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ABSTRACT

This paper proposes a novel learning-based adaptive optimal controller design method for a class of
continuous-time linear time-delay systems. A key strategy is to exploit the state-of-the-art reinforce-
ment learning (RL) techniques and adaptive dynamic programming (ADP), and propose a data-driven
method to learn the near-optimal controller without the precise knowledge of system dynamics.
Specifically, a value iteration (VI) algorithm is proposed to solve the infinite-dimensional Riccati
equation for the linear quadratic optimal control problem of time-delay systems using finite samples
of input-state trajectory data. It is rigorously proved that the proposed VI algorithm converges to the
near-optimal solution. Compared with the previous literature, the nice features of the proposed VI
algorithm are that it is directly developed for continuous-time systems without discretization and
an initial admissible controller is not required for implementing the algorithm. The efficacy of the
proposed methodology is demonstrated by two practical examples of metal cutting and autonomous

driving.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and

similar technologies.

1. Introduction

Time delay is ubiquitous in various engineering applications,
such as biology, chemistry, economics, and population mod-
els (Richard, 2003). In the last several decades, control theory
for time-delay systems attracted considerable attention from
researchers and practicing engineers, and various stability, ro-
bustness, and optimality problems have been studied; see, for
instance, Cao and Wang (2018), Fridman (2014), Fridman and
Shaked (2002, 2003), Gu, Kharitonov, and Chen (2003), Hale
and Lunel (1993), Karafyllis and Jiang (2011), Kolmanovskii and
Myshkis (1999), Krstic (2009) and numerous references therein.
Under some mild conditions, optimal control can guarantee the
performance and the stability of the closed-loop system simul-
taneously. It is thus not surprising that the optimal control for
time-delay systems is fundamentally important, yet challenging,
in control theory and practice. Through the classical Bellman’s
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dynamic programming, the study of linear quadratic (LQ) optimal
control for systems with state delay was initiated by Krasovskii
(1962). It follows from Krasovskii (1962) that the optimal con-
troller is a linear functional of the state and the corresponding
optimal performance index is a quadratic functional. Unfortu-
nately, an explicit characterization of the optimal controller is
still lacking. Following this seminal work, Ross (1971) and Ross
and Fliigge-Lotz (1969) explicitly derived a set of partial dif-
ferential equations (PDEs) to be satisfied by the optimal con-
troller. These equations are the generalization of the Kalman'’s
algebraic Riccati equation (ARE) from delay-free linear time-
invariant systems to time-delay systems. The authors of Delfour
(1986), Kwong (1980) and Vinter and Kwong (1981) consid-
ered the problem in the infinite-dimensional Hilbert space, and
generalized the LQ optimal control to systems with state and
input delays. It has been found that the optimal solution can
be obtained by solving the corresponding infinite-dimensional
Riccati equation. Many numerical algorithms were developed to
solve the infinite-dimensional Riccati equation for time-delay
systems (Banks, Rosen, & Ito, 1984; Burns, Sachs, & Zietsman,
2008; Gibson, 1983). It should be noticed that all the aforemen-
tioned methods are model-based, and the performance of the
designed controller highly relies on the accuracy of the system
model. Recently, facilitated by the tremendous advances in com-
putation and communication technologies, fast data collection
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and processing have been made possible for controlling engi-
neering systems with increasing complexity. Hence, it is timely
to develop a computational approach to address the learning-
based adaptive optimal control of time-delay systems based on
reinforcement learning (RL) techniques.

RL is an active branch of machine learning that is aimed at
learning optimal controls from data through maximizing a cumu-
lative reward or minimizing a cumulative cost. However, most of
the conventional RL algorithms are exclusively devoted to Markov
decision processes and discrete-time systems (Sutton & Barto,
2018). The stability of the system in question is often overlooked
in the past literature of RL. For real-world applications, e.g. au-
tonomous driving, the system evolves in the continuous (state,
input, and time) spaces, and it is critically important that learning
provides stability and safety guarantees for the system in closed-
loop with RL algorithms for the safe operation of control systems
under consideration. Consequently, because of lacking in stability
considerations, conventional RL algorithms cannot be directly
applied to real-world safety-critical engineering systems. Inte-
grating ideas and techniques from RL and control theory, adaptive
dynamic programming (ADP) has been developed to conquer the
limitations of the conventional RL algorithms (Jiang, Bian, & Gao,
2020; Jiang & Jiang, 2017; Lewis & Liu, 2013). Different from the
conventional RL, ADP exploits the structural knowledge of control
systems for the direct design of learning-based controllers from
data. It is theoretically shown that the generated controller by
ADP iteratively converges to the optimal one. Consequently, the
stability of the system is guaranteed under some mild conditions,
such as detectability and stabilizability requirements on the sys-
tem. Recent developments in ADP have led to novel solutions
to learning-based optimal control of various important classes
of linear/nonlinear/periodic uncertain dynamical systems (Bian
& Jiang, 2022; Cui, Basar, & Jiang, 2024; Cui & Jiang, 2023; Cui,
Wang, Zhang, Zhang, Lai, Zheng, Zhang, & Jiang, 2021; Gao & Jiang,
2016; Jiang & Jiang, 2012; Pang & Jiang, 2021).

Unlike finite-dimensional systems, continuous-time time-delay
systems are infinite-dimensional, which poses a major challenge
for the development of learning-based adaptive optimal con-
troller design methods. A common feature of the relevant liter-
ature (Asad Rizvi, Wei, & Lin, 2019; Gao & Jiang, 2019; Huang,
Jiang, & Ozbay, 2022; Liu, Zhang, Luo, & Han, 2016; Rueda-
Escobedo, Fridman, & Schiffer, 2022; Wei, Zhang, Liu, & Zhao,
2010; Zhang, Ren, Mu, & Han, 2022; Zhang, Song, Wei, & Zhang,
2011) is that only discrete-time time-delay systems are consid-
ered for learning-based control. Since the discrete-time time-
delay systems are fundamentally finite-dimensional and can be
transformed to delay-free systems with augmented states, the ex-
isting methods are not directly applicable to continuous-time sys-
tems with time delays. In Jiang, Zhou, and Liu (2021), Moghadam
and Jagannathan (2021) and Moghadam, Jagannathan, Narayanan,
and Raghavan (2021), the learning-based control for continuous-
time time-delay systems is studied. As pointed out in Moghadam
et al. (2021, Remark 9.1), since the designed controllers by the
methods in these papers are linear functions (instead of func-
tionals) with respect to the state, the optimality of the system is
scarified in these papers to avoid solving the infinite-dimensional
Riccati equation. In Cui, Pang, and Jiang (2024), a data-driven pol-
icy iteration (PI) algorithm was proposed for solving the adaptive
optimal control problem of continuous-time time-delay systems.
In that paper, an initial admissible controller is required to start
the learning process, which is overly restrictive when the sys-
tem model is completely unknown. These facts motivate us to
develop a learning-based method for solving the adaptive optimal
control problem of continuous-time time-delay systems without
requiring an accurate dynamic model and an initial admissible
controller.
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In this paper, based on ADP technique, a value iteration (VI)
algorithm is proposed to find the near-optimal controller for lin-
ear time-delay systems in the absence of the precise knowledge
of system dynamics and an initial admissible controller. It is
well-known that for finite-horizon LQ optimal control of delay-
free systems, a matrix differential Riccati equation (DRE) should
be solved to obtain the optimal value function and controller.
The solution of the matrix DRE asymptotically converges to the
solution of ARE for infinite-horizon LQ optimal control (Willems,
1971). We demonstrate that the DRE of linear time-delay systems
is a set of PDEs, and the convergence property of DRE still holds
for linear time-delay systems. By this way, we can approximate
the LQ optimal controller of time-delay systems by solving the
corresponding DRE. By integrating the convergence property of
DRE with the RL technique, a learning-based VI approach is pro-
posed to approximate the optimal controller using only finite
samples of input-state data along the trajectories of the system.

The remaining contents of this paper are organized as follows.
In Section 2, the preliminaries for the optimal control of time-
delay systems are introduced, and the problem studied in the
paper is formally formulated. In Section 3, a model-based VI algo-
rithm for time-delay systems is proposed. Based on ADP method,
a learning-based VI algorithm is developed along with the conver-
gence analysis in Section 4. In Section 5, the efficacy of the pro-
posed learning-based VI algorithm is numerically demonstrated
by two practical examples. Finally, some concluding remarks are
given in Section 6.

