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DeepSense-V2V: A Vehicle-to-Vehicle Multi-Modal

Sensing, Localization, and Communications Dataset
João Morais, Gouranga Charan, Nikhil Srinivas, and Ahmed Alkhateeb

Abstract—High data-rate and low-latency vehicle-to-vehicle
(V2V) communication is essential for future intelligent transport
systems to enable coordination, enhance safety, and support
distributed computing and intelligence requirements. Developing
effective communication strategies, however, demands realistic
test scenarios and datasets. This is important at the high
frequency bands where more spectrum is available. However,
higher frequency bands require directional transmission and
are sensitive to propagation blockages. To enable the study of
such challenges, this work presents the first large-scale multi-
modal dataset for mmWave vehicle-to-vehicle communications.
It presents a two-vehicle testbed that comprises data from a 360º
camera, four radars, four 60 GHz phased arrays, a 3D lidar, and
two precise GPSs. The dataset contains vehicles driving during
the day and night for 120 km in intercity and rural settings, with
speeds up to 100 km per hour. More than one million objects
were detected across all images, from trucks to bicycles. This
work further includes detailed dataset statistics of various real-
world scenarios and highlights how this dataset can enable novel
machine-learning applications.

I. INTRODUCTION

Vehicle-to-vehicle (V2V) communication has become in-

creasingly essential in intelligent transportation systems (ITS)

for enabling vehicles to exchange critical information, enhanc-

ing safety, traffic efficiency, and the overall driving experience

[1]. However, the current methods of V2V communication face

challenges with the increasing volume and complexity of data

being exchanged, which might limit the effectiveness of the

ITS [2]. This demand for higher data rates in V2V communica-

tion motivates the exploration of higher frequency bands such

as millimeter wave (mmWave) and sub-terahertz (sub-THz)

frequencies. The mmWave/sub-THz frequency ranges offer

larger bandwidths, making them well-suited for supporting

the high-speed and data-intensive requirements of V2V com-

munication systems [3]. Additionally, the availability of large

antenna arrays and beamforming capabilities in mmWave/sub-

THz V2V communication systems enable robust and efficient

communication, mitigating the effects of interference and

signal attenuation in dynamic and congested environments.

Adopting advanced wireless communication technologies in

V2V systems facilitates reliable data exchange between vehi-

cles, even in high-speed scenarios, where rapid and accurate

information dissemination is crucial for collision avoidance,

cooperative driving, and other vehicular applications.
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Further, future wireless systems, specifically in 6G and

beyond, are envisioned to incorporate communication, multi-

modal sensing, and positioning capabilities as integral compo-

nents [4], [5]. These systems are anticipated to implement co-

existing communication and sensing functionalities or leverage

one to enhance the other, accentuating the growing importance

of the synergy between multi-modal sensing and communica-

tion. This synergy has been driving key research directions

such as multi-modal sensing-aided communication [6]–[14]

and integrated sensing and communication [15]. Moreover,

with the rise of autonomous vehicles, there is an increas-

ing focus on equipping vehicles with multiple sensors, such

as radar, LiDAR, and cameras, enabling vehicles to gather

comprehensive situational awareness. Incorporating co-located

communication and sensing functionalities will likely be the

key to enabling reliable and efficient V2V communication.

Multi-modal sensing capabilities can help navigate complex

and dynamic scenarios on the road effectively. A detailed per-

ception of the environment can enhance V2V communication

reliability, facilitate advanced decision-making algorithms, and

improve overall safety and efficiency in complex and dynamic

environments. Despite these benefits, fully realizing efficient

V2V communication presents challenges, particularly when

dealing with mmWave/sub-THz frequency communication.

The realization of efficient mmWave vehicle-to-vehicle

communication benefits from (i) the development of sophisti-

cated detection and tracking algorithms and (ii) the resolution

of the unique challenges posed by mmWave/sub-THz com-

munication systems. First, the development of sophisticated

detection and tracking algorithms can support directional

beamforming and blockage detection/tracking in mmWave

systems. Second, the utilization of mmWave/sub-THz frequen-

cies introduces challenges. For instance, adjusting the narrow

beams in these communication systems with large antenna

arrays is typically associated with large training overhead that

scales with the number of antennas, making it challenging

to support high-mobility applications such as V2V commu-

nication. Further, line-of-sight (LOS)link blockages such as

buildings and other vehicles can disrupt communication and

challenge the link reliability. Although several multi-modal

datasets [16]–[18] recently have been made available targeting

autonomous vehicles, large-scale datasets designed explic-

itly for V2V communication are lacking. To address these

challenges, it is crucial to create comprehensive multi-modal

sensing-aided V2V communication datasets that capture real-

world scenarios, enabling researchers to design and evaluate

algorithms and protocols for this specific context.

Motivated by the need for high-quality datasets specifically
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TABLE I
COMPARATIVE SUMMARY OF KEY CHARACTERISTICS OF STATE-OF-THE-ART VEHICULAR DATASETS.

Dataset Year Application
Wireless

Comm.
Scenes Size (hr)

RGB

images

LiDAR

PCs

Radar

frames
Night/Rain Locations

CamVid [19] 2008

Autonomous

Vehicle

No 4 0.4 18k 0 0 No/No Cambridge

KITTI [20] 2012 No 22 1.5 15k 15k 0 No/No Karlsruhe

Cityscapes [21] 2016 No n/a 25k 0 0 No/No 50× Germany

BDD100K [22] 2017 No 100k 1k 100M 0 0 Yes/Yes USA (NY, SF)

ApolloScape [23] 2018 No - 100 144k 0 0 Yes/No 4× China

AS LiDAR [24] 2018 No - 2 0 20k 0 -/- China

H3D [25] 2019 No 160 0.77 83k 27k 0 No/No USA (SF)

nuScenes [16] 2019 No 1k 5.5 1.4M 400k 1.3M Yes/No 3× USA, SG

Argoverse [26] 2019 No 113 0.6 490k 44k 0 Yes/Yes Miami, PT

Lyft L5 [27] 2019 No 366 2.5 323k 46k 0 No/No Palo Alto

Waymo Open [17] 2019 No 1k 5.5 1M 200k 0 Yes/Yes 3× USA

A*3D [18] 2019 No n/a 55 39k 39k 0 Yes/Yes SG

CRUW [28] 2021 No - 3 396k 0 396k -/- China

DAIR-V2X [29] 2022 V2X No - - 71k 71k - -/- China

DeepSense 6G 2023 V2V Yes 630 3.5 756k 126k 524k Yes/Yes Tempe, AZ, USA

tailored for V2V communication research, we present the

DeepSense 6G V2V dataset, the world’s first large-scale

real-world multi-modal sensing and communication dataset

designed to facilitate V2V communication research and al-

gorithm development. The DeepSense 6G V2V dataset is

(i) a large-scale dataset of more than 125k data points,

(ii) based on real-world measurements. The dataset com-

prises co-existing and synchronized multi-modal sensing and

communication data and is organized in a collection of 4

scenarios captured from a diverse range of driving conditions

and environments. These scenarios encompass urban, subur-

ban, and rural highway settings, incorporating different traffic

densities and road and weather conditions.

The DeepSense V2V dataset provides several key features

that are essential for advancing V2V communication research:

• Co-existing sensing and communication: The

DeepSense V2V dataset consists of a large-scale

collection of V2V mmWave communication data

integrated with multi-modal sensing information. This

unique combination empowers researchers to gain

comprehensive insights into V2V scenarios, enabling

them to explore the intricate interactions between sensor

modalities and communication systems.

