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Abstract— This paper studies the distributed feedback op-
timization problem for linear multi-agent systems without
precise knowledge of local costs and agent dynamics. The
proposed solution is based on a hierarchical approach that
uses upper-level coordinators to adjust reference signals toward
the global optimum and lower-level controllers to regulate
agents’ outputs toward the reference signals. In the absence
of precise information on local gradients and agent dynamics,
an extremum-seeking mechanism is used to enforce a gradient
descent optimization strategy, and an adaptive dynamic pro-
gramming approach is taken to synthesize an internal-model-
based optimal tracking controller. The whole procedure relies
only on measurements of local costs and input-state data along
agents’ trajectories. Moreover, under appropriate conditions,
the closed-loop signals are bounded and the output of the agents
exponentially converges to a small neighborhood of the desired
extremum. A numerical example is conducted to validate the
efficacy of the proposed method.

I. INTRODUCTION

Distributed Feedback Optimization (DFO) is a general-
ization of distributed optimization and feedback-based opti-
mization, and seeks to achieve the optimal output agreement
of multi-agent systems using real-time measurements of the
agents’ response [25].

Considerable studies on DFO have focused on different
types of agent dynamics, such as linear systems [18], Euler-
Lagrange systems [23], and nonlinear systems with certain
structures [17]. It is worth noting that most of the studies
rely on accurate gradient information of the cost function.
However, in practical applications, obtaining precise gradient
information can be challenging. For example, mobile robots
can only measure the strength of a signal source without
access to the exact spatial profile in an unknown signal field
[4]. Extremum seeking (ES) techniques have been proposed
to approximate the gradient using only measurements of the
unknown cost in feedback-based optimization [13], and the
applications include Nash equilibrium seeking, finite-horizon
linear quadratic control, and delay compensation, to name a
few [6], [16], [21], [22]. For DFO, an estimation-based ES
method was proposed for unstable agent dynamics, but the
output agreement objective was not considered [8], and a
perturbation-based ES method was developed for multi-agent
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systems described as single integrators [15]. However, an ES
approach to handle the unknown cost functions in the DFO
design for general linear systems is still non-existent.

In addition, the exact knowledge of the agent dynam-
ics is usually assumed for most of the DFO design. For
example, all parameters of the agent dynamics should be
known a priori to obtain the controllers in [1], [18]. To
relax this restriction, some preliminary results have been
obtained for multi-agent systems taking the parametric strict-
feedback form [24], with partially linear models [28], and
with unknown control direction [27]. These papers still
require partial knowledge of system dynamics. On the other
hand, adaptive dynamic programming (ADP) is a systematic
methodology that can remove the need for accurate knowl-
edge of system dynamics and guarantee the optimality of the
controllers [11]. To the best of our knowledge, ADP has not
been applied to the DFO design for general linear systems
considered in this paper.

This paper investigates the DFO design for general linear
multiagent systems with unknown cost functions and agent
dynamics. The main contributions are summarized as fol-
lows. Firstly, a distributed reference generator is proposed in
conjunction with a perturbation-based ES mechanism, using
only measurements of the local cost. Secondly, a novel ADP-
based optimal tracking controller is synthesized without
requiring knowledge of model parameters for each agent.
Finally, under these data-driven approaches, an optimal out-
put agreement objective can be achieved with guaranteed
boundedness of the closed-loop signals.

Notations. Throughout the paper, σ(·) denotes the spec-
trum of a matrix. N = {1, . . . , N}. Op denotes the
zero matrix with size p. X = blockdiag[X1, X2, . . . , Xn]
denotes the block diagonal concatenation of the matrices
X1, X2, . . . , Xn. ⊗ stands for the Kronecker product. Ip
denotes the identity matrix with size p and p is omitted when
the size is clear from the context. [X1;X2] stands for the
matrix formed by concatenating X1 and X2 along the rows.
(a1, · · · ,an) denotes [a⊤1 , · · · ,a⊤n ]⊤ for vectors a1, · · · ,an.
X ≻ 0 (X ⪰ 0) denotes that X is real symmetric and
positive (semi-) definite. |·| denotes the 2-norm of a vector
or matrix.