Notations: In this paper, R denotes the set of real num-
bers. | - | denotes the Euclidean norm of a vector or Frobenius
norm of a matrix, and || - || denotes the supremum norm
of a function. ¢® (X,Y) and ¢! (X, Y) denote the class of con-
tinuous functions and the class of continuously differentiable
functions from the linear space X to the linear space Y, respec-
tively. AC ([—t, 0], R") denotes the class of absolutely continuous
functions. %(-) denotes the function which is the derivative
of f(-). ® is the direct sum. L;([—t, 0], R") denotes the space
of measurable functions for which the ith power of the Eu-
clidean norm is Lebesgue integrable, M, = R" @ L,([—1, 0], R™),
and D = {[r"fT()]" e My :f € Ac, L() € L, and f(0) = r},
where T stands for transpose of a vector or matrix. (-, -) denotes
the inner product in My, ie. (z1,2) = /2 + ff,ff(@)fz(e)de,
where z; = [r;, fi(-)]" fori = 1,2. £(X) and £(X, Y) denote the
class of continuous bounded linear operators from X to X and
fromX toY resprectively. ® is the Kronecker product. vec(A) =
[a],a],....a)] , where g; is the ith column of A. vec™!(-) is
the inverse operator of vec(-). For P = PT e R™", vecs(P) =
(P11, 2P12 - - - 2D1ns P22, 2P23 - - -, 2D(n—1)n» Pun] T, VeCu(P) =
[2P12, - - - 2P1n, 2D235 - - -, 2Dm—1)n] ', and diag(P) = [p11, P22,
..., panl". For two arbitrary vectors v, u € R", vecd(v, u) =
Vi1, -« -5 Vaitn] T, veCV(v) = [V2, V1va, ..., ViVn, V2, ..., Up_qVn,
V2T, vecp(v, u) = [vila, ..., Vidn, V2H3, .oy Vno1ial | [Ali
denotes the ith row of the matrix A, and [A];; denotes the sub-
matrix of the matrix A comprised of the entries between the ith
and jth rows. AT denotes the Moore-Penrose inverse of matrix A.

2. Problem formulation and preliminaries
2.1. Problem formulation

This paper considers the following class of continuous-time
linear time-delay systems described by:

X(t) = Ax(t) + Agx(t — 7) + Bu(t), (1)

where © > 0 denotes the delay of the system, which is constant
and known, x(t) € R", and u(t) € R™ A, Ay € R™" and
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B € R™™ are unknown constant matrices. The segment of the
trajectory for x(t) within the interval [t — t,t] is denoted as
x(0) = x(t +60), VO € [—t,0]. Since system (1) is infinite
dimensional, the system’s state is z(t) = [x"(t),x/(-)]T € M.
Define the linear operators A € £(M3), B € £(R™, M3) as

AX(t) +Adxt(—r)] Bu(t) [Bu(t):| )
’ | o0

Az(t) =
o0=["4
Then, as studied in Curtain and Zwart (1995, Theorem 2.4.6),
system (1) is equivalent to

2(t) = Az(t) + Bu(t), 3)
with the domain of A given by D. Let zo = [x"(0), x (-)]" denote
the initial state of system (3). The quadratic performance index
adopted for system (1) is

J(xo0, 1) = fooxT(r)Qx(t) + uT(t)Ru(t)dt
0

_ / (2(0), Qa(t) + u”
0

where RT =R >0,QT =Q > 0,and Q = 0

is symmetric (Eidelman, Milman, & Tsolomitis, 2004, Chapter 6),
and non-negative (Eidelman et al., 2004, Definition 6.3.1). The
initial state zp, Q and R are known.

The following standard assumption is made to ensure the
optimal control problem for system (1) with the performance
index (4) is solvable. That is, there exists a controller such that
the performance index in (4) is finite, and the closed-loop system
with the optimal controller is stable at the origin.

(H)Ru(t)dt,

Q| e oimy)

Assumption 1. System (1) with the output y(t) = Q%x(t) is
exponentially stabilizable and detectable (Curtain & Zwart, 1995,
Definition 5.2.1), where Q% is the unique real symmetric and
positive semidefinite matrix such that (Q%)2 = Q (Horn &
Johnson, 2013, Theorem 7.2.6).

Given the aforementioned assumption, the problem to be
studied in this paper can be formulated as follows.

Problem. (VI-based ADP) Without knowing the dynamics of sys-
tem (1), design a VI-based ADP algorithm to find approximations
of the optimal controller which can minimize (4) using only the
input-state data measured along the trajectories of the system.

2.2. Optimality and stability

For delay-free linear systems, i.e. A; = 0 in (1), as studied
by Kalman (1960), the ARE plays a pivotal role in solving the
infinite-horizon LQ optimal control problem. Similarly, for system
(1), the following lemma gives the expression of the optimal
controller for time-delay systems.

Lemma 2 (Ross & Fliigge-Lotz, 1969; Uchida, Shimemura, Kubo, &
Abe, 1988). Consider system (1) under Assumption 1, the optimal
controller that minimizes (4) is

0
ut(x;) = —R’]BTng(t)—/ R™'BTP;(9)x.(6)d6 (5)
N —’ 1 ————
K K¥(6)

and the corresponding minimal performance index is

0
V*(x0) = Xg (0)Psx0(0) + 2x7 (0) / P} (0)x(6)d0

-7
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/ / T(EP(E. O)xo(0)dE do, (6)

where P} = PgT > 0, P;(0), and P;"(0,&) = P;(£,0) for 6, ¢ €
[—t, 0] are the unique stabilizing solution to:

AP} + P;A—P;BR'B'P;

+ P}(0) 4 P;T(0)+Q =0, (7a)
dpP(0) = (AT — PEBR"'BT)P;(0) + P;(0, 9), (7b)
(3 + 99)P5(§,6) = =P (£)BR'BP}(6), (7¢)
Pi(—t) = P{As, Pj(—t,0)=A[P}(6). (7d)

Remark 3. Define P* € £(M;) as

" P*r+f Py(0)f(6)do
Pz =
0 P3( 0)F(0)d0 + PIT()r
where z = [r ,fT(')]T € M,. Then, it can be found that P*

is the solution to the following Riccati equation in the infinite-
dimensional space:

0 = (23, TTAz;) + (Az;, T1zy)

+ (22, Qz1) — (BR'B'I1z,, 21)
for z1, z; € D. Therefore, it is seen that (7) is the concrete expres-
sion of the abstract Riccati equation in the infinite-dimensional

space, and Lemma 2 can be proved by Curtain and Zwart (1995,
Theorem 6.2.4 and Theorem 6.2.7).

(8)

Remark 4. By Curtain and Zwart (1995, Theorem 6.2.7) and
Assumption 1, the closed-loop system with u* is exponentially
stable at the origin. In practice, the second term in (5) can be
numerically calculated by Riemann sum, like midpoint, trapezoid,
and Simpson’s rules.

3. Continuous-time model-based value iteration

In this section, we will approximate the solution of the infinite-
horizon optimal control problem by its finite-horizon counter-
part, as the horizon length tends to infinity. Since VI-based ADP is
derived from the asymptotic behavior of DRE, which is related to
the finite-horizon optimal control problem of (1), we concentrate
on investigating the following problem:

T
min (. T.g.) = [ (200, Qa(0) + " (ORale)e
u to
subject to (3), 9)
where ¢(0), V6 € [—7,0], is the initial segment of the state
trajectory, to is the initial time, and T is the terminal time of
the trajectory. Comparing (9) with the infinite-horizon cost in (4),

when T — 00, (9) is equivalent to (4). The following lemma gives
the solution to (9) in the Hilbert space Ms.

Lemma 5 (Theorem 6.1.13 in Curtain & Zwart, 1995). For problem
(9), the minimal performance index V(¢, ty) = miny J(to, T, ¢, U)
can be expressed as

V(¢7t0): (Z,P(to)l), (10)

where z = [¢T(0), ¢ (:)]" is the initial state at ty, and P(s) €
L(M3) is the unique solution to the following DRE for any z1,z, € D
and s € [ty, T],

0s(22, P(8)z1) = — (22, P(s)Az1) — (Azy, P(S)z1)
—(22,Qz1) + (P(s)BR 'B"P(s)z2, 21),
P(T) =0. (11)
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Since P(s) in Lemma 5 is an abstract linear operator in the
Hilbert space M, the concrete expression of V(¢, tp) is lacking.
Based on Lemma 5, the following lemma gives the concrete
expression of the linear operator P(s) € L(M;). In addition,
it is shown that the solution of the finite-horizon optimal con-
trol problem converges to the solution of the infinite-horizon
counterpart, as the horizon length tends to infinity.

