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ABSTRACT: Single-cell mass spectrometry (SCMS) is an emerging tool for
studying cell heterogeneity according to variation of molecular species in single
cells. Although it has become increasingly common to employ machine learning
models in SCMS data analysis, such as the classification of cell phenotypes, the
existing machine learning models often suffer from low adaptability and
transferability. In addition, SCMS studies of rare cells can be restricted by limited
number of cell samples. To overcome these limitations, we performed SCMS
analyses of melanoma cancer cell lines with two phenotypes (ie., primary and
metastatic cells). We then developed a meta-learning-based model, MetaPheno-
type, that can be trained using a small amount of SCMS data to accurately classify cells into primary or metastatic phenotypes. Our
results show that compared with standard transfer learning models, MetaPhenotype can rapidly predict and achieve a high accuracy
of over 90% with fewer new training samples. Overall, our work opens the possibility of accurate cell phenotype classification based

Single Cell MS

on fewer SCMS samples, thus lowering the demand for sample acquisition.

B INTRODUCTION

Cell heterogeneity—a substantial variation in the cell
appearance, behavior, biochemical capabilities, and gene
expression profiles”’”—is a fundamental characteristic of living
organisms. Arising from genetic diversity, environmental
influences, and stochastic processes,” ° cell heterogeneity is
of great significance in human health. Clinically, cell
heterogeneity leads to cancer therapy response variations,” "
making it a leading cause of therapeutic cancer failure,
including cancer spread, recurrence, and drug resistance.'”~ "
As such, it has become increasingly common to consider cell
heterogeneity in the development of new antitumor drugs,
alternative cancer therapies, and treatment for other dis-
orders."®

Phenotypic heterogeneity is a type of cell heterogeneity
defined as cells with the same genetic background but different
phenotypes. Phenotypic heterogeneity of cells have been
observed in genetic systems and human diseases, and it is
essential for disease diagnosis and treatment.” Melanoma
cancer cells, for instance, exhibit as heterogeneous phenotypes
(e.g, primary and metastatic phenotypes) when subjected to
different microenvironment perturbations such as drug treat-
ment.”"*"” Phenotypic heterogeneity of cells can be traced to
alterations in their molecular profiles. For example, compared
to primary cancer cells, differentially expressed protein
biomarkers and metabolites have been observed in metastatic
cancer cells (e.g., in melanoma,**! pancreatic,22 and breast®
cancers). Discriminating cells with different phenotypes can
improve our understanding of key biological processes in
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healthy and diseased tissues,”* ">’ and facilitate the monitoring
of the development, homeostasis, and course of diseases.

Modern mass spectrometry (MS) techniques are uniquely
suited for studying cell metabolomic profiles and cell
heterogeneity. Indeed, thousands of metabolites can now be
detected simultaneously in MS experiments from cell samples.
However, conventional bulk analysis cannot evaluate cell
heterogeneity. To acquire metabolomic profiles of heteroge-
neous sin§le cells and shine light into their biological
pathways,””*” numerous single-cell mass sgectrometry
(SCMS) technologies have emerged recently.”"™*® Among
them, the Single-probe SCMS technique is an ambient SCMS
method that has been used for studies of live cells,>*"~>°
including the heterogeneity of parasite infection of cells,>’
differential metabolomic profiles of cells with drug resist-
ance,””>” and variations in quantities of small molecules (e.g.,
anticancer drugs”*~>* and nitric oxide™) in single cells. In this
work, the single-probe SCMS method was used to analyze
single melanoma cancer cells with different phenotypes.

