝑥𝑢𝑡) − (𝑥 𝑣,†𝑡 , 𝑥
𝑢,†
𝑡)∥2

≤𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥
𝑢,†
𝑡) + ∥∇𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡)∥ · ∥(𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 , 𝑥𝑢𝑡 − 𝑥

𝑢,†
𝑡)∥ + ℓ𝑆

2

∥(𝑥 𝑣𝑡 , 𝑥𝑢𝑡) − (𝑥 𝑣,†𝑡 , 𝑥
𝑢,†
𝑡)∥2

≤𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥
𝑢,†
𝑡) + 𝜆

2ℓ𝑆
∥∇𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡)∥2 + (1 + 1

𝜆
) ℓ𝑆
2

∥(𝑥 𝑣𝑡 , 𝑥𝑢𝑡) − (𝑥 𝑣,†𝑡 , 𝑥
𝑢,†
𝑡)∥2

(26)

The second inequality comes from the property of inner product. The third inequality is based

on AM-QM inequality. Besides, if (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) is a minimizer of the spatial cost, by Lemma 2.9 in [75],

we have

𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡) ≥ 𝑠

(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) + 0 + 1

2ℓ𝑆
∥∇𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡)∥2 ≥ 1

2ℓ𝑆
∥∇𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡)∥2 (27)

By substituting Eqn (27) back to Eqn (26), we have

𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) ≤ (1 + 𝜆) · 𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡) + (1 + 1

𝜆
) ℓ𝑆
2

(∥(𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2 + ∥𝑥𝑢𝑡 − 𝑥

𝑢,†
𝑡 ∥2). (28)

□

D.1 Proof of Theorem 3.1
Since LADO-Lin selects action as 𝑥 𝑣𝑡 = 𝛾𝑥 𝑣𝑡 + (1 − 𝛾)𝑥 𝑣,†𝑡 at each round, by convexity of the global

cost, we have

𝑐𝑜𝑠𝑡 (LADO-Lin, 𝑔1:𝑇) ≤ 𝛾𝑐𝑜𝑠𝑡 (𝜋̃, 𝑔1:𝑇) + (1 − 𝛾)𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑇). (29)

By taking expectation on both sides, the cost of LADO-Lin is bounded by the first term in the min

operator. Next, we prove the cost of LADO-Lin is also bounded by the second term in the min

operator.

First, we can write the norm of the difference between the actions of LADO-Lin and expert 𝜋†
as

∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡 ∥ = (1 − 𝛾)∥𝑥 𝑣,†𝑡 − 𝑥 𝑣𝑡 ∥ . (30)

Based on Lemma D.1, for any 𝜆2 > 0, for any 𝑣 ∈ E, we have(
𝑇∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣𝜏) +
𝑇∑︁
𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1)
)
− (1 + 𝜆2)

(
𝑇∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣𝜏) +
𝑇∑︁
𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1)
)

≤(1 + 1

𝜆2
)
(
ℓ𝑓

2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2 +
ℓ𝑇

2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2 +
ℓ𝑇

2

𝑇−1∑︁
𝜏=0

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2
)

≤(1 + 1

𝜆2
)
ℓ𝑓 + 2 · ℓ𝑇

2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2 ≤ (1 − 𝛾) (1 + 1

𝜆2
)
ℓ𝑓 + 2 · ℓ𝑇

2

𝑇∑︁
𝜏=1

∥𝑥 𝑣,†𝑡 − 𝑥 𝑣𝑡 ∥2

(31)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:35

By summing up the spacial costs over time, we have∑︁
(𝑣,𝑢) ∈E

𝑇∑︁
𝜏=1

𝑠
(𝑣,𝑢)
𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏) − (1 + 𝜆2)

∑︁
(𝑣,𝑢) ∈E

𝑇∑︁
𝜏=1

𝑠
(𝑣,𝑢)
𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏)

≤(1 + 1

𝜆2
) ℓ𝑆
2

∑︁
(𝑣,𝑢) ∈E

𝑇∑︁
𝜏=1

(
∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2 + ∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2

)
=(1 + 1

𝜆2
)
∑︁
𝑣∈V

𝐷𝑣 · ℓ𝑆
2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2 ≤ (1 − 𝛾)2 (1 + 1

𝜆2
)
∑︁
𝑣∈V

𝐷𝑣 · ℓ𝑆
2

𝑇∑︁
𝜏=1

∥𝑥 𝑣,†𝑡 − 𝑥 𝑣𝑡 ∥2

(32)

By adding Eqn (32) to Eqn (31), we can bound the sum cost error as

𝑐𝑜𝑠𝑡 (LADO-Lin) − (1 + 𝜆2)𝑐𝑜𝑠𝑡 (𝜋̃) ≤ (1 − 𝛾)2 (1 + 1

𝜆2
)
∑︁
𝑣∈V

ℓ𝑓 + 2 · ℓ𝑇 + 𝐷𝑣 · ℓ𝑆
2

𝑇∑︁
𝜏=1

∥𝑥 𝑣,†𝑡 − 𝑥 𝑣𝑡 ∥2

(33)