Lemma 6. For any z = [¢"(0), ¢ "(-)]T € My, the expression of
P(s)z is

0
Ps)z = [ Po(5)9(0) + /. Pi(s, 0)p(6)d6 } , 12

JZ Pas, -, 0)p(6)d6 + P{ (s, )p(0)

where Po(s) = P, (s), Pi(s, 0) and Py(s, &,0) = P} (s, 6, ) can be
obtained by solving the following PDEs backwards

9sPo(s) = —A"Po(s) — Po(s)A — Q — Py(s. 0)
— P/ (s, 0) 4 Po(s)BR'BT Py(s), (13a)
3sP1(s, 0) = 99Py(s, 6) — Py(s, 0, 6)
— (AT — Po(s)BR™'BT)Py(s, 0), (13b)
0sPy(s,&,0) = 0:Py(s, &,0) + 09Py(s, £, 60)
+ P/ (s, £)BR"'BTPy(s, 9), (13c)
Pi(s, —7) = Po(s)Aq, Pa(s, —7,0) = A] Py(s, 0) (13d)
Po(T)=0, Py(T,0)=0, PyT,0,&)=0. (13e)
In addition, under Assumption 1, the following results hold
Jim [Po(s) — Pl =0,
Jim [IPy(s, 6) = PY(0)llec = O, (14)

tim_[IPy(s. §.6) = P5(5.0) ]l = 0.

Proof. See Appendix B.

Lemma 6 implies that the solution of (7) can be well approx-
imated by solving (13) backwards from the terminal time T to
—o0. Then, the optimal controller u* in (5) can be approximated.
However, in (13), the system matrices (A, A4, B) are required and it
is non-trivial to solve such complicated PDEs. In the next section,
in the absence of the accurate model of the system, a VI-based
ADP algorithm will be proposed to solve (13) using the input-
state data measured along the system’s trajectories. In the rest of
the paper, we will call the index t in (1) as physical time, and s
in (13) as algorithmic time.

Remark 7. When A; = 0, (1) is reduced to a linear system
without time delay. Under this case, according to (13), Py(s, ) =
0 and P,(s, &, 6) = 0. As a consequence, the continuous-time VI
method proposed in this paper is the same as Bian and Jiang
(2016). Therefore, the VI method proposed in this paper is a
generalization of the main result in Bian and Jiang (2016) to
time-delay systems.

4. Learning-based value iteration

In this section, we suppose only that the continuous-time
trajectories of x(t) and u(t) within the time interval [¢tq, t; ] are
available for the optimal controller design.

4.1. Algorithm development

Recall that Py(s), Pi(s, 0), and Py(s, &, 6) are the solutions to
(13) and the expression of P(s)z is given in (12). According to (10)
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and (12), V(x;, s) can be expressed as

0
V(xe,s) = x " (£)Po(s)x(t) + 2xT (t) / P4(s, 0)x:(6)d0

0 0
+ / / X:(S)PZ(S’Sag)X[(Q)deQ. (15)

Along the trajectories of system (1) driven by the control input
u, considering d;x(t + 0) = dpx(t + 6) and the partial integration,
we have

3 V(xe, s) = x"(0)[ATPo(s) + Po(s)A
+ P/ (s, 0) + Py(s, 0)]x(t)
+ 2xT(t — T)[A] Po(s) — P (s, —T)Ix(t)
0
+ 2xT(t)f [ATPi(s, 0) + Py(s, 0,6)
— 39P1(s, 6)1x:(6)dO (16)

0
[Aj Pi(s, 0) — P(s,

-7

0 0
—/ / X (§)(3 + 99)Pa(s, &, 6)Ix(0)dEdO

+ 2u'(6)B" [Po(s)X(tH /

-7

+ 2 (t—1) 0)1x:(6)do

0

Py(s, O)xt(e)de] .

Define the following matrix-valued functions

Ho(s) = ATPy(s) + Po(s)A + Py (s, 0) + Pi(s, 0),

Hi(s, 8) = ATPy(s, ) + Py(s, 0, 0) — dgPy(s, 6),

Hy(s,§,0) = 0:Py(s, &,0) + 9gPa(s, £, 0), (17)
Ko(s) = R"'BT Py(s),

Ki(s,0) = R7'BTPy(s, 6).

Then, from Lemma 6, it is seen that as s — —oo, Hy(s), Hi(s, 6),
Hy(s, 8, &), Ko(s), and K;(s, 0) converge to H}, H(6), H;(§, 0), K,
and K (6), where the superscript * denotes that in (17)F; is re-
placed by P* for j = 0, 1, 2. Since for each fixed algorithmic time
s € (—oo, T] Hq(s, 0) and Ki(s, 0) (Ha(s, &, 6)) are continuous
functions defined on the interval [—t, 0] ([—t, 0]%), we use the
linear combinations of the basis functions to approximate these
continuous functions. Let @(0), A(&, 0), and ¥ (&, 6) denote the
N-dimensional linearly independent basis functions. The dimen-
sions of @, A, and ¥ are assumed to be same without losing
generality. Then, by the uniform approximation theory (Powell,
1981), for each fixed algorithmic time s € (—oo, T], we have

vecs(Hg) = Wy(s),
vec(H;) = W (s)P(0) + eN (s, 0),
diag(Ha) = W) (s)¥ (£, 0) + ely (s, £, 0),

18
vecu(H,) = w”( S)A(E, 0) + el \(s, &, 0), (18)

vec(Ko) = Uo(s),
vec(Ky) = UY(s)@(0) + e} (s, 0),

where Wy(s) € R", ny = n(n+ 1)/2, W](s) € RPN, W(s) €
RN wWh(s) € RN n, = n(n—1)/2, Uy(s) € R™, and
U¥(s) € R"™N are weighting matrices. e}, (s, 6) and e}, (s, )
(eﬂw(s, £,0)and eﬂA(s, &, 0)) are truncation errors, and they con-
verge to zero uniformly in & € [—7,0] (§,0 € [—t,0]), and
pointwisely in s € (—oo, T], as the number of basis functions N
tends to infinity. Specifically, for each fixed s € (—oo, T] and any
€ > 0, there exists Nj(s, €) > 0, such that if N > N(s, €),

lleNy (s, &, 0)lloo < e,

N
llegas (s, O)llco < €.

||qu>(5 Ol < e,

19
llefa(s. &, 0)lleo < e, (19)
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Remark 8. For time-delay systems, the number of basis functions
should be large enough to diminish the truncation errors in (18).
In comparison, for the delay-free case, P, = 0(i = 1,2),H; =0
(i=1,2),and K; = 0. The truncation errors in (18) are zero no
matter how many basis functions are selected.

Remark 9. In practice, one can choose polynomials as basis func-
tions and the uniform convergence in (19) can be guaranteed by
Weierstrass Approximation Theorem (Pugh, 2015). In Lemma 6,
PZT(S, £,0) = Py(s,0,&). The diagonal elements of P, satisfy
diag[P,(s, &, 6)] = diag[P,(s, 6, &)]. Therefore, the basis functions
of ¥ should satisfy ¥ (&, 0) = ¥(0, £) to meet the requirement.

In Lemma 6, Py(s), P1(s, 6), and Py(s, &, 6) are continuously dif-
ferentiable in s. Hence, it is required that the weighting matrices
and the truncation errors in (18) are continuously differentiable
ins.

Lemma 10.  Wy(s) W/(s)j = 1,2,3), Uo(s) Uy(s), efe(s, 6),
eNy (s, £.0), el (s, &, 0), and e}, (s, 0) are continuously differen-
tiable in the algorithmic time s.

Proof. See Appendix C.

