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• First data pretreatment platform specif
ically compatible with improvised SCMS 
data acquisition.

• New algorithm for alignment process 
with more accurate m/z results.

• Graphical user interface for easy use.
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A B S T R A C T

Mass spectrometry (MS) has been one of the most widely used tools for bioanalytical analysis due to its high 
sensitivity, capability of quantitative analysis, and compatibility with biomolecules. Among various MS tech
niques, single cell mass spectrometry (SCMS) is an advanced approach to molecular analysis of cellular contents 
in individual cells. In tandem with the creation of novel experimental techniques, the development of new SCMS 
data analysis tools is equally important. As most published software packages are not specifically designed for 
pretreatment of SCMS data, including peak alignment and background removal, their applicability on processing 
SCMS data is generally limited. Hereby we introduce a Python platform, MassLite, specifically designed for rapid 
SCMS metabolomics data pretreatment. This platform is made user-friendly with graphical user interface (GUI) 
and exports data in the forms of each individual cell for further analysis. A core function of this tool is to use a 
novel peak alignment method that avoids the intrinsic drawbacks of traditional binning method, allowing for 
more effective handling of MS data obtained from high resolution mass spectrometers. Other functions, such as 
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void scan filtering, dynamic grouping, and advanced background removal, are also implemented in this tool to 
improve pretreatment efficiency.

1. Introduction

Mass spectrometry (MS) has been playing an increasingly important 
role in the field of chemistry and bioanalysis since the invention of 
electrospray ionization (ESI) [1] and matrix-assisted laser desorptio
n/ionization (MALDI) [2]. Assisted with improved sensitivity, resolu
tion, and throughout of mass spectrometers [3] as well as advancement 
of computing power from hardware and software algorithm, MS has 
been broadly adopted in applications such as proteomics [4], metab
olomics [5], biomarker discovery [6], and drug discovery [7].

Among various experimental methods, liquid chromatography-MS 
(LC-MS) has especially been widely-applied, excelling in the separa
tion and quantification of complex mixtures and biological samples [8]. 
However, due to the obligatory sample preparation, some critical in
formation, such as spatial distribution of molecular species in tissues and 
cell heterogeneity, is inevitably lost from LC-MS measurements of bulk 
samples. To overcome disadvantages of traditional LC-MS techniques, 
novel MS methods have been developed. Among them, MS imaging 
(MSI) is capable of offering insights into the spatial distribution of 
compounds in tissues, providing knowledge in histopathology and drug 
distribution [9–11]. These imaging techniques utilize vacuum-based (e. 
g., matrix-assisted laser desorption/ionization (MALDI) [12], secondary 
ion mass spectrometry (SIMS) [13], and matrix-free laser desorptio
n/ionization (LDI) [14]) and ambient-based (e.g., desorption electro
spray ionization (DESI) [15], nanospray desorption electrospray 
ionization (nano-DESI) [16], and Single-probe [17]) methods for sam
pling and ionization. In addition, single cell MS (SCMS) has recently 
gained increasing popularity due to its capability of reaching cellular 
and subcellular resolution and performing cell heterogeneity analysis 
[18–22]. Compared with traditional bulk analysis, SCMS reveals the 
chemical profiles of individual cells, providing unique understanding of 
complicated cell activities controlled by numerous intracellular and 
extracellular factors. The existing SCMS methods use varied techniques 
for sampling and ionization, with a number of studies using methods 
similar to MSI with vacuum-based (e.g., MALDI [23], SIMS [24]) and 
ambient-based (e.g., DESI [25], laser ablation electrospray ionization 
(LAESI) [26], nano-DESI [27], Single-probe [28]), and other methods 
using other special sampling probes [29,30] or fluidic-based devices 
[31] for single-cell isolation.