II. PROBLEM FORMULATION

This section presents the DFO problem for general linear
multi-agent systems in the absence of prior knowledge on
cost functions and model prameters.

Consider a multi-agent system with N heterogeneous
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agents and agent i ∈ N is described by
ḋi = Sidi

ẋi = Aixi +Biui + Eidi

yi = Cixi +Diui + Fidi

(1)

where xi ∈ Rni , ui ∈ Rmi , di ∈ Rndi , and yi ∈ Rp are the
state, input, external disturbance, and output, respectively.
Ai, Bi, Ci, Di, Ei, Fi, and Si are unknown matrices. We
impose the following assumptions on (1).

Assumption 1: The exogenous disturbance di is unmea-
surable, the minimal polynomial of Si is available, and all the
eigenvalues of Si are simple roots of the minimal polynomial
with zero real parts.

Assumption 2: The pair (Ai, Bi) is stabilizable and for
each λ ∈ σ(Si) ∪ {0},

rank
([
Ai − λI Bi
Ci Di

])
= ni + p. (2)

Remark 1: Assumptions 1 and 2 are standard in solving
robust output regulation problems in the presence of para-
metric uncertainties and external disturbances [3], [5], [9],
except that (2) holds when λ = 0, indicating the system
capability of tracking a constant reference input [9, Remark
1.12]. This capability is further utilized for tracking control
synthesis.

The communication topology among the agents is repre-
sented by a directed graph G, which consists of N nodes,
an edge set E ⊆ N × N , and a weighted adjacency matrix
A = [aij ]N×N . In addition, (i, j) ∈ E is referred to as the
edge from i to j and aij > 0 if (i, j) exists, otherwise
aij = 0. The graph is undirected if A = A⊤. A path
exists from i1 to ik if there exists a sequence of edges
(i1, i2), . . . , (ik−1, ik). The graph is strongly connected if
there exists a path between any two nodes. The adjacency
matrix A is doubly stochastic if A1N = 1N and 1⊤

NA = 1⊤
N ,

where 1N = [1, . . . , 1]⊤ ∈ RN . The following assumption
is made on the graph.

Assumption 3: G is undirected, strongly connected, and A
is doubly stochastic.

A local cost function fi : Rp → R is unknown, but each
agent i can access the measurement of fi(·) on its output.
The objective is to regulate each agent’s output yi toward
a common value y∗ that minimizes a global cost function
f =

∑N
i=1 fi. We impose the following assumption on the

cost functions.
Assumption 4: For each i ∈ N , fi is twice continuously

differentiable and there exists a positive constant µ such that

(b1 − b2)
⊤(∇f(b1)−∇f(b2)) ≥ µ|b1 − b2|2 (3)

for all b1, b2 ∈ Rp.
By (3), y∗ is unique. Since the gradient ∇f(·) is not

available, exploration noise is used to obtain its approxima-
tion. Due to the existence of the exploration noise, achieving
exact convergence of yi to y∗ is challenging, and a less
ambitious objective is pursued here in the sense of semi-
global practical stabilization. Namely, for the multi-agent
system (1) with initial conditions in a prescribed compact

set and for any given number ε > 0, assuming Assumptions
1 to 4 hold, design a distributed optimizer, that gives ri, and a
decentralized tracking controller ui such that the closed-loop
signals are bounded and

lim sup
t→∞

|yi(t)− y∗| < ε (4)

for each i ∈ N .

III. DATA-DRIVEN APPROACHES

This section proposes hierarchical data-driven approaches
to address the DFO problem. First, a distributed reference
generator is pursued in conjunction with an ES mechanism
for optimum searching. Then, an ADP-based optimal track-
ing controller is developed to regulate the outputs toward the
designed reference signals.