In tandem with the advancement of novel SCMS
technologies, new data analysis methods are needed to
effectively analyze the acquired data. While traditional
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Figure 1. Workflow of combined Single-probe SCMS experiments and data analysis using the MAML-based machine learning model,

MetaPhenotype.

statistical data analysis methods, such as t test and ANOVA
(Analysis of Variance), are still used as important tools to
analyze SCMS data (e.g, to determine species with
significantly different abundances in cells from different
groups), they are ill-suited to handling a large amount of
data from SCMS experiments of cells with complex biological
features. In their place, new machine learning-based methods
have emerged to extract essential information from such big
data, and guide the diagnosis,">" prognosis,**°>*>~** and
treatment®> ™%’ of cancers. In particular, a series of machine
learning algorithms, including artificial neural network (ANN),
support vector machine (SVM), principal component analysis
(PCA), and random forest (RF) have been utilized in MS
research.”*™7° Thanks to these developments, machine
learning algorithms have been used increasingly to analyze
MS data with a goal of developing a cancer diagnostic and
biomarkers discovery platform for image data analysis,”'~"*
single-cell classification,”**>°*”* and other applications.
However, machine learning applications in SCMS data
analysis can become challenging in some cases. Conventional
machine learning algorithms, particularly deep learning,
generally requires large training (labeling) data sets to achieve
a high-accuracy prediction.'® They have been employed to
analyze data generated from high throughout, vacuum-based
SCMS experiments such as matrix enhanced (ME)-SIMS (e.g.,
~2000 cells)’® and MALDI-TOF (e.g, 1544 cells).””
However, most ambient-based methods require rather careful
sample handling to minimize the environment perturbation on
live cell metabolism, resulting in relatively smaller numbers of
cells in each experiment. Some examples include as few as 108
cells from Single-probe SCMS,” 32 cells from microprobe CE-
ESI-MS,”® and 15 cells from nano-DESI MS.”’ In addition to
the limitation of ambient SCMS techniques, the SCMS data
size can be further limited by the availability of samples such as
stem cells* and circulating tumor cells.*® However, when
limited data are available for training, conventional machine
learning models can encounter overfitting: they perform well
for the training data set, but make poorer predictions for actual
sample SCMS data.*’ Thus, it is imperative to develop new
machine learning models to utilize limited amounts of SCMS
data and thereby improve the efficiency of data utilization.
To achieve this goal, it is desirable for us to leverage recent
developments in Few-Shot Learning,82 a new subfield of
machine learning that seeks to generalize from few training

examples. In practice, most few-shot algorithms are based on
meta-learning.83 Also known as “Learning to Learn,”**®° meta-
learning starts from the “meta-learning stage,” where one solves
multiple similar tasks (such as classification) at the same time.
This learning experience, thus, allows the resultant meta-
learning model to be rapidly adapted in the “adaption stage” to
handle new and similar tasks even with a few new training
examples. As such, meta-learning is expected to be suitable for
handling unseen tasks in SCMS studies with limited data,
including identifying cell subgroups, discovering hidden
structures of cells, and studying cell phenotypes (e.g., primary
and metastatic cells) for future therapy.

Among various meta-learning methods, model agnostic
meta-learning (MAML)®® has been especially wide-used in
many research areas, including image classification,”” natural
language processing (NLP),*® and robotics.* Algorithm-wise,
MAML stands out for its simplicity with only one set of model
parameters. In essence, a MAML model is trained for some
tasks using a small number of samples, and the trained model is
then be adapted to a new task within a small number of
optimization (such as gradient descent) steps.”® The
advantages and previous successful applications of the
MAML algorithm opened the door for its use to analyze
relatively small amounts of data from SCMS.

