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Abstract—In this paper, we have proposed a resilient rein-
forcement learning method for discrete-time linear systems with
unknown parameters, under denial-of-service (DoS) attacks.
The proposed method is based on policy iteration that learns the
optimal controller from input-state data amidst DoS attacks.
We achieve an upper bound for the DoS duration to ensure
closed-loop stability. The resilience of the closed-loop system,
when subjected to DoS attacks with the learned controller
and an internal model, has been thoroughly examined. The
effectiveness of the proposed methodology is demonstrated on
an inverted pendulum on a cart.

I. INTRODUCTION

Reinforcement learning (RL) outlines strategies for an
agent to adjust its actions when interacting with an unfamiliar
environment, aiming to fulfill a long-term objective [1].
Researchers from the control community have used ideas
from RL and adaptive/approximate dynamic programming
(ADP) [2], [3], [4], [5] to develop data-driven adaptive
optimal control methods to address the stabilization problem
of dynamical systems (see [6], [7], [8], [9], [10], [11],
[12]). As a generalization, the authors in [13] combined
ADP with output regulation theory for asymptotic tracking
and disturbance rejection, later subsequently extending this
framework to a data-driven approach for non-linear systems
in [14]. This approach has been extended to multi-agent
systems in [15], [16] and references therein.

However, the existing ADP studies usually rely on the
assumption that communication channels for control and
measurement are ideal, which makes the designed controller
vulnerable to cyberattacks. Consequently, it becomes crucial
to extend the analysis of control systems beyond stability and
robustness to include resilience, ensuring that systems can
effectively withstand and recover from cyber threats. When
a system is under DoS attack, the transmission of information
is blocked among networks [17], [18]. An explicit charac-
terization of DoS frequency and duration has been given
in [19] such that the closed-loop system remains robustly
stable under DoS attacks. Other research in this direction
can be found in [20], [21], [22], [23]. However, the authors
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in the aforementioned references consider neither model-free
controller design nor resilient analysis for the closed-loop
system under DoS attacks. Most recently, learning-based
approaches have been adopted in [24], [25], [26], [27] by
using RL, ADP, and extremum seeking to defend the closed-
loop system under adversarial attacks.

Most of the above-mentioned works have considered
continuous-time systems. Recently, researchers have begun
to explore learning-based approaches to study the resilience
of closed-loop discrete-time systems under DoS attacks.
In order to guarantee resilience under DoS attacks, many
authors have adopted data-driven predictive control [28], [29]
and adaptive control [30], [31] techniques to address the
problem of learning-based control to guarantee the resilience
of closed-loop discrete-time systems under DoS attacks.
In this paper, we address the data-driven optimal output
regulation problem for discrete-time systems with unknown
parameters under DoS attacks using RL and ADP. The
problem of output regulation focuses on the development of
a feedback control law that ensures asymptotic tracking and
disturbance rejection. To our knowledge, learning-based op-
timal output regulation for discrete-time systems under DoS
attacks has been proposed for the first time. Our approach
enables direct analysis of the closed-loop system’s resilience
with the optimal controller and achieves an upper bound for
the DoS attack duration that the system can withstand while
maintaining stability

The rest of the paper is organized as follows. Section II
formulates the control objective and controller design in the
absence of DoS attacks. Section III provides the resilience
analysis of the closed-loop system under DoS attacks. Sec-
tion IV provides the online learning method using policy
iteration when the system is under DoS attacks. Section V
presents the simulation results. Finally, the conclusion and
future work are mentioned in Section VI.

