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a b s t r a c t

This paper proposes a novel learning-based adaptive optimal controller design method for a class of

continuous-time linear time-delay systems. A key strategy is to exploit the state-of-the-art reinforce-

ment learning (RL) techniques and adaptive dynamic programming (ADP), and propose a data-driven

method to learn the near-optimal controller without the precise knowledge of system dynamics.

Specifically, a value iteration (VI) algorithm is proposed to solve the infinite-dimensional Riccati

equation for the linear quadratic optimal control problem of time-delay systems using finite samples

of input-state trajectory data. It is rigorously proved that the proposed VI algorithm converges to the

near-optimal solution. Compared with the previous literature, the nice features of the proposed VI

algorithm are that it is directly developed for continuous-time systems without discretization and

an initial admissible controller is not required for implementing the algorithm. The efficacy of the

proposed methodology is demonstrated by two practical examples of metal cutting and autonomous

driving.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and

similar technologies.
1. Introduction

Time delay is ubiquitous in various engineering applications,

such as biology, chemistry, economics, and population mod-

els (Richard, 2003). In the last several decades, control theory

for time-delay systems attracted considerable attention from

researchers and practicing engineers, and various stability, ro-

bustness, and optimality problems have been studied; see, for

instance, Cao and Wang (2018), Fridman (2014), Fridman and

Shaked (2002, 2003), Gu, Kharitonov, and Chen (2003), Hale

and Lunel (1993), Karafyllis and Jiang (2011), Kolmanovskii and

Myshkis (1999), Krstic (2009) and numerous references therein.

Under some mild conditions, optimal control can guarantee the

performance and the stability of the closed-loop system simul-

taneously. It is thus not surprising that the optimal control for

time-delay systems is fundamentally important, yet challenging,

in control theory and practice. Through the classical Bellman’s
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0005-1098/© 2024 Elsevier Ltd. All rights are reserved, including those for text and
dynamic programming, the study of linear quadratic (LQ) optimal

control for systems with state delay was initiated by Krasovskii

(1962). It follows from Krasovskii (1962) that the optimal con-

troller is a linear functional of the state and the corresponding

optimal performance index is a quadratic functional. Unfortu-

nately, an explicit characterization of the optimal controller is

still lacking. Following this seminal work, Ross (1971) and Ross

and Flügge-Lotz (1969) explicitly derived a set of partial dif-

ferential equations (PDEs) to be satisfied by the optimal con-

troller. These equations are the generalization of the Kalman’s

algebraic Riccati equation (ARE) from delay-free linear time-

invariant systems to time-delay systems. The authors of Delfour

(1986), Kwong (1980) and Vinter and Kwong (1981) consid-

ered the problem in the infinite-dimensional Hilbert space, and

generalized the LQ optimal control to systems with state and

input delays. It has been found that the optimal solution can

be obtained by solving the corresponding infinite-dimensional

Riccati equation. Many numerical algorithms were developed to

solve the infinite-dimensional Riccati equation for time-delay

systems (Banks, Rosen, & Ito, 1984; Burns, Sachs, & Zietsman,

2008; Gibson, 1983). It should be noticed that all the aforemen-

tioned methods are model-based, and the performance of the

designed controller highly relies on the accuracy of the system

model. Recently, facilitated by the tremendous advances in com-
putation and communication technologies, fast data collection

data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.automatica.2024.111944
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nd processing have been made possible for controlling engi-
eering systems with increasing complexity. Hence, it is timely
o develop a computational approach to address the learning-
ased adaptive optimal control of time-delay systems based on
einforcement learning (RL) techniques.

RL is an active branch of machine learning that is aimed at
earning optimal controls from data through maximizing a cumu-
ative reward or minimizing a cumulative cost. However, most of
he conventional RL algorithms are exclusively devoted to Markov
ecision processes and discrete-time systems (Sutton & Barto,
018). The stability of the system in question is often overlooked
n the past literature of RL. For real-world applications, e.g. au-
onomous driving, the system evolves in the continuous (state,
nput, and time) spaces, and it is critically important that learning
rovides stability and safety guarantees for the system in closed-
oop with RL algorithms for the safe operation of control systems
nder consideration. Consequently, because of lacking in stability
onsiderations, conventional RL algorithms cannot be directly
pplied to real-world safety-critical engineering systems. Inte-
rating ideas and techniques from RL and control theory, adaptive
ynamic programming (ADP) has been developed to conquer the
imitations of the conventional RL algorithms (Jiang, Bian, & Gao,
020; Jiang & Jiang, 2017; Lewis & Liu, 2013). Different from the
onventional RL, ADP exploits the structural knowledge of control
ystems for the direct design of learning-based controllers from
ata. It is theoretically shown that the generated controller by
DP iteratively converges to the optimal one. Consequently, the
tability of the system is guaranteed under some mild conditions,
uch as detectability and stabilizability requirements on the sys-
em. Recent developments in ADP have led to novel solutions
o learning-based optimal control of various important classes
f linear/nonlinear/periodic uncertain dynamical systems (Bian
Jiang, 2022; Cui, Başar, & Jiang, 2024; Cui & Jiang, 2023; Cui,
ang, Zhang, Zhang, Lai, Zheng, Zhang, & Jiang, 2021; Gao & Jiang,
016; Jiang & Jiang, 2012; Pang & Jiang, 2021).
Unlike finite-dimensional systems, continuous-time time-delay

ystems are infinite-dimensional, which poses a major challenge
or the development of learning-based adaptive optimal con-
roller design methods. A common feature of the relevant liter-
ture (Asad Rizvi, Wei, & Lin, 2019; Gao & Jiang, 2019; Huang,
iang, & Ozbay, 2022; Liu, Zhang, Luo, & Han, 2016; Rueda-
scobedo, Fridman, & Schiffer, 2022; Wei, Zhang, Liu, & Zhao,
010; Zhang, Ren, Mu, & Han, 2022; Zhang, Song, Wei, & Zhang,
011) is that only discrete-time time-delay systems are consid-
red for learning-based control. Since the discrete-time time-
elay systems are fundamentally finite-dimensional and can be
ransformed to delay-free systems with augmented states, the ex-
sting methods are not directly applicable to continuous-time sys-
ems with time delays. In Jiang, Zhou, and Liu (2021), Moghadam
nd Jagannathan (2021) and Moghadam, Jagannathan, Narayanan,
nd Raghavan (2021), the learning-based control for continuous-
ime time-delay systems is studied. As pointed out in Moghadam
t al. (2021, Remark 9.1), since the designed controllers by the
ethods in these papers are linear functions (instead of func-

ionals) with respect to the state, the optimality of the system is
carified in these papers to avoid solving the infinite-dimensional
iccati equation. In Cui, Pang, and Jiang (2024), a data-driven pol-
cy iteration (PI) algorithm was proposed for solving the adaptive
ptimal control problem of continuous-time time-delay systems.
n that paper, an initial admissible controller is required to start
he learning process, which is overly restrictive when the sys-
em model is completely unknown. These facts motivate us to
evelop a learning-based method for solving the adaptive optimal
ontrol problem of continuous-time time-delay systems without
equiring an accurate dynamic model and an initial admissible

ontroller.

2

In this paper, based on ADP technique, a value iteration (VI)
lgorithm is proposed to find the near-optimal controller for lin-
ar time-delay systems in the absence of the precise knowledge
f system dynamics and an initial admissible controller. It is
ell-known that for finite-horizon LQ optimal control of delay-

ree systems, a matrix differential Riccati equation (DRE) should
e solved to obtain the optimal value function and controller.
he solution of the matrix DRE asymptotically converges to the
olution of ARE for infinite-horizon LQ optimal control (Willems,
971). We demonstrate that the DRE of linear time-delay systems
s a set of PDEs, and the convergence property of DRE still holds
or linear time-delay systems. By this way, we can approximate
he LQ optimal controller of time-delay systems by solving the
orresponding DRE. By integrating the convergence property of
RE with the RL technique, a learning-based VI approach is pro-
osed to approximate the optimal controller using only finite
amples of input-state data along the trajectories of the system.
The remaining contents of this paper are organized as follows.

n Section 2, the preliminaries for the optimal control of time-
elay systems are introduced, and the problem studied in the
aper is formally formulated. In Section 3, a model-based VI algo-
ithm for time-delay systems is proposed. Based on ADP method,
learning-based VI algorithm is developed along with the conver-
ence analysis in Section 4. In Section 5, the efficacy of the pro-
osed learning-based VI algorithm is numerically demonstrated
y two practical examples. Finally, some concluding remarks are
iven in Section 6.
Notations: In this paper, R denotes the set of real num-

ers. | · | denotes the Euclidean norm of a vector or Frobenius
orm of a matrix, and ∥ · ∥∞ denotes the supremum norm
f a function. C0 (X, Y ) and C1 (X, Y ) denote the class of con-
inuous functions and the class of continuously differentiable
unctions from the linear space X to the linear space Y , respec-
ively. AC ([−τ , 0],Rn) denotes the class of absolutely continuous
unctions. df

dθ (·) denotes the function which is the derivative
of f (·). ⊕ is the direct sum. Li([−τ , 0],Rn) denotes the space
of measurable functions for which the ith power of the Eu-
clidean norm is Lebesgue integrable, M2 = Rn

⊕ L2([−τ , 0],Rn),
and D =

{
[r⊤f ⊤(·)]⊤ ∈ M2 : f ∈ AC,

df
dθ (·) ∈ L2, and f (0) = r

}
,

here ⊤ stands for transpose of a vector or matrix. ⟨·, ·⟩ denotes
he inner product in M2, i.e. ⟨z1, z2⟩ = r⊤

1 r2 +
∫ 0

−τ
f ⊤

1 (θ )f2(θ )dθ ,
here zi = [ri, fi(·)]⊤ for i = 1, 2. L(X) and L(X, Y ) denote the
lass of continuous bounded linear operators from X to X and
rom X to Y respectively. ⊗ is the Kronecker product. vec(A) =

a⊤

1 , a⊤

2 , . . . , a⊤
n

]⊤, where ai is the ith column of A. vec−1(·) is
he inverse operator of vec(·). For P = P⊤

∈ Rn×n, vecs(P) =

p11, 2p12, . . . , 2p1n, p22, 2p23, . . . , 2p(n−1)n, pnn]⊤, vecu(P) =

2p12, . . . , 2p1n, 2p23, . . . , 2p(n−1)n]
⊤, and diag(P) = [p11, p22,

. . , pnn]⊤. For two arbitrary vectors ν, µ ∈ Rn, vecd(ν, µ) =

ν1µ1, . . . , νnµn]
⊤, vecv(ν) = [ν2

1 , ν1ν2, . . . , ν1νn, ν
2
2 , . . . , νn−1νn,

2
n ]

⊤, vecp(ν, µ) = [ν1µ2, . . . , ν1µn, ν2µ3, . . . , νn−1µn]
⊤. [A]i

enotes the ith row of the matrix A, and [A]i,j denotes the sub-
atrix of the matrix A comprised of the entries between the ith
nd jth rows. A† denotes the Moore–Penrose inverse of matrix A.