With the application of newly developed mass spectrometers pos
sessing higher mass resolution, faster scan rate, and better sensitivity, 
the size of MS data has significantly increased, making development of 
effective data pretreatment algorithm increasingly important in modern 
MS bioanalysis. Numerous software packages have been designed to 
process the experiment data (e.g., peak picking, peak alignment, and 
intensity normalization) and to extract essential information from data 
acquired from traditional LC-MS (e.g., MZmine [32–34] and XCMS [35,
36]) and novel MSI (e.g., Cardinal [37] and Metaspace [38]) experi
ments. In fact, some of these software tools have been utilized to analyze 
certain types of SCMS data. For example, single cell proteomics exper
iments coupled with LC separation prior to MS analysis can be analyzed 
using conventional LC/MS proteomics data analysis method without 
major changes [39–41]. Similarly, MALDI-based single cell metab
olomics can be acquired using strategies similar to those in high-spatial 
resolution MALDI techniques [42–44]. However, very few attempts have 
been made to handle data acquired from ambient SCMS metabolomics 
[45–48]. In our previous studies, a generalized data analysis workflow 
was introduced for SCMS metabolomic data analysis. This workflow, 
which consists of data pretreatment, multivariate analysis, and univar
iate analysis, was adopted from traditional methods in LC-MS data 
processing [48]. However, unlike most well-established LC-MS and MSI 

experiments, which are generally conducted using programmed, 
pre-loaded sampling and data acquisition process, most ambient SCMS 
metabolomics studies of single cells are commonly associated with 
improvised single cell sampling and segmented signal due to experi
mental conditions and operations, causing incompatibility with existing 
data processing tools that were designed for LC-MS and MSI [49,50]. 
Therefore, the previously published workflow with traditional LC-MS 
data pretreatment approaches still have drawbacks such as lack of 
operational convenience and accuracy of m/z value determination. As 
any separation can potentially induce sample loss and dilution, in the 
SCMS studies of small molecules (e.g., metabolites), analyte separation 
is generally not performed prior to MS analysis, resulting in mass spectra 
with large numbers of peaks. Analysis of dense peaks heavily relies on 
the comparison between measured accurate mass from the spectra with 
calculated exact mass from known compound structures in the database 
[51]. Particularly, accurate mass measurements provide crucial infor
mation for molecular identification in untargeted metabolomics studies. 
Therefore, retaining all the valuable information obtained from high 
resolution mass spectra is a crucial need for SCMS metabolomics data 
pre-processing.

In actual MS experiments, the accurate m/z (mass-to-charge ratio) 
value of an ion is determined by the mean value of individual mea
surements containing the corresponding peaks. For MS analysis of un
known substances, such as in untargeted SCMS metabolomics studies, 
accuracy of m/z measurement cannot be defined without knowing the 
“correct” reference, making precision a more important factor in the 
process of data analysis. Among all data-processing steps (e.g., peak 
picking, peak alignment, intensity normalization, and mass correction), 
peak alignment is the step designed to correct the random variation in 
the measurement of the same peak, rendering the measured m/z values 
of the peaks for further advanced analysis (e.g., multivariate analysis, 
data visualization, and structure identification). Without peak align
ment, ion signals from the same substance can be mistakenly split into 
multiple peaks, while a poor alignment might merge ions from different 
substance into the same peak; both types of outcomes lead to a misin
terpretation of MS data. In addition, complexity of datasets induced by 
improper peak alignment not only alters the output of advanced data 
analysis methods, but also significantly increases the cost for further 
processing.

Among all developed peak alignment algorithms, binning is a 
method commonly used in numerous studies due to its simplicity. 
Briefly, for the convenience of data analysis, the entire range of the m/z 
values of a mass spectrum is divided into a large number of equidistant 
small chunks (i.e., bins) through a histogram-based method [52,53]. 
Although binning can significantly reduce the computational cost, this 
method possesses multiple intrinsic drawbacks [53–55]. First, the 
outcome of data processing is influenced by the parameters of bins, 
including bin width and bin position. Peaks could be artificially merged, 
split, or shifted due to unideal bin parameters, resulting in a loss of in
formation. Second, using linear equidistant bins can lead to unequal 
mass error (i.e., ppm) of MS measurement. For example, as a commonly 
used bin width, 0.01 Da mass difference corresponds to 100 ppm at 100 
Da, but 5 ppm at 2000 Da. Thus, binning cannot take full advantage of 
the capabilities of the high resolutions of mass spectrometers, which 
provide advantages of accurate measurements (i.e., m/z values) of 
numerous species in complex samples. Due to its intrinsic drawbacks, 
binning method cannot effectively extract molecular information from 
complex SCMS metabolomics data, which heavily rely on accurate mass 
measurement.