A. Distributed Reference Generator

We employ the following algorithm to search for the
minimizer y∗: for i ∈ N ,

ṙi =
∑
j∈Ni

aij(rj − ri + qj − qi)− gi(yi)

q̇i =
∑
j∈Ni

aij(ri − rj)
(5)

where Ni denotes the neighbor of agent i, ri is the reference
signal, qi is an auxiliary variable, and gi(yi) is an estimate
of the gradient. Equation (5) is revised from [30], and in
the original setting, gi(yi) = ∇fi(ri) and ri(t) converges to
y∗ as t tends to infinity. Moreover, the convergence result
still holds when gi(yi) = α∇fi(ri) where α is a small
enough positive constant. This result stems from a time-scale
separation property, and we are inspired to use the following
ES mechanism: for j = {1, . . . , p},

gij(yi) = aδwfi(yi)sin(wijt) (6)

where a, δ, and w are parameters to be designed, and wij =
ww̄ij ∈ R with w̄ij ∈ R and w̄ij ̸= w̄ik if j ̸= k. Let
gi(yi) = (gi1(yi), . . . , gip(yi)). In addition, for i ∈ N , a
perturbed reference yri is defined as

yri = ri + asinwit (7)

where wi = (wi1, . . . , wip), and sinwit =
(sinwi1t, . . . , sinwipt). Equations (6) and (7) are developed
based on [13], [26], in which sinusoidal signals are exploited
to explore the gradient information. This mechanism is
effective assuming yi(t) = yri (t) for t ≥ 0. To approximate
this condition, we subsequently introduce a tracking
controller to steer yi towards yri .

B. Optimal Tracking Control

This section develops an optimal tracking controller for
each agent without prior knowledge of the parameters in
(1). Treating yri as a constant, we design a reference tracking
controller such that yi converges to yri asymptotically [19].

We employ an internal-model-based control design [3], [9]
as follows: for i ∈ N , let λκi + b1λ

(κi−1)+ · · ·+ bκi−1λ be
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the minimal polynomial of Ai0 = blockdiag[Op, Si]. Then,
a controllable pair (Φi, σi) can be defined as

Φi =

[
0 Iκi−1

0 [−b(κi−1), . . . ,−b1]

]
and σi = (0, . . . , 0, 1) ∈ Rκi . Then, Gi1 =
blockdiag[Φi, . . . ,Φi] and Gi2 = blockdiag[σi, . . . , σi],
which contain p copies of Φi and σi, respectively. The
dynamic state feedback controller is described as

żi = Gi1zi +Gi2ei

ui = Kixic
(8)

where ei = yi − yri is the tracking error, xic = (xi, zi), and
Ki = [Ki1,Ki2] with Ki1 ∈ Rmi×ni is chosen such that
Aic = Aio +BioKi is Hurwitz with

Aio =

[
Ai 0

Gi2Ci Gi1

]
, Bio =

[
Bi

Gi2Di

]
.

By Assumption 2, the pair (Aio, Bio) is stabilizable [9,
Lem. 1.26], which ensures the existence of Ki. Then, Ki

can be determined by solving the following linear quadratic
regulator problem:

min
ui

∫∞
0

(x⊤icQixic + u⊤i Riui)dt

s.t. ẋic = Aioxic +Bioui
(9)

where Qi, Ri ≻ 0. One solution P ∗
i of the following

algebraic Riccati equation

A⊤
ioP

∗
i + P ∗

i Aio +Qi − P ∗
i BioR

−1
i B⊤

ioP
∗
i = 0 (10)

defines a stabilizing control law ui = −K∗
i xic with K∗

i =
R−1
i B⊤

ioP
∗
i , which is also the optimal solution of (9). We

have the following lemma on P ∗
i .

Lemma 1 ( [14]): For the differential Riccati equation

Ṗi = A⊤
ioPi + PiAio +Qi − PiBioR

−1
i B⊤

ioPi (11)

with Pi(t0) ⪰ 0, lim
t→∞

Pi(t) = P ∗
i .