By taking expectation on both sides, we have

𝐴𝑉𝐺 (LADO-Lin) − (1 + 𝜆2)𝐴𝑉𝐺 (𝜋̃) ≤ (1 − 𝛾)2 (1 + 1

𝜆2
)E𝑔1:𝑇

[∑︁
𝑣∈V

ℓ𝑓 + 2 · ℓ𝑇 + 𝐷𝑣 · ℓ𝑆
2

𝑇∑︁
𝜏=1

∥𝑥 𝑣,†𝑡 − 𝑥 𝑣𝑡 ∥2
]

(34)

By optimally setting 𝜆2 =

√︂
(1 − 𝛾)2E𝑔1:𝑇

[∑
𝑣∈V

ℓ𝑓 +2·ℓ𝑇 +𝐷𝑣 ·ℓ𝑆
2

∑𝑇
𝜏=1 ∥𝑥

𝑣,†
𝑡 − 𝑥 𝑣𝑡 ∥2

]
1

𝐴𝑉𝐺 (𝜋̃) , we can

bound the sum cost as

𝑐𝑜𝑠𝑡 (LADO-Lin) ≤ ©­«
√︁
𝐴𝑉𝐺 (𝜋̃) + (1 − 𝛾)

√√√
E𝑔1:𝑇

[𝑇∑︁
𝑡=1

∑︁
𝑣∈V

ℓ𝑓 + 2ℓ𝑇 + 𝐷𝑣ℓ𝑆

2

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2

]ª®¬
2

(35)

D.2 Proof of Proposition 3.2
If LADO-Lin satisfies the 𝜆−competitiveness constraint, we have

𝑐𝑜𝑠𝑡 (LADO-Lin) ≤ (1 + 𝜆)𝑐𝑜𝑠𝑡 (𝜋†) ≤ (1 + 𝜆)𝜌𝜋†𝑐𝑜𝑠𝑡 (𝜋∗) (36)

Since the cost function 𝑐𝑜𝑠𝑡 is 𝛽−strongly convex, the gradient of 𝑐𝑜𝑠𝑡 at 𝑥∗ is ∇𝑐𝑜𝑠𝑡 (𝑥∗) = 0 and it

holds that

𝑐𝑜𝑠𝑡 (LADO-Lin) ≥ 𝑐𝑜𝑠𝑡 (𝜋∗) + 𝛽

2

∥𝛾𝑥𝑡 + (1 − 𝛾)𝑥†𝑡 − 𝑥∗∥2

= 𝑐𝑜𝑠𝑡 (𝜋∗) + 𝛽

2

∥𝛾 (𝑥𝑡 − 𝑥∗) + (1 − 𝛾) (𝑥†𝑡 − 𝑥∗)∥2
(37)

Substituting (37) to (36), we have

𝛽

2

∥𝛾 (𝑥𝑡 − 𝑥∗) + (1 − 𝛾) (𝑥†𝑡 − 𝑥∗)∥2 ≤ ((1 + 𝜆)𝜌𝜋† − 1) 𝑐𝑜𝑠𝑡 (𝜋∗). (38)

By taking the squared root for both sides and applying triangle inequality for the left hand side, it

holds that

∥𝛾 (𝑥𝑡 − 𝑥∗)∥ − ∥(1 − 𝛾) (𝑥†𝑡 − 𝑥∗)∥ ≤
√︄

2

𝛽
((1 + 𝜆)𝜌𝜋† − 1) 𝑐𝑜𝑠𝑡 (𝑐𝑜𝑠𝑡 (𝜋∗). (39)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:36 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Since the cost function is 𝛽−strongly convex, we have

𝑐𝑜𝑠𝑡 (𝜋∗) + 𝛽

2

∥𝑥† − 𝑥∗∥2 ≤ 𝑐𝑜𝑠𝑡 (𝑥†) ≤ 𝜌𝜋†𝑐𝑜𝑠𝑡 (𝜋∗) . (40)

Substituting (40) into (39), we have

∥𝑥𝑡 − 𝑥∗∥ ≤
(
1 − 𝛾

𝛾

√︄
(𝜌𝜋† − 1) 2

𝛽
+ 1

𝛾

√︄
2

𝛽
((1 + 𝜆)𝜌𝜋† − 1)

) √︁
𝑐𝑜𝑠𝑡 (𝜋∗). (41)

The proposition is proved by moving items in the above inequality.