Facts and notations: R denotes the set of non-negative
real numbers. Z, the set of non-negative integers. |z|
denotes the Euclidean norm of a vector « € R™. |A| denotes
the induced matrix norm for a matrix A € R™*". For a
square matrix A, o(A) denotes the spectrum of A. For a
real symmetric matrix A, A\, (A4) and Ay(A) denote the
minimum and maximum eigenvalues of A, respectively.
For a symmetric positive definite matrix P € R™*" and
r € R™, we have \,,,(P)|z|? < 2T Pz < Ay (P)|x|2. For
any function ¢: Z; — R"™, ||C]| = sup{|(x|: k € Z+} < 0.
A function a: Ry — R, belongs to class K if it is
continuous, strictly increasing and «(0) = 0. A function «
belongs to class K if it is of class X and also a(r) — oo as
r — oo. A function 8: Ry xRy — R, belongs to class L
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if, for each fixed k& > 0, the function ((., k) belongs to class
KC, and for each fixed r > 0, the function 5(r, .) is decreasing
and B(r,k) — 0 as k — oo. For any z, y € R", and for
any € > 0, we have zTy < %GITI + eyTy. ® indicates
the Kronecker product, vec(T) = [tf,t3, - ,t%]T
with t;, € R” being the columns of 7" € R™™,
For a symmetric matrix P € R™*™, vecs(P)

[P117 21712, e 72p1m7p227 2]?237 e 72p(m—1)m7pmm]T S
R(1/2)m(m+1) - for a column vector v € R™, vecv(v) =
[U%a V1V2, " ,V1Unp, U%a V2V3, " , Un—1Un, UWQL]T €
R(/2n(n+1)  For any two sequence of vectors
{ai}f;ko, {bi}f;ko, define =, = TI:VCCV(CL]CO+1) -
veev(ag, ), -+, veev(ag,) — veev(ag,—1)]  Jap = [ak, ®
T T
big, s ap, @i, s Jo = [veev(ag,), -+, veev(ag,))

I, and 0,, are the identity matrix and the zero matrix of
dimension n X n, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the following discrete-time cascade system:

Tpy1 = Awxy + Buy + Dwy, (1)
Wi41 = Ewk, (2)
er = Cxyp + Fwg, 3)

where k € Zy, A € R"*", B e R", C € R1*", D € R"*9,
E € R4, F € R*9 are constant matrices, e € R is the
measurement output, ux € R the control input, z;, € R™ is
the state, wi € R? is the state of the exosystem and ygqr =
—Fwy, is the reference signal.

Assumption 2.1: The pair (A, B) is stabilizable and the
eigenvalues of E are simple on the unit circle. ]
A-)X B

Assumption 2.2: rank( [ c 0

o(E).

Definition 2.1: A dynamic compensator of the form

Vk € Zy 4)

})zn—i—l,VAE

Zp+1 = G12i + Gaey,

is called an internal model of the system (1)-(3) if the pair
(G1,G2) incorporates an internal model of the exosystem

matrix £ [32]. O
Remark 2.1: In this work, we let G; = E, and choose
G-> € RY such that the pair (E,Gs) is controllable. O

In the absence of DoS attacks, we show in Lemma 2.1 that
it is possible to develop a state-feedback controller for the
discrete-time system (1)-(3) with an internal model (4) that
solves the output regulation problem. Consider the following
augmented system Vk € Z

Tr41 = Az + Bug + Dwg,
wiy1 = Bwy,
er = Cxp + Fwy,
Zp+1 = Bz + Goey,. )]
Lemma 2.1: Under Assumptions 2.1-2.2, if there exists a

state-feedback controller

U = —K;K:ij — KZZk;, \V/k S Z+ (6)

such that the closed-loop system matrix

A—-BK, —BK,
G2C E @

of the augmented system (5) is Schur. Then, the controller
(6) solves the output regulation problem.

Proof: Assumptions 2.1-2.2 guarantee the existence of a
unique pair (X, U) solving the following regulator equations

A=

XE=AX+BU+D, (8)
0=CX +F. ©))
Also, (9) combined with
XE=(A-BK,)X -BK,.Z+ D, (10)
ZE =FEZ+ Gy(CX + F), an

have unique solutions X and Z (see Lemma 1.38 in [32]).
This implies that X = Xand U = -K,X — K.Z. By
defining the error states as Ty = xy — Xwy and 2z = 2, —
Zwy, the following error system of (5) can be derived using
(10)-(11)

Fri1 = (A — BE,)i, — BK. 3,
Zp+1 = GoCZy + EZy,.