. Problem formulation and preliminaries

.1. Problem formulation

This paper considers the following class of continuous-time
inear time-delay systems described by:

̇(t) = Ax(t) + Adx(t − τ ) + Bu(t), (1)

here τ ≥ 0 denotes the delay of the system, which is constant
nd known, x(t) ∈ Rn, and u(t) ∈ Rm. A, A ∈ Rn×n and
d
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∈ Rn×m are unknown constant matrices. The segment of the
rajectory for x(t) within the interval [t − τ , t] is denoted as
t (θ ) = x(t + θ ), ∀θ ∈ [−τ , 0]. Since system (1) is infinite
imensional, the system’s state is z(t) = [x⊤(t), x⊤

t (·)]
⊤

∈ M2.
efine the linear operators A ∈ L(M2),B ∈ L(Rm,M2) as

z(t) =

[
Ax(t) + Adxt (−τ )

dxt
dθ (·)

]
,Bu(t) =

[
Bu(t)
0

]
(2)

Then, as studied in Curtain and Zwart (1995, Theorem 2.4.6),
ystem (1) is equivalent to

̇(t) = Az(t) + Bu(t), (3)

ith the domain of A given by D. Let z0 = [x⊤(0), x⊤

0 (·)]
⊤ denote

he initial state of system (3). The quadratic performance index
dopted for system (1) is

(x0, u) =

∫
∞

0
x⊤(t)Qx(t) + u⊤(t)Ru(t)dt

=

∫
∞

0
⟨z(t),Qz(t)⟩ + u⊤(t)Ru(t)dt,

(4)

here R⊤
= R > 0, Q⊤

= Q ≥ 0, and Q =

[
Q

0

]
∈ L(M2)

s symmetric (Eidelman, Milman, & Tsolomitis, 2004, Chapter 6),
nd non-negative (Eidelman et al., 2004, Definition 6.3.1). The
nitial state z0, Q and R are known.

The following standard assumption is made to ensure the
ptimal control problem for system (1) with the performance
ndex (4) is solvable. That is, there exists a controller such that
he performance index in (4) is finite, and the closed-loop system
ith the optimal controller is stable at the origin.

ssumption 1. System (1) with the output y(t) = Q
1
2 x(t) is

xponentially stabilizable and detectable (Curtain & Zwart, 1995,
efinition 5.2.1), where Q

1
2 is the unique real symmetric and

positive semidefinite matrix such that (Q
1
2 )2 = Q (Horn &

ohnson, 2013, Theorem 7.2.6).

Given the aforementioned assumption, the problem to be
tudied in this paper can be formulated as follows.

roblem. (VI-based ADP) Without knowing the dynamics of sys-
em (1), design a VI-based ADP algorithm to find approximations
f the optimal controller which can minimize (4) using only the
nput-state data measured along the trajectories of the system.

.2. Optimality and stability

For delay-free linear systems, i.e. Ad = 0 in (1), as studied
y Kalman (1960), the ARE plays a pivotal role in solving the

infinite-horizon LQ optimal control problem. Similarly, for system
(1), the following lemma gives the expression of the optimal
controller for time-delay systems.

Lemma 2 (Ross & Flügge-Lotz, 1969; Uchida, Shimemura, Kubo, &
Abe, 1988). Consider system (1) under Assumption 1, the optimal
controller that minimizes (4) is

u∗(xt ) = − R−1B⊤P∗

0  
K∗
0

x(t) −

∫ 0

−τ

R−1B⊤P∗

1 (θ )  
K∗
1 (θ )

xt (θ )dθ (5)

and the corresponding minimal performance index is

V ∗(x0) = x⊤

0 (0)P
∗

0 x0(0) + 2x⊤

0 (0)
∫ 0

P∗

1 (θ )x0(θ )dθ

−τ

3

+

∫ 0

−τ

∫ 0

−τ

x⊤

0 (ξ )P
∗

2 (ξ, θ )x0(θ )dξdθ, (6)

here P∗

0 = P∗⊤

0 ≥ 0, P∗

1 (θ ), and P∗⊤

2 (θ, ξ ) = P∗

2 (ξ, θ ) for θ, ξ ∈

−τ , 0] are the unique stabilizing solution to:
⊤P∗

0 + P∗

0A − P∗

0BR
−1B⊤P∗

0

+ P∗

1 (0) + P∗⊤

1 (0) + Q = 0, (7a)

θP∗

1 (θ ) = (A⊤
− P∗

0BR
−1B⊤)P∗

1 (θ ) + P∗

2 (0, θ ), (7b)

∂ξ + ∂θ )P∗

2 (ξ, θ ) = −P∗⊤

1 (ξ )BR−1B⊤P∗

1 (θ ), (7c)
∗

1 (−τ ) = P∗

0Ad, P∗

2 (−τ , θ ) = A⊤

d P
∗

1 (θ ). (7d)

emark 3. Define P∗
∈ L(M2) as

∗z =

[
P∗

0 r +
∫ 0

−τ
P∗

1 (θ )f (θ )dθ∫ 0
−τ

P∗

2 (·, θ )f (θ )dθ + P∗⊤

1 (·)r

]
,

here z = [r⊤, f ⊤(·)]⊤ ∈ M2. Then, it can be found that P∗

s the solution to the following Riccati equation in the infinite-
imensional space:

= ⟨ z2,ΠAz1⟩ + ⟨Az2,Πz1⟩

+ ⟨ z2,Qz1⟩ − ⟨ΠBR−1B⊤Πz2, z1⟩
(8)

for z1, z2 ∈ D. Therefore, it is seen that (7) is the concrete expres-
ion of the abstract Riccati equation in the infinite-dimensional
pace, and Lemma 2 can be proved by Curtain and Zwart (1995,
Theorem 6.2.4 and Theorem 6.2.7).

Remark 4. By Curtain and Zwart (1995, Theorem 6.2.7) and
Assumption 1, the closed-loop system with u∗ is exponentially
stable at the origin. In practice, the second term in (5) can be
numerically calculated by Riemann sum, like midpoint, trapezoid,
and Simpson’s rules.

3. Continuous-time model-based value iteration

In this section, we will approximate the solution of the infinite-
horizon optimal control problem by its finite-horizon counter-
part, as the horizon length tends to infinity. Since VI-based ADP is
derived from the asymptotic behavior of DRE, which is related to
the finite-horizon optimal control problem of (1), we concentrate
on investigating the following problem:

min
u

J (t0, T , φ, u) =

∫ T

t0

⟨ z(t),Qz(t)⟩ + u⊤(t)Ru(t)dt

subject to (3), (9)

where φ(θ ), ∀θ ∈ [−τ , 0], is the initial segment of the state
trajectory, t0 is the initial time, and T is the terminal time of
the trajectory. Comparing (9) with the infinite-horizon cost in (4),
when T → ∞, (9) is equivalent to (4). The following lemma gives
the solution to (9) in the Hilbert space M2.

Lemma 5 (Theorem 6.1.13 in Curtain & Zwart, 1995). For problem
(9), the minimal performance index V (φ, t0) = minu J (t0, T , φ, u)
can be expressed as

V (φ, t0) = ⟨ z, P(t0)z⟩, (10)

where z = [φ⊤(0), φ⊤(·)]⊤ is the initial state at t0, and P(s) ∈

L(M2) is the unique solution to the following DRE for any z1, z2 ∈ D
and s ∈ [t0, T ],

∂s⟨ z2, P(s)z1⟩ = −⟨ z2, P(s)Az1⟩ − ⟨Az2, P(s)z1⟩
− ⟨ z2,Qz1⟩ + ⟨ P(s)BR−1B⊤P(s)z2, z1⟩,
P(T ) = 0. (11)
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Since P(s) in Lemma 5 is an abstract linear operator in the
Hilbert space M2, the concrete expression of V (φ, t0) is lacking.
Based on Lemma 5, the following lemma gives the concrete
expression of the linear operator P(s) ∈ L(M2). In addition,
t is shown that the solution of the finite-horizon optimal con-
rol problem converges to the solution of the infinite-horizon
ounterpart, as the horizon length tends to infinity.

emma 6. For any z = [φ⊤(0), φ⊤(·)]⊤ ∈ M2, the expression of
P(s)z is

P(s)z =

[
P0(s)φ(0) +

∫ 0
−τ

P1(s, θ )φ(θ )dθ∫ 0
−τ

P2(s, ·, θ )φ(θ )dθ + P⊤

1 (s, ·)φ(0)

]
, (12)

where P0(s) = P⊤

0 (s), P1(s, θ ) and P2(s, ξ , θ ) = P⊤

2 (s, θ, ξ ) can be
obtained by solving the following PDEs backwards

∂sP0(s) = −A⊤P0(s) − P0(s)A − Q − P1(s, 0)

− P⊤

1 (s, 0) + P0(s)BR−1B⊤P0(s), (13a)
∂sP1(s, θ ) = ∂θP1(s, θ ) − P2(s, 0, θ )

− (A⊤
− P0(s)BR−1B⊤)P1(s, θ ), (13b)

∂sP2(s, ξ , θ ) = ∂ξP2(s, ξ , θ ) + ∂θP2(s, ξ , θ )

+ P⊤

1 (s, ξ )BR−1B⊤P1(s, θ ), (13c)

P1(s, −τ ) = P0(s)Ad, P2(s, −τ , θ ) = A⊤

d P1(s, θ ) (13d)

P0(T ) = 0, P1(T , θ ) = 0, P2(T , θ, ξ ) = 0. (13e)

In addition, under Assumption 1, the following results hold

lim
s→−∞

|P0(s) − P∗

0 | = 0,

lim
s→−∞

∥P1(s, θ ) − P∗

1 (θ )∥∞ = 0,

lim
s→−∞

∥P2(s, ξ , θ ) − P∗

2 (ξ, θ )∥∞ = 0.