Nearly all existing MAML models employ convolutional
neural network (CNN) algorithms in the meta-learning and
adaptation stages. Different types of CNN models can be
constructed to analyze data with different dimensionalities. For
example, 1D-?°7%% 2D-,”*** and 3D-CNN”""" models are
used to extract features from 1D, 2D, and 3D data. To date,
most MAML-based works utilize the architecture based on 2D-
CNN, which is very effective in analyzing various 2D signals
such as images. However, 1D-CNN, which is easier to train
due to its less computational complexity,”” would be clearly
preferable for analyzing 1D signals, particularly when limited
training data are available.”” Recent studies demonstrated that
1D-CNN can indeed be used effectively in MS data analysis.””
Specifically, 1D-CNN was employed in cumulative transfer
learning to recognize patterns in a small MS data (e.g., train a
data set with only two outputs and classify up to 12 output
categories) to train a model and transfer this model to classify
cell phenotypes.” As such, a 1D-CNN-based MAML approach
for 1D-SCMS classification will constitute an exciting new area
of application for MAML.
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In this work, we constructed an MAML-based machine
learning model, which is termed MetaPhenotype, and
demonstrated its unique capabilities of classifying cell
phenotypes based on SCMS data acquired from phenotypical
melanoma cell lines (Figure 1). Our SCMS experiments were
performed using the Single-probe technique. The cell line
models used in this work included two different pairs of
melanoma cell lines, and each cell pair is isogenic but has two
different phenotypes: primary and metastatic cells. The SCMS
experiments were conducted using cells with and without
anticancer drug treatment. It was the first time that the MAML
algorithm with a 1D-CNN architecture was utilized to
construct a machine learning model for SCMS data analysis.
This novel tool allowed us to achieve a rapid adaptation of the
ML model using a limited amount of new training data from a
small number of single cells. The trained model demonstrated
remarkedly high transferability. Specifically, while the Meta-
Phenotype model was trained using one pair of primary/
metastatic melanoma cell lines without drug treatment, it can
be readily transferred to accurately classify the new data from
cells, including the same pair of cell lines after drug treatment
and a different pair of primary/metastatic melanoma cell lines
(with and without drug treatment), into two phenotypes:
primary and metastatic cells.

B METHODS

Experiments. Cell Culture. Two pairs of melanoma cancer
cell lines with different phenotypes, WMI11S (primary)/
WM266-4 (metastatic) and IGR39 (primary)/IGR37 (meta-
static), were used as cell models. WM115 and WM266-4 cells
were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM, Santa Cruz Biotechnology Inc., Dallas, TX)
supplemented with 10% fetal bovine serum (FBS, Life
Technologies, Grand Island, New York) and 1% penicillin-
streptomycin (Pen-Strep, Life Technologies, Grand Island,
New York) in 5% CO, at 37 °C. IGR39 and IGR37 cells were
cultured in Rosewell Park Memorial Institute 1640 Medium
(RPMI, Thermo Fisher Scientific Inc., Waltham, Massachu-
setts) with 10% FBS and 1% Pen-Strep in 5% CO, at 37 °C.

Cells were cultured to reach 80% confluency at approx-
imately 6 X 10° cells in 10 cm cultured dishes. After an
overnight culture, trypsinization was performed to detach cells
and then quenched with fresh completed DMEM or RPMI
medium supplemented with 10% FBS and 1% Pen-strep for
WM115/WM266-4 or IGR39/IGR37, respectively. The cell
suspension was counted using a hemocytometer and diluted
with fresh completed DMEM (with added 10% FBS and 1%
Pen-Strep) to a concentration of 1 X 10° cells in 1 mL of cell
media.

Vemurafenib Treatment. 12-well plates were used for cell
treatment prior to SCMS experiments. A glass coverslip (18
mm in diameter) was placed in each well prior to adding cell
suspension. Two mL of diluted cell suspension was added to
each well in the 12-well plate. The plate was incubated for 18—
24 h to enable cell attachment at 37 °C with 5% CO,.
Anticancer drug vemurafenib was dissolved in dimethyl
sulfoxide (DMSO) to prepare the stock solutions, and then
diluted to 1 yM in cell-containing wells. The cells were then
treated with vemurafenib at 0.5 uM for 48 h. After 48 h
treatment, the glass coverslips were removed from the 12-well
plates and rinsed three times with fresh DMEM (no FBS and
Pen-Strep Supplement) to eliminate all cell debris or residues
before performing SCMS experiments. The control cells were

also incubated for 48 h and subjected to analysis (Figure S1).
The cells were kept in fresh DMEM (no FBS and Pen-Strep
Supplement) during the experiment to ensure that the single
cells were alive.