(12)
13)

Next, by defining Co = [T ZHT € R"9, and using (12)-
(13) one can obtain

Chr1 = Acl, (14)
er = CC, (15)
where A, = A— BK, C =[C 0], B=[BT 0]T, and
- A 0
A—{QQO E}’K_[K‘”” K,]. )
Since A. is Schur, we have lim;_,.,(x = 0 and
limg_, o € = 0. Thus, Lemma 2.1 is proved. |

As evident from Lemma 2.1, the output regulation properties
of (5) are guaranteed under a state-feedback controller of the
form (6). Furthermore, the optimal output regulation problem
can be posed as follows.

Problem 2.1: In order to obtain the optimal state-
feedback controller that solves the output regulation problem
for (5), the following dynamic programming problem is
solved

min Y (G QC + a7) (16)
k=0

st (o1 = Al + Biig, (17)

whereQ:QT>0, u = ur — Uwy. O

Problem 2.1 is a standard discrete-time linear quadratic
regulator problem. The solution to this problem is an optimal
feedback controller of the form

ij, = K", (18)

where K* = (14 BYP*B)"!BTP*A and P* = P*T »~ 0
solves the following discrete-time algebraic Riccati equation
ATP*A-P*+Q-ATP*BO+B"P*B)"'BTP*A=0.
(19)
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The optimal controller for (5) can be obtained Vk € Z_ as

uy =y + Uwy, = —Kjx, — K} 2. (20)

III. RESILIENCE ANALYSIS UNDER DOS ATTACKS

In this paper, we examine scenarios where DoS attacks
simultaneously impact both the measurement and control
channels of the augmented system described by (5). It is
assumed that, during DoS attacks, the transmission and
reception of data are both disrupted. Let {h, }mez, denote
the sequence of off/on transitions of DoS, where hy > 0.
The m™ DoS attack interval of length 7, is represented
as Jm = [hm,hm + Tm). For each interval [kq,ks], let
An(k1, ko) and Ap(ky, ka) denote the set of time instants
where communication is allowed and denied, respectively.
Thus, Ay (k1,k2) and Ap(k1, k) can be defined as follows

Ap(ky ko) = | T [ [k, k2, @1
meEZy
An(k1, ko) = [k1, k2] \ Ap(k1, k2). (22)

The following assumptions are made regarding DoS fre-
quency and DoS duration.

Assumption 3.1: (DoS Frequency) There exist constants
n > 1 and 7p > 0 such that Vke > k; >0,

ko — Ky

™D

n(ky, k2) <n+ (23)
where n(ki, k) denotes the number of DoS off/on transi-
tions occurring on the interval [kq, ko). O

Assumption 3.2: (DoS Duration) There exist constants
T > 1 and k > 0 such that Vky > k1 > 0,

ko — k
A (k1 k2)| < K+ =

(24)

where |Ap(k1, k)| denotes the Lebesgue measure of the set
Ap(ki, ko). O
When the system is under DoS attack, the control input

and internal model can be expressed Vk € Z_ as
up = —K*(,

Sm (k)

(25)

where k., () represents the most recent time instant at which
the updated information is received. Let €, = Ckm,(k) — (k
and ¢, = Chpiry — €k be the error values between last
successfully received values and actual values. Using the
optimal controller (25) and the internal model (26), the
following closed-loop system is obtained

From (27)-(29) the following error system can be obtained
* 1 D Iox\ ~ D o* = 0
Ch1 = (A— BK")¢, — BK™&: + [ GoCr } ;
€ — C’Ck (30)