(14)

Proof. See Appendix B.

Lemma 6 implies that the solution of (7) can be well approx-
imated by solving (13) backwards from the terminal time T to
−∞. Then, the optimal controller u∗ in (5) can be approximated.
However, in (13), the systemmatrices (A, Ad, B) are required and it
is non-trivial to solve such complicated PDEs. In the next section,
in the absence of the accurate model of the system, a VI-based
ADP algorithm will be proposed to solve (13) using the input-
state data measured along the system’s trajectories. In the rest of
the paper, we will call the index t in (1) as physical time, and s
in (13) as algorithmic time.

Remark 7. When Ad = 0, (1) is reduced to a linear system
without time delay. Under this case, according to (13), P1(s, θ ) =

0 and P2(s, ξ , θ ) = 0. As a consequence, the continuous-time VI
method proposed in this paper is the same as Bian and Jiang
(2016). Therefore, the VI method proposed in this paper is a
generalization of the main result in Bian and Jiang (2016) to
time-delay systems.

4. Learning-based value iteration

In this section, we suppose only that the continuous-time
trajectories of x(t) and u(t) within the time interval [t1, tL+1] are
available for the optimal controller design.

4.1. Algorithm development

Recall that P0(s), P1(s, θ ), and P2(s, ξ , θ ) are the solutions to
(13) and the expression of P(s)z is given in (12). According to (10)
4

and (12), V (xt , s) can be expressed as

V (xt , s) = x⊤(t)P0(s)x(t) + 2x⊤(t)
∫ 0

−τ

P1(s, θ )xt (θ )dθ

+

∫ 0

−τ

∫ 0

−τ

x⊤

t (ξ )P2(s, ξ , θ )xt (θ )dξdθ. (15)

Along the trajectories of system (1) driven by the control input
u, considering ∂tx(t + θ ) = ∂θx(t + θ ) and the partial integration,
we have

∂tV (xt , s) = x⊤(t)[A⊤P0(s) + P0(s)A

+ P⊤

1 (s, 0) + P1(s, 0)]x(t)

+ 2x⊤(t − τ )[A⊤

d P0(s) − P⊤

1 (s, −τ )]x(t)

+ 2x⊤(t)
∫ 0

−τ

[A⊤P1(s, θ ) + P2(s, 0, θ )

− ∂θP1(s, θ )]xt (θ )dθ (16)

+ 2x⊤(t − τ )
∫ 0

−τ

[A⊤

d P1(s, θ ) − P2(s, −τ , θ )]xt (θ )dθ

−

∫ 0

−τ

∫ 0

−τ

x⊤

t (ξ )[(∂ξ + ∂θ )P2(s, ξ , θ )]xt (θ )dξdθ

+ 2u⊤(t)B⊤

[
P0(s)x(t) +

∫ 0

−τ

P1(s, θ )xt (θ )dθ
]

.

efine the following matrix-valued functions

0(s) = A⊤P0(s) + P0(s)A + P⊤

1 (s, 0) + P1(s, 0),

1(s, θ ) = A⊤P1(s, θ ) + P2(s, 0, θ ) − ∂θP1(s, θ ),

2(s, ξ , θ ) = ∂ξP2(s, ξ , θ ) + ∂θP2(s, ξ , θ ), (17)

0(s) = R−1B⊤P0(s),

1(s, θ ) = R−1B⊤P1(s, θ ).

hen, from Lemma 6, it is seen that as s → −∞, H0(s), H1(s, θ ),
2(s, θ, ξ ), K0(s), and K1(s, θ ) converge to H∗

0 , H
∗

1 (θ ), H
∗

2 (ξ, θ ), K ∗

0 ,
nd K ∗

1 (θ ), where the superscript ∗ denotes that in (17)Pj is re-
laced by P∗

j for j = 0, 1, 2. Since for each fixed algorithmic time
∈ (−∞, T ], H1(s, θ ) and K1(s, θ ) (H2(s, ξ , θ )) are continuous

unctions defined on the interval [−τ , 0] ([−τ , 0]2), we use the
inear combinations of the basis functions to approximate these
ontinuous functions. Let Φ(θ ), Λ(ξ, θ ), and Ψ (ξ, θ ) denote the
-dimensional linearly independent basis functions. The dimen-
ions of Φ , Λ, and Ψ are assumed to be same without losing
enerality. Then, by the uniform approximation theory (Powell,
981), for each fixed algorithmic time s ∈ (−∞, T ], we have

vecs(H0) = W0(s),

vec(H1) = WN
1 (s)Φ(θ ) + eNHΦ (s, θ ),

diag(H2) = WN
2 (s)Ψ (ξ, θ ) + eNHΨ (s, ξ , θ ),

ecu(H2) = WN
3 (s)Λ(ξ, θ ) + eNHΛ(s, ξ , θ ),

vec(K0) = U0(s),

vec(K1) = UN
1 (s)Φ(θ ) + eNKΦ (s, θ ),

(18)

where W0(s) ∈ Rn1 , n1 = n(n + 1)/2, WN
1 (s) ∈ Rn2×N , WN

2 (s) ∈

Rn×N , WN
3 (s) ∈ Rn2×N , n2 = n(n − 1)/2, U0(s) ∈ Rnm, and

UN
1 (s) ∈ Rnm×N are weighting matrices. eNHΦ (s, θ ) and eNKΦ (s, θ )

(eNHΨ (s, ξ , θ ) and eNHΛ(s, ξ , θ )) are truncation errors, and they con-
verge to zero uniformly in θ ∈ [−τ , 0] (ξ, θ ∈ [−τ , 0]), and
pointwisely in s ∈ (−∞, T ], as the number of basis functions N
tends to infinity. Specifically, for each fixed s ∈ (−∞, T ] and any
ϵ > 0, there exists N∗

1 (s, ϵ) > 0, such that if N > N∗

1 (s, ϵ),

∥eNHΦ (s, θ )∥∞ ≤ ϵ, ∥eNHΨ (s, ξ , θ )∥∞ ≤ ϵ,

N N (19)

∥eHΛ(s, ξ , θ )∥∞ ≤ ϵ, ∥eKΦ (s, θ )∥∞ ≤ ϵ.
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emark 8. For time-delay systems, the number of basis functions
hould be large enough to diminish the truncation errors in (18).
n comparison, for the delay-free case, Pi = 0 (i = 1, 2), Hi = 0
(i = 1, 2), and K1 = 0. The truncation errors in (18) are zero no
matter how many basis functions are selected.

Remark 9. In practice, one can choose polynomials as basis func-
tions and the uniform convergence in (19) can be guaranteed by
Weierstrass Approximation Theorem (Pugh, 2015). In Lemma 6,
P⊤

2 (s, ξ , θ ) = P2(s, θ, ξ ). The diagonal elements of P2 satisfy
diag[P2(s, ξ , θ )] = diag[P2(s, θ, ξ )]. Therefore, the basis functions
of Ψ should satisfy Ψ (ξ, θ ) = Ψ (θ, ξ ) to meet the requirement.

In Lemma 6, P0(s), P1(s, θ ), and P2(s, ξ , θ ) are continuously dif-
ferentiable in s. Hence, it is required that the weighting matrices
and the truncation errors in (18) are continuously differentiable
in s.

Lemma 10. W0(s), WN
j (s)(j = 1, 2, 3), U0(s), UN

1 (s), e
N
HΦ (s, θ ),

eNHΨ (s, ξ , θ ), eNHΛ(s, ξ , θ ), and eNKΦ (s, θ ) are continuously differen-
iable in the algorithmic time s.

roof. See Appendix C.

Next, the data collected from L intervals within [t1, tL+1] will
e applied to generate the near-optimal controller. Let t1 < t2 <
· · < tk < · · · < tL+1 denote the boundaries of the sampling
ntervals. By plugging (17) and (13d) into (16), integrating (16)
rom tk to tk+1, and by Lemmas 21 and 22, we have

(xtk+1 , s) − V (xtk , s)

=

∫ tk+1

tk

vecv⊤(x(t))dtvecs(H0(s))

+ 2
∫ tk+1

tk

∫ 0

−τ

x⊤

t (θ ) ⊗ x⊤(t)vec(H1(s, θ ))dθdt

−

∫ tk+1

tk

∫ 0

−τ

∫ 0

−τ

vecd⊤(xt (ξ ), xt (θ ))

diag(H2(s, ξ , θ ))dξdθdt (20)

−

∫ tk+1

tk

∫ 0

−τ

∫ 0

−τ

vecp⊤(xt (ξ ), xt (θ ))

vecu(H2(s, ξ , θ ))dξdθdt

+ 2
∫ tk+1

tk

x⊤(t) ⊗ (u⊤(t)R)dtvec(K0(s))

+ 2
∫ tk+1

tk

∫ 0

−τ

x⊤

t (θ ) ⊗ (u⊤(t)R)vec(K1(s, θ ))dθdt.

o simplify the notations, we define

ΓΦxx(t) =

∫ 0

−τ

Φ⊤(θ ) ⊗ x⊤

t (θ ) ⊗ x⊤(t)dθ

ΓΨ xx(t) =

∫ 0

−τ

∫ 0

−τ

Ψ ⊤(ξ, θ ) ⊗ vecd⊤(xt (ξ ), xt (θ ))dξdθ

ΓΛxx(t) =

∫ 0

−τ

∫ 0

−τ

Λ⊤(ξ, θ ) ⊗ vecp⊤(xt (ξ ), xt (θ ))dξdθ

ΦΦxx(t) =

∫ 0

−τ

∫ 0

−τ

x⊤

t (θ ) ⊗ Φ⊤(θ )

⊗ x⊤

t (ξ ) ⊗ Φ⊤(ξ )dξdθ. (21)

n addition, define the following integrals over [tk, tk+1]

Ixx,k =

∫ tk+1

vecv⊤(x(t))dt,

tk

5

Ixu,k =

∫ tk+1

tk

x⊤(t) ⊗ (u⊤(t)R)dt,

IΦxx,k =

∫ tk+1

tk

ΓΦxx(t)dt, (22)

IΦxu,k =

∫ tk+1

tk

∫ 0

−τ

Φ⊤(θ ) ⊗ x⊤

t (θ ) ⊗ (u⊤(t)R)dθdt,

IΨ xx,k =

∫ tk+1

tk

ΓΨ xx(t)dt, IΛxx,k =

∫ tk+1

tk

ΓΛxx(t)dt.