Next, the data collected from L intervals within [ty, t;1] will
be applied to generate the near-optimal controller. Let t; < t; <

- < ty < .-+ < t;41 denote the boundaries of the sampling
intervals. By plugging (17) and (13d) into (16), integrating (16)
from ¢ty to tyy1, and by Lemmas 21 and 22, we have

V(thﬂ 2 8) = V(X )

=/k+] vecv ' (x(t))dtvecs(Ho(s))

t
k1
+2 / f x! (0) ® x" (t)vec(Hy(s, 0))dodt
-7

tk:—l 0 0
_ / / / veed  (x(£), x:(0))

diag(H,(s, &, 0))dédodt (20)

f / / veepT (x (£, x:(6)

vecu(H(s, &, 0))dédodt

.\ 2/k+1 xT(6) ® (1" (t)R)dtvec(Ko(s))

k1
+ 2/ f xt
-7

To simplify the notations, we define

(t)R)vec(K;(s, 6))dodt.

0
Ftpxx(t) = [ ¢T(9) ®X;r(9) ® XT(t)dQ
Tt / / UT(E, 0) ® veed (x (&), x(6))dEd0

it / f AT(E,0) ® vecp” (x,(£). x:(6))dedd

ffxt O P '(9)

®x/ (£)® @ (£)deds. (21)

In addition, define the following integrals over [t, ;1]

Fq)d’xx

tiet1
Lk = / vecv! (x(t))dt,
tk
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Cket1
b = / XT(0) ® (T (R,
ty

tk+1
o = / Ta(t)t, (22)
t
k1 0
I¢>xu,k=/ f @7 (0)®x/(0) ® (u(t)R)dAdt,
t -7

lkt1 lkt+1
IlI/xx,k = / Flllxx(t)dts IAxx,k = / FAxx(t)dt-
s

173
Plugging (18) and (22) into (20) yields
V(X4 1> 8) — V(X S)
= L kWo(S) + 2lpx kvec(W (s))
— Ty vec(Wy'(s)) — Lyw cvec(W5'(s))
+ 2L kUo(s) + 2laxukvec(Uy (s)) + € (s),

(23)

where e’kV (s) is induced by the truncation errors in (18), and it is
expressed as

k1 0
eg(s):z/ / X! (0) ®x"(t)eNy(s, 0)dodt
ty -7

tkt1 0
- / f / vecd " (x(£), x(0))epyy (s, £, 0)dEdode
ty -7 J—1

k1 0 0
—/k / / vecp (%:(£), x(6))ey (s, &, 0)d&dadt

et 1
+ 2/ / x[
=T

Stacking (23) for k = 1,2,...,L into a vector form, one can
obtain the following lmear equatlon with respect to the unknown
weighting matrices

T(OR)eN (s, 0)dod. (24)

OnS2n(s) +E(s) = E(s), (25)
where
2n(s) = [Wy (s), vec (W1 (s)), vecT (WJ'(s)),
vec! (WJ'(s)), Uy (s), vecT (Uy(s))] T,
Oy = [alT,...,okT,...,oLT]T,
ENs) = [eN(s), ..., el(s), ..., eMs)] " (26)

T
—_ 3

E(s) = [V(xt, S)ikeys .o Ve, s)|t§t}] ,

Of = [Ixx,k9 21(Dxx,ka _III/XX,kv _IAXX,k7 leu,ka 21¢xu,k] .

The following assumption on the matrix ®y is made to ensure
that £2y(s) is the unique solution to (25) when applying the
method of least squares.

Assumption 11. Given N > 0, there exist L* > O and ¢ > 0
(independent of N), such that for all L > L*,

1
Z@,I@N > al. (27)

Remark 12. Assumption 11 is reminiscent of the condition of
persistent excitation (Astrom & Wittenmark, 1997). As shown in
the past literature of ADP (Jiang & Jiang, 2017; Lewis & Liu, 2013),
one can fulfill such a condition by means of added exploration
noise, such as sinusoidal signals and random noise.

In addition, the collected input-state data should be bounded
to guarantee the validity of the learning process, which leads to
the following assumption.
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Assumption 13. For any t € [tq, t;1], |x(t)[, |u(t)] < B, where
B is independent of N.

Remark 14. Since the initial policy is not necessarily stabilizing,
the system may require resetting for data collection and learning.
In detail, to guarantee |x(t)| < B8, we can restart the system at the
initial state zo = [xg (0), x4 (-)]T, where supyc;_, o1 [X0(0)] < B,
whenever |x(t)| violates the assumption. We can apply a bounded
controller to explore the system, such that |u(t)| < 8 is ensured.

Now, at each fixed algorithmic time s € (—oo, T], given Py(s),
Py(s, 0), and P,(s, &, 6), one can obtain the expression of V(x;, s)
defined in (15). By solving (25) via the least squares method, one
can get the approximation of £2y(s) and the weighting matrices
encoded in £2y(s). Consequently, H;(j = 0, 1, 2), Ko(s) and K;(s, 0)
can be approximated in the absence of the system matrices
(A, Ag, B). Next, by differentiating (25) with respect to the algo-
rithmic time s, we will solve (13) by a data-driven method. Since
V(x;, s) is involved in the expression Z(s), the first thing is to
differentiate V(x;, s) with respect to s. By the definition of V(x;, s)
in (10), we have

3V (xe, 5) = x" (£)3sPo(s)X(t)

0
+ 2x7(t) / AP (s, 0)x:(0)do

’ (28)
0 0
+ f f X{ (§)5Pa(s, £, 6)x(6)dd6.
Plugging the expressions of 9sPy(s), dsP1(s, €), and 9sP(s, £, 0) in
(13) into (28), and considering the variables defined in (17), we
have
asV(x,s) = x"(£)[—Ho(s) — Q + Ky (s)RKo(s)Ix(t)
0
+ 2xT(t) [ [=H(s, 0) + Ky (5)RKq (s, 0)x(6)d6
0 0 o
+ f f X:(g)[Hz(S, 57 9) (29)

+ K (s, £)RKy(s, 0)]x:(0)d&d.
Then, it follows from (29) that
AV (Xe, 5) = Wy (x )V(82n(5)) + en(t, s), (30)

where ey(t, s) is induced by the approximation truncation errors,
whose expression is given in (D.5). Wy(x;) and V(§2n(s)) are
defined as

Wiv(x;) = [veev T (x(£)), 2o (t),
Tyl t), Taelt), T O]

V(2y(s)) = [[—Wo(s) — vecs(Q) + Ky o(s)] T, (31)
[—vec(Wy' () + Uo(Uo(s), Uy'(s), R,
vec (W2(s)), vec (WA(s)), 1] (UN(s), R)]",

where K, o(s) is defined in (D.3); the functions ¢y and 4, are
defined in Lemma 23. The detailed derivation of (30) is postponed
to Appendix D. It is seen that at the physical time t and algo-
rithmic time s, d;V(x, s) is determined by the trajectory segment
x:(0),0 € [—r, 0], the approximate weighting matrices encoded
in £2y(s), and en(t, s) induced by the truncation errors.

Under Assumption 11 and using (30), differentiating the both
sides of (25) with respect to the algorithmic time s, we have

0s82n(s) = HN(£2n(5)) + Gn(s),
£2n(T) =0,

where 2y(T) = 0 is obtained by (13e). The expressions of
Hn($2n(s)) and Gn($2n(s), s) are

Hu(2n(s)) = O B v(san(s))

(32)

(33a)
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Algorithm 1 Data-driven Value Iteration
1: Choose T, and the vectors of the basis functions @(0), ¥ (&, 6),

and A(¢, 9).
2: Choose the boundaries of the sampling intervals
bty oo B

3: Choose the driving input u to explore system (1) and collect
the input-state data u(t), x(t), t € [t1, ti+1].

4: Construct data matrices ®y and Eév .

5: Solve (34) backwards on the interval [0, T].

6: Get Ko(0) and KM(0, 6) by (35).

an(s) = Of(—E(s) + 5)'(s)), (33b)
gY = DWE)IZ, W) (33¢)
gY(s) = [en(t, )2, ..., en(t, S)IT. (33d)

In (32), Gy is induced by the truncation errors. Hence, if the
truncation errors are small enough to be ignored, the solution
to (32) can be approximated by the solution to the following
differential equation

3 2n(s) = HN(2n(s)), S28(T) = 0. (34)

With the obtained fZN(s), By (18) and (26), the estimation of
Ko(s) and K;(s, 6) can be obtained by

Ko(s) = vec™ " ([£2n(5)Ins.n, ),
UN(s) = vec ™ ([£2n(5)Ing+ 1,05 ) (35)
KN(s, 8) = vec\(UN(s)®(6)).

where n3 = ny + ("> + n+ m)N + 1, ng4 = n3 + mn, and
N5 = ng + mnN.