• Co-located 360-degree sensor coverage: The DeepSense

V2V dataset leverages a diverse sensor suite, includ-

ing cameras, radar, LiDAR, positioning sensors, and

mmWave communication devices, to provide a 360-

degree coverage around the vehicle. This integration

of different sensor modalities enables a comprehensive

understanding of the surrounding environment, capturing

rich data from visual observations, object detection, depth

perception, positioning, and wireless communication dy-

namics. Moreover, the co-location of the sensors allows

researchers to correlate sensory data better.

• Real World diverse scenarios: The DeepSense V2V

dataset is collected in real-world environments, providing

a realistic representation of V2V communication scenar-

ios in different locations, weather conditions, lighting

settings, and traffic conditions. The dataset accurately

captures real-world complexities and incorporates vary-

ing traffic densities, road conditions, and environmental

influences.

• Large-scale data: Developing deep learning solutions

that are scalable and robust to data distribution shifts (due

to changes in the environment or deployment) requires the

availability of a large-scale dataset. The DeepSense V2V

dataset provides a large-scale collection of multi-modal

data samples, comprising more than 125k data points

across four scenarios. This dataset’s large-scale nature can

help develop and evaluate advanced algorithms such as

generalizability, robustness to distribution shift, etc.

This paper presents a detailed description of the DeepSense

6G V2V dataset, including its acquisition methodology, data

formats, available scenarios, and annotations. We further pro-

vide example use cases and highlight potential applications of

the dataset in V2V research and algorithm development.

Obtaining the Dataset: The DeepSense V2V dataset and

supporting resources, including video tutorials, example note-

books, and a table with the classification of all DeepSense

scenarios, are publicly available for free at DeepSense6G.net.

II. LITERATURE REVIEW

In recent years, publicly available datasets [16]–[26], [28]–

[30] have played a significant role in advancing the develop-

ment of autonomous vehicle technologies. A summary of some

of these key datasets is provided in Table I. These datasets

typically include data from various sensors, such as cameras,

LiDARs, and GPS/IMU. They are often used for tasks such as

object detection and segmentation, scene understanding, and

localization and mapping. The KITTI dataset [20], with over

22 scenes, has been widely used for testing machine learning

algorithms for vision tasks, such as object detection, using
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LiDAR and camera data. It provides 2D and 3D annotation

data and has about 80k 2D and 3D bounding boxes. The H3D

dataset [25] includes 160 crowded scenes with 27k frames,

with objects annotated in the full 360 views. The KAIST multi-

spectral dataset [30] is a multi-modal dataset comprising RGB

and thermal cameras, RGB stereo, 3D LiDAR, and GPS/IMU,

providing nighttime data. However, its size is limited. The

NuScenes dataset [16] contains 1.4 million images and 400k

point clouds collected from a sensor suite, including six

cameras, one LiDAR, and five radars. It has 3D bounding

box annotation, and its perception system mainly relies on

LiDAR rather than cameras. The Waymo dataset [17], one of

the largest and most diverse multi-modal autonomous driving

datasets, contains 12 million 3D bounding boxes and 9.9

million 2D bounding boxes from its 1150 scenes, captured

using 5 high-resolution cameras and 5 high-quality LiDARs.

Its detection and tracking mainly rely on LiDAR rather than

cameras, but the field-of-view (FoV) of the camera is less

than 270º. A more detailed comparison of these datasets can

be found in Table I.

These datasets can be used to evaluate and compare the

performance of different algorithms and systems, which is

important for advancing the state-of-the-art in autonomous

vehicle technologies. The availability of large-scale datasets,

especially in machine vision, allowed researchers to design

more accurate and robust approaches and get a step closer to

full driving autonomy. However, the existing datasets predom-

inantly consist of a single vehicle collecting all the data and

are unsuitable for vehicle-to-vehicle (V2V) collaborative ap-

plications. Collaboration between vehicles has been envisioned

to play an important role in the personal mobility paradigm.

For example, V2V communications enable collision warnings

[31], which can prevent 60% of road accidents according

to some studies [32]. Another example is peer-to-peer data

sharing, particularly streamed video, aimed at reducing the

load in the wireless infrastructure when all vehicles require

the same data [33], a common scenario in broadcasting events

like football/soccer games.

Beyond communication research, real-world multi-modal

datasets like DeepSense V2V can also enable new devel-

opments in broader Internet of Vehicles (IoV) applications,

including driver authentication [34], intrusion detection in

in-vehicle networks [35], and sensor fusion-based vehicle

positioning [36].

To answer the need for V2V-specific real-world data, we

introduce DeepSense-V2V, the first large-scale dataset for

sensing, localization, and communications in V2V commu-

nication scenarios. It is a multi-modal dataset comprising data

from mmWave wireless communication, GPS, vision, Radar,

and LiDAR, all collected in a real-world wireless environment.

In the following section, we present the DeepSense V2V

dataset in detail.

III. DEEPSENSE V2V TESTBED AND SCENARIO CREATION

The V2V scenarios in DeepSense6G [37] leverage a two-

vehicle testbed. Car/unit 1 is the receiver and is equipped with

four mmWave phased arrays facing four different directions,

Fig. 1. DeepSense V2V testbed setup overview. For more information on the
testbed visit: Testbed6

a 360-degree RGB camera, four mmWave FMCW radars, one

3D LiDAR, and one GPS RTK kit. Car/unit 2 is the transmitter

and is equipped with a mmWave quasi-omnidirectional an-

tenna always oriented towards the receiver and a GPS receiver

to capture real-time position information. Figure 1 illustrates

the composition of the testbed. This section describes the steps

to acquire data from the sensors and process the data into

this dataset. In particular, the data capture/sampling is detailed

in Section III-A. The key processing steps are described in

III-B. The processing procedure is verified via synchronized

visualizations of all data, addressed in section III-C. Next, we

detail the structure of how these phases of scenario creation

come together, as well as their vital components.

DeepSense V2V Scenario: A DeepSense Scenario refers

to a unique collection of synchronized sensing and commu-

nication data, captured during a specific driving session, and

processed into a structured dataset. In the broader DeepSense

dataset [37], Scenarios 1–35 include a diverse range of wire-

less communication and sensing setups, covering vehicle-to-

infrastructure (V2I) communication, drone-based sensing, and

blockage prediction scenarios, among others. In this paper, we

introduce and focus exclusively on Scenarios 36–39, which are

specifically designed for V2V communication and sensing.

DeepSense Structure: DeepSense scenario creation follows

a general structure illustrated in the figure 2. A general

structure allows full automation of most tasks in the scenario

creation pipeline, which in turn leads to (a) higher data

quality: less prone to human error; (b) more reproducibility:

the processing method is accurately coded; and (c) better

scalability: since the process is automated, tasks are easier to

execute, and the cost of adopting more challenging use-cases is

reduced. These advantages become crucial requirements when

data collection efforts grow to the size of the V2V scenarios

presented in this paper. The structure comprises three stages

coded into three Python libraries that were built on top of

popular high-performance scientific computing tools:

• DeepSense Collection: Responsible for transducing en-

vironment information into sensor data.

• DeepSense Processing: Responsible for converting, fil-

tering, interpolating, and synchronizing the raw sensor
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Fig. 2. Overview of general DeepSense structure that was used in the creation
of the V2V Scenarios.

data into a processed DeepSense scenario.

• DeepSense Visualization: Used to aid and verify the

processing stage and to render scenario videos.

In the following subsections, we will break down the stages

in order to clarify how the dataset was constructed.