In this work, we seek to give a lower bound on the DoS
duration parameter 7', such that output regulation is achieved
under DoS attacks. This is obtained in the following Theo-
rem.
Theorem 3.1: The error system described in (30) is glob-
ally asymptotically stable at the origin if the following
condition on the DoS duration parameter 7" holds

log(1 +wa)

T>1 :
* —log(1 —wy)

=T, €29

where
_ Am(Q) o — oy + 4das
(P27 NP
oy =14+ 2|K*"BTP*BK*|? 4+ 2|ATP* A,
az =2+4|K*"BTP*BK*? +4|DTP*D]*.
Proof: Defining the Lyapunov function V = CEP*Ck,
the following can be obtained
V(Ces1) = V(G) = G P Corr — CE PG
< = Am(Q)ICk|* — [V P*BE*{;
—VP*BK*&|?* — |VP*A{, — VP*Dég,|?
—|VP*BK*&, + VP* A2
—|VP*BK*¢ + V' P*Dé|?
—|VP*BK*€, + VP*Dé|?
+2(F AT P* A, + 2 K*T BT P* BK*(,,
+4ef K*T BT P* BK*€, + 4¢f DT P*Dgy,,
(32)

w1

where the inequality is obtained using completion of squares,
D = [0, (G2C)™]T. From (32) and considering the interval
Wi = [~ +Tm, hm+1) Where communications are normal,

ie., & = 0, we have V(1) — V(G) < —Am(Q)|C|%
which implies

V(&) < (1= w)f ™V (Ghprtrn ) Yk € Wi, (33)

During the interval Z,, := [hy,, hm + Tpn) Where communi-
cations are denied, the error is bounded by |ex| < |Cn,. |+|Ck|
and (32) is equivalent to V(1) =V (G) < (a14a2)|Cu>+
as|Ch,, |? + 2a2|Cp,, ||Ck|, which implies

V(Gip1) = V(&) < womax{V(G), V(Ch,)}, (34
Ce1 = (A= BK*)( — BK*e&, + Dwy + [ goe } , 27)  Then, Vk € Z,, we have
28k . .
_ V(C) < (14 w)* "V (). (35)
where ¢, = [z} z!|", D = [DT (GoF)"]" . Defining S 2) ) (G

Ce = (r — 2wy, where 2= [XT  ZT]T, we have Lemma 3.1: For all k € Z, V((;,) satisfies
& = gy = O = Chuy — G @8) V(&) < (1—w)MORI 4 wp)te OBV (g). (36)
- Proof: We use induction to prove the Lemma. Consider
€k = €k, — €k = Cép. (29)  the interval W_; = [0, hg]. (36) holds trivially if hy = 0. If
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hg > 0, over W_1, V(fk) obeys (33). Thus, (36) follows by
noting that, |Ax(0,k)| = k and |Ap(0,k)| =0, Vk € W_;.
Next, assume that (36) holds for the interval [0, hy],p € Z..
Then we have,

V() <

Next, consider the interval Z, = [hy, h; + 7;,). Then, over
Zp, V(Ci) obeys (35) as follows

_ wl)‘AN(Ovhp)l(l + WQ)IAD(Oﬁp)\V(EO)_ (37)

V(Gr) < (14 w2) "V (G,)- (38)
By substituting (37) in (38), (36) follows by noting that
IAN(0,k)| = [An(0,hp)l, [AD(0,K)] = Kk — hy +
[Ap(0,hy)|, Yk € Z,. Therefore, (36) holds for all k €
[0, Ay + Tp).

Next, consider the interval W), := [hy, + Tp, hp11). Then,
over W, V({'k) obeys (33) as follows Vk € W,,.