E Proof of Robustness in Theorem 5.1
To prove Theorem 5.1, the key point is to guarantee the robust action set (17) is non-empty. We

will prove this through induction. For 𝑡 = 1, it is obvious that 𝑥 𝑣
1
= 𝑥

𝑣,†
1

satisfies the constraint. We

assume that the robustness constraint is satisfied up to time step 𝑡 − 1, which is

𝑡−1∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣𝜏) +
𝑡−2∑︁
𝜏=1

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 · 𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏) +

ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

(1 + 1

𝜆0
) · ∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2

+
𝑡−1∑︁
𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1) ≤ (1 + 𝜆)
(𝑡−1∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣,†𝜏) +
𝑡−1∑︁
𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣,†𝜏 , 𝑥
𝑣,†
𝜏−1) +

𝑡−2∑︁
𝜏=1

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 · 𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣,†𝜏 , 𝑥𝑢,†𝜏)

)
(42)

Based on Lemma D.1 and 𝜅
(𝑣,𝑢)
𝑡−1 =

∥𝑥𝑣
𝑡−1−𝑥

𝑣,†
𝑡−1 ∥2

∥𝑥𝑣
𝑡−1−𝑥

𝑣,†
𝑡−1 ∥2+∥𝑥𝑢𝑡−1−𝑥

𝑢,†
𝑡−1 ∥2

, we have

𝜅
(𝑣,𝑢)
𝑡−1 ·

(
𝑠
(𝑣,𝑢)
𝑡−1 (𝑥 𝑣𝑡−1, 𝑥𝑢𝑡−1) − (1 + 𝜆)𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣,†
𝑡−1, 𝑥

𝑢,†
𝑡−1)

)
≤ ℓ𝑆

2

(1 + 1

𝜆
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2
(43)

For time step 𝑡 , if we choose 𝑥 𝑣𝑡 = 𝑥
𝑣,†
𝑡 , by the smoothness assumption, we have

𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥 𝑣𝑡−1) − (1 + 𝜆)𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥
𝑣,†
𝑡−1) ≤

ℓ𝑇

2

(1 + 1

𝜆
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2
(44)

Since the node cost is non-negative, by (43) and (44), we have

𝑓 𝑣𝑡 (𝑥 𝑣,†𝑡) +
∑︁

(𝑣,𝑢) ∈E
𝜅
(𝑣,𝑢)
𝑡−1 · 𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣𝑡−1, 𝑥𝑢𝑡−1) + 𝑐𝑣𝑡 (𝑥
𝑣,†
𝑡 , 𝑥 𝑣𝑡−1) −

ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

(1 + 1

𝜆0
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2

− (1 + 𝜆)
(
𝑓 𝑣𝑡 (𝑥 𝑣,†𝑡) + 𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑣,†
𝑡−1) +

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1 · 𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣,†
𝑡−1, 𝑥

𝑢,†
𝑡−1)

)
≤ ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

(1 + 1

𝜆
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2 − ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

(1 + 1

𝜆0
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2

≤0,
(45)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:37

where the last inequality holds by 𝜆 ≥ 𝜆0. By adding Eqn (45) back to Eqn (42) and moving items,

we recover the robustness constraint for time step 𝑡 if 𝑥 𝑣𝑡 = 𝑥
𝑣,†
𝑡 ,

𝑡∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣𝜏) +
𝑡−1∑︁
𝜏=1

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 · 𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏) +

𝑡∑︁
𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1) +
ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

(1 + 1

𝜆0
)∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2

≤ (1 + 𝜆)
(𝑡∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣,†𝜏) +
𝑡∑︁

𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣,†𝜏 , 𝑥
𝑣,†
𝜏−1) +

𝑡−1∑︁
𝜏=1

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 · 𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣,†𝜏 , 𝑥𝑢,†𝜏)

)
(46)

In other words, the expert’s action 𝑥
𝑣,†
𝑡 is always an action in the corresponding robust action set

(17). Thus the robust action set is non-empty.

Since 𝜅
(𝑣,𝑢)
𝑡 + 𝜅 (𝑢,𝑣)

𝑡 = 1 holds for (𝑣,𝑢) ∈ E, if all the nodes select actions from the robust action

set (17) at each step, we can guarantee that 𝑐𝑜𝑠𝑡 (LADO, 𝑔1:𝑇) ≤ (1 + 𝜆) · 𝑐𝑜𝑠𝑡 (𝜋†, 𝑔1:𝑇) is satisfied.

F Proof of Average Cost Bounds and Robust-Consistency of LADO
F.1 Proof of Theorem 5.2
We begin by stating and proving a technical lemma and then move to the proof of Theorem 5.2.

Lemma F.1. We denote the actual actions from LADO as 𝑥 𝑣
1:𝑇

= (𝑥 𝑣
1
, · · · , 𝑥 𝑣

𝑇
), the squared distance

between actual action and ML advice is bounded by

𝑇∑︁
𝑡=1

∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡 ∥2 ≤
𝑇∑︁
𝑡=1

[
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − 𝜆 − 𝜆0

1 + 1

𝜆0

· 2

ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

· cost†𝑣,𝑡

]+
where 𝜆, 𝜆0, 𝐷 , and 𝜌 are defined in Theorem 5.2.