A. Data Collection

The data collection stage comprises all the software and

parameter configurations needed to collect data from the

sensors present in the two units. Car/unit 1 (the car in front

in Figure 1) contains the V2V box, a half-inch thick acrylic

enclosure that holds all the sensors except the GPS. The

sensors in the box are carefully detailed in this section, but the

box fabrication procedure is omitted for brevity. Car/unit 2 (in

the back in Figure 1) consists of the same GPS fixed on the

vehicle and a phased array mounted on a tripod. A schematic

of the dimensions of the V2V box and its position in the car

is shown in Figure 3. This section describes the sensors that

generated the data in this dataset and the collection context in

which data was acquired.

Sensor Suite: It comprises different sensors with different

functions and limitations, as well as different sampling times

and physical interface requirements (i.e., for power and con-

nectivity). All non-communication sensors - the four radars,

the 3D lidar, the 360º camera, and the two GPSs - operate in

continuous data acquisition mode with a predefined sample

rate. This is not the case with the mmWave beam power

collection, where the receiver radio and phased arrays are

programmatically triggered to collect a sample every 100 ms.

A beam power sample consists of a sweep of the 64 beams

spanning -45 to +45 degrees in azimuth and measuring the

received power in each of those beams. This 64-valued power

vector is our unitary sample for communications.

Besides the mmWave beam powers, the testbed comprises

2 GPSs using the L1 and L2 bands for higher accuracy - the

horizontal accuracies are always within a meter of the true,

according to manufacturer information and horizontal dilution

measures returned by the device. The testbed also holds a 360º

video camera, which is used to export four 90º views and

two 180º views around the car, effectively covering all angles

and emulating the existence of multiple cameras around the

vehicle. The single lidar in the testbed creates a 32 thousand-

point 3D point cloud with a maximum range of 200 meters.

In terms of range, the configurations of the four radars allow

more than 200 maximum distance, but factors like clutter and
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Fig. 3. CAD design with dimensions of V2V box placement on car.

ADC resolution prevent such ranges in realistic road situations.

More information on the sensors, like each sample rate, the

location of the sensors in each unit, specific resolutions, and

configurations, can be consulted in Table II.

Collection Procedure: The data was acquired in the fol-

lowing way. First, all the sensors are initialized at the start of

collecting data. The mmWave power captured by the box in

unit 1 comes from an omnidirectional transmitter in car/unit

2. This transmitter is attached to a tripod and is manually

rotated to guarantee power at the receiver (unit 1). The system

is capable of displaying the power received in each beam in

real time. This monitoring capability is used mainly to start

vehicle movement once a received power vector is visually

verified. The trajectory is coarsely planned ahead of time. The

two vehicles attempt to stay relatively close throughout the

collection such that the received power in the optimum beam

is higher than the noise floor. As the distance grows, the block-

ages also become more likely. Nonetheless, in LoS conditions,

the received power in the best beam is distinguishable from

noise over 500-meter distances. This distance is more likely

achieved in V2I situations. For example, in a V2I situation,

the box can play the role of a basestation or be placed in

the car to communicate with a static unit that acts as the BS.

Effectively, the testbed described here can be used in a range

of V2X applications.

B. Data Processing

The intermediate stage of DeepSense scenario creation is

data processing. While DeepSense Collection deals with data

acquisition from sensors, often involving manufacturer-specific

caveats, DeepSense Processing deals more generally with

processing data formats independently of the sensor they come

from. The data processing stage consists of two major phases:

• Phase 1: converts data from the sensors of all modalities

in timestamped samples. For example, a data capture with

the lidar sensor is usually saved in a single file unsuitable

for proper data synchronization. This phase takes care of

extracting all samples and metadata for the sensor-specific

data format and organizes them in clear CSVs. It may

further interpolate data points (currently only in GPS).
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TABLE II
DESCRIPTION OF THE SENSORS USED IN THE DEEPSENSE-V2V TESTBED.

Modality Sensors Quantity Sample Rate More sensor information and remarks

mmWave
Beam

Powers

Sivers Phased
Array

(EVK06003)
+ USRP B210

unit1: 4
unit2: 1

10 Hz

- Unit 1: receive mode, sweeping codebook of 64 beams.
- Unit 2: transmit mode, near-omnidirectional
- Phased arrays: 16-element ULA with 62.64 GHz center frequency
- Phased arrays: up/downconvert zero IF to/from the USRP
- USRP: 640 samples per beam at 5 MHz sample rate

GPS RTK Express
unit1: 1
unit2: 1

10 Hz
- Accuracy within 0.5m (>90% of the time)
- Easy to interpolate

Image
360º Camera

(Insta 360 One X2)
unit1: 1
unit2: 0

30 Hz

- Sensitive to lighting conditions
- Individual images (90º and 180º views) are rendered
from a 360º video
- 5.7 K resolution

Radar
AWR2243BOOST
+ DCA1000EVM

unit1: 4
unit2: 0

10 Hz

- Radar configurations: 128 chirps, 1 tx antenna, 4 rx,
256 samples per chirp, 2 bytes per sample, 5 MHz ADC
sample rate, 15.015 THz/s chirp slope, 77 GHz frequency,
60 us ADC start time, 5 us idle time

Lidar
Ouster OS1
32 beams

unit1: 1
unit2: 0

20 Hz
- 1024 horizontal beams (across 360º)
- 32 vertical beams (-45, +45º)

• Phase 2: filters, organizes, creates sequences of continu-

ous data acquisition, and synchronizes the extracted data

into a processed DeepSense scenario.

Phase 1 processes different modalities in parallel, with specific

steps tailored to each modality. For instance, GPS samples in

the NMEA protocol format require different processing than

video data from a 360º camera. While detailed descriptions

of Phase 1 are beyond the scope of this discussion, it is

essential to note that data and metadata are extracted from

their original formats into a common structure suitable for

ingestion and synchronization in Phase 2. Phase 2, unlike

Phase 1, processes data sequentially and is agnostic to data

formats. This phase focuses on data synchronization, filtering,

sequencing, labeling, and compression. This discussion will

primarily concentrate on the functions of Phase 2.

Synchronization: The synchronization step takes sensor

data sampled at different time instants and different sample

rates and obtains a uniform set of samples at a single sample

rate. At its core, the synchronization process is a one-to-one

sample mapping based on timestamp proximity. In more detail,

the first step is selecting the right sample rate. The sample rate

used in the V2V scenarios is 10 Hz. The next step is choosing

a reference modality to dictate the sampling intervals the

other sensors should attempt to approximate. This reference

modality is the mmWave power. Then, for each sampling

interval, the synchronization stage chooses the closest sample

of each modality to this instant. All the samples not selected

for any sampling instant will be discarded. For example, RGB

images are sampled at 30 Hz but Power only at 10 Hz; roughly

two-thirds of images will be discarded in this step.

Filtering involves rejecting samples according to a set of

criteria. It happens during synchronization due to oversam-

pling, and it happens in three other situations: a) due to

acquisition errors, like blank or repeated samples; b) due

to non-coexistence, i.e., when sensors are not sampling at

the same time due to problems or human errors during the

collection, or c) sequence filtering, as we describe next.

Sequencing is the task of separating samples into groups

of continuous samples. Samples in the same sequence tell the

user that those samples were acquired precisely 0.1 seconds

apart. This is necessary because sensor failures, human error,

and other problems can lead to a continuity break, resulting in

gaps larger than 0.1 seconds between samples. When sampling

continuity is broken, the sequence ends and a new one starts

when continuity is achieved again. It is relevant to mark

sample continuity in the dataset because several downstream

(ML) tasks depend on this continuity. DeepSense accurately

records continuity disruptions to be effectively used in these

tasks.