Lemma 1 provides a way of solving P ∗
i using (11), but

this process relies on exact knowledge of Ai, Bi, Ci, and Di.
This restriction can be relaxed by the ADP techniques [2].
Since the minimal polynomial of Si is available, a matrix Ŝi
exists such that

v̇i = Ŝivi, di = Livi (12)

where vi is a measurable signal and Li is an unknown matrix
(see [7, Remark 1]). Substituting (8) and (12) into (1) gives

ẋic = Aioxic +Bioui +Mivi + ŷri (13)

where Mi = [EiLi;Gi2FiLi] and ŷri = [0;−Gi2]yri . For any
Pid ⪰ 0, along the solution of (13),

d

dt
(x⊤icPidxic) = 2(Aioxic +Bioui +Mivi + ŷri )

⊤Pidxic

=x⊤icZixic + 2u⊤i RiKidxic

+ 2v⊤i M
⊤
i Pidxic + 2ŷr⊤i Pidxic

where Zi = A⊤
ioPid + PidAio and Kid = R−1

i B⊤
ioPid, and

the integration of the equation from Tk to Tk+1 is

x⊤icPidxic|
Tk+1

Tk
=

∫ Tk+1

Tk

x⊤ic⊗x⊤ic dt vec(Zi)

+ 2

∫ Tk+1

Tk

x⊤ic⊗(Riui)
⊤ dt vec(Kid)

+ 2

∫ Tk+1

Tk

x⊤ic⊗v⊤i dt vec(M⊤
i Pid)

+ 2

∫ Tk+1

Tk

x⊤ic⊗ŷr⊤i dt vec(Pid)

(14)

where vec(·) denotes vectorization of a matrix. For a se-
quence of times T0 < T1 < · · · < Ts, by (14),

Θi

 Z̄i
vec(Kid)

vec(M⊤
i Pid)

 = Dxicxic P̄id − 2Ixicŷri
vec(Pid) (15)

where Θi = [Ix̄ic
, 2IxicRiui

, 2Ixicvi ] and related definitions
can be found in [20]. The following assumption is imposed
to ensure that the solution of (15) is unique.

Assumption 5: Θi is of full column rank.
To guarantee Assumption 5, one can inject an exploration

noise into ui or yri when collecting the online data [2], [11].
Under Assumption 5, for any given Pid, Zi and Kid can
be solved from (15) and used to compute hid(Pid) = Zi +
Qi−K⊤

idRiKid. Thus, we can define and solve a differential
equation Ṗid = hid(Pid) to get P ∗

i .
Proposition 1: Under Assumption 5, for the differential

equation Ṗid = hid(Pid) with Pid(t0) ⪰ 0, lim
t→∞

Pid(t) =

P ∗
i and lim

t→∞
Kid(t) = K∗

i .

Remark 2: Since solving Ṗid = hid(Pid) with Pid(t0) ⪰
0 does not explicitly depend on the unknown matrices, but on
the measurements of xic(t), ui(t), vi(t), and yri (t) for some
time, this process is non-model-based. A policy iteration
algorithm can also be developed under appropriate conditions
(see [20, Sec. IV-A]).

Remark 3: To summarize, the entire procedure is as fol-
lows: first, each agent i collects the online data to compute
Ki of (8) by the ADP algorithm, then, each agent i uses (8)
and (7) governed by (5) and (6) to execute the ES process.

IV. CLOSED-LOOP ANALYSIS

This section analyzes the stability properties of the closed-
loop system using the distributed reference generators and
the proposed tracking controllers. We first apply coordinate
transformations to formulate a two-time-scale model. Then,
we derive the stability result of the closed-loop system.