In this study, we introduce MassLite, a user-friendly, Python-based 
platform with graphical user interface (GUI) specifically designed for 
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SCMS metabolomics data pretreatment. Compared with the existing 
SCMS metabolomics analysis tools, this new software package possesses 
multiple advantages. First, this platform is robust to handle SCMS data 
acquired from intermittent acquisition processes, in which ion signals 
from individual cells are sequentially segmented. Second, MassLite can 
take full advantage of high-resolution mass spectrometers by main
taining high mass-resolution of peaks during peak alignment process. 
Third, automatic cell region selection is used to replace the existing 
labor-intensive, manual process to increase processing throughput. 
Fourth, the algorithms of peak alignment and background removal have 
been improved to be specifically compatible with SCMS metabolomics 
data. Last, the computational cost was significantly reduced with our 
purposed dynamic grouping method. Although the capability of this tool 
was demonstrated using the data generated from the Single-probe SCMS 
method performed using a Thermo Orbitrap XL mass spectrometer, data 
produced from other SCMS techniques and platforms can be converted 
to standard.mzML format and then processed by MassLite.

2. Method

2.1. Cell culture

In this study, a human colorectal carcinoma cell line (HCT-116) 
(ATCC, Rockville, MD, USA) was used as a model. Cells were cultured in 
McCoy’s 5A Medium (Fisher Scientific Company LLC, IL, USA). The 
medium was supplemented with 10 % fetal bovine serum (GE Health
care Bio-science Corp, Marlborough, MA, USA) and 1 % penicillin- 
streptomycin (Life Technologies Corporation, Grand Island, NY, USA). 
The cells were incubated at 37 ◦C in the presence of 5 % CO2. Once the 
confluence of the HCT-116 cells reached 80 %, the cells were passaged. 
Cells were transferred into 12-well plates, and a glass coverslip (18 mm 
in diameter) was placed in each well. 2 mL of diluted cell suspension 
(1x105 cells/well) were added to each well in the 12-wells plate, fol
lowed by overnight incubation to enable cell attachment.

2.2. SCMS experiment

SCMS experiments were performed using the established Single- 
probe SCMS technique as reported in our previously studies [28,46,56,
57]. A Single-probe was fabricated by embedding a solvent-providing 
fused silica capillary (O.D. 105 μm; I.D. 40 μm, Polymicro Technolo
gies, Phoenix, AZ), a nano-ESI emitter (pulled from the same fused silica 
capillary using a butane micro torch) into a dual-bore quartz needle 
(produced from dual-bore quartz tubing (O.D. 500 μm; I.D. 127 μm, 
Friedrich & Dimmock, Millville, NJ) using a laser micropipette puller 

(Sutter P-2000, Sutter Instrument, Novato, CA)). The Single-probe de
vice was coupled to a LTQ Orbitrap XL mass spectrometer (Thermofisher 
Scientific, San Jose, CA) (Fig. 1). The sampling solvent (acetonitrile with 
0.1 % formic acid) was continuously delivered (flowrate 200 nL/min) to 
the solvent-providing capillary. A glass coverslip containing cells was 
rinsed by fresh 0.9% (w/w) ammonium formate, and then placed onto 
the XYZ-translational stage (step size = 0.1 μm). Guided by a digital 
microscope (Shenzhen D&F Co., China), a target cell was selected and 
sampled by gradually moving the stage. Cellular metabolites were 
extracted by the liquid junction formed at the tip of the Single-probe, 
and immediately ionized and analyzed. MS analysis parameters are lis
ted as follows: ionization voltage +4.5 kV, mass range 200–1500, mass 
resolution 60,000 at m/z 400, 1 microscan, 500 ms max injection time, 
and automatic gain control (AGC, 1E6) on.

2.3. Data pretreatment

MS data obtained from the experiment must undergo pretreatment 
prior to further advanced analysis. For SCMS metabolomics data 
handled by our platform in this study, the data pretreatment includes 
format conversion, algebraic transformation, void scan selection, cell 
scan selection, peak alignment, background peak removal, and data 
exportation (Fig. 2). The entire data processing was performed using 
MassLite, except that data format conversion (i.e., from .raw to .mzML) 
was conducted through other existing tools. The converted data was 
imported into our platform, and algebraic transformation, which 
allowed us to use relative mass difference to describe the original m/z 
difference among peaks, was performed. Next, a void scan filter was 
applied to distinguish intermittent scans during the data acquisition 
process. Then, the filtered scans of each cell were grouped based upon 
the extracted ion chromatogram of selected cell markers. Afterwards, 
peak alignment was performed with dynamic grouping to correct the 
mass shift of peaks. Last, background peaks can be selected and removed 
prior to data exportation.