V(Ck) < (1 —w) "0V (Chpir, ) (39)
In particular, we have,
V(G) <@ —w)" " (14 wo)?V((h,).  (40)

Then, by substituting (37) in (40), (36) follows by noting
that [An(0,k)| = k — hp — 7 + [An (0, Pop)] (0,k)| =
Tp + |Ap(0, hp)|, VE € W,. Therefore, (36) holds for all
k € [0, hpy1], where p € Z.. [ |
Note that [An (0, k)| = k —|Ap(0, k)|. Then, from (36) and
Assumption 3.2, we have

1+(.L)2 i

(1 _wl)\AN((Lk)l(l+w2)\AD(0 R < [1 - } AF. (41)

where A = (1— wl) T (1+ws)T Under the condition (31),
A < 1 (for example, choose T = <, where § € (0, 1)).
Using (41), the following can be obtalned from (36)

V(G < {sz} Ak

o | AV (“2)

Thus, the following can be obtained from (42) and (30)

Gkl < Be(Iol, k),
|ek| S 56(‘50|7k)7

(43)
(44)

where

B (1ol k) = ¢ ] A AKG and

Anm (P*)
AM(P* AkKO

Be(lGol. ) = c\/[lizﬂ

IV. LEARNING-BASED DESIGN UNDER DOS ATTACKS

In this section, we propose an online strategy to learn
the optimal controller (20) while the system is under DoS
attacks. We assume that the system matrices A, B and D
are unknown. We use policy iteration to learn the optimal
controller. The idea of policy iteration [33] is to implement
both policy evaluation

ATPA; —Pi+Q+ K/ K; =0 (45)
and policy improvement
Kjv1=(1+B"P;B)"'BTP;A, (46)
where A; = A — BK;
Firstly, we rewrite the augmented system (5) as
Co1 = AjCe + B(ur + K () + Dwy, 47
Along the trajectories of (47), one can obtain that:
Cri1 PiChgr — G PG = [A;Gr + Blug + K;¢)
— T — — —
+ Dwk] P; [A]Ck + B(ug + KjCk) + Dwk] — C];erCk-
(48)
Then, using (45), we have:
Cra1 PiChar — G PG + G QG = 2¢, T up,
+ QCEFEKjCk - CEK_]TF2jKj<k + up Tojuy,
+ QC];F@U’U}]C + QU;C[‘@Q]"U}]C + w,?@;;jwb 49)

where Q; = Q + K K @U_f_l P;D, @2J_B P;D,
©3; = DTP;D, FljfBPA ngfBPB By
Assumption 3.2, there always exists a sequence {k;}52 such
that communications are allowed. Then, by collecting online
data, the following linear equation can be obtained from (49)

;05 = —J¢ cvee(Q;), (50)

where

\I/j = [Ec, —2J47u — 2J§,((In ®K]T), JKjC —Ju, —2Jw,§,
—2Jwu, —Jw], 0; = [Vecs(Pj)T,Vec(Flj)T,Vecs(ng)T,
vec(01;) T, vec(02;)T, vecs(@gj)T]T

One can solve (50) in the least square sense. Under certain
choices of E, the matrix J,, may not be full column rank. In
such cases, it becomes necessary to reduce the columns of
Jw such that W; is full column rank (see [34], [35]). Denote
\ilj as the matrix which contains the reduced columns of J,,
such that \Ifj is full column rank. Since \i/j has less number
of columns, the size of 6; is also reduced, which is denoted
as éj. Then, the least squares problem (50) can be written
as

\Ifjéj = —J<7<V6C(Qj). (51)

Assumption 4.1: There exists a s* € Z such that for all

*, and f ko <k cee < kg
are class /ICL functions. From (43) it is clear that (30) § = % andlorany sequence fip < f1 < < P
has global asymptotic stability property. Thus, we have (T T T T o T T 1) = n(n+1)
limp— o0 (2 — Xwy,) = 0, and limy,_,oc ey, = 0. This implies rank ([, Jeus Jus Ju¢s Jusus Jul) 5 "
asymptotic tracking and disturbance rejection. The proof is +14+ng+q+ q(g+1) _N (52)
thus complete. [ | 2 ’
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where N is the number of linearly dependent columns of