Data Labels: The DeepSense V2V dataset includes a

comprehensive set of automatically generated labels derived

entirely from sensor data, without human annotation. These

labels support a wide range of V2V communication and

machine learning tasks and are summarized in Table III. GPS-

based fields—such as latitude, altitude, HDOP, PDOP, and

VDOP—are directly parsed from standard NMEA GGA and

GSA messages. Beam-related labels, including the best beam

index, max/min received power, and overall best beam index,

are computed from the 64-beam power sweeps captured by

the four phased array panels. Other labels include system-

level metadata (e.g., timestamps, sequence indices) to ensure

alignment across sensor modalities, and satellite image indices

for spatial context. All labels are generated programmatically,

ensuring consistency and scalability. However, it should be

noted that their accuracy is bounded by the resolution and

reliability of the underlying sensors and testbed since no

manual labeling or correction was performed at any stage.

Data compression is performed for more efficient, flexible,

and robust distribution. Data is compressed in 8 GB parts

using the 7zip utility with the level 5 deflate method. The

result is a significant reduction in the number of files and the

total size, which consequently leads to users of the dataset

being able to download the dataset faster and more reliably.

The compression stage also separates into different files the

different modalities. Therefore, researchers may download

only the modalities of interest.

Other data modifications refer to adjustments that do not

fall within the previously defined categories, and currently,

there are only two such modifications. The first is interpola-

tion, the insertion of generated data derived from true data
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TABLE III
DEEPSENSE V2V DATASET: SENSOR MODALITIES AND AUTOMATICALLY GENERATED LABELS.

Main Modalities – Raw Sensor Data

Field Source Description

unit1 pwr[1–4] Phased Arrays Received power from 64-beam sweep on each array panel, .txt format

unit1 rgb[1–6] 360° Camera Rendered .jpg images from 360° video: 4 × 90° and 2 × 180° views

unit1 lidar1 Ouster OS1 LiDAR 3D point clouds with intensity and range channels in .csv format

unit1 radar[1–4] mmWave Radar Raw range-velocity radar frames per radar in .mat format

Automatically Generated Labels

Label Name Source Description

timestamp Internal Clock Absolute recording time for each sample

abs index, seq index Internal Clock Global and per-sequence sample indexing for synchronization

satellite img External Satellite image of the scenario environment for visualization only

unitX gps1 lat/lon/altitude GPS Extracted geographical coordiantes from NMEA GGA messages

unitX gps1 hdop/pdop/vdop GPS Extracted dillutions of precision from NMEA GSA messages

unit1 pwrY max-pwr Phased Arrays Maximum value of 64-beam power vector for panel Y

unit1 pwrY min-pwr Phased Arrays Minimum value of 64-beam power vector for panel Y

unit1 pwrY best-beam Phased Arrays Index of the maximum-power beam in panel Y

unit1 overall-beam All Panels Beam index with highest power across all four receiving panels

points before and after the insertion. We interpolate to obtain

data at the sampling intervals of the mmWave powers. Cur-

rently, we only interpolate GPS data. The GPS interpolation

is linear and is clearly marked in the CSV file that indexes

all data. The CSV normally contains labels with at most four

decimal places, but the interpolated values will have 8. Linear

position and GPS label interpolation are only conducted for

distances less than 1 second apart. Less than 5% of the GPS

data across all scenarios is interpolated. Given the considered

mobility profiles, we verified that interpolating intervals of 1

second still provide a very good approximation of reality. The

second case where data modifications take place is to protect

privacy. Although local law does not mandate face blurring in

videos recorded in public places, we still do it for extra safety

and to guarantee the wide usability of the dataset. Besides

these two cases, no other data alteration steps are performed

during data processing. This includes normalization, meaning

that magnitudes in the dataset are preserved from the sensor.

Next, we present the final stage, data visualization.

C. Data Visualization

Data Visualization provides significant value in several

fronts: dataset interpretability and understanding, fast identifi-

cation of the samples of interest, easier recognition of propa-

gation phenomena, like reflections, blockages, large distances

radio transmission, and easier spotting of adverse sensor con-

ditions, such as hard visibility from light or weather and exces-

sive radar clutter. To enable these advantages, the DeepSense

scenario creation pipeline leverages a data visualization user

interface (UI) in the DeepSense Viewer library. We use this UI

to verify the individual stages of data processing and to render

a final scenario video that synchronizes all processed data.

An example of a scenario video is depicted in Figure 4. This

figure shows all modalities present in the dataset, including

both units. Some modalities are normalized only to facilitate

the visualization, namely by assuring relevant features are not

hidden by ill-defined scales or less-clear colormaps. The data

displayed in each frame of the video is from the same time

instant and corresponds to one row of the indexing CSV.

Scenario videos: Using the user interface built within

the DeepSense Viewer module, we render a video for each

scenario where data is displayed across time. In our experi-

ence, this video makes data easy to navigate and allows the

researcher to find the moments of interest. These videos are

rendered at four times the real-world speed to allow the user

to visualize large portions of the dataset quickly. YouTube

allows a 0.25x speed control that will bring the speed back

to the real world, and for finer controls, the user can use

keyboard shortcuts to navigate the video frame by frame -

for this reason, the video is rendered to have a different

sample in each frame. These videos can be found on the

web page of the V2V DeepSense Scenarios (i.e., Scenarios36-

39).In this paper, however, we will show the variability and

reach of the proposed dataset differently from videos. In the

following section, we show interesting patterns and statistics

that researchers can exploit for developing machine learning

algorithms for V2V communications.

IV. DATASET STATISTICS

A useful dataset with wide applicability in wireless com-

munications should contain substantial variability while being

accurate and consistent. This section shows many statistics

about the location and speed of the vehicles during the

data collection in Section IV-A. Then it delves into how

received power relates to distance in Section IV-B to prove the

consistency of data. Subsequently, mmWave and GPS data are

again related when we display beam distributions and position

distribution across time in IV-C, showing that the direction of

the incoming signal strongly correlates with the beam. This

should be because LoS is the predominant link status during

collection. Then, Section IV-E shows the results obtained

from applying machine vision detection and classification

approaches to the visual data. This section illustrates the visual
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Fig. 4. Frame of sample 4038 from video of Scenario 36. The current template shows four 90º camera views rendered around the car, the lidar pointcloud
colored based on distance, four radar range-velocity plots, a GPS with the locations of the vehicles scattered on top of the satellite image of the location, and
four 64-beam power vectors with the normalized received power in each beam. The video rendered for Scenario 36 data can be watched on YouTube

diversity in the dataset by showing a high volume of road-

related objects identifiable throughout the dataset.

Overview: The four V2V scenarios presented in this pa-

per were organically created based on real-world driving

conditions. Rather than designing synthetic driving patterns,

data was collected during driving sessions, with variability

naturally arising from the choice of locations, time of day,

traffic conditions, and the relative movement patterns of the

vehicles (e.g., overtakes, stops, following, and lane changes).

This approach ensures that the dataset reflects realistic V2V

communication environments. For clarity, we summarize key

characteristics of each scenario in Table IV and Figure 5, and

provide additional description below.

Details of Each Scenario: Scenario 36 consists of a

suburban-to-suburban inter-city drive on a low-traffic highway

during the day. The road is mostly straight with long line-of-

sight stretches and light traffic, representing typical suburban

commutes or off-peak travel. Scenario 37 follows a different

set of highways connecting multiple cities around Phoenix,

including commonly used commuter and airport-access routes.