2.3.1. Data import
The SCMS raw data is complex as it contains a variety of different ion 

signals of cellular analytes and non-analytes (Fig. S1). To make MassLite 
compatible with SCMS metabolomics data acquired from all types of 
mass spectrometers, the algorithm in our platform was designed on basis 
of a universal MS data format, mzML [58]. For the Single-probe SCMS 
data tested here, the original file generated using a Thermo Orbitrap 
LTQ XL mass spectrometer was in .raw format, which was converted into 
the widely-used .mzML format using MSConvert incorporated in Proteo
Wizard [58–60]. The converted data was read using pymzML package in 
our Python platform to extract the m/z values and intensities of the 

Fig. 1. Setup of the Single-probe SCMS experiment.
Fig. 2. Schematic data processing workflow of MassLite.
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peaks. Peak picking was then conducted to obtain centroid peaks for 
each MS scan prior to further processing.

2.3.2. Algebraic transformation
As most MS studies utilize mass accuracy or mass measurement error 

(i.e., the difference between an individual measurement and the true 
value) in the unit of ppm, relative mass difference is likely a more 
straightforward way to describe the difference between two m/z values. 
In order to perform simpler peak comparison during the pretreatment 
process, we performed a scaled, dynamic logarithmic transformation to 
intuitively describe the relative mass difference in the unit of ppm. In 
addition, this algorithm reflects mass accuracy with respect to m/z 
values, minimizing the influence of mass range on peak comparison.
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When these two peaks are very close to each other, as generally observed 
in MS analysis with slight mass shifts from scan to scan, the absolute 
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When these two peaks are close enough to each other, Δppm →0. Given 
that lim

x→0
ln (1 +x) = x according to Taylor expansion, we have the 

following representation: 
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Pairwise Euclidean distance between transformed m/z values, i.e. 
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, can reflect the relative mass difference of the 

original m/z values in the unit of ppm, enabling fast processing and peak 
matching in the subsequent steps. In practical applications, a linear shift 
was included according to the lower limit of the mass range being 
detected.

2.3.3. Void scan removal
A typical ambient SCMS metabolomics dataset consists of informa

tive scans (i.e., signals of cellular analytes along with coexisting solvent 
background and culture media) and void scans (i.e., scans containing 
only instrument noise without identifiable species from cell analyte, 
solvent background, or culture media) (Fig. S1). The void scans are 
commonly included in data acquisition processes, mostly due to certain 

operations during experiments (e.g., cell sampling is paused or inter
rupted while data acquisition is continuously running). To automatically 
identify the void scans within the file, K-means, an unsupervised clus
tering method, was used to analyze intensity histogram of MS spectra for 
each scan. Because the intensity histogram reflects the general profiles 
of detected ions, significant changes of global pattern are expected be
tween informative and void scan signals. For the actual K-means input, 
options of Uniform Manifold Approximation and Projection (UMAP) and 
logarithmic scaling are provided for transformation of the intensity 
histogram to enhance the discrimination between void scans and other 
scans. TIC (total ion current) of the clusters generated by the unsuper
vised K-means method can be visualized in the GUI for inspection, and 
clusters matching the definition of void scans can be dropped to reduce 
workload for the subsequent processes.

2.3.4. Selection of MS scans of single cells
To further increase the throughput of SCMS data processing, we 

developed an algorithm to automatically differentiate scans represent
ing single cells from those from background such as solvent or cell 
culture media. First, a chromatogram was generated based upon the 
intensity of cell markers selected by users. For example, m/z 782.58 and 
760.56 are commonly detected ions in cells, and they were selected as 
default indicators of single cell detection (i.e., marker signals). Second, 
an initial Gaussian smoothing was performed for extracted ion chro
matogram (EIC) to avoid unideal splits of signals from each single cell 
due to signal fluctuation during the data acquisition process. Third, MS 
scans of cells and background were defined. After the maxima and 
minima of ion intensities of the selected markers in the MS scans were 
primarily found, a finer global search across the whole chromatogram 
was conducted, minimizing the generation of artificial peaks due to ion 
intensity fluctuation. A stricter intensity requirement for peak search 
within maxima found in the previous search was applied to account for 
possible peak splitting issue due to signal fluctuation in the EIC. In the 
current study, the regions containing marker signals ≥20 % (default 
value) of the local maxima were defined as cell regions, whereas region 
containing marker signals <5 % (default value) of the local maxima 
were regarded as background regions unless otherwise defined.