Proof. To prove this lemma, we first construct a sufficient condition to satisfy the original

constraint in Eqn (13). Then we prove a distance bound in this sufficient condition, where the

bound still holds for the original problem.

At time step 𝑡 , we know the constraint in time step 𝑡 − 1 is already satisfied, so we obtain the

following sufficient condition of the satisfaction of (13) as

𝑓 𝑣𝑡 (𝑥 𝑣𝑡) +
∑︁

(𝑣,𝑢) ∈E
𝜅
(𝑣,𝑢)
𝑡−1 · 𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣𝑡−1, 𝑥𝑢𝑡−1) +
ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

(1 + 1

𝜆0
)
(
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − ∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2

)
+𝑐𝑣𝑡 (𝑥 𝑣𝑡 , 𝑥 𝑣𝑡−1) ≤ (1 + 𝜆)

(
𝑓 𝑣𝑡 (𝑥 𝑣,†𝑡) + 𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑣,†
𝑡−1) +

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1 · 𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣,†
𝑡−1, 𝑥

𝑢,†
𝑡−1)

)
(47)

With the convexity and smoothness assumptions, we have

𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥 𝑣𝑡−1) − (1 + 𝜆0)𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥
𝑣,†
𝑡−1) ≤

ℓ𝑇

2

(1 + 1

𝜆0
)
(
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 + ∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2

)
𝑓 𝑣𝑡 (𝑥 𝑣𝑡) − (1 + 𝜆0) 𝑓 𝑣𝑡 (𝑥 𝑣,†𝑡) ≤

ℓ𝑓

2

(1 + 1

𝜆0
)∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2

(48)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:38 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

Then a sufficient condition that (47) holds becomes∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1 · 𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣𝑡−1, 𝑥𝑢𝑡−1) + (1 + 1

𝜆0
)
(
ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2 − ℓ𝑆 · 𝐷𝑣

2

∥𝑥 𝑣𝑡−1 − 𝑥
𝑣,†
𝑡−1∥

2

)
≤ (𝜆 − 𝜆0)

(
𝑓 𝑣𝑡 (𝑥 𝑣,†𝑡) + 𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑣,†
𝑡−1)

)
+ (1 + 𝜆)

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1 · 𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣,†
𝑡−1, 𝑥

𝑢,†
𝑡−1)

(49)

From Eqn (43), we can further cancel out the spatial costs and get the sufficient condition of Eqn (49),

shown as below

(1 + 1

𝜆0
)
(
ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2

)
≤ (𝜆 − 𝜆0)

(
𝑓 𝑣𝑡 (𝑥 𝑣,†𝑡) + 𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑣,†
𝑡−1) +

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1 · 𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣,†
𝑡−1, 𝑥

𝑢,†
𝑡−1)

) (50)

For the expert policy 𝜋†
at time 𝑡 , we define the sum of node cost and temporal cost as cost

†
𝑣,𝑡 =

𝑓 𝑣𝑡 (𝑥
𝑣,†
𝑡) + 𝑐𝑣𝑡 (𝑥

𝑣,†
𝑡 , 𝑥

𝑣,†
𝑡−1). Therefore, a sufficient condition of Eqn (49) is

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2 ≤ 𝜆 − 𝜆0

1 + 1

𝜆0

· 2

ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

· cost†𝑣,𝑡 (51)

By summarizing the sufficient condition in Eqn (47-51), we conclude that for any 𝑥 𝑣𝑡 satisfying

Eqn (51) must satisfy the original constraint Eqn (13). If the ML advice 𝑥 𝑣𝑡 satisfies the inequality

in Eqn (51), we can completely follow ML advice without any modification for node 𝑣 . Otherwise,

we construct a 𝑥 𝑣𝑡 achieves equity in Eqn (51) and satisfies ∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡 ∥ = ∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥ − ∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡 ∥.

Therefore, the distance between the constructed action 𝑥 𝑣𝑡 and ML advice is given by

∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡 ∥ =
[
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥ −

√︄
𝜆 − 𝜆0

1 + 1

𝜆0

· 2

ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

· cost†𝑣,𝑡

]+
(52)

Since 𝑥 𝑣𝑡 is obtained by minimizing its distance to ML action 𝑥 𝑣𝑡 under the original constraint in

Eqn (13), it’s obvious that ∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡 ∥ ≤ ∥𝑥 𝑣𝑡 − 𝑥 𝑣𝑡 ∥. Besides, we have the following inequality([
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥ −

√︄
𝜆 − 𝜆0

1 + 1

𝜆0

· 2

ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

· cost†𝑣,𝑡

]+)2
≤

[
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − 𝜆 − 𝜆0

1 + 1

𝜆0

· 2

ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

· cost†𝑣,𝑡

]+ (53)