A. Coordinate Transformation

We present coordinate transformations to analyze the
reference signals and the tracking error dynamics. A matrix
U ∈ RN×(N−1) exists such that T = [1N/

√
N,U ] is

orthonormal. Then, let Tm = T ⊗ Ip = [Ta, Td] with Ta ∈
RNp×p. Denote r = (r1, . . . , rN ) and q = (q1, . . . , qN ). We
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perform the coordination transformation r = Taξa + Tdξd
and q = Taϕa + Tdϕd to obtain

ξ̇a = −T⊤
a g(y) (16a)[

ξ̇d
ϕ̇d

]
= Ad

[
ξd
ϕd

]
−
[
T⊤
d

0

]
g(y) (16b)

ϕ̇a = 0 (16c)

where y = (y1, . . . , yN ), g(y) = (g1(y1), . . . , gN (yN )),

and Ad =

[
−Ud −Ud
Ud 0

]
with Ud = (U⊤(I − A)U) ⊗ Ip.

Moreover, the following lemma is derived.
Lemma 2: Under Assumption 3, Ad is Hurwitz.
Then, we analyze the behavior of the tracking error ei.

For i ∈ N , assume Ki has been chosen such that Aic =
Aio + BioKi is Hurwitz. By [9, Lem. 1.27], a matrix Xic

exists such that
XicAi0 −AicXic = Eic

CicXc + F̂i = 0
(17)

where Cic = [Ĉi, D̂i] with Ĉi = Ci + DiKi1 and
D̂i = DiKi2, F̂i = [−Ip, Fi], and Eic = [Êi; F̂i] with
Êi = [0, Ei]. Let x̃ic = xic − Xic(y

r
i , di). Then, using

this transformation and (17) yields ˙̃xic = Aicx̃ic − Hirẏ
r
i ,

ei = Cicx̃ic where Hir consists of first p columns of Xic.
Stacking all the above systems together gives

˙̃xc = Acx̃c −Hrẏ
r (18a)

e = Cx̃c. (18b)

where x̃c = (x̃1c, . . . , x̃Nc), yr = (yr1, . . . , y
r
N ),

e = (e1, . . . , eN ), Ac = blockdiag[A1c, . . . , ANc],
Hr = blockdiag[H1r, . . . ,HNr], and C =
blockdiag[C1c, . . . , CNc]. By combining (16a), (16b),
and (18a), and letting φ = (ξd, ϕd, x̃c), the closed-loop
system reads

ξ̇a = −T⊤
a g(y) (19a)

φ̇ = Asφ+Bsg(y) + awϑ (19b)

where As =

[
Ad 0
Hd Ac

]
with Hd = [HrTdUd, HrTdUd],

Bs = [Bd;Hr] with Bd = [−T⊤
d ; 0], and ϑ =

[0; 0; (w̄11cosw11t, . . . , w̄1pcosw1pt, . . . , w̄NpcoswNpt)].
When w is small, (19a) and (19b) present two time
scales [12, Sec. 11.2], where the ”boundary-layer” system
φ̇ = Asφ is exponentially stable at the origin. Hence, φ
quickly ”dies out”, which gives rise to a reduced system:

dξ̇ra
dτ

= −aδ 1√
N

N∑
i=1

fi(
1√
N
ξra + asinw̄iτ)sinw̄iτ (20)

where ξra is the reduced state, τ = wt, and w̄i =
(w̄i1, . . . , w̄ip) for i ∈ N .

Equations (19a) and (20) can be regarded as perturbed
gradient flows. In fact, let ξ∗a =

√
Ny∗ and ξ̃a = ξa − ξ∗a,

and inspired by [12, Sec. 10.4] and [26, Appendix A], we
can perform the change of variables:

ξ̃a = ψ − aδΨ(τ, ψ) (21)

where Ψ(τ, ψ) =
∫ τ
0

1√
N
ρ(s, ψ) ds with

ρ(s, ψ) =(
N∑
i=1

[fi(
1√
N

(ψ + ξ∗a)) + a∇fi(
1√
N

(ψ + ξ∗a))
⊤

sinw̄is]sinw̄is)−
a

2
∇f( 1√

N
(ψ + ξ∗a)).