2.3.5. Peak alignment with dynamic grouping
Due to multiple factors (e.g., the intrinsic performance of instrument 

and fluctuation of ion signals and instrument conditions), mass shift 
generally occurs during MS analysis [61–63]. Because accurate m/z 
values provide important information for molecular identification, mass 
shift correction is critical in high resolution MS studies, in which mul
tiple ions with similar m/z values can be simultaneously detected. 
Inappropriate handling of mass shift may result in artifacts such as peak 
splitting, loss of peaks, or inaccurate m/z assignment. To compensate for 
the mass shift across different scans, peak alignment must be performed. 
For the ease of processing and precise m/z value description, centroiding 
on all peaks was performed, keeping only one m/z value of peak center 
and one intensity value for each peak. All centroid peaks along with 
their transformed m/z values from all imported scans were included for 
peak alignment. Hierarchical clustering was performed for observed 
peaks to find internal matching among themselves. The cluster size was 
set as double of the desired mass shift tolerance for hierarchical clus
tering, ensuring the coverage for each aligned peak is within the 
threshold. For example, if the maximum mass shift tolerance is less than 
5 ppm, a 10-ppm cluster size is adopted to guarantee that only peaks 
within ±5 ppm shift from the center will be included. Thus, the mass 
accuracy of peak alignment was guaranteed (e.g., within 5 ppm in the 
above example). With the algebraic transformation performed in earlier 
steps, simple one-dimensional Euclidean distance can be redeemed as 
the relative mass difference between the m/z values of different peaks. 
To reduce the cost of pairwise distance calculations in the hierarchical 
clustering process, we utilized “divide and conquer” strategy. In general, 
this strategy decomposes a given problem into multiple smaller 
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subproblems, and solutions to subproblems are then combined to solve 
the given problem. We developed a so-called “dynamic grouping” 
method to split the data in chunks, eliminating unnecessary comparison 
of peaks from different data chunks which accounted for most of the cost 
from direct comparison (Fig. 3). The ranked peaks are divided into 
multiple different groups and processed individually, reducing the cost 
as a function of the total number of groups (see “Cost reduction of dy
namic grouping” in the SI). To address potential peak splitting issues due 
to this dividing strategy, boundary checks, which compared data at the 
boundary between two adjacent chunks, were added to merge split 
peaks due to chunk division. This binning-free method can maintain 
higher mass resolution from the original data.

2.3.6. Background removal
During ambient SCMS measurement, particularly for live cell anal

ysis, interfering ions generated from impurities in solvent or species in 
cell culture media are generally detected along with cellular contents. 
To eliminate these artifacts in analysis, interfering ions should be treated 
as background and excluded. Thus, aligned peaks with their highest 
intensities in one of the background scan regions, which could be 
automatically determined in the cell scan selection step, were regarded 
as the background substance and subsequentially filtered from the data. 
Compared with the traditional binning method for background removal, 

our algorithm is capable of distinguishing peaks from background sub
stances and cell analytes, which possess similar m/z values, without 
prior knowledge of the cell systems.

3. Result and discussion

3.1. Graphical user interface

The graphical user interface (GUI) (Fig. 4) was built using tkinter 
package in Python. In our current design, the GUI has six major parts: 
data read-in, void scan filter, cell sorting, peak alignment, exportation 
filter, and debugging modules. Detailed description of each part is 
provided in the following context, and the user manual is included in the 
Supplementary Material.

3.2. Parameter optimization for void scan filter

Because the global spectral features of the void scans are significantly 
different from those of informative scans, which contain signal from 
cellular analytes and solvent background, the clustering was based on 
the intensity histogram, which can describe the overall feature of the 
entire MS spectrum. A series of different parameters needed for the 
generation of the intensity histogram were tested, along with two 

Fig. 3. Computational cost reduction by dynamic grouping. Cost of hieriarchical clustering is O(n2) due to pairwise comparison and distance matrix update. With 
dynamic grouping strategy, computational cost is largely saved by eliminating uncessary comparison between peaks from different chunks (white space off the 
diagonal line).