By summing up the inequalities over time, we complete the proof. □

Proof of Theorem 5.2. Based on Lemma D.1, for any 𝜆2 > 0 we have(
𝑇∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣𝜏) +
𝑇∑︁
𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1)
)
− (1 + 𝜆2)

(
𝑇∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣𝜏) +
𝑇∑︁
𝜏=1

𝑐𝑣𝜏 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1)
)

≤(1 + 1

𝜆2
)
(
ℓ𝑓

2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2 +
ℓ𝑇

2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2 +
ℓ𝑇

2

𝑇−1∑︁
𝜏=0

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2
)

≤(1 + 1

𝜆2
)
ℓ𝑓 + 2 · ℓ𝑇

2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2

(54)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:39

By summing up the spacial costs over time, we have∑︁
(𝑣,𝑢) ∈E

𝑇∑︁
𝜏=1

𝑠
(𝑣,𝑢)
𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏) − (1 + 𝜆2)

∑︁
(𝑣,𝑢) ∈E

𝑇∑︁
𝜏=1

𝑠
(𝑣,𝑢)
𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏)

≤(1 + 1

𝜆2
) ℓ𝑆
2

∑︁
(𝑣,𝑢) ∈E

𝑇∑︁
𝜏=1

(
∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2 + ∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2

)
=(1 + 1

𝜆2
)
∑︁
𝑣∈V

𝐷𝑣 · ℓ𝑆
2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2

(55)

By adding Eqn (54) and Eqn (55), we can bound the cost error of node 𝑣 as

cost(𝑥1:𝑇) − (1 + 𝜆2)cost(𝑥1:𝑇) ≤ (1 + 1

𝜆2
)
∑︁
𝑣∈V

ℓ𝑓 + 2 · ℓ𝑇 + 𝐷𝑣 · ℓ𝑆
2

𝑇∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣𝜏 ∥2, (56)

where𝐷max = max𝑣∈V 𝐷𝑣 is the maximum degree of nodes. By substituting Lemma F.1 into Eqn (56),

we have

cost(𝑥1:𝑇) − (1 + 𝜆2)cost(𝑥1:𝑇) ≤ (1 + 1

𝜆2
)
∑︁
𝑣∈V

𝑇∑︁
𝑡=1

[
ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · 𝐷𝑣

2

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2 − 𝜆 − 𝜆0

1 + 1

𝜆0

· cost†𝑣,𝑡

]+
(57)

where the right-hand side captures the cost increase brought by the robustification process, which

is minimized by setting 𝜆0 =
√
1 + 𝜆 − 1. By taking the expectation of Eqn (57) over the context

distribution P𝑔1:𝑇 , we have

𝐴𝑉𝐺 (LADO(𝜋̃)) − (1 + 𝜆2)𝐴𝑉𝐺 (𝜋̃) ≤ (1 + 1

𝜆2
)
∑︁
𝑣∈V

𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) (58)

where𝜔𝑣 (𝜆, 𝜋̃, 𝜋†) = E𝑔1:𝑇
{∑𝑇

𝑡=1

[
ℓ𝑓 +2·ℓ𝑇 +ℓ𝑆 ·𝐷𝑣

2
∥𝑥 𝑣𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − (

√
1 + 𝜆 − 1)2 · cost†𝑣,𝑡

]+}
. By optimally

setting 𝜆2 =

√︃∑
𝑣∈V 𝜔𝑣 (𝜆,𝜋̃,𝜋†)

𝐴𝑉𝐺 (𝜋̃)
□

F.2 Proof of Corollary A.1
To prove the Corollary A.1, we first show the robustness is also guaranteed under the setting of

directed graphs. Secondly, we will provide the upper bound of the distance between actual action

taken by LADO andML advice. Finally, we translate the action distance to the cost increase associated

with the projection. Since most of the proof steps are similar to the problem with undirected graphs,

we only highlight the difference here.

Based on Lemma D.1 and 𝜅
(𝑣,𝑢)
𝑡−1 =

∥𝑥𝑣
𝑡−1−𝑥

𝑣,†
𝑡−1 ∥2

∥𝑥𝑣
𝑡−1−𝑥

𝑣,†
𝑡−1 ∥2+∥𝑥𝑢𝑡−1−𝑥

𝑢,†
𝑡−1 ∥2

, we have∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1 ·

(
𝑠
(𝑣,𝑢)
𝑡−1 (𝑥 𝑣𝑡−1, 𝑥𝑢𝑡−1) − (1 + 𝜆)𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣,†
𝑡−1, 𝑥

𝑢,†
𝑡−1)

)
≤ 𝐷𝑜𝑢𝑡

𝑣 ℓ𝑆

2

(1 + 1

𝜆
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2
(59)

∑︁
(𝑢,𝑣) ∈E

𝜅
(𝑢,𝑣)
𝑡−1 ·

(
𝑠
(𝑢,𝑣)
𝑡−1 (𝑥𝑢𝑡−1, 𝑥 𝑣𝑡−1) − (1 + 𝜆)𝑠 (𝑢,𝑣)