Let ψ ∈ ∆0 with ∆0 denoting a compact set. Since Ψ and
∂Ψ/∂ψ are periodic functions over τ , they are bounded for
(τ, ψ) ∈ R×∆0. Then, a constant c0 exists such that when
aδ < c0, I − aδ(∂Ψ/∂ψ) is strictly diagonally dominant,
implying that ψ is uniquely determined and continuously
differentiable. Therefore, by (21),

dξ̃a
dτ

=
dψ

dτ
− aδ(

∂Ψ

∂τ
+
∂Ψ

∂ψ

dψ

dτ
). (22)

Let O(·) denote the order of magnitude [26, Sec. 2]. By the
mean value theorem, fi( 1√

N
(ψ+ ξ∗a))− fi(

1√
N
(ψ− aδΨ+

ξ∗a)) = O(aδ), ∇fi( 1√
N
(ψ + ξ∗a)) − ∇fi( 1√

N
(ψ − aδΨ +

ξ∗a)) = O(aδ), and (I −aδ(∂Ψ/∂ψ))−1 = I +O(aδ). Also,
there exists c1 > 0 such that 1√

N
|
∑N
i=1[fi(yi)−fi(

1√
N
ξa+

asinw̄iτ)]| ≤ c1|φ|. Using these relations and (22), we obtain

dψ

dτ
= − a2δ

2
√
N

∇f( 1√
N

(ψ + ξ∗a)) + aδη(τ, ψ, φ) (23)

where η = η1(τ, ψ)+η2(τ, ψ, φ) with η1 = O(aδ+a2δ+a2)
and |η2| ≤ c1|φ|. Indeed, (23) denotes a perturbed gradient
flow since dψ

dτ = − a2δ
2
√
N
∇f( 1√

N
(ψ+ξ∗a)) denotes a gradient

flow that is exponentially stable at the origin.

B. Stability Analysis

We first present the stability result of the system under
the coordinate transformation. Let ζ = (ψ,φ) and notice
that dim ζ = (2N − 1)p+

∑N
i=1(ni + pκi).

Proposition 2: For i ∈ N , assume Assumptions 1 to 4
hold and Aic is Hurwitz. Given any real numbers ∆2 >
∆1 > 0, there exist positive constants δ∗, a∗ such that for
every δ ∈ (0, δ∗) and a ∈ (0, a∗), a positive constant w∗

exists such that when w ∈ (0, w∗), there exist positive
constants β0, β1 such that, for all t0 ≥ 0 and |ζ(t0)| ≤ ∆2,
the solution of (23) and (19b) exists and satisfies:

|ζ(t)| ≤ β0|ζ(t0)|e−β1(t−t0) +∆1, ∀ t ≥ t0. (24)
Proof: The fact that Aic is Hurwitz along with Lemma

2 implies that As is Hurwitz. It follows that for the boundary-
layer system φ̇ = Asφ, |φ(t)| ≤ |φ(t0)|e−λ1(t−t0)), ∀t ≥ t0
with φ(t0) ∈ Rdimζ−p for some λ1 > 0. Similarly, for the
reduced system (23) with φ = 0, let Vr(ψ) = ψ⊤ψ and it
follows that V̇r(ψ)/w ≤ −a2δµ

N |ψ|2 + 2aδ|ψ||η1|, where we
used (3). Furthermore, let ∆0 = {ψ||ψ| ≤ ∆2+∆1}, then a
positive constant c2 exists such that |η1| ≤ c2(aδ+a

2δ+a2)
for (τ, ψ) ∈ R × ∆0. By choosing δ∗ > 0, a∗ > 0 such
that δ∗ + a∗δ∗ + a∗ ≤ (1−ε1)µ∆1

6Nc2
with ε1 ∈ (0, 1) and

a∗δ∗ < c0, we obtain that when |ψ| ≥ ∆1/3, V̇r ≤
− ε1µa

2δw
N Vr. Therefore, the solution of the reduced system

satisfies |ψ(t)| ≤ max{e−θ1a2δw(t−t0)|ψ(t0)|,∆1/3} with
θ1 = ε1µ

2N , ∀t ≥ t0, |ψ(t0)| ≤ ∆2.
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Moreover, the solutions of (19b) and (23) are close to
the solutions of the boundary-layer system and the reduced
system as w → 0 on compact time intervals [12, Th. 11.1].
By [29, Th. 1], there exists a positive constant w∗ with w∗ ≤
λ1