Fig. 4. MassLite graphical user interface. Six main modules are included.
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different techniques (i.e., logarithmic scaling and UMAP dimensionality 
reduction) aiming at enhancement of discrimination between void scans 
and other scans.

In our experience of analyzing SCMS metabolomics data of 
mammalian cells acquired using the Single-probe SCMS techniques, 
lipid signals are significantly increased when cellular contents are 
extracted and detected, especially in the range of m/z 700–800 Da [28,
64]. On the other hand, appearance of ions of cell analytes suppresses 
the base peak intensities in background scan, usually in the range of m/z 
350–550 Da. This trend is also expected in studies using other SCMS 
platforms. To ensure important features in the MS spectra, including 

both cellular analytes and background species, can be captured in the 
intensity histogram, we tested both 50-Da and 100-Da intervals to 
generate histograms from data in m/z 50–2000 Da. Our results indicate 
that although histograms with smaller intervals may retain more details 
of the spectra, the extra amount of information decreased the efficiency 
for machine learning classification, deviating from our purpose for quick 
detection. In contrast, larger intervals could possibly fail to capture 
changes in spectra features if the intensity of ions fluctuates within the 
same interval.

To perform clustering and acquire efficient identification of void 
scans, different strategies have been used to enhance discrimination 

Fig. 5. Test of descrimination enhancement techniques (logarithm scaling and UMAP) after histogram generation. Unsupervised clustering results in each plot are 
labeled in different colors. The interval is 50 Da and cluster number in K-means is n = 3 (i.e., Groups 1, 2, and 3). Results were obtained using (A) no scaling, (B) only 
logarithm scaling, (C) only UMAP, or (D) both logarithm scaling and UMAP. The clusters with the lowest ion intensities (Group 1 in B and Group 3 in C) are labeled as 
void scans. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Comparison between mspalign (MATLAB) and MassLite results. Peaks generated from mspalign function (by binning) possess inaccurate m/z values (due to the 
artifact of equidistant peaks (Δm/z = 0.9867)) and low S/N ratios (due to accumulated noise). MassLite provides aligned peaks with higher mass accuracy and higher 
S/N ratios.
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between void scans and other scans. Based upon previous observations 
in our Single-probe SCMS data, void scans usually contain lower signal 
intensities compared with other informative scans. Logarithmic scaling 
is likely a quick, feasible strategy to identify void scans. Although the 
original ion intensities can better reflect relative ion abundances, loga
rithmic transformations can reduce signal intensities’ differences for 
ions with significantly different abundances, enhancing the detection of 
low intensity ions. However, if low-intensity ions are not observed in 
void scans, dimensionality reduction tools provide alternative options. 
UMAP, a powerful technique with relatively low computational cost 
compared with other nonlinear dimensionality reduction methods, has 
been adopted as an example and tested. In addition, the effect of loga
rithmic scaling and dimensionality reduction using UMAP were tested 
both individually and jointly.

Although the SCMS data is not labeled beforehand for unsupervised 
clustering, certain criteria must be defined to match the goal of quick 
identification of void scans through clustering. Given that the variance 
between scans of the same type of signal can hardly be estimated due to 
the heterogeneity among individual cells, the total number of clusters 
would be a more practical parameter to guide the process compared 
with cluster variation. In a typical ambient SCMS measurement of live 
cells, ion signals are primarily attributed to three types of sources: 
cellular analytes, solvent background, and cell culture media. With 
possible subpopulations existing within each type, a total number of 
cluster n ≥ 3 would be a reasonable blind guess suitable for different 
types of SCMS experiments. In the following discussion, the default 
cluster number (n = 3) was used in unsupervised clustering (by K- 
means), resulting in three groups (Group 1, 2, and 3) of ions (Fig. 5). 
Although these cluster numbers are not associated with any specific 
biological features, the cluster with the lowest ion intensities was 
regarded as the void scans. We used a total of 24 combinations of 
different approaches (i.e., UMAP, logarithm scaling, cluster number, and 
bin width) to test the same dataset (Fig. S2), and part of the results are 
shown in Fig. 6.