𝑡−1 (𝑥𝑢,†
𝑡−1, 𝑥

𝑣,†
𝑡−1)

)
≤ 𝐷𝑖𝑛

𝑣 ℓ𝑆

2

(1 + 1

𝜆
)∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2
(60)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:40 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

By plugging the inequality back to Eqn (45), we can prove that if action constraint in Eqn (19) is

satisfied up to time 𝑡 − 1, the expert action 𝑥
𝑣,†
𝑡 is a feasible solution for the directed graph G. In

other words, the action set constructed by the constraint in Eqn (19) is nonempty for all 𝑡 ∈ [1,𝑇].
If the constraint in Eqn. (19) is satisfied at time 𝑡 − 1, a sufficient condition of the constraint at

time 𝑡 is formulated as

(1 + 1

𝜆0
)
(
ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · (𝐷𝑖𝑛

𝑣 + 𝐷𝑜𝑢𝑡
𝑣)

2

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2

)
≤ (𝜆 − 𝜆0)

(
𝑓 𝑣𝑡 (𝑥 𝑣,†𝑡)+

𝑐𝑣𝑡 (𝑥 𝑣,†𝑡 , 𝑥
𝑣,†
𝑡−1) +

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝑡−1 · 𝑠 (𝑣,𝑢)

𝑡−1 (𝑥 𝑣,†
𝑡−1, 𝑥

𝑢,†
𝑡−1) +

∑︁
(𝑢,𝑣) ∈E

𝜅
(𝑢,𝑣)
𝑡−1 · 𝑠 (𝑢,𝑣)

𝑡−1 (𝑥𝑢,†
𝑡−1, 𝑥

𝑣,†
𝑡−1)

) (61)

By defining 𝑐𝑜𝑠𝑡
†
𝑣,𝑡 = 𝑓 𝑣𝑡 (𝑥

𝑣,†
𝑡) + 𝑐𝑣𝑡 (𝑥

𝑣,†
𝑡 , 𝑥

𝑣,†
𝑡−1) as the sum of expert’s node cost and temporal cost

for node 𝑣 at time 𝑡 , a sufficient condition of Eqn (61) is

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2 ≤ 𝜆 − 𝜆0

1 + 1

𝜆0

· 2

ℓ𝑓 + 2 · ℓ𝑇 + ℓ𝑆 · (𝐷𝑖𝑛
𝑣 + 𝐷𝑜𝑢𝑡

𝑣)
· cost†𝑣,𝑡 (62)

By substituting the action distance to Eqn (53) and summing up the distance over the horizon 𝑡 and

the entire graph, we obtain the total action distance between LADO and ML policy in the directed

graph. Then we finish the proof by translating the distance to the cost increase ncaccording to the

smoothness assumption of these three costs (Assumption 2.1 - 2.3)

F.3 Proof of Theorem 5.3
Denote ℓ =

ℓ𝑓 +2·ℓ𝑇 +ℓ𝑆 ·𝐷max

2
. By (57), when ML gives the offline-optimal actions, i.e. 𝑥1:𝑇 = 𝑥∗

1:𝑇
, we

have for any sequence 𝑔1:𝑇 ,

cost(𝑥1:𝑇) − (1 + 𝜆2)cost(𝑥∗1:𝑇)

≤(1 + 1

𝜆2
)ℓ

∑︁
𝑣∈V

𝑇∑︁
𝑡=1

[
∥𝑥 𝑣,∗𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − 1

ℓ
· (
√
1 + 𝜆 − 1)2 · cost†𝑣,𝑡

]+
(63)

By optimally setting 𝜆2, we have

cost(𝑥1:𝑇) ≤ ©­«
√︃
cost(𝑥∗

1:𝑇
) +

√√√
ℓ
∑︁
𝑣∈V

𝑇∑︁
𝑡=1

[
∥𝑥 𝑣,∗𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − 1

ℓ
· (
√
1 + 𝜆 − 1)2 · cost†𝑣,𝑡

]+ª®¬
2

(64)

which translates to a competitive ratio of

𝜌LADO ≤ min


1 +

√√√√
max

𝑔1:𝑇 ∈G

∑
𝑣∈V

∑𝑇
𝑡=1

[
ℓ ∥𝑥 𝑣,∗𝑡 − 𝑥

𝑣,†
𝑡 ∥2 − (

√
1 + 𝜆 − 1)2 · 𝑐𝑜𝑠𝑡†𝑣,𝑡

]+
𝑐𝑜𝑠𝑡 (𝑥∗

1:𝑇
, 𝑔1:𝑇)


2

, (1 + 𝜆)𝜌𝜋†


(65)

.