Algorithm 1 shows the detail of the learning-based VI algo-
rithm. It is seen that only the input-state trajectories collected
within the interval [t;, t;+1] are applied to construct the matrices
Oy and Eév . In addition, since the trajectory data is collected only
using the exploratory input u, the algorithm is off-policy.

4.2. Convergence analysis

_ This section shows that the obtained control gains f(O(O) and
Kf’(O,@) well approximate the optimal gains Kj and Kj(9) if
N and T are chosen large enough. Comparing (32) with (34),
the difference between £2y(s) and £2y(s) is induced by Gn(s). As
seen from the definitions of Gy(s) in (33b), Z¥(s) in (33d), and
E{" (s) in (26), these three variables are induced by the truncation
errors in (18). Hence, the convergence of the truncation errors is
investigated.

In (18), as N — oo, the truncation errors converge to zero
uniformly in 6 and &, and pointwisely in s. The following lemma
shows that the truncation errors converge to zero uniformly on
any closed sub-interval of (—oo, T].

Lemma 15. For any s € (—o0,T], e}, (s,0) and el (s, )
uniformly converge to 0 on [s’,T] x [—t,0] as N — oc. Besides,
eN,(s,&,0) and e} ,(s, &, 0) uniformly converge to 0 on [s', T] x
[—7,0]%> as N — oo.

Proof. See Appendix E.

The item BSE[V(S) is a major factor in causing Gy(s) defined in
(33b) to be nonzero. From the expression of Ef’(s) in (26), it is
seen that the derivative of the truncation errors is involved in
asEf’ (s). The following lemma shows that the derivative of the
truncation errors with respect to the algorithmic time s converges
to zero pointwisely.
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Lemma 16. del (s, 0) and dse} (s, 0) pointwisely converge to
0 on (—00,T] x [~7,0] as N — oo. Besides, dsel, (s, £,0) and
asely (s, £, 0) pointwisely converge to 0 on (—oo, T] x [—7, 0]* as
N — oo.

Proof. See Appendix F.

With the convergence of the truncation errors demonstrated
in Lemmas 15 and 16, it is shown that Gy(s) converges to zero as
N tends to infinity.

Lemma 17. For any fixed s € (—oo, T] and € > 0, there exists
NJ(e,s) > 0, such that VN > N (e, s), |Gn(s)| < €.

Proof. See Appendix G.

As Gn(s) is small enough when N tends to infinity, comparing
(32) and (34), we demonstrate that the approximation £2y(s) is
close to the real value £2y(s) over s € [s, T].

Lemma 18. For any ¢ > 0 and s € (—oo,T], there exists
Nj(e,s') > 0, such that if N > Nj(e, s'),

sup |2n(s) — 2n(s)] < e. (36)
sels’,T]

Proof. See Appendix H.

The next theorem shows the main result of the learning-based
VI algorithm, i.e. the optimal control gains K and K (@) can be
well approximated by solving (34) backwards.

Theorem 19. For any € > 0, there exist T*(¢) > 0 and
Nj(e,T*) > O, such that if T > T*(e) and N > Nj(e, T*), the
following inequalities hold.

|Uo(0) — vec(Ky)| < €

10} (0)@(0) — vec(K; (0))llo < €

(37a)
(37b)

Proof. See Appendix .

It is noticed that the proposed VI algorithm can well ap-
proximate the optimal controller when the number of the basis
functions (@, ¥, and A) is large enough, and the truncation
errors in (18) are sufficiently small. As an important corollary to
Theorem 19, the following statement ensures the stability of the
closed-loop system with the learning-based controller.

Corollary 20. There exist T* > 0 and NX > 0, such that if T > T*
and N > NZ, the closed-loop system with the generated controller
t(x;) from Algorithm 1 is exponentially stable at the origin, where
u(x,) is
A 0 A
(x;) = —Ko(0)x(t) — / K7'(0, 0)x:(6)d6,
-7

Ko(0) = vec™(U(0)),
kN0, 0) = vec }(UN(0)@(0)).

Proof. See Appendix J.
5. Practical applications

In this section, we demonstrate the effectiveness of the pro-
posed learning-based VI algorithms by two practical examples,
with regard to regenerative chatter in metal cutting and con-
nected and autonomous vehicles (CAVs) in mixed traffic con-
sisting of both autonomous vehicles (AVs) and human-driven
vehicles (HDVs).
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5.1. Regenerative chatter in metal cutting

Consider the example of regenerative chatter in metal cut-
ting Gu et al. (2003, Example 1.1), Mei, Cherng, and Wang (2005),
where the thrust force of the tool is proportional to the in-
stantaneous chip thickness ([x(t)]; — [x(t — 7)];), leading to the
time-delay effect. Then, the model can be described by (1) with

0 1
A= |:—(Co + Fo/m) —cl/m] ’

0 0 0
Aq = |:Ft/m o] B= |:1/mi|’

In this example, the parameters are chosen as m = 2, ¢cg =
10, c; = 0.2, F = 1, and t = 1.0. For the performance
index (4), Q = diag([100, 100]) and R = 1. The selection of
the basis functions is inspired by the Weierstrass approximation
theorem, that is any continuous function over a compact set can
be uniformly approximated by polynomials. We use third-order
polynomials to approximate Hi(s, #) and Ki(s, #) in (18), that is
@) = [1,6,6% 63T, For the two-variable function Hy(s, £, 6)
(s is fixed), we use A(£,0) = [1,6,6%,60%]T ®[1,£,£2,£3]" to
approximate its off-diagonal elements. The basis functions for ap-
proximating the diagonal elements of H,(s, &, 6) are chosen based
on Remark 9, i.e. W(£,0)=[1,£4+6,82+62,£0,£3 463, £%0 +
£02,830 + £03, £20%, £30% + £260°, £30°]". The optimal values of
K and K{(0) are numerically computed by discretization in Ross
and Fliigge-Lotz (1969) for comparison.

For the learning-based VI algorithm, the initial weights of the
basis function £2y(T) are set as zero, and T = 5. After data-
collection phase, Algorithm 1 is implemented and its convergence

Ko(0)—K3|
L = 0.0016

is plotted in Fig. 1. The relative errors are

KN e
and % = 0.0379. After learning phase, the learned
1 o0

controller is tested and the state trajectories are solid lines in
Fig. 2. For comparison purpose, we design a model-based state-
feedback controller by Moheimani and Petersen (1995), which
works for all the unknown delays if the algebraic Riccati Eq. (39)
has a stabilizing solution. In detail, the controller is designed as
Ucom(X(t)) = —KeomX(t), where Keom = R™'BTPeom, and Peom =

P > 0is the solution to

ATPCO'IT! + PcomA + )/GTG + Q

39
- Pcom(BRijBT - yilpFT)Pcom =0, ( )

where y = 25, F = [0,1]7, and G = [F;/m, 0]. For the same
initial state xo, the ADP controller learned by Algorithm 1 is
compared with ugm,, which is shown in Fig. 2. The value of the
performance index with the ADP controller is 1.7386 x 10%, while
that of the controller ugy, is 2.1441 x 10% It shows that our
method can find a near optimal controller in the absence of the
system dynamics, while the method in Moheimani and Petersen
(1995) is model-based and can only guarantee a quadratically
bounded cost. Besides, we can see that with the ADP controller,
the state converges to the equilibrium more quickly than that of
the controller ugp,.

5.2. CAVs in mixed traffic

Consider a string of two HDVs and one AV as shown in Fig. 3,
where h; denotes the bumper-to-bumper distance between the
ith vehicle and (i — 1)th vehicle, and v; denotes the velocity of
the ith vehicle. Define Ah; = h; — h* and Av; = v; — v*,
where (h*, v*) is the equilibrium of the vehicles. h* depends on
the human parameters and v* = wv;. Assuming the velocity of
the leading vehicle is constant, and considering the time-delay
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0 1 2 3 4 5 0 1 2 3 4 5
Algorithmic time s Algorithmic time s

Fig. 1. Convergence of 120(5) and l?f’(s, ) to the optimal values Kj and Ky(6)
for the example of metal cutting, as the algorithmic time s — —oc.