θ1a2δ
such that when w ∈ (0, w∗), for all t0 ≥ 0, |φ(t0)| ≤

∆2, and |ψ(t0)| ≤ ∆2, the solution of (19b) and (23) exists
and satisfies: ∀ t ≥ t0, |φ(t)| ≤ |φ(t0)|e−λ1(t−t0)) + ∆1/3,
|ψ(t)| ≤ e−θ1a

2δw(t−t0)|ψ(t0)| + 2∆1/3. Therefore, using
these estimates and the upper bound of w∗ gives (24) by
letting β0 = 2 and β1 = θ1a

2δw.
We next present the stability result of the original system.

Let r̃ = r−1N⊗y∗, q̃ = q−Taϕa, and x̃cl = (x̃1cl, . . . , x̃
N
cl )

with x̃icl = xic −Xic(y
∗, di) for i ∈ N . Note that ϕa(t) =

ϕa(t0) for all t ≥ t0 by (16c).
Theorem 1: For i ∈ N , under Assumptions 1 to 4, assume

each agent i modeled by (1) uses the control law (8) where
Ki is chosen such that Aic is Hurwitz, and the perturbed
reference signal (7) governed by (5) and (6). Given any
positive real numbers ∆∗

1, ∆∗
2, and ε, there exist positive

constants δ∗1 , a
∗
1 such that for every δ ∈ (0, δ∗1) and a ∈

(0, a∗1), a positive constant w∗
1 exists such that when w ∈

(0, w∗
1), there exist positive constants α0, α1 such that, for

all t0 ≥ 0 and |(xi(t0), zi(t0), di(t0), ri(t0), qi(t0))| ≤ ∆∗
2

with i ∈ N , the solution of (1) and (5) exists and satisfies:

|χ(t)| ≤ α0|χ(t0)|e−α1(t−t0) +∆∗
1, ∀ t ≥ t0, (25)

where χ = (r̃, q̃, x̃cl), and (4) is satisfied.
Proof: By the change of variables: r = Taξa + Tdξd,

q = Taϕa + Tdϕd, x̃ic = xic − Xic(y
r
i , di), (21), and (7),

we obtain ψ = T⊤
a r̃ + aδΨ, ξd = T⊤

d r̃, ϕd = T⊤
d q̃, and

x̃c = x̃cl − Hr(r̃ + asinw̄τ). It follows that |ψ| ≤ |r̃| +
aδ|Ψ|, |ξd| ≤ |r̃|, |ϕd| ≤ |q̃|, and |x̃c| ≤ |x̃cl| + |Hr|(|r̃| +
a
√
Np). Therefore, for the prescribed ∆∗

2, there exist positive
constants c∗0,∆2 such that when aδ ≤ c∗0, |ζ(t0)| ≤ ∆2. For
any 0 < ∆1 < ∆2, by Proposition 2, we can generate the
tuple (a∗, δ∗, w∗) as an upper bound of (a, δ, w) such that the
solution of (19b) and (23) exists and satisfies (24). Moreover,
using the results of Proposition 2, the boundedness of Ψ,
and the change of variables, we can obtain (25) and (4) by
choosing α1 = β1, appropriate α0, ∆1, and small enough
a∗1, δ

∗
1 , w

∗
1 .

Remark 4: We have solved a semi-global practical sta-
bilization problem since ∆∗

2 can be made arbitrarily large
and ∆∗

1 can be made arbitrarily small [10, Sec. 12.1]. By
(7) and (25), the closed-loop signals are bounded and the
output y exponentially converges to a neighborhood of the
desired extremum 1N⊗y∗. Given ∆∗

1, ∆∗
2, and ε, the control

objective can be achieved by first reducing a, δ sufficiently,
and then reducing w sufficiently for fixed a, δ. On the other
hand, a smaller ε or ∆∗

1, or a larger ∆∗
2 requires smaller

a, δ, w, which reduces the speed of convergence as α1 =
θ1a

2δw. This trade-off aligns with the result in [26].