Single-Probe SCMS. The Single-probe SCMS setup consists
of a Single-probe, two digital microscopes, a computer
controlled XYZ-translation stage system (CONEXMFACC,
Newport Co., Irvine, California), and a Thermo LTQ Orbitrap
XL mass spectrometer (Thermo Scientific, Waltham, Massa-
chusetts). A detailed description for the Single-probe
fabrication and the experimental setup was reported in our
previous studies.”*””"'%°71% Briefly, the Single-probe was
fabricated by combining a laser-pulled (P-2000 Micropipette
Laser Puller, Sutter Instrument Co., Novato, CA) dual-bore
quartz needle (outer diameter (OD) 500 pm; inner diameter
(ID) 127 pm, Friedrich & Dimmock, Inc., Millville, New
Jersey) embedded with a fused silica capillary (OD 10$ ym; ID
40 pm, Polymicro Technologies, Phoenix, Arizona) in one
channel and a nano-ESI emitter, which was produced from the
same fused silica capillary, in another channel. These three
parts were sealed using UV curing resin (Light Cure Bonding
Adhesive, Prime-Dent, Chicago, Illinois).

Glass coverslips containing cells were rinsed with fresh
DMEM or RPMI medium (no FBS supplement) and placed
on top of the XYZ—translational stage system for the Single-
probe SCMS measurement. The targeted single cells were
selected for analysis by carefully adjusting the stage system to
locate the single cell. The entire process is monitored and
guided by a digital microscope (Figure S2). Due to the small
size of cells, the Single-probe was designed to have small tip
sizes (~9 pm) to accurately analyze one cell at a time. The
organic solvent (acetonitrile with 0.1% formic acid) was
delivered through the fused silica capillary to extract cellular
contents, followed by ionization via the nano-ESI emitter and
real-time SCMS analysis (Figure S2). The Single-probe SCMS
was conducted with the following parameters: 200 nL/min
flow rate; mass resolution, 60 000; +4.5 kV ionization voltage;
1 microscan; 100 ms max injection time. MS/MS experiments
of single cells were conducted under the following parameters:
CID mode, 200 nL/min flow rate; mass resolution 60 000;
+4.5 kV ionization voltage; 3 microscan; 500 ms max injection
time.

SCMS Data Pretreatment and Statistical Analysis. The
SCMS data pretreatment was performed using our previously
established protocol.”*" SCMS data were exported with peaks
(m/z values and their relative intensities) generated by
Thermo Xcalibur Qual Browser 3.0 (Thermo Scientific,
Waltham, Massachusetts). Noise subtraction was performed
to remove peaks with relative intensity <3 X 10°. Background
signals generated from the organic solvent and cell culture
medium were subtracted using an in-house R script as
described in our prior work.””'”® Normalization of the ion
intensities to the total ion current (TIC) was conducted prior
to peak alignment. The normalized data were uploaded to an
online bioinformatics tool, Geena2,'’* for peak alignment
(with a mass tolerance of 10 ppm) and subsequent analysis.
Geena2 parameters were as follows: analysis range from 150 to
1500 m/z, maximum number of isotopic replicas (3),
maximum delta between isotopic peaks (0.01 Da), maximum
delta for aligning replicates (0.01 Da), and maximum delta for
aligning average spectra (0.01 Da). After the peak alignment,
missing values (50%) were removed using an in-house Python
script. The pretreated SCMS data were used for principal
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50 epochs. (a) Training workflow for one epoch. The prediction accuracy of MP models was represented as (b) area under the receiver operating
characteristic (AUROC) curve, (c) F-1 score, and (d) accuracy for test set three distinct MP’s architectures. The reported results are shown as an

average of 10 separated trainings with 1-, 5-, and 10-shot.

component analysis (PCA) using MetaboAnalyst 6.0.'"”> To
obtain ions with significantly different abundances (ie., fold
change (FC) > 2.0, and adjusted p-value threshold < 0.05)
among primary/metastatic cell groups, volcano plotsmé were
generated.