It features both highway and arterial segments with occasional

congestion, providing a realistic representation of regional

travel. Scenario 38 takes place entirely in downtown Tempe,

AZ, and includes dense traffic, tight corners, short road

segments between intersections, and frequent stops at traffic

lights. Scenario 39 is also urban, with additional complexity

from being recorded during evening rain, introducing sensor

noise, reflective surfaces, and reduced camera visibility. The

roads in Scenarios 38 and 39 are narrower, with increased

TABLE IV
DEEPSENSE V2V SCENARIO CLASSIFICATION

Scenario Environment Data Points Weather

36 Inter-city highway 32,441 Clear
37 Inter-city highway 37,825 Clear
38 Urban streets 26,945 Clear
39 Urban streets 28,342 Light rain (30%)

pedestrian and vehicle interactions, overtakes, and highly

dynamic vehicular movement patterns. These urban scenarios

were selected to emphasize short-range V2V communications

in cluttered, interference-prone environments.

A. Vehicle Locations and Velocities

Vehicle locations play an essential role in the surroundings,

which heavily impact propagation, thus affecting not only

wireless communications but also GPS, Lidar, and Radar. In

Figure 5, we illustrate the locations of the receiver captured

by the GPS (undersampled by a factor of 100 to facilitate

readability), along with other macro statistics of the data

collection. Scenarios 36 and 37 are collected in long drives

between cities, targeting long travels, while Scenarios 38

and 39 are more oriented to emulate short urban commutes,

so data is predominantly inside cities. For this reason, we

call Scenarios 36 and 37 inter-city scenarios and 38 and 39

urban scenarios. The difference is corroborated by the traveled

distance and average speed. While Scenarios 36 and 37 have

long-distance travel at relatively high average speeds, 38 and
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Fig. 5. Satellite images with the GPS trajectory of the receiver vehicle in
each scenario. Each subplot includes key statistics such as duration, distance,
average speed, and time of day.

39 traveled less at a lower speed because of speed limits within

cities. We further look into speed distributions in Figure 6.

Furthermore, we include information like the lighting and

weather conditions relevant to accessing the capabilities of

cameras versus lidars and radars. For completeness’ sake, the

time of the first and last samples are included to describe the

span of the collection. Note, however, that during the data

collection, there are intermittent pauses in the acquisition of

data. This justifies why the span of the collection and the

filtered duration of the collection often have different numbers,

with the former bigger than the latter. Some reasons for such

pauses can be associated with hardware limitations, like the

need to change batteries in the 360 camera, or they can be

associated with errors in the collection where cars got too far

apart and the signal got interrupted for a long time, or when

one of the sensors had an error and did not acquire data for

some time. We opt not to include samples where all modalities

are not present.

Speed distributions can tell the diversity of vehicle move-

ment speeds in the dataset. Moreover, given that the speed

limits were closely followed during data collection, we can

further extrapolate what kind of roads the vehicles were

on from their speed. Information on the type of roads is

relevant because it tells what kind of objects and phenomena

we expect to find in those samples. Figure 6 shows each

scenario’s cumulative distributions of speeds. We can observe

that the intercity / rural scenarios (36 and 37) have a more

flat distribution with contributions from higher speeds than

the urban scenarios (38 and 39). Higher speeds come from

driving in free-ways, and very low speeds result from traffic

lights, intersections, and stop signs, characteristics of dense

urban mobility. We also indicate the speed limit regulations in

Fig. 6. Speed cumulative distribution of vehicle 1 with the indication of the
speed limits (in mph) and the type of road that matches the interval of speeds.

Arizona, USA, in miles per hour. This information allows us to

estimate, for example, that the car in Scenario 38 was stopped

in traffic lights for over 20% of the time and that the car

in Scenario 39 was driven in alleys or in residential/business

districts for about 50% of the time.

B. Inter-vehicle Distance and Received Power

The distance between the receiver and transmitter and the

received power in the optimum beam are closely related to

the radio propagation theory of a LoS link. Since this dataset

uses mmWave frequencies, which require a LoS in most cases,

this dataset should reflect the power-distance relation. We

show this relation across all scenarios by charting in Figure 7

the distance (or, more accurately, the inverse of the distance

square) and the received power. The figure shows a strong

correlation between distance and received power. But there

also are cases where the correlation is broken (e.g., from

sample 7500 to 8100 of Scenario 36) due to blockage and

NLoS. Furthermore, it should be noted that the powers present

in this dataset are not in Watts. We acquire baseband powers

by computing the square of the amplitude of the baseband

samples. Accurately measuring received powers at the antenna

requires a difficult calibration process with both the receiver

and transmitter. Instead, we attempted to perform data col-

lection always within the linear regions of all components. As

such, the relation between distance and received power should

hold. This is suggested by the results in Figure 7.

C. Beam Distributions and GPS Positions

One differentiation factor of this dataset is that it includes

beam information. Accordingly, we include Figure 8 that

shows variations in the optimal beam across time and how

they contribute to the overall beam density distribution. The

figure also shows interesting phenomena. For example, given

that most propagation in mmWave communications happens

in LoS, we observe a continuous transition between beam

indices. If beam continuity is interrupted, it can only be

because of two reasons: i) the data collection was interrupted

and the cars restarted in different positions, in which case

we indicate that by changing sequences, since each sequence

marks a continuous collection; ii) the second reason is when

the cars get sufficiently far way NLoS or blockage.
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Fig. 7. Relation of received power (blue) and the inverse of the distance between two vehicles square (in orange). The figure illustrates the relation between
the two quantities across time, showing that they are highly correlated in the existence of a LoS link between the two vehicles.

The visualization in Figure 8 also allows us to identify

particular phenomena we might be interested in studying.

Moreover, we color the beams from each panel with different

colors; therefore, when we see that when a color changes

(between indices 63/64, 127/128, and 191/192), it means a

different panel or array is selected at the device (car). Also,

in all scenarios, the beam distribution is concentrated in the

middle of the front and back arrays. This is intuitive because

two cars rarely spend long periods of time at the side of each

other, but rather long times in front or at the back of each other.

This is why there are long periods where the optimal beam

lies in the middle of the front and back arrays (respectively

colored in blue and green). We can also spot overtakes when

we see a transition between front and back arrays, passing

through the side arrays (colored in orange and red).

Beam and Relative Position Densities: It is essential to

highlight the relation between beams and positions. We already

showed this relation by relating the distance between the

vehicles and the received power in Figure 7. Now we highlight

with respect to angle. Figures 9 and 10 show the distributions

of beams in angle and relative positions between the two cars.

Although it is not perfect, we see a strong correlation between

the two. The relation is not perfect because of NLoS events

and because the relative position is not always equivalent to the

variable that should correlate perfectly with the optimal beam

direction, the angle of arrival (AoA). Those situations happen

when the receiver vehicle has a different orientation than the

transmitter vehicle, thus changing the arrival angle without

changing the relative position computed via GPS positions.

In Section VI, we further augment our estimation of AoA to

relate with beam choice more accurately. In the figure, we also

see that the predominant beam directions and relative positions

agree with the tendency for vehicles to drive in front or behind

each other.

D. Weather Conditions

The weather conditions during data collection were

mostly stable and clear, with temperatures between 70–80°F

(21–26°C) and no significant visibility impairments. The only

notable exception was Scenario 39, where light rain occurred

for approximately 30% of the collection period. Weather

conditions can affect the performance of sensing modalities in

different ways. For instance, rain or fog can reduce camera vis-

ibility; LiDAR measurements are generally robust to weather;

radar and mmWave links can experience attenuation due to

heavy rain and humidity. At 60 GHz, light rain may introduce

attenuation of approximately 2 dB/km, while heavy rain can

cause up to 20 dB/km [3]. However, given the short inter-

vehicle distances in this dataset (less than 500 m), the weather

impact on radar and communication data was minimal, and we

observed no measurable degradation in these modalities during

the rainy period of Scenario 39. The primary effect of rain was

reduced visibility in the camera images.