By 𝛽−strongly convexity of the cost function, we have ∇𝑐𝑜𝑠𝑡 (𝑥∗
1:𝑇

) = 0 and

𝑐𝑜𝑠𝑡 (𝜋†) ≥ 𝑐𝑜𝑠𝑡 (𝜋∗) + 𝛽

2

∑︁
𝑣∈V

𝑇∑︁
𝑡=1

∥𝑥 𝑣,†𝑡 − 𝑥
𝑣,∗
𝑡 ∥2 . (66)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

Learning-Augmented Decentralized Online Convex Optimization in Networks 38:41

Thus, the competitive ratio can be simplified as

𝜌LADO ≤ ©­«1 +
√︄
max

𝑔1:𝑇
2ℓ

∑
𝑣∈V

∑𝑇
𝑡=1 ∥𝑥

𝑣,†
𝑡 − 𝑥

𝑣,∗
𝑡 ∥2

𝑐𝑜𝑠𝑡 (𝑥∗
1:𝑇

, 𝑔1:𝑇)
ª®¬
2

≤ ©­«1 +
√√
max

𝑔1:𝑇

4ℓ

𝛽

𝑐𝑜𝑠𝑡 (𝑥†
1:𝑇

, 𝑔1:𝑇) − 𝑐𝑜𝑠𝑡 (𝑥∗
1:𝑇

, 𝑔1:𝑇)
𝑐𝑜𝑠𝑡 (𝑥∗

1:𝑇
, 𝑔1:𝑇)

ª®¬
2

≤
(
1 + 2

√︄
ℓ

𝛽
· (𝜌𝜋† − 1)

)2
.

(67)

F.4 Proof of Corollary B.1
In Corollary B.1, we assume that 𝜋◦

𝜆
in Eqn. (22) is used in LADO. To bound the average cost of

LADO(𝜋̃◦
𝜆
), we construct a policy that satisfies the constraint (13) for each step in each sequence. Then

the average cost bound of the constructed policy is also the average cost upper bound of LADO(𝜋̃◦
𝜆
)

since LADO(𝜋̃◦
𝜆
) is the policy that minimizes average cost while satisfying the constraint (13) for

each step in each sequence if we assume that the ML model can represent any policy. The feasible

policy is constructed as 𝜋 = (1 − 𝛼)𝜋† + 𝛼𝜋̃∗
which gives action 𝑥 𝑣𝑡 = (1 − 𝛼)𝑥 𝑣,†𝑡 + 𝛼𝑥 𝑣𝑡 , 𝛼 ∈ [0, 1],

where 𝑥
†
𝑡 , 𝑥𝑡 denotes expert action and the prediction from projection-unaware ML model 𝜋̃∗

,

respectively. We need to find the 𝛼 that guarantees the satisfaction of the constraint (11). To do

that, we rewrite the constraint as

𝑡∑︁
𝜏=1

(
𝑓 𝑣𝜏 (𝑥 𝑣𝜏) − (1 + 𝜆0) 𝑓 𝑣𝜏 (𝑥†𝜏)

)
+

𝑡∑︁
𝜏=1

(
𝑐𝑣 (𝑥 𝑣𝜏 , 𝑥 𝑣𝜏−1) − (1 + 𝜆0)𝑐𝑣 (𝑥 𝑣,†𝜏 , 𝑥

𝑣,†
𝜏−1)

)
+

𝑡−1∑︁
𝜏=1

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 ·(

𝑠
(𝑣,𝑢)
𝜏 (𝑥 𝑣𝜏 , 𝑥𝑢𝜏) − (1 + 𝜆0)𝑠 (𝑣,𝑢)𝜏 (𝑥 𝑣,†𝜏 , 𝑥𝑢,†𝜏)

)
+ (1 + 1

𝜆0
) ℓ𝑇 + 𝐷𝑣 · ℓ𝑆

2

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2

≤(𝜆 − 𝜆0)
(𝑡∑︁
𝜏=1

𝑓 𝑣𝜏 (𝑥 𝑣,†𝜏) +
𝑡∑︁

𝜏=1

𝑐𝑣 (𝑥 𝑣,†𝜏 , 𝑥
𝑣,†
𝜏−1) +

𝑡−1∑︁
𝜏=1

∑︁
(𝑣,𝑢) ∈E

𝜅
(𝑣,𝑢)
𝜏 𝑠

(𝑣,𝑢)
𝜏 (𝑥 𝑣,†𝜏 , 𝑥𝑢,†𝜏)

)
,∀𝑡 ∈ [1,𝑇]

(68)

Based on the smoothness assumption, we have

𝑓 𝑣𝑡 (𝑥 𝑣𝑡) − (1 + 𝜆0) 𝑓 𝑣𝑡 (𝑥 𝑣,†𝑡) ≤(1 + 1

𝜆0
)
ℓ𝑓

2

∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2

𝑐𝑣 (𝑥 𝑣𝑡 , 𝑥 𝑣𝑡−1) − (1 + 𝜆0)𝑐𝑣 (𝑥 𝑣,†𝑡 , 𝑥
𝑣,†
𝑡−1) ≤(1 +

1

𝜆0
) ℓ𝑇
2

(∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2 + ∥𝑥 𝑣𝑡−1 − 𝑥

𝑣,†
𝑡−1∥

2)