Jw. 0
Remark 4.1: A typical choice of s* can be s* > "2t |
n+1+ng+q+ 92D 0

Remark 4.2: Under Assumption 4.1, (51) has a unique
solution and the sequences {P;}52, and {K}}32 obtained
using Algorithm 1 converge to a neighborhood of the optimal
values P* and K™, respectively [34], [35]. O

Algorithm 1: Online Model-free Policy Iteration

1: Employ uj, = —Ky(;, + 1y as the input on the time
horizon [k, ks], where K| is initial stabilizing gain
and 7, is the exploration signal.

2: Compute ¥, until the rank condition in (52) is
satisfied. Let j = 0.

3: Solve for O_j from (51).

4. Compute Kj+1 = (1 + ng)_lflj.

5: Let j «— j + 1, repeat Step 3 until |P; — Pj_1| < €o,
j > 1, where €y > 0 is a predefined small threshold.

[ 1DboS ——Output = = =Reference

1---—- - -

y d
ol 1l

0 100 200 300 400 500 600
Time step

Fig. 1: Tracking and disturbance rejection under DoS attacks.
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0 —= Su]
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Fig. 2: Convergence of P; to P*.
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80 AN

60 .

Magnitude

40 ~

20 .

Number of Iteration

Fig. 3: Convergence of K; to K*.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we show the efficacy of the proposed
algorithm by applying it to an inverted pendulum on a cart
with the following system matrices,

1 AT 0 0 0
bAT AT
U LU v ey v 0 5_|4F
0 0 1 AT |’ 0 |’
0 bAT (M+m)gAT 1 _AT
1M 1M ]

D =10 001 0 001]', E=1,C = [1000),
F = -1, Go = 0.5, AT = 0.01. For the meaning and value
of the parameters please refer to [36]. The initial conditions
are given as xo = [0.5, 0, 0, 0], and wy = 1. The weight ma-
trices are chosen as ) = diag(1000, 1000, 1000, 1000, 15).
The DoS parameters are selected as k = 40, 7p = 15,
T = 10, and n = 1. The exploration signal in Algorithm 1
is chosen as the summation of sinusoidal waves with dif-
ferent frequencies. Using input-state data for k € [0, 100],
Algorithm 1 converges with a tolerance of ¢¢ = 0.5 to
a neighborhood of the optimal values P* and K* in five
iterations as shown in Figs. 2 and 3, respectively. The optimal
controller gain K* and the controller gain learned using
Algorithm 1 are given in Table L.

TABLE I: Comparison of controller gain values.

Index
Controller | 1 2 3 4 5
K* ‘ -153.9801  -99.7489  -283.9957 -56.1038  -2.6548
Ks ‘ -153.9802  -99.7490  -283.9958  -56.1038  -2.6548

We immediately apply the learned controller after k =
100. Fig. 1 shows the output and reference trajectories, with
the DoS attacks represented as shaded areas. The learned
controller can track the reference signal even in the presence
of DoS attacks. The DoS duration parameter can be obtained
as T* = 6.5295 x 108. Similar to [19], [24], these are
sufficient conditions to guarantee the resilience and stability
of the closed-loop system. In practice T* can be much
smaller. This is demonstrated by applying stronger DoS
attacks after 100 time steps.
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VI. CONCLUSION AND FUTURE WORKS

This paper investigates the challenge of achieving opti-
mal output regulation of discrete-time linear systems with
unknown parameters while facing denial-of-service (DoS)
attacks. We have proposed a resilient online policy iteration
algorithm capable of learning the optimal controller using
only the input-state data in the presence of DoS attacks. An
upper bound on the DoS duration is achieved to guarantee
the stability of the closed-loop system. Finally, the proposed
technique is applied to an inverted pendulum on a cart.

Future work will focus on extending this technique to
discrete-time non-linear systems.
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