= = Ucom® T1

= = Ucom® T2

ADP:
——ADP: z,

5 10 15 20
Time (sec)

Fig. 2. Comparison between the ADP controller and the model-based method
in Moheimani and Petersen (1995) for regenerative chatter in metal cutting.

effect caused by human drivers’ reaction time, the system can be
described as a linear time-delay system (1) with

" Ah, 0 -1 0 0 0
| v ~lo 0o o o o
X=1ans |"4=10 1 0 -1 B=]o]|
| Avs 0 0 0 O 1
m 0 0 00
A= ac® —(az+pB2) 0 0
=1 0 0 0 0’
0 0 00

where «, and 8, denote the human driver parameters and c* is
the derivative of the range policy (Ge & Orosz, 2017; Huang et al.,
2022). In the simulation, the human parameters are set as «; =
0.1, B, = 0.2, t = 1.2, and ¢* = 1.5708. The weighting matrices
of the performance index are Q = diag([1, 1, 10, 10]), and R = 1.
The basis functions are @(8) = [1,0]", ¥(£,0)=[1,£+6,£0]7,
and A(£,60) = [1,6]T ® [1,£&]". The analytical expressions of
the optimal control gains K and Kj are derived by the method
in Ge and Orosz (2017), where the precise model of the system
is required.

For learning-based VI algorithm, the initial weight of the basis
function £2y(T) is zero. §2y is iterated backwards from T = 10 to
0 by Algorithm 1. From Fig. 4, it is seen that Ko(s) and KN(s, 9)
converge to the optimal values eventually, and the relative ap-

0)—K; RN (0.0)~K5(0)lloo
proximation errors are % = 0.0292 and ”(||1<)7()” =

0.0662. Therefore, the proposed VI algorithm is ableH to well
approximate the optimal controller. Compared with Ge and Orosz
(2017), our approach is learning-based and the system model is
not required. With the learned ADP controller, the state trajecto-
ries of the vehicles are shown in Fig. 5.

6. Conclusions

This paper has proposed for the first time a learning-based
VI algorithm for a class of continuous-time linear time-delay
systems. The major contributions of the paper are two-fold. First,
a model-based VI approach has been developed to solve the
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(D)
J
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HDV 1

«T»A«r»

HDV 2 A

2

Fig. 3. A string of two HDVs and one AV.

0 2 4 6 8 10 0 2 4 6 8 10
Algorithmic time s Algorithmic time s

Fig. 4. Convergence of ko(s) and k{"(s, 0) to the optimal values K§ and K;(6)
for the example of CAVs, as the algorithmic time s — —oo.

-3
10 -

0 20 40 60 80 100 0 20 40 60 80 100
Time (sec) Time (sec)

Fig. 5. Plots of the state trajectories of the vehicles with the ADP controller.

infinite-dimensional ARE for the optimal control of linear time-
delay systems. Second, by integrating RL and control-theoretic
techniques, a learning-based VI algorithm is proposed for learning
adaptive optimal controllers from data in the absence of the
precise model knowledge. The efficacy of the proposed learning-
based adaptive optimal control design method has been validated
by means of two real-world applications arising from metal cut-
ting and connected vehicles. Our future work will be directed
toward extending the proposed learning-based control method-
ology to a broader class of linear systems with both input and
state delays by combining adaptive predictor technique in Bresch-
Pietri and Krstic (2009), Krstic (2009), Zhu and Krstic (2020) with
RL and ADP techniques. Furthermore, other practically important
classes of time-delay systems, such as nonlinear systems and
multi-agent systems, will be studied in the future.

Appendix A. Auxiliary results

Some useful formulas for matrix manipulation are listed here.

Lemma 21. For any matrices X, Y, and Z with compatible dimen-
sions,

vec(XYZ) = (Z" @ X)vec(Y). (A1)

For any real symmetric matrix S and vector v with compatible
dimensions,

v TSy = vecv! (v)vecs(S). (A2)

Proof. Eq. (A.1) is from Magnus and Neudecker (2007, Theorem
2.2) and (A.2) can be obtained by the quadratic form of v'Sv.
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Lemma 22. For any n-dimensional matrix-valued function S(&, 0)

satisfying ST(£,0) = S(0, &), n-dimensional vector-valued function
), and scalars a, b € R with a < b, it holds

[ [ £)S(E, O)u(0
/ / vecd T(v(&), v(0))diag(S(, 6)) (A3)

, v(0))vecu(S(&, 6))déd6.

)dede

+ vecp ' (

Proof. The statement can be directly obtained by the quadratic
from of v7(£)S(£, #)v(0) and noticing

b b
/ / i(. 0y ui(6)deds

b b
= / / si(E, Ovi(€)vi()dEdD, Vi #£ ],

where s;; denotes the entry at the ith row and jth column of S.

(A4)

Lemma 23. For any vg,v; € R", Uy € R™, Uy e R™N,
R € R™™ and &y, &, € RN, it holds:

vy vec™ ' (Ug)Rvec™ (U1 ®1)v;

=&, ®v{ ® vy Up(Uo, Uy, R),

vy vec™ (U ®Pg)Rvec™ (U P1)v,

=v ®P] vy @ Dy Uy(Uy, R),

where Uy(Uy, Uy, R) is defined as

Up(Uo. Uy, R) = vec [(I, ® vec™ " (Up)R)U1 |,
and U1(Uq, R) is

th(Uy, R) = vec(Ud; (Uy )Rt (Uy))

[Uili  [Uilmgas
(Uil [Uilmso,

(A.5a)

(A5b)

[U1]in—1ym+1

_ [U1]in-1)m+2
Uy (Uy) = .

[Uiln  [Uslom. (U1 o

Proof. By Lemma 21, we have

T(Up)Rvec™ (U1 &1)vy

= v] ® v vec[vec™ " (Up)Rvec™ (U @1)] (A.6)
= v ® vy (I, ® vec™ " (Up)R)U; P;.

Hence, (A.5a) holds according to Lemma 21. In addition, since
vec (U @1)vy = Uy (Uq)(v1 ® ®1), by Lemma 21, (A.5b) holds.

T _
v, Vec

Appendix B. Proof of Lemma 6

By the expression of P(s)z in (12), we will write out the
expressions for each item in (11). For any z = [f,7(0), f;"(:)]"
My (i =1, 2), we have

3522, P(s)z21)
Po(s)f1(0) + [°_ 8:Pi(s, 6)f1(0)d6
=\ 22, 0 T
J° 8P (s, -, 0)f1(0)d6 + 8P (s, )f1(0)

0

— 1T (0)0Po($)(0) + £ (0) f 04P(s, 0Y71(6)d0
0
+ T (0) / 04P(s. 0)f>(0)d6
0 0
+ f £ (€)0.Pas. £, 6 (9)di do. (B.1)

TJv—T
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According to (2), (12), and integration by parts, we have
(22, P(s)Az1) = £, (O)Py(s, 6)f1(6 |6,_Z
+ £, (0)Po($)AF1(0) + £, (0)Po(s)Adf1(—7)
0
— £10) | 3Pi(s, 0)f2(6)d6

-7

0
+ IAR(0) + Ad (=) / Py(s, 6)3(6)d6 (B2)

-7

fz (§)Py(s. &, O)(6)de[)__

o
- / sz(E)B{;Pz(S, &,0)1(0)dédo.

TY—T

Following the same lines in the derivation of (B.2), we have

(Azz, P(s)21) = £, (0)P] (5. 0)(0)],___
+ £ (0ATPo(s)(0) + £ (—7)A] Po(s)fi(0)

0
+ [AR(0) + Ada(—=T)IT | Pils, 0)f1(6)d6

-7

0

- f1T(0)f doP1(s, 0)f2(0)do (B.3)
0

O XN

0 0
- / £ (£)0:Pals. £, 0 (0)d6dE.

T =T
Since Q = |:Q 0:|, (23, Qz1) is expressed as

(22,Qz1) = £, (0)Qf1(0). (B.4)

Then, according to the expression of P(s)z in (12) and the expres-
sion of B in (2), we have

(P(s)BR™'B'P(s)z,, 71)
= f, (0)Po(s)BR™"'B" Po(s)f1(0)

+ f,7(0)Po(s)BR'B" / Pi(s, 6)f>(0)do (B.5)

-7

0
+ £, (0)Py(s)BR™'BT / Py(s, 6)f1(6)do

0 0
+ / FTE)PT(s. £)BRBTPy(s, 6)3(6)ddo.

Combining (13) and (B.1) to (B.5) yields that P(s) defined in (12)
satisfies (11). Due to the uniqueness of the solution to (11), the
proof is completed.