𝜅
(𝑣,𝑢)
𝑡

(
𝑠
(𝑣,𝑢)
𝑡 (𝑥 𝑣𝑡 , 𝑥𝑢𝑡) − (1 + 𝜆0)𝑠 (𝑣,𝑢)𝑡 (𝑥 𝑣,†𝑡 , 𝑥

𝑢,†
𝑡)

)
≤(1 + 1

𝜆0
) ℓ𝑆
2

(∥𝑥 𝑣𝑡 − 𝑥
𝑣,†
𝑡 ∥2)

(69)

Then, a sufficient condition of Eqn (68) is

(1 + 1

𝜆0
)
ℓ𝑓 + 2ℓ𝑇 + 𝐷𝑣ℓ𝑆

2

𝑡∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣,†𝜏 ∥2 ≤ (𝜆 − 𝜆0)cost𝑣 (𝑥 𝑣,†
1:𝑡
),∀𝑡 ∈ [1,𝑇] (70)

Since 𝐷max = max𝑣∈V 𝐷𝑣 is the maximum node degree in the whole graph, then the sufficient

condition becomes

𝛼2

𝑡∑︁
𝜏=1

∥𝑥 𝑣𝜏 − 𝑥 𝑣,†𝜏 ∥2 ≤ 2

ℓ𝑓 + 2ℓ𝑇 + 𝐷max · ℓ𝑆
· 𝜆 − 𝜆0

1 + 1

𝜆0

cost𝑣 (𝑥 𝑣,†
1:𝑡
),∀𝑡 ∈ [1,𝑇] (71)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

38:42 Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren

We define 𝐶 = min𝑣∈V,𝑡 ∈[1,𝑇]
cost𝑣 (𝑥𝑣,†

1:𝑡
)∑𝑡

𝑖=1 ∥𝑥
𝑣,†
𝑖

−𝑥̃𝑣
𝑖
∥2

as the minimum normalized baseline cost, then we

can have

𝛼 ≤ min

{
1,

√︄
2

ℓ𝑓 + 2ℓ𝑇 + 𝐷max · ℓ𝑆
· 𝜆 − 𝜆0

1 + 1

𝜆0

·𝐶
}
= 𝛼𝜆 (72)

In other words, as long as 𝛼 ∈ [0, 𝛼𝜆], the robustness constraint is always satisfied. Based on the

convex assumption on hitting cost, temporal cost and spatial cost, we have

cost𝑣 (𝑥 𝑣1:𝑡) = cost𝑣 ((1 − 𝛼)𝑥 𝑣,†
1:𝑡

+ 𝛼𝑥
𝑣,†
1:𝑡
) ≤ (1 − 𝛼)cost𝑣 (𝑥 𝑣,†

1:𝑡
) + 𝛼 · cost𝑣 (𝑥 𝑣1:𝑡). (73)

By setting 𝛼 = 𝛼𝜆 and taking expectation of both side over the data distribution, we finish the proof

of the first term in Theorem B.1. □

Received August 2024; revised September 2024; accepted October 2024

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 38. Publication date: December 2024.

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Performance Metrics
	2.2 Application Examples

	3 LADO-Lin: Linearly Combining ML Advice and Expert Advice
	3.1 Local Information Availability
	3.2 Algorithm Design
	3.3 Performance Analysis

	4 LADO: Adaptively Combining ML Advice and Expert Advice
	4.1 Algorithm Design
	4.2 Designing a Robust Action Set

	5 Performance Bounds for LADO
	5.1 -Competitiveness
	5.2 Average Cost
	5.3 Robustness and Consistency

	6 Case Study: Decentralized Battery Management for Sustainable Computing
	6.1 Experimental Setup
	6.2 Baselines
	6.3 Results for Networks with 3 Nodes
	6.4 Results for Larger Networks

	7 Related Work
	8 Concluding Remarks
	References
	A Extension of LADO to Directed Graphs
	B Optimal Projection-Aware ML Training
	C Additional Experiments for Decentralized Battery Management
	C.1 ML Model Architecture and More Results for Networks with 3 Nodes
	C.2 Results for Large Networks

	D Proofs of Results in Section 3
	D.1 Proof of Theorem 3.1
	D.2 Proof of Proposition 3.2

	E Proof of Robustness in Theorem 5.1
	F Proof of Average Cost Bounds and Robust-Consistency of LADO
	F.1 Proof of Theorem 5.2
	F.2 Proof of Corollary A.1
	F.3 Proof of Theorem 5.3
	F.4 Proof of Corollary B.1