E. Machine Vision and Image Detection

Modern cars, especially autonomous and semi-autonomous,

already have cameras for several driving-related functions.

To aid communications, for autonomous driving purposes,

simply for security reasons or to increase the understanding

of the environment, the content captured by cameras can be

very useful. As such, we present in Figure 11 what a pre-

trained state-of-the-art image model, YOLOv8 [38], detects

when enabled in detection mode. We executed the model to

detect and classify objects in all 180º images of the dataset.

These images were rendered from the 360º camera depicting

the front and the back of the vehicle, totaling more than 250

thousand images. Figure 12 illustrates the results calibrated

to remove detections of our own car. The results indicate

that most objects detected are cars, traffic lights, trucks, and

people. Having presented several dataset statistics relevant

to its application, in the next section, we describe possible

applications of the V2V dataset.

F. Dataset Bias and Key Limitations

It is worth mentioning that the DeepSense V2V scenarios

reflect aspects specific to the geographic and environmental

conditions of Arizona. The data was collected in predomi-

nantly flat terrain, with minimal elevation differences between

vehicles, in dry weather conditions, and on typical multi-lane

roads commonly found in the United States. The surrounding

infrastructure and vehicle types also primarily reflect this

region. These factors may introduce biases related to geogra-

phy, climate, and traffic patterns. This highlights the need for

future efforts to collect additional V2V datasets in different

cities, countries, and environmental conditions to enhance the

diversity and universality of the DeepSense V2V dataset.

Furthermore, while the DeepSense V2V dataset was de-

signed to reflect realistic vehicle-to-vehicle communication
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Fig. 8. Optimal beam across time and corresponding beam distribution for all Scenarios show a tendency of vehicles driving in front or behind each other.
Different colors represent beam indices on different phased arrays to provide panel-switching context information. Interruptions are due to sequence changing
(see Section III-B) or blockage due to other vehicles. In low SNR regimes, e.g., near sample 20000 of Scenario 36, the optimal beam becomes ambiguous.

Fig. 9. Beam density across 30º-bin angular space for all Scenarios.

scenarios, there are some differences compared to practical

commercial deployments. First, the sensor suite and commu-

nication hardware were mounted externally on the vehicle

rooftops, rather than fully integrated into the vehicle structure

as would be the case in production systems. Second, the com-

Fig. 10. Relative orientation across 30º-bin angular space for all Scenarios.

munication data focuses on received mmWave beam power

measurements rather than end-to-end standard-compliant com-

munication metrics (e.g., throughput, latency). Third, although

the dataset covers a diverse range of urban, suburban, and rural

environments, all data was collected in a single geographic
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Fig. 11. Example output from running YOLOv8 in image detection mode
in a 180º front view image, belonging to sample 4035 of Scenario 36. The
detection result is 5 people, 3 traffic lights, 2 cars (excluding ours), and a bus.

TABLE V
SUMMARY OF PRACTICAL CONSIDERATIONS AND DATASET LIMITATIONS

Aspect Limitation

Hardware placement Sensors mounted externally
Communication data Beam power only, no full protocol stack
Geographic coverage Cities near Phoenix, Arizona, USA
Environmental diversity Flat terrain, dry weather, typical US roads
Standard compliance Custom setup, not 3GPP compliant

area, which may limit generalizability.

Despite these differences, the dataset captures real-world

driving conditions, including dynamic mobility patterns, re-

alistic relative vehicle positioning, and frequent connection

losses. These aspects are essential for developing and eval-

uating sensing-aided communication and localization systems.

A summary of key differences and limitations is provided in

Table V to help researchers assess the applicability of the

dataset for their use cases.

V. ENABLED APPLICATIONS

This section discusses the diverse applications enabled by

the DeepSense 6G V2V dataset, spanning wireless communi-

cation, vehicular localization, and autonomous sensing appli-

cations. The multi-modal dataset provides invaluable resources

for enhancing beamforming, predicting blockages, improv-

ing positioning systems, and developing efficient autonomous

sensing algorithms. These applications highlight the wide-

ranging impact of our dataset in advancing V2V communi-

cations and autonomous vehicle technologies.

A. Wireless Communication Applications

This section presents two examples of V2V wireless com-

munication applications enabled by multi-modal sensing pro-

vided as part of the DeepSense 6G V2V dataset.

Beamforming and Beam Tracking: To meet the high data

rate demands of V2V communication, it is crucial to equip

these systems with mmWave/THz transceivers, which require

large antenna arrays and narrow directive beams to ensure suf-

ficient signal-to-noise ratio. However, adjusting these narrow

beams comes with a significant training overhead that scales

with the number of antennas, posing challenges for support-

ing high-mobility V2V applications. Additionally, the highly

Fig. 12. Results from running YOLOv8 in image detection mode in 250
thousand 180º images across all scenarios. On the left, a circular chart shows
the classification percentage of the major categories. The table on the right
presents finer detail in classification categories with the number of detections.

mobile nature of V2V communication necessitates frequent

updates to the optimal beam index that further increase this

beam training overhead. The high mobility-induced frequent

beam switching makes it difficult for these systems to meet

future wireless communication application requirements, like

low latency and high reliability. Delving deeper into the beam

selection process reveals the following insights: Firstly, in

mmWave/THz systems, beamforming is directional, which

means that the optimal beam indices depend on the relative

position of the transmitter and receiver. Secondly, objects in

the wireless environment, whether stationary or moving, can

affect the availability of the line-of-sight path and alter the

optimal beam indices due to their limited multipath diversity

and low penetration capability. Thirdly, the high mobility-

induced latency can be minimized by enabling proactive

decisions in the communication systems. Therefore, if the

communication systems have access to information such as

the location, mobility patterns, and geometry of the wireless

environment, it may be possible to predict the optimal beams

without relying on the conventional beam-sweeping method.

These approaches are not limited to predicting the current

optimal beams - they can be extended to predict future beams.

This relevant information can be captured and extracted

using additional sensors such as GPS receivers, cameras,

LiDARs, and radars, making them promising candidates for

enabling sensing-aided wireless communication applications.

The DeepSense 6G V2V scenarios contain co-existing multi-

modal data such as a 360 camera, mmWave wireless com-

munication, GPS data, 3D LiDAR, and radar collected in a

real-wireless environment. The multi-modal nature of these

scenarios helps enable several novel applications, such as

sensing-aided multi-modal beam prediction and beam tracking

and data fusion approaches for V2V communication systems.

Combining data from different sensors may improve the

accuracy and reliability of various V2V communication tasks.

Moreover, the diversity of the V2V scenarios in the dataset,

collected at different locations and times of the day, can help

study the generalizability of the developed solutions. Gener-

alizability is an important aspect of any machine learning or

AI-based system, and the dataset diversity provides a valuable

resource for assessing the robustness and adaptability of V2V

communication solutions in different environments.

Blockage Prediction and Beam Recovery: The DeepSense

V2V dataset can enable the development of algorithms for

blockage prediction and beam recovery in wireless commu-
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nication systems. The mmWave/THz communication systems

rely on line-of-sight (LOS) links to achieve sufficient re-

ceive power. This is primarily due to the low penetration

capabilities of the mmWave/THz signals, which makes LOS

communication a dominant setting. Blocking these LOS links

by either stationary or mobile objects in the environment can

lead to significant degradation of the link quality and pose

substantial challenges to the reliability and latency of these

systems. Current approaches to link recovery are reactive,

which incurs high latency in link re-connection, especially for

mmWave/THz systems with very large codebooks and narrow

directional beams. One way of enabling such proactiveness in

wireless networks is by integrating and utilizing sensors such

as GPS receivers, cameras, LiDARs, and radars to develop a

comprehensive understanding of wireless environments. The

additional information can help predict future blockages and

initiate user handoff, thereby improving the reliability and

latency of wireless communication systems. To achieve this,

the DeepSense V2V dataset can be used to develop blockage

prediction and beam recovery algorithms. The dataset provides

data from multiple sensors, which can be integrated to develop

a comprehensive understanding of the wireless environment.