When directly using data from the previous step (algebra trans
formation) as the K-means input, the difference between void scans and 
low intensity scans was much less significant, leading to insufficient 
discrimination between void scans and other types of scans in the 
clustering result (Fig. 5A). To address this issue, logarithmic and UMAP 
transformation were tested for their capabilities to enhance the sepa
ration of scans with low intensities, both individually and synergisti
cally. Logarithmic scaling was adopted because void scans tend to 
possess considerably lower ion signals compared with informative scans. 
Alternatively, nonlinear dimensionality reduction can catch the simi
larities within each group of scans to differentiate void scans from other 
scans, and therefore UMAP was adopted as an example of nonlinear 
dimensionality reduction to treat the data. When working individually, 
either logarithmic or UMAP transformation provided satisfactory clus
tering output for the purpose of identifying void scans. One of the three 
clusters matched our definition for void scans (i.e., the one with the 
lowest ion intensities among all clusters), leaving two clusters repre
senting informative scans. For example, Group 1 is regarded as the void 
scans when logarithmic scaling is on and UMAP is off (Fig. 5B), whereas 
Group 3 consists of the void scans when logarithmic scaling is off and 
UMAP is on (Fig. 5C). However, simultaneously implementing both 
logarithmic scaling and UMAP tends to lead to undesired results, in 
which only one group (Group 2) was shown. To effectively sort out void 
scans, either logarithmic or UMAP transformation is adequate without 
causing artificial split. In addition, different intervals used for histogram 
generation seemed to be the least sensitive parameter because either 100 
or 50 Da interval in the range of m/z 100–2000 provided enough fea
tures for the K-means clustering.

3.3. Alignment result

To evaluate the performance of our peak alignment algorithm, a 

dataset collected from 16 cells, which consists of 2176 MS scans, was 
tested using MassLite, MATLAB (i.e., mspalign function), Geena 2 [65], 
and MZmine 3 [34]. The existing platforms (e.g., MATLAB, Geena 2, and 
MZmine 3) have been widely used for MS data processing. Due to 
intrinsic drawbacks of binning, equidistant peaks (i.e., Δm/z = 0.9867 
between two neighboring peaks) were produced from mspalign in 
MATLAB, and the aligned results with this artifact cannot accurately 
represent peak locations in the original MS spectra (Fig. 5). In addition, 
the binning method in MATLAB resulted in low signal-to-noise (S/N) 
ratios, primarily due to the accumulated noise in the binning process, as 
well as increased computational costs. In contrast, MassLite successfully 
filtered such noise and provided improved S/N ratios of the aligned data 
with reduced computational resources.

Geena 2 was also tested in this work. However, this online platform 
could not handle this entire dataset from 16 cells (with 2176 MS scans) 
with 5 ppm mass shift tolerance because the data size is over the memory 
limit of Geena 2. Alternatively, a truncated dataset of 4 cells (with 830 
MS scans) at default 0.1 Da mass shift tolerance was submitted and 
processed by Geena 2. Both MZmine 3 and MassLite were able to handle 
the original entire dataset. To investigate the mass accuracy maintained 
by each platform, all aligned peaks were re-ordered in ascending order, 
and the relative mass difference between adjacent peaks were calculated 
using our algebraic transformation. The relative mass difference be
tween adjacent peaks can reflect the ability of data processing platforms 
on resolving peaks with similar m/z values. For an intuitive view, a 
histogram showing the distribution of relative mass differences between 
adjacent peaks was generated (Fig. 7). As illustrated in the zoomed-in 
region of the histogram, compared to Geena 2 and MZmine 3, MassLite 
was able to better differentiate more signals within 5–10 ppm apart from 
each other, demonstrating its superior capability of aligning peaks from 
MS spectra at a higher resolution. In fact, the 5-ppm cut-off was used in 
the current study, whereas users can determine the suitable values ac
cording to the specific studies. Lower cut-off values can be potentially 
used to treat MS data acquired using mass spectrometers with higher 
resolving power. The examples of raw data as well as alignment results 
obtained using Geena 2, MZmine 3, and MassLite are provided in the 
Supplementary Material (Tables S1–S4).