Plugging (18) and (22) into (20) yields

V (xtk+1 , s) − V (xtk , s)

= Ixx,kW0(s) + 2IΦxx,kvec(WN
1 (s))

− IΨ xx,kvec(WN
2 (s)) − IΛxx,kvec(WN

3 (s))

+ 2Ixu,kU0(s) + 2IΦxu,kvec(UN
1 (s)) + eNk (s),

(23)

where eNk (s) is induced by the truncation errors in (18), and it is
expressed as

eNk (s) = 2
∫ tk+1

tk

∫ 0

−τ

x⊤

t (θ ) ⊗ x⊤(t)eNHΦ (s, θ )dθdt

−

∫ tk+1

tk

∫ 0

−τ

∫ 0

−τ

vecd⊤(xt (ξ ), xt (θ ))eNHΨ (s, ξ , θ )dξdθdt

−

∫ tk+1

tk

∫ 0

−τ

∫ 0

−τ

vecp⊤(xt (ξ ), xt (θ ))eNHΛ(s, ξ , θ )dξdθdt

+ 2
∫ tk+1

tk

∫ 0

−τ

x⊤

t (θ ) ⊗ (u⊤(t)R)eNKΦ (s, θ )dθdt. (24)

Stacking (23) for k = 1, 2, . . . , L into a vector form, one can
obtain the following linear equation with respect to the unknown
weighting matrices

ΘNΩN (s) + EN
L (s) = Ξ (s), (25)

where

ΩN (s) = [W⊤

0 (s), vec⊤(WN
1 (s)), vec⊤(WN

2 (s)),

vec⊤(WN
3 (s)),U⊤

0 (s), vec⊤(U1(s))]⊤,

ΘN =
[
σ⊤

1 , . . . , σ⊤

k , . . . , σ⊤

L

]⊤
,

EN
L (s) =

[
eN1 (s), . . . , e

N
k (s), . . . , e

N
L (s)

]⊤
, (26)

Ξ (s) =

[
V (xt , s)|

t2
t=t1 , . . . , V (xt , s)|

tL+1
t=tL

]⊤

,

σk =
[
Ixx,k, 2IΦxx,k, −IΨ xx,k, −IΛxx,k, 2Ixu,k, 2IΦxu,k

]
.

The following assumption on the matrix ΘN is made to ensure
that ΩN (s) is the unique solution to (25) when applying the
method of least squares.

Assumption 11. Given N > 0, there exist L∗ > 0 and α > 0
(independent of N), such that for all L > L∗,

1
L
Θ⊤

N ΘN ≥ αI. (27)

emark 12. Assumption 11 is reminiscent of the condition of
ersistent excitation (Åström & Wittenmark, 1997). As shown in

the past literature of ADP (Jiang & Jiang, 2017; Lewis & Liu, 2013),
one can fulfill such a condition by means of added exploration
noise, such as sinusoidal signals and random noise.

In addition, the collected input-state data should be bounded
to guarantee the validity of the learning process, which leads to
the following assumption.
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ssumption 13. For any t ∈ [t1, tL+1], |x(t)|, |u(t)| ≤ β , where
β is independent of N .

Remark 14. Since the initial policy is not necessarily stabilizing,
the system may require resetting for data collection and learning.
In detail, to guarantee |x(t)| ≤ β , we can restart the system at the
initial state z0 = [x⊤

0 (0), x
⊤

0 (·)]
⊤, where supθ∈[−τ ,0] |x0(θ )| ≤ β ,

whenever |x(t)| violates the assumption. We can apply a bounded
controller to explore the system, such that |u(t)| ≤ β is ensured.

Now, at each fixed algorithmic time s ∈ (−∞, T ], given P0(s),
P1(s, θ ), and P2(s, ξ , θ ), one can obtain the expression of V (xt , s)
defined in (15). By solving (25) via the least squares method, one
can get the approximation of ΩN (s) and the weighting matrices
encoded in ΩN (s). Consequently, Hj(j = 0, 1, 2), K0(s) and K1(s, θ )
can be approximated in the absence of the system matrices
(A, Ad, B). Next, by differentiating (25) with respect to the algo-
rithmic time s, we will solve (13) by a data-driven method. Since
(xt , s) is involved in the expression Ξ (s), the first thing is to
ifferentiate V (xt , s) with respect to s. By the definition of V (xt , s)
n (10), we have

sV (xt , s) = x⊤(t)∂sP0(s)x(t)

+ 2x⊤(t)
∫ 0

−τ

∂sP1(s, θ )xt (θ )dθ

+

∫ 0

−τ

∫ 0

−τ

x⊤

t (ξ )∂sP2(s, ξ , θ )xt (θ )dξdθ.

(28)

lugging the expressions of ∂sP0(s), ∂sP1(s, θ ), and ∂sP2(s, ξ , θ ) in
13) into (28), and considering the variables defined in (17), we
ave

sV (xt , s) = x⊤(t)[−H0(s) − Q + K⊤

0 (s)RK0(s)]x(t)

+ 2x⊤(t)
∫ 0

−τ

[−H1(s, θ ) + K⊤

0 (s)RK1(s, θ )]xt (θ )dθ

+

∫ 0

−τ

∫ 0

−τ

x⊤

t (ξ )[H2(s, ξ , θ ) (29)

+ K⊤

1 (s, ξ )RK1(s, θ )]xt (θ )dξdθ.

Then, it follows from (29) that

∂sV (xt , s) = W⊤

N (xt )V(ΩN (s)) + εN (t, s), (30)

where εN (t, s) is induced by the approximation truncation errors,
whose expression is given in (D.5). WN (xt ) and V(ΩN (s)) are
defined as
WN (xt ) = [vecv⊤(x(t)), 2ΓΦxx(t),

ΓΨ xx(t), ΓΛxx(t), ΓΦΦxx(t)]⊤,

V(ΩN (s)) =
[
[−W0(s) − vecs(Q ) + Kv,0(s)]⊤,

[−vec(WN
1 (s)) + U0(U0(s),UN

1 (s), R)]
⊤,

vec⊤(WN
2 (s)), vec⊤(WN

3 (s)),U⊤

1 (UN
1 (s), R)

]T
,

(31)

where Kv,0(s) is defined in (D.3); the functions U0 and U1 are
defined in Lemma 23. The detailed derivation of (30) is postponed
to Appendix D. It is seen that at the physical time t and algo-
rithmic time s, ∂sV (xt , s) is determined by the trajectory segment
xt (θ ), θ ∈ [−τ , 0], the approximate weighting matrices encoded
in ΩN (s), and εN (t, s) induced by the truncation errors.

Under Assumption 11 and using (30), differentiating the both
sides of (25) with respect to the algorithmic time s, we have

∂sΩN (s) = HN (ΩN (s)) + GN (s),
ΩN (T ) = 0,

(32)

where ΩN (T ) = 0 is obtained by (13e). The expressions of
HN (ΩN (s)) and GN (ΩN (s), s) are

† N
HN (ΩN (s)) = ΘNΞd V(ΩN (s)) (33a)

6

Algorithm 1 Data-driven Value Iteration
1: Choose T , and the vectors of the basis functions Φ(θ ), Ψ (ξ, θ ),

and Λ(ξ, θ ).
2: Choose the boundaries of the sampling intervals

t1, · · · tk, · · · , tL+1.
3: Choose the driving input u to explore system (1) and collect

the input-state data u(t), x(t), t ∈ [t1, tL+1].
4: Construct data matrices ΘN and ΞN

d .
5: Solve (34) backwards on the interval [0, T ].
6: Get K̂0(0) and K̂N

1 (0, θ ) by (35).

GN (s) = Θ
†
N (−∂sEN

L (s) + ΞN
e (s)), (33b)

ΞN
d = [WN (xt )|

t2
t1 , . . . ,WN (xt )|

tL+1
tL ]

⊤, (33c)
N
e (s) = [εN (t, s)|

t2
t1 , . . . , εN (t, s)|

tL+1
tL ]

⊤. (33d)

n (32), GN is induced by the truncation errors. Hence, if the
runcation errors are small enough to be ignored, the solution
o (32) can be approximated by the solution to the following
ifferential equation

sΩ̂N (s) = HN (Ω̂N (s)), Ω̂N (T ) = 0. (34)

With the obtained Ω̂N (s), By (18) and (26), the estimation of
K0(s) and K1(s, θ ) can be obtained by

K̂0(s) = vec−1([Ω̂N (s)]n3,n4 ),

ÛN
1 (s) = vec−1([Ω̂N (s)]n4+1,n5 ),

K̂N
1 (s, θ ) = vec−1(ÛN

1 (s)Φ(θ )).

(35)

where n3 = n1 + (n2
+ n + n2)N + 1, n4 = n3 + mn, and

n5 = n4 + mnN .
Algorithm 1 shows the detail of the learning-based VI algo-

rithm. It is seen that only the input-state trajectories collected
within the interval [t1, tL+1] are applied to construct the matrices
ΘN and ΞN

d . In addition, since the trajectory data is collected only
using the exploratory input u, the algorithm is off-policy.