This approach can help initiate user handoff before a blockage

occurs, reducing latency and improving the reliability of the

system. In summary, the DeepSense V2V dataset provides a

valuable opportunity to develop algorithms for blockage pre-

diction and beam recovery in wireless communication systems.

By integrating data from multiple sensors and developing a

proactive approach, it is possible to predict future blockages

and initiate user handoff beforehand, reducing the latency

associated with link blockages and improving the reliability

of wireless communication systems.

B. Localization

The DeepSense 6G V2V dataset includes data from multiple

sensors, such as GPS, 3D LiDAR, radar, and vision sensors,

which provide a comprehensive view of a vehicle’s surround-

ings. This data can be used to develop and test vehicular

positioning and navigation algorithms that can handle different

driving scenarios and environmental conditions. Combining

data from these different sensors makes it possible to develop

algorithms that can accurately and reliably determine a ve-

hicle’s position and orientation. For example, GPS provides

accurate location data, but its accuracy can be affected by

signal interference and obstructions. Vision sensors and 3D

LiDAR can provide more detailed information about the en-

vironment, such as the location and geometry of objects. This

can help improve the accuracy and reliability of positioning

and navigation. Moreover, the availability of multi-modal V2V

data in the DeepSense 6G V2V dataset can help develop

and test algorithms that can handle different driving scenarios

and environmental conditions. For instance, vision sensors

and 3D LiDAR can help provide more accurate and reliable

location information in scenarios where GPS signals are weak

or obstructed. Combining GPS, 3D LiDAR, radar, and vision

sensors that provide 360-degree coverage can help achieve

accurate and reliable vehicular positioning and navigation

for V2V communication systems. The DeepSense 6G V2V

dataset offers a valuable resource for developing and testing

algorithms that can handle different driving scenarios and

environmental conditions and improve the overall performance

and robustness of V2V communication systems.

C. Sensing Applications

Apart from the wireless communication applications, the

DeepSense 6G V2V dataset can be used to develop and test

algorithms for various autonomous vehicle tasks. One such

task is object detection and classification, which involves

identifying and localizing different types of objects in the

environment. Combining data from different sensors makes

it possible to improve the accuracy and reliability of object

detection and classification algorithms, which is critical for

autonomous vehicles to navigate safely and efficiently. The

360-degree camera in the DeepSense 6G V2V dataset provides

a comprehensive view of the environment, while the 3D

LiDAR and radar sensors can provide detailed information

about the location and geometry of objects in the environment.

GPS data can also provide accurate location information,

critical for object detection and classification. Moreover, the

multi-modal nature of the DeepSense 6G V2V dataset can also

enable the development of algorithms for other autonomous

vehicle tasks, such as image segmentation, object tracking, and

scene understanding. By leveraging the dataset multi-modal

data, it is possible to improve the accuracy and reliability of

object detection and classification algorithms, achieve more

accurate and robust positioning and navigation, and develop

algorithms for other AV tasks.

D. Summary of Multi-Modal Data Use Cases

The availability of synchronized multi-modal data in the

DeepSense V2V dataset enables a wide range of research tasks

across communication, localization, and sensing domains.

These include:

• Position-aided beam alignment: Predicting the optimal

communication beam based on the relative GPS positions

of vehicles [8].

• Blockage prediction and proactive beam recovery:

Using camera and LiDAR data to detect or predict poten-

tial link blockages and proactively adjust communication

beams [6], [13].

• Multi-modal beam tracking: Fusing GPS, radar, and vi-

sion data to enable continuous and reliable beam tracking

in high-mobility V2V scenarios.

• Object detection and classification: Leveraging camera,

radar, and LiDAR data to identify vehicles, pedestrians,

and road obstacles [16], [22].

• Object tracking and scene understanding: Developing

algorithms that track object movement and interpret com-

plex road scenes using synchronized multi-modal data.

• Trajectory prediction and behavior analysis: Com-

bining vision, radar, and GPS data to predict vehicle

trajectories and driving patterns [24].
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• Sensor-fusion-based localization: Improving vehicular

localization accuracy by fusing GPS, LiDAR, and camera

odometry data [36].

• Environment mapping and situational awareness:

Creating real-time 3D maps of the surroundings using

LiDAR, camera, and radar data to improve safety and

situational awareness.

• Machine learning for robust communication: Training

and evaluating ML models that leverage multi-modal

data to improve the reliability and efficiency of V2V

communication systems.

These use cases highlight the versatility and practicality of

the DeepSense V2V dataset for addressing diverse research

problems in vehicle-to-vehicle communications, sensing, and

localization.

VI. MACHINE LEARNING TASKS

In machine learning, the development of practical solutions

relies on several key components: a large-scale dataset, diver-

sity in the data, access to ground truth labels, and the avail-

ability of comprehensive sensor information. These features

collectively enable the development and evaluation of models

that can generalize well and address real-world challenges.

The DeepSense 6G V2V dataset offers a unique opportunity

to explore and advance machine learning applications in the

context of V2V communication. The multi-model sensing

capabilities provide a comprehensive 360-degree view of the

environment, and the incorporation of mmWave frequency

arrays in the 60 GHz band makes the DeepSense 6G V2V

dataset particularly significant for wireless communication

research. Furthermore, the availability of different modalities

permits modality fusion and allows for innovative solutions

that leverage sensing and communication data integration.

Furthermore, the DeepSense 6G V2V dataset encompasses

four distinct scenarios, each with its own characteristics and

challenges. It consists of over 3.5 hours of data collected

from various locations, time periods, and traffic conditions.

This diversity reflects real-world complexities, enabling the

development of models that can adapt to different environ-

ments and situations. The dataset includes intricate vehicle

interactions, such as vehicles crossing each other or navigating

multiple turns, presenting unique communication challenges.

By incorporating these scenarios, the dataset facilitates the

investigation and development of novel algorithms (such as

sensing-aided beam and blockage prediction) that can handle

real-world V2V communication challenges. The DeepSense

6G V2V dataset also benefits from a unified approach to data

collection and structure across different scenarios. This uni-

fied framework ensures consistency and compatibility, which

enables us to combine data from multiple scenarios to cre-

ate larger development datasets. Advanced machine learning

research avenues such as transfer learning, generalizability

studies, scalability assessments, robustness evaluations, and

distribution shift analysis can be explored by leveraging this

capability. Moreover, the unified structure of the dataset en-

ables the investigation of the generalization capabilities of

machine learning models across different scenarios and the

examination of the impact of distribution shifts on model per-

formance. The DeepSense 6G V2V dataset enables innovative

research in various machine-learning applications for V2V

communication, and the following section explores a specific

example: position-aided V2V beam prediction.

A. Position-Aided V2V Beam Prediction

Position-aided beam prediction utilizes GPS positions of

vehicles to forecast the best beam index from a codebook,

as demonstrated using the DeepSense 6G V2V dataset. This

dataset includes precise position data for both transmitting and

receiving vehicles, facilitating the development of algorithms

that leverage this information to maximize received signal

power. We aim to create a prediction solution that uses a

sequence of position data points, not just a single pair, to en-

hance insight into the mobility and orientation of the vehicles

involved in V2V communication. This sequence-based method

offers advantages by providing a dynamic view of vehicle

movement, including speed and acceleration, which helps

predict trajectories more accurately. Moreover, understanding

the orientation and movement of vehicles through sequen-

tial data is vital, especially when the receiver has multiple

antenna panels, which adds complexity to beam prediction.