Design of MetaPhenotype. Data Set for MAML-Based
MetaPhenotype Training. Four different cell lines (i.e.,
IGR39, IGR37, WM115, and WM266-4) were used as models
in our studies. Both treated (by vemurafenib) and untreated
(control) cells in each cell line were analyzed. The SCMS data
collected from these cell line models were used to train and
test our meta-learning model.

In the meta-learning stage, we used SCMS data (m/z peaks;
normalized intensity I; phenotype label y) from a pair of
control cells, IGR39 and IGR37, as the meta-training data set
to build MetaPhenotype. These SCMS data were split into the
training set (m/z;, y;)™"", validation set (m/z;, y,)"4*%" and
test set (m/z; y;)**. Each training data point consists of the m/
z (MS peaks), I (normalized intensity), and y (phenotype label
as primary or metastatic) of an IGR39 cell and those of an
IGR37 cell. These training data points were further split into
support and query sets. We employed a K-shot learning setting
to train the MetaPhenotype. In each task, 1, 5, or 10 samples
were randomly picked from the support set, leading to 1-shot,
S-shot, or 10-shot models (Figure 2). For example, 1-shot
model indicates that one pair of SCMS data (i.e., from one
primary and one metastatic cell) was used to train the model.
Training, validation, and the test set consisted of multiple
tasks.

In the adaptation stage, we adapted the trained Meta-
Phenotype using the SCMS data obtained from other cell
groups (i.e, drug-treated IGR39/IGR37, control WM11S/
WM266-4, and drug-treated WM115/WM266-4). Since these
three pairs of cell lines were not used for MetaPhenotype
training, this step served to assess the transferability of the
model developed during the meta-learning stage. As in the
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meta-learning stage, 1- or S5-shot model adaptation was carried
out using the support/query set and then further evaluated
using other samples.

The selection of a suitable algorithm of the backbone, which
is the network used for feature extraction, is critical for the
performance of a machine learning model. We compared the
performance of MetaPhenotype and other three popular
machine learning al%orithms, namely MAML backbone
algorithm LeNet,'”” """ random forest (RF'''~'"), and
support vector machine (SVM®®''*~"'7) To make a fair
comparison, the training, validation, and test sets were the
same for each algorithm.

MetaPhenotype Framework In the meta-learning model,
we utilized MAML algorithm® that can be rapidly adapted to
new tasks of determining cell phenotype distribution.

[

i meta (ZVH ‘£( meta’ 15) (1)
where, a is the learning rate for inner loops, DS is the n-shot
support data set for task i, and L is the loss function (defined in
eq 3). After a fixed number of cycles (S cycles in this work) in
the inner loop, the meta parameter optimization switches to
the outer loop. There, the meta parameter 6 were updated as
follows

o «—

meta meta

— BV, L6, DY) 2)

where, /3 is the learning rate for outer loops and D%is an n-shot
query data set.

Because there are two types of cells in each task, the binary
cross entropy was used as the loss function

Lify) = 25 Mogfy:) + (1 =50
U y ~T

log(1 /! () 3)
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Figure 3. Meta-evaluation of the model transferability of MetaPhenotype. The performance of MetaPhenotype, classic convolutional neural
network (CNN, LeNet as architecture), SVM, and RF were evaluated for their classification accuracy and AUROC of different cell models,
including (a—c) untreated WM115/WM266-4, (d—f) treated WM115/WM266-4, and (g—i) treated IGR39/IGR37. Calculations of the accuracy

and AUROC were conducted using two training set sizes (1 and ).