4.2. Convergence analysis

This section shows that the obtained control gains K̂0(0) and
K̂N
1 (0, θ ) well approximate the optimal gains K ∗

0 and K ∗

1 (θ ) if
N and T are chosen large enough. Comparing (32) with (34),
the difference between ΩN (s) and Ω̂N (s) is induced by GN (s). As
seen from the definitions of GN (s) in (33b), ΞN

e (s) in (33d), and
EN
L (s) in (26), these three variables are induced by the truncation

errors in (18). Hence, the convergence of the truncation errors is
investigated.

In (18), as N → ∞, the truncation errors converge to zero
uniformly in θ and ξ , and pointwisely in s. The following lemma
shows that the truncation errors converge to zero uniformly on
any closed sub-interval of (−∞, T ].

Lemma 15. For any s′ ∈ (−∞, T ], eNHΦ (s, θ ) and eNKΦ (s, θ )
uniformly converge to 0 on [s′, T ] × [−τ , 0] as N → ∞. Besides,
eNHΨ (s, ξ , θ ) and eNHΛ(s, ξ , θ ) uniformly converge to 0 on [s′, T ] ×

−τ , 0]2 as N → ∞.

roof. See Appendix E.

The item ∂sEN
L (s) is a major factor in causing GN (s) defined in

33b) to be nonzero. From the expression of EN
L (s) in (26), it is

een that the derivative of the truncation errors is involved in
sEN

L (s). The following lemma shows that the derivative of the
truncation errors with respect to the algorithmic time s converges
to zero pointwisely.
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emma 16. ∂seNHΦ (s, θ ) and ∂seNKΦ (s, θ ) pointwisely converge to
0 on (−∞, T ] × [−τ , 0] as N → ∞. Besides, ∂seNHΨ (s, ξ , θ ) and
∂seNHΛ(s, ξ , θ ) pointwisely converge to 0 on (−∞, T ] × [−τ , 0]2 as
N → ∞.

Proof. See Appendix F.

With the convergence of the truncation errors demonstrated
in Lemmas 15 and 16, it is shown that GN (s) converges to zero as
N tends to infinity.

Lemma 17. For any fixed s ∈ (−∞, T ] and ϵ > 0, there exists
N∗

2 (ϵ, s) > 0, such that ∀N > N∗

2 (ϵ, s), |GN (s)| ≤ ϵ.

Proof. See Appendix G.

As GN (s) is small enough when N tends to infinity, comparing
(32) and (34), we demonstrate that the approximation Ω̂N (s) is
close to the real value ΩN (s) over s ∈ [s′, T ].

Lemma 18. For any ϵ > 0 and s′ ∈ (−∞, T ], there exists
N∗

3 (ϵ, s
′) > 0, such that if N > N∗

3 (ϵ, s
′),

sup
s∈[s′,T ]

|ΩN (s) − Ω̂N (s)| ≤ ϵ. (36)

Proof. See Appendix H.

The next theorem shows the main result of the learning-based
VI algorithm, i.e. the optimal control gains K ∗

0 and K ∗

1 (θ ) can be
well approximated by solving (34) backwards.

Theorem 19. For any ϵ > 0, there exist T ∗(ϵ) > 0 and
N∗

4 (ϵ, T
∗) > 0, such that if T > T ∗(ϵ) and N > N∗

4 (ϵ, T
∗), the

following inequalities hold.

|Û0(0) − vec(K ∗

0 )| ≤ ϵ (37a)

∥ÛN
1 (0)Φ(θ ) − vec(K ∗

1 (θ ))∥∞ ≤ ϵ (37b)

Proof. See Appendix I.

It is noticed that the proposed VI algorithm can well ap-
proximate the optimal controller when the number of the basis
functions (Φ , Ψ , and Λ) is large enough, and the truncation
errors in (18) are sufficiently small. As an important corollary to
Theorem 19, the following statement ensures the stability of the
closed-loop system with the learning-based controller.

Corollary 20. There exist T ∗ > 0 and N∗

5 > 0, such that if T > T ∗

and N > N∗

5 , the closed-loop system with the generated controller
û(xt ) from Algorithm 1 is exponentially stable at the origin, where
û(xt ) is

û(xt ) = −K̂0(0)x(t) −

∫ 0

−τ

K̂N
1 (0, θ )xt (θ )dθ,

K̂0(0) = vec−1(Û0(0)),

K̂N
1 (0, θ ) = vec−1(ÛN

1 (0)Φ(θ )).

(38)

Proof. See Appendix J.

5. Practical applications

In this section, we demonstrate the effectiveness of the pro-
posed learning-based VI algorithms by two practical examples,
with regard to regenerative chatter in metal cutting and con-
nected and autonomous vehicles (CAVs) in mixed traffic con-
sisting of both autonomous vehicles (AVs) and human-driven
vehicles (HDVs).
7

5.1. Regenerative chatter in metal cutting

Consider the example of regenerative chatter in metal cut-
ting Gu et al. (2003, Example 1.1), Mei, Cherng, and Wang (2005),
where the thrust force of the tool is proportional to the in-
stantaneous chip thickness ([x(t)]1 − [x(t − τ )]1), leading to the
time-delay effect. Then, the model can be described by (1) with

A =

[
0 1

−(c0 + Ft/m) −c1/m

]
,

Ad =

[
0 0

Ft/m 0

]
, B =

[
0

1/m

]
.

In this example, the parameters are chosen as m = 2, c0 =

10, c1 = 0.2, Ft = 1, and τ = 1.0. For the performance
index (4), Q = diag([100, 100]) and R = 1. The selection of
the basis functions is inspired by the Weierstrass approximation
theorem, that is any continuous function over a compact set can
be uniformly approximated by polynomials. We use third-order
polynomials to approximate H1(s, θ ) and K1(s, θ ) in (18), that is
Φ(θ ) = [1, θ, θ2, θ3

]
⊤. For the two-variable function H2(s, ξ , θ )

(s is fixed), we use Λ(ξ, θ ) = [1, θ, θ2, θ3
]
⊤

⊗ [1, ξ , ξ 2, ξ 3
]
⊤ to

approximate its off-diagonal elements. The basis functions for ap-
proximating the diagonal elements of H2(s, ξ , θ ) are chosen based
on Remark 9, i.e. Ψ (ξ, θ ) = [1, ξ + θ, ξ 2

+ θ2, ξθ, ξ 3
+ θ3, ξ 2θ +

ξθ2, ξ 3θ + ξθ3, ξ 2θ2, ξ 3θ2
+ ξ 2θ3, ξ 3θ3

]
⊤. The optimal values of

K ∗

0 and K ∗

1 (θ ) are numerically computed by discretization in Ross
and Flügge-Lotz (1969) for comparison.

For the learning-based VI algorithm, the initial weights of the
basis function Ω̂N (T ) are set as zero, and T = 5. After data-
collection phase, Algorithm 1 is implemented and its convergence
is plotted in Fig. 1. The relative errors are |K̂0(0)−K∗

0 |

|K∗
0 |

= 0.0016

and ∥K̂N
1 (0,θ )−K∗

1 (θ )∥∞

∥K∗
1 (θ )∥∞

= 0.0379. After learning phase, the learned
controller is tested and the state trajectories are solid lines in
Fig. 2. For comparison purpose, we design a model-based state-
feedback controller by Moheimani and Petersen (1995), which
works for all the unknown delays if the algebraic Riccati Eq. (39)
has a stabilizing solution. In detail, the controller is designed as
ucom(x(t)) = −Kcomx(t), where Kcom = R−1B⊤Pcom, and Pcom =

⊤
com > 0 is the solution to

A⊤Pcom + PcomA + γG⊤G + Q

− Pcom(BR−1B⊤
− γ −1FF⊤)Pcom = 0,

(39)

where γ = 25, F = [0, 1]⊤, and G = [Ft/m, 0]. For the same
initial state x0, the ADP controller learned by Algorithm 1 is
compared with ucom, which is shown in Fig. 2. The value of the
performance index with the ADP controller is 1.7386×104, while
that of the controller ucom is 2.1441 × 104. It shows that our
method can find a near optimal controller in the absence of the
system dynamics, while the method in Moheimani and Petersen
(1995) is model-based and can only guarantee a quadratically
bounded cost. Besides, we can see that with the ADP controller,
the state converges to the equilibrium more quickly than that of
the controller ucom.

5.2. CAVs in mixed traffic

Consider a string of two HDVs and one AV as shown in Fig. 3,
where hi denotes the bumper-to-bumper distance between the
th vehicle and (i − 1)th vehicle, and vi denotes the velocity of
he ith vehicle. Define ∆hi = hi − h∗ and ∆vi = vi − v∗,
here (h∗, v∗) is the equilibrium of the vehicles. h∗ depends on
he human parameters and v∗

= v1. Assuming the velocity of
he leading vehicle is constant, and considering the time-delay
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Fig. 1. Convergence of K̂0(s) and K̂N
1 (s, θ ) to the optimal values K ∗

0 and K ∗

1 (θ )
or the example of metal cutting, as the algorithmic time s → −∞.

Fig. 2. Comparison between the ADP controller and the model-based method
in Moheimani and Petersen (1995) for regenerative chatter in metal cutting.

ffect caused by human drivers’ reaction time, the system can be
escribed as a linear time-delay system (1) with

x =

⎡⎢⎣∆h2
∆v2
∆h3
∆v3

⎤⎥⎦ , A =

⎡⎢⎣0 −1 0 0
0 0 0 0
0 1 0 −1
0 0 0 0

⎤⎥⎦ , B =

⎡⎢⎣0
0
0
1

⎤⎥⎦ ,

d =

⎡⎢⎣ 0 0 0 0
α2c∗

−(α2 + β2) 0 0
0 0 0 0
0 0 0 0

⎤⎥⎦ ,

where α2 and β2 denote the human driver parameters and c∗ is
the derivative of the range policy (Ge & Orosz, 2017; Huang et al.,
2022). In the simulation, the human parameters are set as α2 =

.1, β2 = 0.2, τ = 1.2, and c∗
= 1.5708. The weighting matrices

f the performance index are Q = diag([1, 1, 10, 10]), and R = 1.
The basis functions are Φ(θ ) = [1, θ]

⊤, Ψ (ξ, θ ) = [1, ξ +θ, ξθ]
⊤,

and Λ(ξ, θ ) = [1, θ]
⊤

⊗ [1, ξ ]
⊤. The analytical expressions of

the optimal control gains K ∗

0 and K ∗

1 are derived by the method
in Ge and Orosz (2017), where the precise model of the system
s required.