3.4. Computational cost for alignment

The computational cost, including both CPU time and memory 
usage, for peak alignment was evaluated with or without dynamic 

Fig. 7. Histogram showing the relationship between relative mass difference 
(ppm) of adjacent peaks and the number of aligned peaks acquired from Mas
sLite, Geena 2, and MZmine 3. The inset illustrates the details in the zoomed- 
in region.
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grouping. The computational cost depends on both the total number of 
scans and the total number of peaks in each scan. Because of the variance 
among the MS profiles in each particular scan, the number of peaks in 
each scan is subject to change. The total number of peaks is positively 
correlated, but in a non-linear fashion, with the number of scans. Among 
all data pretreatment steps, peak alignment without binning is the most 
expensive part due to the pairwise distance calculation and distance 
matrix update during hierarchical clustering. Regular pairwise com
parison (i.e., without grouping) between peaks requires computational 
cost to the second power of total number of peaks. Although binning can 
reduce the computational cost, the loss of mass accuracy in peak 
alignment step limited its applicability on SCMS metabolomics data. To 
overcome these challenges, we proposed a dynamic grouping method 
(Fig. 3). Dynamic grouping reduces the computational cost for peak 
alignment using a “divide and conquer” strategy. When the whole 
dataset was divided into multiple chunks, the number of unnecessary 
comparisons between peaks was largely reduced. Particularly, this 
strategy eliminated the comparisons between peaks from different 
chunks, which could theoretically reduce the cost by second power to 
the number of chunks. To overcome the potential peak splitting issue 
due to the boundaries of the chunks, we implemented an automatic 
check at the boundary of adjacent neighboring chunks. This automatic 
check method can merge artificially split peaks due to the chunk divi
sion, which slightly increased the cost by the first power to the number 
of chunks. Because computational cost reduction using dynamic 
grouping depends on multiple factors (e.g., dataset size, total number of 
peaks, and total number of scans and number of chunks), we tested 
datasets with a small size (16.2 MB imzML file) and a large size (2.83 GB 
imzML file) (Table 1). We discovered that, compared results without 
grouping, the time used for peak alignment using dynamic grouping 
(with optimized group sizes) was reduced to ~1/3 and ~1/10 for the 
small and large datasets, respectively. In addition to time cost, memory 
usage is another major concern because storing all pairwise distances (i. 
e., without grouping) for millions of peaks, which lead to trillions of 
distances, can occupy several TBs of memory, potentially resulting in a 
breakdown of the program. Dynamic grouping significantly reduced 
both CPU time and memory usage while providing reasonable results, 
allowing for customizable studies using a local computer. Additional 
details can be found in the Supplementary Material. The method can be 
potentially improved when multiple cores are available for parallel 
processing.

4. Conclusion

We developed MassLite, a Python-based GUI platform, for the pre
treatment of SCMS metabolomics data, including void scan filter, cell 
scan grouping, peak alignment, and background removal. Experimental 
data can be converted into a standard MS data format .mzML and then 
processed by MassLite. An algebraic transformation has been introduced 
to describe relative m/z difference in an intuitive manner, enabling 
faster processing in the following steps. A novel peak alignment has been 
implemented into MassLite, allowing for extraction of ion signals with 
more accurate m/z values of peaks, including those with low abun
dances. This function is especially important for untargeted 
chromatography-free SCMS metabolomics studies, in which accurate m/ 

z values provide critical information for molecular identification. 
Because all results can be stored prior to exportation, the trade-off be
tween ‘keeping more low-abundance signal’ and ‘removing more noise’ 
can be tuned by users using different parameters. The automatic algo
rithms, which were used for void scan filtering and cell scan selection, 
allowed higher throughput and more robust analysis outcome. This 
platform can effectively remove background signal and noise, elimi
nating artifacts in the follow-up analysis with significantly reduced 
computational cost. Importantly, MassLite is capable of retaining low- 
intensity peaks among complex signals, providing better chances to 
find more molecules from limited analytes in single cells. We expect 
MassLite to be smoothly adopted to analyze SCMS data collected using 
other types of experimental setups.

Code and data availability

Source code of MassLite is available on GitHub: https://github.com/ 
chemzzchem/MassLite/blob/main/published%20versions/. Raw data 
of the Single-probe SCMS experiments can be obtained from the 
MassIVE database (MSV000095500).
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