where, x is the normalized m/z data, y is the cell phenotype for

support/query data points for the specific task T, and f,

re}))resents the output of the MetaPhenotype model from input
G

xV,

Machine Learning Training Details. To test the influence
of CNN architectures on MetaPhenotype performance, each of
three common architectures (i.e., Lecun, LeNet, and VGG9)
was separately used to construct the backbone of the
MetaPhenotype. These CNN architectures share the same
hyperparameters.”” ReLU was used as the activation function
in the convolution layers, whereas the sigmoid function was
used in the output layer for binary classification (i.e., primary
or metastatic cells). All models were trained by SGD
(stochastic gradient descent) with Adam optimizer and a
constant learning rate of 107°. For comparison, we trained
MetaPhenotype with 1, 5, and 10-shot scenarios. The total task
number for different shot training is summarized in Table S2.
To measure the classification performance of MetaPhenotype
models, we computed the area under the receiver operating
characteristic curve (AUROC), F-1 score, and prediction
accuracy after SO total epochs of training (Figure 2). For each
type of model, the binary classification accuracy is an average
of over 10 independent iterations.

B RESULT AND DISCUSSION

Single-Probe SCMS Results. In the current study, we
employed the Single-probe SCMS technique to investigate the
metabolomics of primary and metastatic melanoma pairs. The
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metabolic profiles obtained were then utilized for cell
phenotype classification using MetaPhenotype. To assess the
model’s reliability under the influence of microenvironmental
shifts, vemurafenib was used as a stimulus for cell treatment.
We analyzed four different pairs of primary/metastatic
melanoma cells: untreated IGR39/IGR37, treated IGR39/
IGR37, untreated WM115/WM266-4, and treated WM115/
WM266-4 (Figures S3—S6). The number of cells analyzed in
each group using SCMS experiments is summarized in Table
S2. Since our Single-probe SCMS technique has a relatively
lower throughput for analysis of live cells, only 27—58 cells in
each group were measured, generating a suitable case study
using MAML-based machine learning method.

The online databases (METLIN''® and HMDB''"?) were
used to tentatively label the detected species based upon their
m/z values. Detailed structure identification of metabolites,
such as MS/MS analysis at the single-cell level or LC/MS
measurement of cell lysate, offers valuable insights into
facilitate the discovery of metabolite biomarkers and the
understanding of drug resistance mechanisms. We labeled and
identified significant peaks (see Determination of Significant
Peaks) such as triglycerides (TG), ceramides (Cer),
sphingomyelin (SM), phosphatidylglycerol (PG), and phos-
phatidylethanolamine (PE) (Tables S4 and SS5). These
metabolites exhibited significantly different abundances
between primary and metastatic cells, suggesting that they
are potential metabolite biomarkers. By utilizing these
significant peaks, we were able to prioritize metabolite
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Figure 4. Using MetaPhenotype to reveal significant peaks contributing to cell phenotypes. Volcano plots were used to indicate differential
metabolic profiles of primary and metastatic melanoma cells with and without vemurafenib treatment. The comparison was performed for (a)
untreated IGR39/IGR37 (training set), (b) treated IGR39/IGR37, (c) untreated WM115/WM266-4, and (d) treated WM115/WM266-4 cells.
Each dot represents a metabolite with a fold change (FC) > 2.0 and 0.0S false-discovery rate (FDR) adjusted p-value. Common significant peaks
(numbers are shown) determined by both MetaPhenotype and volcano plots are illustrated as highlighted dots.

biomarkers without relying on tests of significance, including
the Student’s t test and p-value. These potential biomarkers
can then be identified in a target analysis. However, molecular
identification of these potential biomarkers has no significant
impact on the prediction performance of the MAML machine
learning model; further molecular identification will be
pursued in follow-up work.