For learning-based VI algorithm, the initial weight of the basis
unction Ω̂N (T ) is zero. Ω̂N is iterated backwards from T = 10 to
by Algorithm 1. From Fig. 4, it is seen that K̂0(s) and K̂N

1 (s, θ )
onverge to the optimal values eventually, and the relative ap-
roximation errors are |K̂0(0)−K∗

0 |

|K∗
0 |

= 0.0292 and ∥K̂N
1 (0,θ )−K∗

1 (θ )∥∞

∥K∗
1 (θ )∥∞

=

0.0662. Therefore, the proposed VI algorithm is able to well
approximate the optimal controller. Compared with Ge and Orosz
(2017), our approach is learning-based and the system model is
not required. With the learned ADP controller, the state trajecto-
ries of the vehicles are shown in Fig. 5.

6. Conclusions

This paper has proposed for the first time a learning-based
VI algorithm for a class of continuous-time linear time-delay
systems. The major contributions of the paper are two-fold. First,
a model-based VI approach has been developed to solve the
 2

8

Fig. 3. A string of two HDVs and one AV.

Fig. 4. Convergence of K̂0(s) and K̂N
1 (s, θ ) to the optimal values K ∗

0 and K ∗

1 (θ )
for the example of CAVs, as the algorithmic time s → −∞.

Fig. 5. Plots of the state trajectories of the vehicles with the ADP controller.

infinite-dimensional ARE for the optimal control of linear time-
delay systems. Second, by integrating RL and control-theoretic
techniques, a learning-based VI algorithm is proposed for learning
adaptive optimal controllers from data in the absence of the
precise model knowledge. The efficacy of the proposed learning-
based adaptive optimal control design method has been validated
by means of two real-world applications arising from metal cut-
ting and connected vehicles. Our future work will be directed
toward extending the proposed learning-based control method-
ology to a broader class of linear systems with both input and
state delays by combining adaptive predictor technique in Bresch-
Pietri and Krstic (2009), Krstic (2009), Zhu and Krstic (2020) with
L and ADP techniques. Furthermore, other practically important
lasses of time-delay systems, such as nonlinear systems and
ulti-agent systems, will be studied in the future.

ppendix A. Auxiliary results

Some useful formulas for matrix manipulation are listed here.

emma 21. For any matrices X, Y , and Z with compatible dimen-
ions,

ec(XYZ) = (Z⊤
⊗ X)vec(Y ). (A.1)

or any real symmetric matrix S and vector ν with compatible
imensions,
⊤Sν = vecv⊤(ν)vecs(S). (A.2)

roof. Eq. (A.1) is from Magnus and Neudecker (2007, Theorem
.2) and (A.2) can be obtained by the quadratic form of ν⊤Sν.
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emma 22. For any n-dimensional matrix-valued function S(ξ, θ )
atisfying S⊤(ξ, θ ) = S(θ, ξ ), n-dimensional vector-valued function
(θ ), and scalars a, b ∈ R with a < b, it holds∫ b

a

∫ b

a
ν⊤(ξ )S(ξ, θ )ν(θ )dξdθ

=

∫ b

a

∫ b

a
vecd⊤(ν(ξ ), ν(θ ))diag(S(ξ, θ ))

+ vecp⊤(ν(ξ ), ν(θ ))vecu(S(ξ, θ ))dξdθ.

(A.3)

roof. The statement can be directly obtained by the quadratic
rom of νT (ξ )S(ξ, θ )ν(θ ) and noticing∫ b

a

∫ b

a
sji(ξ, θ )νj(ξ )νi(θ )dξdθ

=

∫ b

a

∫ b

a
sij(ξ, θ )νi(ξ )νj(θ )dξdθ, ∀i ̸= j,

(A.4)

here sij denotes the entry at the ith row and jth column of S.

emma 23. For any v0, v1 ∈ Rn, U0 ∈ Rmn, U1 ∈ Rmn×N ,
∈ Rm×m, and Φ0, Φ1 ∈ RN , it holds:

⊤

0 vec−⊤(U0)Rvec−1(U1Φ1)v1

= Φ⊤

1 ⊗ v⊤

1 ⊗ v⊤

0 U0(U0,U1, R), (A.5a)
⊤

0 vec−⊤(U1Φ0)Rvec−1(U1Φ1)v1

= v⊤

1 ⊗ Φ⊤

1 ⊗ v⊤

0 ⊗ Φ⊤

0 U1(U1, R), (A.5b)

here U0(U0,U1, R) is defined as

0(U0,U1, R) = vec
[
(In ⊗ vec−⊤(U0)R)U1

]
,

nd U1(U1, R) is

1(U1, R) = vec(Ū⊤

1 (U1)RŪ1(U1))

Ū1(U1) =

⎡⎢⎢⎣
[U1]1 [U1]m+1, · · · [U1](n−1)m+1
[U1]2 [U1]m+2, · · · [U1](n−1)m+2

...
...

...

[U1]m [U1]2m, · · · [U1]nm

⎤⎥⎥⎦ .

roof. By Lemma 21, we have
⊤

0 vec−⊤(U0)Rvec−1(U1Φ1)v1

= v⊤

1 ⊗ v⊤

0 vec
[
vec−⊤(U0)Rvec−1(U1Φ1)

]
= v⊤

1 ⊗ v⊤

0 (In ⊗ vec−⊤(U0)R)U1Φ1.

(A.6)

ence, (A.5a) holds according to Lemma 21. In addition, since
ec−1(U1Φ1)v1 = Ū1(U1)(v1 ⊗ Φ1), by Lemma 21, (A.5b) holds.

ppendix B. Proof of Lemma 6

By the expression of P(s)z in (12), we will write out the
xpressions for each item in (11). For any zi = [f ⊤

i (0), f ⊤

i (·)]⊤ ∈

2 (i = 1, 2), we have

s⟨ z2, P(s)z1⟩

=

⟨
z2,

[
∂sP0(s)f1(0) +

∫ 0
−τ

∂sP1(s, θ )f1(θ )dθ∫ 0
−τ

∂sP2(s, ·, θ )f1(θ )dθ + ∂sP⊤

1 (s, ·)f1(0)

]⟩

= f ⊤

2 (0)∂sP0(s)f1(0) + f ⊤

2 (0)
∫ 0

−τ

∂sP1(s, θ )f1(θ )dθ

+ f ⊤

1 (0)
∫ 0

−τ

∂sP1(s, θ )f2(θ )dθ

+

∫ 0 ∫ 0

f ⊤

2 (ξ )∂sP2(s, ξ , θ )f1(θ )dξdθ. (B.1)

−τ −τ a

9

ccording to (2), (12), and integration by parts, we have

z2, P(s)Az1⟩ = f ⊤

2 (0)P1(s, θ )f1(θ )
⏐⏐0
θ=−τ

+ f ⊤

2 (0)P0(s)Af1(0) + f ⊤

2 (0)P0(s)Adf1(−τ )

− f ⊤

2 (0)
∫ 0

−τ

∂θP1(s, θ )f1(θ )dθ

+ [Af1(0) + Adf1(−τ )]⊤
∫ 0

−τ

P1(s, θ )f2(θ )dθ

+

∫ 0

−τ

f ⊤

2 (ξ )P2(s, ξ , θ )f1(θ )dξ
⏐⏐0
θ=−τ

−

∫ 0

−τ

∫ 0

−τ

f ⊤

2 (ξ )∂θP2(s, ξ , θ )f1(θ )dξdθ.

(B.2)

Following the same lines in the derivation of (B.2), we have

⟨Az2, P(s)z1⟩ = f ⊤

2 (θ )P⊤

1 (s, θ )f1(0)
⏐⏐0
θ=−τ

+ f ⊤

2 (0)A⊤P0(s)f1(0) + f ⊤

2 (−τ )A⊤

d P0(s)f1(0)

+ [Af2(0) + Adf2(−τ )]⊤
∫ 0

−τ

P1(s, θ )f1(θ )dθ

− f ⊤

1 (0)
∫ 0

−τ

∂θP1(s, θ )f2(θ )dθ

+ f ⊤

2 (ξ )
∫ 0

−τ

P2(s, ξ , θ )f1(θ )dθ
⏐⏐0
ξ=−τ

−

∫ 0

−τ

∫ 0

−τ

f ⊤

2 (ξ )∂ξP2(s, ξ , θ )f1(θ )dθdξ .

(B.3)

ince Q =

[
Q

0

]
, ⟨ z2,Qz1⟩ is expressed as

z2,Qz1⟩ = f ⊤

2 (0)Qf1(0). (B.4)

hen, according to the expression of P(s)z in (12) and the expres-
ion of B in (2), we have

P(s)BR−1B⊤P(s)z2, z1⟩
= f ⊤

2 (0)P0(s)BR−1B⊤P0(s)f1(0)

+ f ⊤

1 (0)P0(s)BR−1B⊤

∫ 0

−τ

P1(s, θ )f2(θ )dθ (B.5)

+ f ⊤

2 (0)P0(s)BR−1B⊤

∫ 0

−τ

P1(s, θ )f1(θ )dθ

+

∫ 0

−τ

∫ 0

−τ

f ⊤

1 (ξ )P⊤

1 (s, ξ )BR−1B⊤P1(s, θ )f2(θ )dξdθ.

ombining (13) and (B.1) to (B.5) yields that P(s) defined in (12)
atisfies (11). Due to the uniqueness of the solution to (11), the
roof is completed.
Before the proof of the second part of Lemma 6, the following

emma is introduced.

emma 24 (Curtain and Zwart 1995, Lemma 6.2.2). Under Assump-
ion 1, P(s) is uniformly bounded with respect to s, i.e. there exists a
onstant ν > 0, such that sups∈(−∞,T ] ∥P(s)∥ ≤ ν.