Before the proof of the second part of Lemma 6, the following
lemma is introduced.

Lemma 24 (Curtain and Zwart 1995, Lemma 6.2.2). Under Assump-
tion 1, P(s) is uniformly bounded with respect to s, i.e. there exists a
constant v > 0, such that supsc_ 1) IIP(s)I| < v.

According to Lemma 24, P(s) is uniformly bounded in s. Fur-
thermore, since min, J7(to, T, ¢, u) is non-decreasing as t, —
—o0, by (10), we have P(a — 1) > P(a) > 0 for any integer a < T.
By Eidelman et al. (2004, Theorem 6.3.2), there exists P = PT > 0,
such that for all z € M;, we have

lim P(a)z = Pz. (B.6)

a——00
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Besides, for any a — 1 < s < a, P(a) < P(s) < P(a — 1). Thus, the
following equation holds

lim P(s)z = Pz. (B.7)
5§—>—00
By Lemma 6, when P(s) converges, d;Py(s), dsP1(s, 6), and 9d;P,(s,
&, 0) converge to 0, implying that (13) is equivalent to (7) when
s — —oo. Therefore, Py(—o0), Pi(—00, 8), and Py(—o0, &, 0)
satisfy (7). Due to the uniqueness of the solution to (7), lims_, _,
Py(s) = Py, lims_, _ P1(s, 0) = P{(0), and lims_. _o, P5(s,§,0) =
P3(&, 0) pointwisely. Since for any fixed s € (—oo, T], Py(s, #), and
P, (s, £, ) are continuously differentiable on [—7, 0] and [—7, 0]?
respectively, {Pi(s,0) : s € (—oo,T]} and {Py(s,£,0) : s €
(—o00, T]} are equicontinuous. According to Pugh (2015, Chapter
4, Theorem 16), the pointwise convergence leads to the uniform
convergence.

Appendix C. Proof of Lemma 10

The proof is inspired by Bian and Jiang (2022). Take Wg’(s) and
el ,(s, &, 0) as examples. According to (13), Py(-, -, ) € C'([—00, T]
x [=t, 0]%, R™™), By (17), Hy(s, -,-) € c°([—t, 0]%, R™") and
Hy(-, &,0) € c'([—oo, T], R™™), Since for any fixed s € (—o0, T],
Wg’(s)A(gf, 0) converges to vecu(Ha(s, &, #)) uniformly in £ and 9,
for any s1,s; € (—oo, T] and € > 0, there exists N(s1, 52, €) > 0,
such thatif N > N{(s1, 52, €), |W§V(si)A(§, 0)—vecu(H,(s;, £, 0))| <
€(i = 1,2) holds for any &,0 € [—, 0]. Since H,(-, &, 6) is uni-
formly continuous, for any € > 0, there exists k(¢, &, ) > 0, such
that if |[s;—s2] < K (€, &, 0), [vecu(Hy(s1, &, 6))—vecu(Hy(s2, &, 0))|
< €. Consequently, the following inequality can be obtained by
triangle inequality

[(W3'(s1) — W3 (s2)A(E, 0))

< [W(s1)A(§, 0) — vecu(Hy(s1, £, 6))|

+ W' (s2)A(§, 0) — vecu(Hy(sz, £, 0))]

+ |vecu(Hy(s1, £, 8)) — vecu(Hy(sy, £, 0))] < 3e.

(C.1)

Hence, W3N(s)A(§, 0) is continuous in s. In addition, as the ele-
ments of A(&, 0) are independent, Wg’(s) is continuous in s. Since
9H(s, -,-) € ¢%[—t,0]%, R™™"), by the uniform approximation
theory, there exists W3/N (+) such that

= WV(s)A(E, 0) + el (s, &, 0),

where e;_’,V (s, &, 0) converges to 0 pointwisely in s and uniformly
in £,60 as N tends to infinity. By the dominated convergence
theorem, as N — oo, for any s; < s, the following equation
holds

vecu(H(s, &, 9))|Z = /Sz dsvecu(H(s, £, 0))ds

$2
= lim WiN(s)dsA(%, ).
N—>oc

$1

dsvecu(H(s, &, 0)) (C2)

(C.3)

Following (18) and (C.3), and by the independence of the ele-
ments of A, we have W)'(sy) — Wi(sq) = f;z WiN(s)ds for any
s1 < Sp. Thus, WiN(s) = aWN(s), i.e. W (s) is continuously
differentiable in s. Since both Hj(s, &, ) and Wj(s) are continu-
ously differentiable in s, by (18), eZA(s, &, 0) is also continuously
differentiable in s.

Appendix D. Derivation of o,V (x;, x)

Rewriting the right hand side of (29) with the help of Lem-
mas 21 and 22, it follows that

AV (x:, s) = vecv ! (x(t))[— vecs(Hg) — vecs(Q)
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+ vecs(K, RKp)]

0
+2 / x](0) ® X" (t)[—vec(H;) + vec(K, RK;)]d6

0 0
+/ / vecd " (x:(£), x:(0))diag(H,)

+ vecp (x(§), x:(0))vecu(Hs)

+ X1 (0) ® x/ (§)vec(K| (s, £)RK:(s, 0))d&d@, (D.1)
where the arguments of the functions Hy(s), Hi(s, 0), Ha(s, &, 6),
Ko(s), and K;(s, 6) are omitted to simplify the notations. By the ap-

proximations of Ko(s) and Ki(s, 6) in (18), vecs(K, RKp), vec(Ky RK1),
and vec(KlT RK;) can be expressed as

vecs(KOTRKO) = Ky,0(8),
vec(Ky RK1) = K) 1(s, 0) + kY 1(s, 0), (D.2)
vec(K{ RKy) = K} 5(s, €, 0) + Kb ,(s, £, 6),

where K, o, ICLVJ, and ’CI:,Z are constructed by the approxima-
tions of Ko and K; in (18); K[, and k', are induced by the
approximation truncation errors. They are defined as

Ky.0 = vecs[vec™ T (Up(s))Rvec™(Ug(s))],

Kl | = vec[vec™ " (Uo(s))Rvec™ (U} (s)®(6))]

Ky = vec[vec™ T (Ug(s))Rvec (e} (s. 0))],

Kl , = vec[vec™ (U} (s)®(&))Rvec™ (U} (5)®(6))]
Ky, = veclvec™ T(em,( £))Rvec™ (U} (s)®(0)

+ eR (s, 0))] + vec[vec™ T(UN(s)®(&))
“eRa(s. O (D.3)

Plugging (18) and (D.2) into (D.1) and with the help of Lemma 21
gives us the following expression

3V (xe, 5) = veev ! (X(t))[—Wo(s) — vecs(Q) + Ky,0(s)]
- 2F¢xx(t)vec(Wf'(s))

0
v

+ Toa(t)Vec(WH () + Tyw(t)vec(Wi (s))

o[ [

where gy, T'wxx and sy are defined in (21). en(t, s) in (D.4) is
induced by the truncation errors in (18), which is

8N(tv S) =

0
— 2/ X[ (0) @ x"(t)(ef(s. 0) — Kp (s, 0))dO

0 0
+ / / X7 (0)® X (E)KN,(s, €, 0)dEdo

0 (0
b [ ] veed tute ol (s, .0)
+ vecp (x(£), xe(0))ejy (s, £, 6)d&do.
Considering Lemma 23, the integrals in (D.4) involving IC’IE”1 and
Icﬁ , can be further simplified, and 9;V(x, s) is finally derived as
3V (xe, 5) = veev (x(t))[—Wo(s) — vecs(Q) + Ky,o(s)]
+ 2L pm()[—Vec(W} (s)) + Uo(Uo(s), U'(s), R)]

+ Tux(t)vec(Wy'(s)) + an(t)vec(WS'(s))

+ Toon(tWh(UY (5), R) + enl(t, 3),

Rvec

x(0) @ xT (KN (s, 0)do

0) ® X[ ()X 5(s, &, 0)dEdD + en(t, 5),

(D.5)
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= Wy (X )V(2n(s)) + enl(t, ). (D.7)

Appendix E. Proof of Lemma 15

Take eﬁA(s, &,0) as an example. As N tends to infinity, from
(18) and (19), it is seen that eﬁA(s, &, 0) converges to 0 uniformly
in&,6 € [—7, 0], and pointwisely in s € (—oo, T]. By Lemma 10,
eﬁA(s, &, 0) is continuously differentiable in s € [s’, T], and hence
{eﬁA(s, £,0): N € Z,} is equicontinuous in s. Therefore, accord-
ing to Pugh (2015, Chapter 4, Theorem 16), eZA(s, &, 0) uniformly
converges to 0 on [s/, T] x [—t, 0]%.