Meta-Training. Our primary goal is to develop a new
machine learning model for cell phenotype classification using
limited amounts of SCMS data. We constructed an MAML-
based model, MetaPhenotype, and trained it using SCMS data
acquired from IRG39 (primary melanoma) and IGR37
(metastatic melanoma) cells without drug treatment. Inspired
by the recent work of Seddiki et al., in which three different
types of 1D-CNN blocks (i.e., Lecun, LetNet, and VGG9)
were used to MS data analysis,”” we used these three
architectures to construct MetaPhenotype. We then compared
their prediction accuracies using the two test sets. These three
algorithms contain different numbers of CNN blocks: Lecun,
LeNet, and VGG have four, five, and nine blocks, respectively.
To evaluate the performance of the MetaPhenotype model, the
final results were reported in three different metrics: AUROC
score, F1 score, and accuracy. The AUROC score represents
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the performance of MetaPhenotype under different thresholds.
F1 score reflects the combined precision and recall scores of
the model. Accuracy is used to evaluate the accuracy of the
model classification. To evaluate the MetaPhenotype model,
we used the 1-shot, S-shot, and 10-shot settings to train
MetaPhenotype. The meta-evaluation results indicate that
LeNet and VGG9 had comparable performance (i.e., with
similar results from all three metrics) for all three different shot
settings. However, with the LeNet-based model outperforming
the VGG9 model in the 5-shot setting, the LeNet algorithm
was selected as the backbone of MetaPhenotype due to its
efficiency and relatively higher accuracy.

Meta-Evaluation of Model Transferability. In the meta-
evaluation processes, we sampled three types of melanoma
cancer cells (treated IGR39/IGR37, untreated WMI11S5/
WM266-4, and treated WMI115/WM266-4) unseen to the
trained MetaPhenotype model to categorize each cell’s
phenotype into either primary or metastatic cell. The
transferability of this model can be reflected in the test results
using these new data. As shown in Figure 3, the prediction
accuracy of MetaPhenotype for WM (both control and
treated) and IGR (treated) cells were over 90% with only
five steps of training.
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Comparison with Other Methods. We compared the
performance of MetaPhenotype with other common machine
learning methods, including support vector machine (SVM),
random forest (RF), LeNet (MetaPhenotype backbone), and
ANN. In terms of the prediction accuracy metrics, the
MetaPhenotype model achieved an accuracy over 95%.
However, SVM, RF, and LeNet displayed a < 60% accuracy
(Figure 3). MetaPhenotype also outperformed these three
algorithms in terms of AUROC: the AUROC value is 1.0 for
MetaPhenotype with both training set sizes, whereas this value
ranges between 0.4 and 0.6 for the other three ML algorithms.
Although ANN provided excellent accuracy (92%) for treated
IGR39/IGR37 cells, poor performance was observed when
analyzing the untreated (66%) and treated (29%) WM115/
WM266-4 cells (Table S6 and Figure S7), indicating model
overfitting likely due to limited data size. We also tested two
cluster analytical methods, hierarchical clustering analysis
(HCA) and PCA, commonly used in SCMS data analysis.
Both methods are unsupervised and require no model training.
HCA provided acceptable accuracy (72%) for treated IGR39/
IGR37 cells but poor results for untreated (7%) and treated
(14%) WM115/WM266-4 cells (Table S7). As a dimension-
ality reduction and visualization tool, PCA is not generally
used by itself to provide prediction accuracy, but its
performance of grouping data can be evaluated by using the
score plot (Figure S8). Compared with WM115/WM266-4
cell pair, which were well separated by PCA, metabolites’
profiles of IGR39/IGR37 cell pair significantly overlapped.
Thus, PCA cannot effectively discriminate phenotypical cells
with relatively high similarities in metabolomic profiles such as
IGR39/IGR37 cells. Our results indicate that MetaPhenotype
surpassed all other methods and had superior performance for
cell phenotype prediction in the current studies.