According to Lemma 24, P(s) is uniformly bounded in s. Fur-
hermore, since minu J (t0, T , φ, u) is non-decreasing as t0 →

∞, by (10), we have P(a− 1) ≥ P(a) ≥ 0 for any integer a ≤ T .
y Eidelman et al. (2004, Theorem 6.3.2), there exists P = P⊤

≥ 0,
uch that for all z ∈ M2, we have

lim P(a)z = Pz. (B.6)

→−∞
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),
esides, for any a − 1 ≤ s ≤ a, P(a) ≤ P(s) ≤ P(a − 1). Thus, the
ollowing equation holds

lim
→−∞

P(s)z = Pz. (B.7)

y Lemma 6, when P(s) converges, ∂sP0(s), ∂sP1(s, θ ), and ∂sP2(s,
, θ ) converge to 0, implying that (13) is equivalent to (7) when
→ −∞. Therefore, P0(−∞), P1(−∞, θ ), and P2(−∞, ξ , θ )

atisfy (7). Due to the uniqueness of the solution to (7), lims→−∞

0(s) = P∗

0 , lims→−∞ P1(s, θ ) = P∗

1 (θ ), and lims→−∞ P2(s, ξ , θ ) =
∗

2 (ξ, θ ) pointwisely. Since for any fixed s ∈ (−∞, T ], P1(s, θ ), and
2(s, ξ , θ ) are continuously differentiable on [−τ , 0] and [−τ , 0]2
espectively, {P1(s, θ ) : s ∈ (−∞, T ]} and {P2(s, ξ , θ ) : s ∈

−∞, T ]} are equicontinuous. According to Pugh (2015, Chapter
, Theorem 16), the pointwise convergence leads to the uniform
onvergence.

ppendix C. Proof of Lemma 10

The proof is inspired by Bian and Jiang (2022). Take WN
3 (s) and

N
HΛ(s, ξ , θ ) as examples. According to (13), P2(·, ·, ·) ∈ C1([−∞, T ]

[−τ , 0]2,Rn×n). By (17), H2(s, ·, ·) ∈ C0([−τ , 0]2,Rn×n) and
2(·, ξ , θ ) ∈ C1([−∞, T ],Rn×n). Since for any fixed s ∈ (−∞, T ],
N
3 (s)Λ(ξ, θ ) converges to vecu(H2(s, ξ , θ )) uniformly in ξ and θ ,

or any s1, s2 ∈ (−∞, T ] and ϵ > 0, there exists N∗

6 (s1, s2, ϵ) > 0,
uch that if N > N∗

6 (s1, s2, ϵ), |W
N
3 (si)Λ(ξ, θ )−vecu(H2(si, ξ , θ ))| ≤

(i = 1, 2) holds for any ξ, θ ∈ [−τ , 0]. Since H2(·, ξ , θ ) is uni-
ormly continuous, for any ϵ > 0, there exists κ(ϵ, ξ, θ ) > 0, such
hat if |s1−s2| < κ(ϵ, ξ, θ ), |vecu(H2(s1, ξ , θ ))−vecu(H2(s2, ξ , θ ))|

ϵ. Consequently, the following inequality can be obtained by
riangle inequality

(WN
3 (s1) − WN

3 (s2))Λ(ξ, θ )|

≤ |WN
3 (s1)Λ(ξ, θ ) − vecu(H2(s1, ξ , θ ))|

+ |WN
3 (s2)Λ(ξ, θ ) − vecu(H2(s2, ξ , θ ))|

+ |vecu(H2(s1, ξ , θ )) − vecu(H2(s2, ξ , θ ))| ≤ 3ϵ.

(C.1)

ence, WN
3 (s)Λ(ξ, θ ) is continuous in s. In addition, as the ele-

ents of Λ(ξ, θ ) are independent, WN
3 (s) is continuous in s. Since

sH(s, ·, ·) ∈ C0([−τ , 0]2,Rn×n), by the uniform approximation
heory, there exists W ′N

3 (·) such that

svecu(H(s, ξ , θ )) = W ′N
3 (s)Λ(ξ, θ ) + e′N

HΛ(s, ξ , θ ), (C.2)

here e′N
HΛ(s, ξ , θ ) converges to 0 pointwisely in s and uniformly

n ξ, θ as N tends to infinity. By the dominated convergence
heorem, as N → ∞, for any s1 < s2, the following equation
olds

ecu(H(s, ξ , θ ))
⏐⏐s2
s1

=

∫ s2

s1

∂svecu(H(s, ξ , θ ))ds

= lim
N→∞

∫ s2

s1

W ′N
3 (s)dsΛ(ξ, θ ).

(C.3)

ollowing (18) and (C.3), and by the independence of the ele-
ments of Λ, we have WN

3 (s2) − WN
3 (s1) =

∫ s2
s1

W ′N
3 (s)ds for any

1 < s2. Thus, W ′N
3 (s) = ∂sWN

3 (s), i.e. WN
3 (s) is continuously

ifferentiable in s. Since both H2(s, ξ , θ ) and W3(s) are continu-
usly differentiable in s, by (18), eNHΛ(s, ξ , θ ) is also continuously
ifferentiable in s.

ppendix D. Derivation of ∂sV (xt, x)

Rewriting the right hand side of (29) with the help of Lem-
as 21 and 22, it follows that

V (x , s) = vecv⊤(x(t))[− vecs(H ) − vecs(Q )
s t 0

10
+ vecs(K⊤

0 RK0)]

+ 2
∫ 0

−τ

x⊤

t (θ ) ⊗ x⊤(t)[−vec(H1) + vec(K⊤

0 RK1)]dθ

+

∫ 0

−τ

∫ 0

−τ

vecd⊤(xt (ξ ), xt (θ ))diag(H2)

+ vecp⊤(xt (ξ ), xt (θ ))vecu(H2)

+ x⊤

t (θ ) ⊗ x⊤

t (ξ )vec(K
⊤

1 (s, ξ )RK1(s, θ ))dξdθ, (D.1)

where the arguments of the functions H0(s), H1(s, θ ), H2(s, ξ , θ ),
K0(s), and K1(s, θ ) are omitted to simplify the notations. By the ap-
proximations of K0(s) and K1(s, θ ) in (18), vecs(K⊤

0 RK0), vec(K⊤

0 RK1
and vec(K⊤

1 RK1) can be expressed as

vecs(K⊤

0 RK0) = Kv,0(s),

vec(K⊤

0 RK1) = KN
v,1(s, θ ) + KN

e,1(s, θ ), (D.2)

vec(K⊤

1 RK1) = KN
v,2(s, ξ , θ ) + KN

e,2(s, ξ , θ ),

where Kv,0, KN
v,1, and KN

v,2 are constructed by the approxima-
tions of K0 and K1 in (18); KN

e,1 and KN
e,2 are induced by the

approximation truncation errors. They are defined as

Kv,0 = vecs[vec−⊤(U0(s))Rvec−1(U0(s))],

KN
v,1 = vec[vec−⊤(U0(s))Rvec−1(UN

1 (s)Φ(θ ))]

KN
e,1 = vec[vec−⊤(U0(s))Rvec−1(eNKΦ (s, θ ))],

KN
v,2 = vec[vec−⊤(UN

1 (s)Φ(ξ ))Rvec−1(UN
1 (s)Φ(θ ))]

KN
e,2 = vec[vec−⊤(eNKΦ (s, ξ ))Rvec−1(UN

1 (s)Φ(θ )

+ eNKΦ (s, θ ))] + vec[vec−⊤(UN
1 (s)Φ(ξ ))

Rvec−1(eNKΦ (s, θ ))]. (D.3)

Plugging (18) and (D.2) into (D.1) and with the help of Lemma 21
gives us the following expression

∂sV (xt , s) = vecv⊤(x(t))[−W0(s) − vecs(Q ) + Kv,0(s)]

− 2ΓΦxx(t)vec(WN
1 (s))

+ 2
∫ 0

−τ

x⊤

t (θ ) ⊗ x⊤(t)KN
v,1(s, θ )dθ

+ ΓΨ xx(t)vec(WN
2 (s)) + ΓΛxx(t)vec(WN

3 (s)) (D.4)

+

∫ 0

−τ

∫ 0

−τ

x⊤

t (θ ) ⊗ x⊤

t (ξ )K
N
v,2(s, ξ , θ )dξdθ + εN (t, s),

where ΓΦxx, ΓΨ xx and ΓΛxx are defined in (21). εN (t, s) in (D.4) is
induced by the truncation errors in (18), which is

εN (t, s) =

− 2
∫ 0

−τ

x⊤

t (θ ) ⊗ x⊤(t)(eNHΦ (s, θ ) − KN
e,1(s, θ ))dθ

+

∫ 0

−τ

∫ 0

−τ

x⊤

t (θ ) ⊗ x⊤

t (ξ )K
N
e,2(s, ξ , θ )dξdθ

+

∫ 0

−τ

∫ 0

−τ

vecd⊤(xt (ξ ), xt (θ ))eNHΨ (s, ξ , θ )

+ vecp⊤(xt (ξ ), xt (θ ))eNHΛ(s, ξ , θ )dξdθ. (D.5)

Considering Lemma 23, the integrals in (D.4) involving KN
v,1 and

KN
v,2 can be further simplified, and ∂sV (xt , s) is finally derived as

∂sV (xt , s) = vecv⊤(x(t))[−W0(s) − vecs(Q ) + Kv,0(s)]

+ 2ΓΦxx(t)[−vec(WN
1 (s)) + U0(U0(s),UN

1 (s), R)]

+ ΓΨ xx(t)vec(WN
2 (s)) + ΓΛxx(t)vec(WN

3 (s))

+ Γ (t)U (UN (s), R) + ε (t, s), (D.6)
ΦΦxx 1 1 N
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= W⊤

N (xt )V(ΩN (s)) + εN (t, s). (D.7)

Appendix E. Proof of Lemma 15

Take eNHΛ(s, ξ , θ ) as an example. As N tends to infinity, from
18) and (19), it is seen that eNHΛ(s, ξ , θ ) converges to 0 uniformly
n ξ, θ ∈ [−τ , 0], and pointwisely in s ∈ (−∞, T ]. By Lemma 10,
N
HΛ(s, ξ , θ ) is continuously differentiable in s ∈ [s′, T ], and hence
eNHΛ(s, ξ , θ ) : N ∈ Z+} is equicontinuous in s. Therefore, accord-
ng to Pugh (2015, Chapter 4, Theorem 16), eNHΛ(s, ξ , θ ) uniformly
onverges to 0 on [s′, T ] × [−τ , 0]2.

ppendix F. Proof of Lemma 16

Take ∂seNHΛ(s, ξ , θ ) as an example. By Lemma 10, ∂seNHΛ(·, ·, ·) ∈

C0([−∞, T ] × [−τ , 0]2,Rn2 ). According to (18) and (C.2), ∂seNHΛ

(s, ξ , θ ) = e′N
HΛ(s, ξ , θ ), which converges to 0 pointwisely in s, and

uniformly in ξ and θ . Therefore, the proof is completed.