Appendix F. Proof of Lemma 16

Take dsely (s, &, 0) as an example. By Lemma 10, dse] ,(+, -, ) €
C%([—o0, T] x [—1, 0]?, R™). According to (18) and (C.2), 3l ,
(s,&,0)= e;Q’A(s, &, 6), which converges to 0 pointwisely in s, and
uniformly in & and 6. Therefore, the proof is completed.

Appendix G. Proof of Lemma 17

As seen from (24), the derivatives of the truncation errors
aselN (s, 0), 0seR (s, 0), dseN, (s, &,0), and dsel) (s, &, 0) are in-
volved in the expression of Bseg (s). By Lemma 16, these deriva-
tives converge to zero pointwisely as N — oo. According to the
dominated convergence theorem and the boundedness of x(t) and
u(t) by Assumption 13, for any fixed s, 85653(5) converges to zero
as N — oo. Consequently, Vs € (—oo, T] and Ve > 0, there exists
Ni(e,s) > 0, such that if N > Ni(e, s), |&EN(s)| < /Le, where
EN(s) is defined in (26).

By the expressions of K}, and K}, in (D.3), the boundedness
of the basis function @(6),0 € [—t, 0], and the uniform con-
vergence of e;}’d,(s, @) from Lemma 15, it is seen that /CQ{](S, 0)
and ng(e) converge to zero uniformly in s € [s/,T] and 6 €
[—1, 0]. By the boundedness of the trajectory x(t) and u(t) from
Assumption 13, and the uniform convergence of e}, eN,, e ,,
Ky, and K, it is observed that ey(t,s) in (D.5) is uniformly
convergent to zero as N — oo. Consequently, Vs € [—oo, T]
and Ve > 0, there exists N(e, s) > 0, such that if N > Ng(e, s),
|EN(s)| < v/Le, where E/(s) is defined in (33d). Therefore, when
N > max (N7, Ng)

241
Omin(ON) \/&
where the last inequality comes from Assumption 11 and oy,in(®y)

denotes the minimal singular value of ®y. Since « is independent
of N, the proof is completed.

[Gn(S)] < (G.1)

€,

Appendix H. Proof of Lemma 18

The proof is inspired by Pang and Jiang (2021). Firstly, as-
suming the solution to (34) exists on the interval [s', T]. It is
shown that (36) holds on the interval [s’, T]. Indeed, let Zy(s) =
£2n(s) — £2n(s), and subtracting (34) from (32) yields

8Zn(5) = HN(2n(S)) — Hn(S2n(5)) + Gn(S),

Zy(T) = 0. (1)

Besides, for Zy(s) = £2n(s) — 2x(s), define the following differen-

tial equation
?SZN(S) = HN(L2n(s)) — Hn(2n(5)). (H2)
Zn(T)=0.

Obviously, Zy(s) = 0 is the solution to (H.2). Both the right hand
sides of (H.1) and (H.2) are locally Lipschitz in Zy(s) and Zy(s)
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respectively. Furthermore, according to Lemma 17, for any € > 0
and s € [s', T], there exists Nj(e, s), such that if N > N;(e, s),
|Gn(s)| < e. Therefore, by the dominated convergence theorem
and Sontag (1998, Theorem 55), there exists Ng(e,s’) > 0, such
that if N > Ng(e, §'), the following inequality holds

sup |Zn(s) < g(e), (H.3)

sels/,T]

where g(-) is a Ko-function (Khalil, 2002, Definition 4.2). There-
fore, supscv r11Zn(s)l < g(e) can be arbitrary small by setting N
large enough.

Next, we will show that the solution to (34) exists on the
interval (—oo, T] when N is large enough. Because $2y(s) exists
on (—oo, T], it is equivalent to prove that Zy(s) exists on the
interval (—oo, T]. For a fixed N > 0, the right hand side of (H.1)
is continuous in s and locally Lipschitz at Zy(T) = 0. Therefore,
according to Khalil (2002, Theorem 3.1), there exists Sy < T, such
that (H.1) has a unique solution on (Sy, T]. (Sy, T] is the maximal
interval for the existence of Zy(s), that is lims—>s;; |Z(s)| 0.
For the sequence {Sy}}2;, we will show that it is non-increasing
by contradiction. Let Ny < N, and assume Sy, < Sy,. Conse-
quently, SUDsefsy, T] |Zn, (s)| is finite. Since N, > Nj, it follows
from (H.3) that supse[squT]|ZN2(s)| is finite. This contradicts with
the assumption that Sy, is the escape time. Then, we will show
that limy_, o, Sy = —o0 by contradiction. Let S = limy_, o Sy, and
assume S > —oo. This implies that

lim (lim |ZN(5)|> =00 (H.4)
N—oo \s—>S+
However, it is seen from (H.3) that forany S <s' <T,

lim | sup |Zy(s)| | = 0. (H.5)
N—oo se[s’,T]

Therefore, (H.5) contradicts with (H.4). Consequently, limy_, o Sy
= —oo. This implies that the solution to (34) exists on the interval
se[s,T] when N — oo.

Appendix I. Proof of Theorem 19

According to Lemma 6 and (17), there exists T*(¢) > 0, such
that if T > T*(e),

[Uo(0) — vec(Ky)| < (L.1a)

N ™

Ivec(K1(0, 8)) — vec(KX(@))lloe < % (1.1b)

By Lemma 15 and (18), there exists Nj,(¢) > 0, such that if
N > Njy(e),

1UN(0)D(8) — vec(Ki(0. )00 < g (1.2a)

Following Lemma 18, there exists Nj;(e,T) > O, such that if
N > Nj,(e, T),

100(0) — Up(0)] < g

(1.3)

(TN (0) — UY(0)@()l0 < 3

Therefore, when T > T*(¢) and N > Nj(e, T) = max(Nj,(€), N
(e, T)), by triangle inequality, we have
Uo(0) — vec(K)| < 1Uo(0) — Ug(0)]

+ |Up(0) — vec(K3)| < e,
10Y(0)®(8) — vec(K; (6o

< (U} (0) — UY(0)2(6)l

+ U} (0)®(8) — vec(K;(0, 6))l

+ [lvec(K1(0, 6)) — vec(K;(0))ll« < €.
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Appendix ]. Proof of Corollary 20

Define the linear operators K* € £(M;, R™) and K e L(Ms,
R™) as
0
l(*z(t):Kgx(t)—i—/ K{(0)x:(6)de,
o J.n
() = Ro(O(t) + / R0, 0)x(0)d0,
-7
where z(t) = [x7(t), x/(-)]T € M,. Recalling the expressions of
the operators A and B in (2), and considering the equivalence
between (1) and (3), the closed-loop system of (1) with the
controller i(x;) is

2(t) = (A — BK*)z(t) + B(K* — K)z(t). J:2)

Since system (1) with the optimal controller u* is exponentially
stable at the origin (Remark 4), by Curtain and Zwart (1995,
Definition 5.1.1), there exist ¢ > 0 and w > 0, such that

IT(E)]l < ce™, J3)

where T*(t) is the Cy-semigroup (Curtain & Zwart, 1995, Defini-
tion 2.1.2) of the system

z(t) = (A — BK*)z(t). (J.4)

Then, according to Curtain and Zwart (1995, Theorem 3.2.1),
the Cy-semigroup of system (J.2), denoted as T(t), satisfies

1)l < cel—o+elIBI* =Rt (1.5)
7 * * [2) *
*By Iheorein 19,if T > T* =T (zﬁcusu) and N > NI =
N4(zﬁc||n||’T ), we have
1K = Ro(0)] < —— o,
2v/2c|B| 1.6)
A w .
IK;(0) = K1'(0, 0)lloo < —=——.
! ! =7 242c|B|
Considering the expressions of K* and K in (J.1), (J.6) implies
A w
IK* — K| < - J.7)
2¢|B||
Consequently, (J.5) implies,
)] < ce™ 3. (1.8)

By Curtain and Zwart (1995, Definition 5.1.1), the closed-loop
system of (1) with ii(x,) is exponentially stable at the origin.
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