Determination of Significant Peaks. Volcano plots are
commonly used to discover species significantly differing
between two groups of samples. In the current work, volcano
plots were generated to reveal differential metabolic profiles
between primary and metastatic melanoma cells, for both
control and vemurafenib treated groups, through pairwise
comparison (Figure 4). A large number of differential species
are shown in the volcano plots. These species were determined
by the FDR-adjusted p-value and fold change, which generally
require an adequate amount of data for statistically meaningful
explanation. In fact, MetaPhenotype can be used to capture
significant peaks, which are a small number of essential species
critical for determining cell phenotypes. If manually removing a
certain peak from the SCMS data set in the MetaPhenotype
model resulted in a decrease of >1% in the classification
accuracy of cell phenotype, this ion will be regarded as a
significant peak. These essential species were illustrated on
volcano plot as bold dots, which are in common with those
discovered using volcano plots, in Figure 4. We did not
investigate the biological significance of these species, as this
task is beyond the scope of the current work.

For IGR cells without drug treatment, 14 and 30 significant
peaks, which were the common features illustrated on the
volcano plots, were observed in the primary (IGR39) and
metastatic cells (IGR37) cells (Figure 4a). Upon drug
treatment, IGR39 and IGR37 cells rendered 3 and $3
significant peaks, respectively (Figure 4b). We performed
similar analyses for WM cell lines (WM11S and WM266-4),
and significant peaks are illustrated in Figure 4c,d for cells with
and without drug treatment, respectively. Clearly, the numbers
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of significant peaks were much smaller than those reported
from volcano plots, indicating that MetaPhenotype could
capture a small number of essential species that are critical for
discriminating cell phenotypes. Instead of investigating all
potential candidates provided by traditional methods (e.g,
volcano plot and t test), MetaPhenotype allows for more
focused studies of far fewer molecules, potentially improving
our understanding of unique molecular features and metabo-
lism of phenotypic cells.

Limitations of MAML-Based Machine Learning Mod-
els. MetaPhenotype was constructed based on the MAML
machine learning model. While this MAML-based model
worked reasonably well here, we note a few weaknesses. First,
due to the need for multiple gradient descent steps in the inner
loop and backpropagation through these updates in the outer
loop, it can be memory and computationally intensive for
larger samples. Second, the MAML model is sensitive to its
hyperparameters, requiring careful tuning of learning rates and
the number of updates. Finally, MAML works less well in
nonstationary environments, where task distributions change
over time and can become numerically unstable due to the use
of second-order derivatives. Given these challenges, it would be
desirable to go beyond MAML, a foundational approach in
meta-learning, and test various techniques addressing its
limitations.' ™'

B CONCLUSIONS

In the present study, we developed a meta-learning-based
model termed MetaPhenotype. Utilizing the Single-probe
SCMS technique, we analyzed melanoma cell lines with
primary and metastatic phenotypes before and after drug
treatment. SCMS metabolomics data of one cell pair were used
as the training and evaluation data sets, and the trained
MetaPhenotype model was then used to analyze the remaining
data. MetaPhenotype was demonstrated to show rapid
adaptation and high transferability, providing high prediction
accuracies of cell phenotypes using only small sample sizes. In
addition, MetaPhenotype allows selection of small numbers of
essential species critical for classification of cell phenotypes. It
is worth noting that applications of MetaPhenotype are not
limited to analyzing data for the primary/metastatic melanoma
cell lines obtained using our Single-probe SCMS experimental
setup. This software tool can be potentially used to analyze the
metabolomics data acquired from other SCMS experimental
platforms and cell systems.
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Data Availability Statement

Source code of MetaPhenotype and example data are available
on GitHub: https://github.com/songyuan93/MetaPhenotype.
Raw data of the Single-probe SCMS experiments can be
obtained from the MassIVE database (MSV000095551).
Source code of ANN model: https://github.com/
dandandan001/Single cell MS ANN_classify.
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