Appendix G. Proof of Lemma 17

As seen from (24), the derivatives of the truncation errors
∂seNHΦ (s, θ ), ∂seNKΦ (s, θ ), ∂seNHΨ (s, ξ , θ ), and ∂seNHΛ(s, ξ , θ ) are in-
volved in the expression of ∂seNk (s). By Lemma 16, these deriva-
tives converge to zero pointwisely as N → ∞. According to the
dominated convergence theorem and the boundedness of x(t) and
u(t) by Assumption 13, for any fixed s, ∂seNk (s) converges to zero
as N → ∞. Consequently, ∀s ∈ (−∞, T ] and ∀ϵ > 0, there exists
N∗

7 (ϵ, s) > 0, such that if N > N∗

7 (ϵ, s), |∂sEN
L (s)| ≤

√
Lϵ, where

N
L (s) is defined in (26).
By the expressions of KN

e,1 and KN
e,2 in (D.3), the boundedness

of the basis function Φ(θ ), θ ∈ [−τ , 0], and the uniform con-
ergence of eNKΦ (s, θ ) from Lemma 15, it is seen that KN

e,1(s, θ )
nd KN

e,2(θ ) converge to zero uniformly in s ∈ [s′, T ] and θ ∈

[−τ , 0]. By the boundedness of the trajectory x(t) and u(t) from
ssumption 13, and the uniform convergence of eNHΦ , eNHΨ , eNHΛ,

KN
e,1, and KN

e,2, it is observed that εN (t, s) in (D.5) is uniformly
convergent to zero as N → ∞. Consequently, ∀s ∈ [−∞, T ]

and ∀ϵ > 0, there exists N∗

8 (ϵ, s) > 0, such that if N > N∗

8 (ϵ, s),
|ΞN

e (s)| ≤
√
Lϵ, where ΞN

e (s) is defined in (33d). Therefore, when
N > max (N∗

7 ,N∗

8 )

|GN (s)| ≤
2
√
L

σmin(ΘN )
ϵ ≤

2
√

α
ϵ, (G.1)

where the last inequality comes from Assumption 11 and σmin(ΘN )
denotes the minimal singular value of ΘN . Since α is independent
of N , the proof is completed.

Appendix H. Proof of Lemma 18

The proof is inspired by Pang and Jiang (2021). Firstly, as-
suming the solution to (34) exists on the interval [s′, T ]. It is
shown that (36) holds on the interval [s′, T ]. Indeed, let ZN (s) =

ΩN (s) − Ω̂N (s), and subtracting (34) from (32) yields

∂sZN (s) = HN (ΩN (s)) − HN (Ω̂N (s)) + GN (s),
ZN (T ) = 0.

(H.1)

Besides, for Z̄N (s) = ΩN (s)− Ω̄N (s), define the following differen-
tial equation

∂sZ̄N (s) = HN (ΩN (s)) − HN (Ω̄N (s)),

Z̄N (T ) = 0.
(H.2)

Obviously, Z̄N (s) = 0 is the solution to (H.2). Both the right hand
sides of (H.1) and (H.2) are locally Lipschitz in Z (s) and Z̄ (s)
N N

11
respectively. Furthermore, according to Lemma 17, for any ϵ > 0
and s ∈ [s′, T ], there exists N∗

2 (ϵ, s), such that if N > N∗

2 (ϵ, s),
|GN (s)| ≤ ϵ. Therefore, by the dominated convergence theorem
and Sontag (1998, Theorem 55), there exists N∗

9 (ϵ, s
′) > 0, such

that if N > N∗

9 (ϵ, s
′), the following inequality holds

sup
s∈[s′,T ]

|ZN (s)| ≤ g(ϵ), (H.3)

where g(·) is a K∞-function (Khalil, 2002, Definition 4.2). There-
fore, sups∈[s′,T ]|ZN (s)| ≤ g(ϵ) can be arbitrary small by setting N
large enough.

Next, we will show that the solution to (34) exists on the
interval (−∞, T ] when N is large enough. Because ΩN (s) exists
on (−∞, T ], it is equivalent to prove that ZN (s) exists on the
interval (−∞, T ]. For a fixed N > 0, the right hand side of (H.1)
is continuous in s and locally Lipschitz at ZN (T ) = 0. Therefore,
according to Khalil (2002, Theorem 3.1), there exists SN < T , such
hat (H.1) has a unique solution on (SN , T ]. (SN , T ] is the maximal
nterval for the existence of ZN (s), that is lims→S+

N
|Z(s)| = ∞.

or the sequence {SN}
∞

N=1, we will show that it is non-increasing
y contradiction. Let N1 < N2 and assume SN1 < SN2 . Conse-
uently, sups∈[SN2 ,T ] |ZN1 (s)| is finite. Since N2 > N1, it follows
rom (H.3) that sups∈[SN2 ,T ]|ZN2 (s)| is finite. This contradicts with
he assumption that SN2 is the escape time. Then, we will show
hat limN→∞ SN = −∞ by contradiction. Let S = limN→∞ SN , and
ssume S > −∞. This implies that

lim
N→∞

(
lim
s→S+

|ZN (s)|
)

= ∞ (H.4)

owever, it is seen from (H.3) that for any S ≤ s′ ≤ T ,

lim
N→∞

(
sup

s∈[s′,T ]

|ZN (s)|

)
= 0. (H.5)

herefore, (H.5) contradicts with (H.4). Consequently, limN→∞ SN
−∞. This implies that the solution to (34) exists on the interval

∈ [s, T ] when N → ∞.

ppendix I. Proof of Theorem 19

According to Lemma 6 and (17), there exists T ∗(ϵ) > 0, such
hat if T > T ∗(ϵ),

U0(0) − vec(K ∗

0 )| ≤
ϵ

2
(I.1a)

∥vec(K1(0, θ )) − vec(K ∗

1 (θ ))∥∞ ≤
ϵ

3
. (I.1b)

By Lemma 15 and (18), there exists N∗

10(ϵ) > 0, such that if
> N∗

10(ϵ),

UN
1 (0)Φ(θ ) − vec(K1(0, θ ))∥∞ ≤

ϵ

3
. (I.2a)

Following Lemma 18, there exists N∗

11(ϵ, T ) > 0, such that if
N > N∗

11(ϵ, T ),

|Û0(0) − U0(0)| ≤
ϵ

2
∥(ÛN

1 (0) − UN
1 (0))Φ(θ )∥∞ ≤

ϵ

3
,

(I.3)

Therefore, when T > T ∗(ϵ) and N > N∗

4 (ϵ, T ) = max(N∗

10(ϵ),N
∗

11
ϵ, T )), by triangle inequality, we have

Û0(0) − vec(K ∗

0 )| ≤ |Û0(0) − U0(0)|
+ |U0(0) − vec(K ∗

0 )| ≤ ϵ,

ÛN
1 (0)Φ(θ ) − vec(K ∗

1 (θ ))∥∞

≤ ∥(ÛN
1 (0) − UN

1 (0))Φ(θ )∥∞

+ ∥UN
1 (0)Φ(θ ) − vec(K1(0, θ ))∥∞

∗

(I.4)
+ ∥vec(K1(0, θ )) − vec(K1 (θ ))∥∞ ≤ ϵ.
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ppendix J. Proof of Corollary 20

Define the linear operators K∗
∈ L(M2,Rm) and K̂ ∈ L(M2,

Rm) as

K∗z(t) = K ∗

0 x(t) +

∫ 0

−τ

K ∗

1 (θ )xt (θ )dθ,

K̂z(t) = K̂0(0)x(t) +

∫ 0

−τ

K̂N
1 (0, θ )xt (θ )dθ,

(J.1)

where z(t) = [x⊤(t), x⊤
t (·)]

⊤
∈ M2. Recalling the expressions of

the operators A and B in (2), and considering the equivalence
between (1) and (3), the closed-loop system of (1) with the
controller û(xt ) is

ż(t) = (A − BK∗)z(t) + B(K∗
− K̂)z(t). (J.2)

Since system (1) with the optimal controller u∗ is exponentially
stable at the origin (Remark 4), by Curtain and Zwart (1995,
Definition 5.1.1), there exist c > 0 and ω > 0, such that

∥T∗(t)∥ ≤ ce−ωt , (J.3)

where T∗(t) is the C0-semigroup (Curtain & Zwart, 1995, Defini-
tion 2.1.2) of the system

ż(t) = (A − BK∗)z(t). (J.4)

Then, according to Curtain and Zwart (1995, Theorem 3.2.1),
the C0-semigroup of system (J.2), denoted as T̂(t), satisfies

∥T̂(t)∥ ≤ ce(−ω+c∥B(K∗
−K̂)∥)t . (J.5)

By Theorem 19, if T > T ∗
= T ∗( ω

2
√
2c∥B∥

) and N > N∗

5 =

∗

4 (
ω

2
√
2c∥B∥

, T ∗), we have

|K ∗

0 − K̂0(0)| ≤
ω

2
√
2c∥B∥

,

∥K ∗

1 (θ ) − K̂N
1 (0, θ )∥∞ ≤

ω

2
√
2c∥B∥

.
(J.6)

Considering the expressions of K∗ and K̂ in (J.1), (J.6) implies

K∗
− K̂∥ ≤

ω

2c∥B∥
. (J.7)

onsequently, (J.5) implies,

T̂(t)∥ ≤ ce−
1
2 ωt . (J.8)

By Curtain and Zwart (1995, Definition 5.1.1), the closed-loop
system of (1) with û(xt ) is exponentially stable at the origin.
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