V. SIMULATION RESULTS

We consider a rendezvous problem where four UGVs co-
operate to gather at an optimal position. The communication
topology of the UGVs is described by an undirected grid
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Fig. 1. Convergence of Pid(t) and Kid(t).

graph and each non-zero component of the adjacency matrix
is 0.5. Let yi = pi ∈ R2 denote the output (position) of agent
i, and the following problem is considered:

min
p1,··· ,pN

4∑
i=1

|pi − pi(0)|2

s.t. pi = pj for i, j ∈ N

where p1(0) = (0, 0), p2(0) = (0, 2), p3(0) = (2, 2), and
p4(0) = (2, 0) are the initial positions. The optimal position
can be computed at y∗ = (p∗x, p

∗
y) = (1, 1), but it is unknown

to all the agents. The dynamics of the UGV is described by

ẋi =

[
0 I2
0 −ϵiI2

]
xi +

[
0
ϵiI2

]
ui + Eidi (26a)

yi =
[
I2 0

]
xi (26b)

where xi ∈ R4, di ∈ R2 is generated by ḋi = Sidi with

Si =

[
0 −1
1 0

]
, and Ei = [I2;O2], for i ∈ N . In addition,

ϵi = 1.25 if i ∈ {1, 2} and ϵi = 1.33 if i ∈ {3, 4}. Model
parameters in (26a) and (26b) are unknown to the learning
algorithms. It can be checked that Assumptions 1 to 4 hold
for i ∈ N .

In the first stage, we apply the ADP method in Section
III-B to learn an optimal tracking controller for each agent.
For i ∈ N , let Qi = 10I , Ri = I , and yri = 0, and we
use a summation of sinusoidal signals as the control input to
collect the data, and Ŝi = S⊤

i to produce the fictitious signal
vi. Let d1(0) = (1, 0.5), d2(0) = (1, 1), d3(0) = (−1,−1),
and d4(0) = (−1, 1). The other initial conditions are zeros
except the initial positions. Consequently, Assumption 5 is
satisfied by collecting the data for 2.8s with a sampling time
of 0.01s. We compute P ∗

i and K∗
i for comparison, and the

convergence of Pid to P ∗
i and Kid to K∗

i is achieved for
i ∈ N . The convergence result is shown in Fig. 1. Notice
that it takes less than 0.2s to solve the differential equation
Ṗid = hid(Pid) with Pid(0) = 0 to get the approximate
optimal controller for i ∈ N .

In the second stage, we use the distributed reference
generators and the obtained tracking controllers to achieve
the optimal output agreement objective. We set a = 0.1,
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Fig. 2. Output trajectories of the UGV systems.

δ = w = 0.3, and w̄i1 = 1, w̄i2 = 1.5 for i ∈ N . The
output trajectories of all the agents are shown in Fig. 2. When
t ≤ 3s, each agent collects the online data and computes the
tracking control law (8). After that, each agent uses (8) and
(7) governed by (5) and (6) to search the extremum, and the
output of each agent converges to a neighborhood of y∗ with
ε ≤ 0.32.

VI. CONCLUSIONS

This paper addresses the distributed feedback optimization
problem for linear multi-agent systems without prior knowl-
edge of cost functions and model parameters. We introduce
an extremum-seeking mechanism for distributed reference
signal design and an ADP-based method for internal-model-
based optimal tracking control. Moreover, the proposed ap-
proach has achieved the semi-global practical stabilization,
which guarantees the exponential convergence of the agents’
output to a small neighborhood of the desired extremum. A
numerical example of UGV systems illustrates the effective-
ness of the proposed method. Our future work will consider
the extension to nonlinear multi-agent systems.
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