This approach allows for more precise adaptations to various

scenarios, such as rapid movements and complex interactions.

B. Approach

This section shows that this dataset makes position-aided

beam prediction possible. One possible way of predicting the

optimal beam using car positions is by engineering features

that tightly correlate with the optimal beam index. We show

that a sequence of positions can be used to determine the

optimal beam by deriving the relative orientation and the

relative positions between the two vehicles of each set of

positions, applying a moving average across the sequence to

smooth/average the noise and then using those positions to

estimate the angle of arrival at the receiver vehicle (referred

to as unit 1 in the previous sections). The previous statistics

presented in Figures 9 and 10 from Section IV show that the

relative position between the two vehicles and the beam index

appears strongly correlated, suggesting this approach to be a

good candidate to perform beam prediction.

To estimate the angle of arrival in a predominantly single-

path LoS setting, we need only the direction of the incoming

wave with respect to the receiver and the orientation of the

receiver. The direction of the wave can be estimated via

the relative positions of the vehicles, and the orientation of

the receiver can be similarly computed as the orientation of

car/unit 1. Both quantities use ratios of latitudes and longitudes

from the known formula of the angle of the slope

Ă (ė, Ę) = arctan

(

�ĢėĪ

�ĢĥĤ

)

(1)

where ė and Ę are the two positions necessary. Depending

on the positions used in the formula, we either get the receiver

orientation or the relative position of the two vehicles. Lacking

better nomenclature, let Į1 = (ĢėĪ, ĢĥĤ) denote the position of
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Fig. 13. Correlation between the AoA estimated via GPS positions and the
best beam index for Scenario 36. Vertical lines show the supposed panel
separation according to the direction of the incoming signal, while colors
show the ground truth optimal panel selection. When colors are outside their
supposed interval, the optimal panel is not the expected panel, complicating
optimal beam determination from the estimated AoA.

vehicle 1 (receiver) and Į2 be that of vehicle 2 (transmit-

ter). If so, then the orientation of the receiver is given by

Ă (Į1 (Ī), Į1 (Ī − 1)) and the relative position between receiver

and transmitter is given by Ă (Į1 (Ī), Į2 (Ī)). It should be noted

that applying Equation (1) to compute these quantities still

results in high sensitivity to noise. As such, we additionally

apply a threshold filter (or high-pass) that considers �ĢėĪ or

�ĢĥĤ equal to zero whenever the difference is smaller than a

certain quantity. In one expression, we write

�ĢėĪ (ė, Ę) =

{

0 if |ĢėĪė − ĢėĪĘ | < ĢėĪĪℎĨěĩ
ĢėĪė − ĢėĪĘ if |ĢėĪė − ĢėĪĘ | > ĢėĪĪℎĨěĩ

(2)

and likewise for �ĢĥĤ (ė, Ę), with ĢėĪĪℎĨěĩ = ĢĥĤĪℎĨěĩ = 5ě − 7

experimentally determined to be the smallest value that ex-

ceeded the GPS noise. The expression (1) is used twice for

the arrival computation, as mentioned, but we first compute

a simple moving average (SMA) on the estimates, i.e., an

unweighted mean of the last ĊėĬĝ samples, to obtain better

estimates that are more robust to noise. As such, we have

ďĉýĊėĬĝ ( Ĝ , Ī) =
1

ĊėĬĝ

ĊėĬĝ−1
∑

Ĥğ=0

Ĝ [Ī − Ĥğ] (3)

with ĊėĬĝ = 30 (i.e., average information from the last 3

seconds) and Ĝ the function to be averaged. Finally, we use

the smoothed estimates in the determination of the angle of

arrival at time instant Ī

ýĥý(Ī) = ďĉý(Ă (Į1 (Ī), Į1 (Ī − 1))) − ďĉý(Ă (Į1 (Ī), Į2 (Ī))).

(4)

The process described here aims at maximizing the cor-

relation of the ýĥý and the optimal beam. We use the ýĥý

estimate in Equation (4) and perform a mapping of the optimal

Fig. 14. Fit from different linear and non-linear predictors to the AoA from
GPS and beam index data from Scenario 36.

beam indices to a uniform interval of [−ÿ, ÿ]. We display

the relation between the two in Figure 13. The figure shows

a high correlation, suggesting that the ýĥý will effectively

determine the beam index. Like that, the problem is reduced

to a regression where we try to select the mapping of ýĥý

to the beam index. To that end, we use several approaches.

The first is a simple baseline, a uniform beam choice based

on AoA that consists of an affine function of the form

į = ģč, with č being the AoA in [−ÿ, ÿ] radians and į

beams are uniformly distributed in azimuth from 0 to 255,

then ģ = 256/(2ÿ). However, this heuristic is not resistant

to real-world imperfections that cause data outliers, so better

estimators should also be used.

The linear trend motivates other linear estimators, but they

should be robust to noise and outliers. Literature shows us

three linear estimators that are robust to noise: the Huber

[39], the Ransac [40], and Theil-Sen [41] estimators. We also

consider non-linear estimators, such as KNN and the popular

XGBoost [42] for completeness. We fit these estimators to

the data and show the baseline, KNN, and XGBoost results

in Figure 14. Because the remaining linear estimators have

similar fits as the baseline, we omit them to make the figure

less cluttered. Next, we look at how these estimators perform

using classical performance metrics.

C. Results

We used various methodologies for our regression analysis.

These include the baseline (uniform heuristic), robust linear

regressors (Huber, Ransac, and Theil-Sen), and non-linear es-

timators (KNN and XGBoost). The top-k accuracy curves are

shown in Figure 15. These curves reveal a wide performance

range across different scenarios. The top-5 accuracy varies

significantly, between 60% and 90%. This variability is due

to several factors. For example, the true signal angle of arrival

(AoA) sometimes does not match the relative orientation de-

rived from GPS positions. This mismatch mainly occurs when
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Fig. 15. Regression results in top-k beam prediction accuracies from using different predictors in the estimation of AoA from GPS positions.

buildings or other obstacles cause non-line-of-sight (NLoS)

signal propagation. Additionally, even when the receiver and

transmitter are completely still, hardware noise can cause

changes in the chosen beams. To mitigate this effect, we

filtered our data with a signal-to-noise ratio (SNR) threshold

of 0 dB. This is because when the SNR is less than 0 dB, any

beam can be chosen, and that choice may not correlate with

the positions. Finally, position noise can vary between differ-

ent scenarios. This variation can affect our AoA estimation.

Considering the performance of different estimators, XGBoost

appears to be the most effective. However, the simpler KNN

estimator achieved similar results. This finding was surprising,

as KNN performed as well as more complex estimators known

for their robustness to outliers.

VII. CONCLUSION

This work presents DeepSense V2V, the vehicle-to-vehicle

scenarios of the DeepSense6G dataset. We provided an in-

depth exploration of the dataset, illustrating its creation process

and potential applications in the interplay of communica-

tions, sensing, and localization. We began by detailing the

DeepSense6G scenario creation pipeline, which encompasses

data collection, processing, and visualization. Subsequently,

we demonstrated the diversity of the dataset by offering

comprehensive statistics on various road types and locations,

vehicle velocities, beam distributions, and road-related object

detection. As a practical example, we utilized the dataset to

predict beam directions based on GPS positions. We expect

this dataset to serve as a significant asset for research in both

academia and industry, enhancing studies in wireless commu-

nications and advancing autonomous driving technologies.
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