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ARTICLE INFO ABSTRACT

Handling Editor: L. Liang Mass spectrometry (MS) has been one of the most widely used tools for bioanalytical analysis due to its high
sensitivity, capability of quantitative analysis, and compatibility with biomolecules. Among various MS tech-
niques, single cell mass spectrometry (SCMS) is an advanced approach to molecular analysis of cellular contents
in individual cells. In tandem with the creation of novel experimental techniques, the development of new SCMS
data analysis tools is equally important. As most published software packages are not specifically designed for
pretreatment of SCMS data, including peak alignment and background removal, their applicability on processing
SCMS data is generally limited. Hereby we introduce a Python platform, MassLite, specifically designed for rapid
SCMS metabolomics data pretreatment. This platform is made user-friendly with graphical user interface (GUI)
and exports data in the forms of each individual cell for further analysis. A core function of this tool is to use a
novel peak alignment method that avoids the intrinsic drawbacks of traditional binning method, allowing for
more effective handling of MS data obtained from high resolution mass spectrometers. Other functions, such as
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void scan filtering, dynamic grouping, and advanced background removal, are also implemented in this tool to
improve pretreatment efficiency.

1. Introduction

Mass spectrometry (MS) has been playing an increasingly important
role in the field of chemistry and bioanalysis since the invention of
electrospray ionization (ESI) [1] and matrix-assisted laser desorptio-
n/ionization (MALDI) [2]. Assisted with improved sensitivity, resolu-
tion, and throughout of mass spectrometers [3] as well as advancement
of computing power from hardware and software algorithm, MS has
been broadly adopted in applications such as proteomics [4], metab-
olomics [5], biomarker discovery [6], and drug discovery [7].

Among various experimental methods, liquid chromatography-MS
(LC-MS) has especially been widely-applied, excelling in the separa-
tion and quantification of complex mixtures and biological samples [8].
However, due to the obligatory sample preparation, some critical in-
formation, such as spatial distribution of molecular species in tissues and
cell heterogeneity, is inevitably lost from LC-MS measurements of bulk
samples. To overcome disadvantages of traditional LC-MS techniques,
novel MS methods have been developed. Among them, MS imaging
(MSI) is capable of offering insights into the spatial distribution of
compounds in tissues, providing knowledge in histopathology and drug
distribution [9-11]. These imaging techniques utilize vacuum-based (e.
g., matrix-assisted laser desorption/ionization (MALDI) [12], secondary
ion mass spectrometry (SIMS) [13], and matrix-free laser desorptio-
n/ionization (LDI) [14]) and ambient-based (e.g., desorption electro-
spray ionization (DESI) [15], nanospray desorption -electrospray
ionization (nano-DESI) [16], and Single-probe [17]) methods for sam-
pling and ionization. In addition, single cell MS (SCMS) has recently
gained increasing popularity due to its capability of reaching cellular
and subcellular resolution and performing cell heterogeneity analysis
[18-22]. Compared with traditional bulk analysis, SCMS reveals the
chemical profiles of individual cells, providing unique understanding of
complicated cell activities controlled by numerous intracellular and
extracellular factors. The existing SCMS methods use varied techniques
for sampling and ionization, with a number of studies using methods
similar to MSI with vacuum-based (e.g., MALDI [23], SIMS [24]) and
ambient-based (e.g., DESI [25], laser ablation electrospray ionization
(LAESI) [26], nano-DESI [27], Single-probe [28]), and other methods
using other special sampling probes [29,30] or fluidic-based devices
[31] for single-cell isolation.

With the application of newly developed mass spectrometers pos-
sessing higher mass resolution, faster scan rate, and better sensitivity,
the size of MS data has significantly increased, making development of
effective data pretreatment algorithm increasingly important in modern
MS bioanalysis. Numerous software packages have been designed to
process the experiment data (e.g., peak picking, peak alignment, and
intensity normalization) and to extract essential information from data
acquired from traditional LC-MS (e.g., MZmine [32-34] and XCMS [35,
36]) and novel MSI (e.g., Cardinal [37] and Metaspace [38]) experi-
ments. In fact, some of these software tools have been utilized to analyze
certain types of SCMS data. For example, single cell proteomics exper-
iments coupled with LC separation prior to MS analysis can be analyzed
using conventional LC/MS proteomics data analysis method without
major changes [39-41]. Similarly, MALDI-based single cell metab-
olomics can be acquired using strategies similar to those in high-spatial
resolution MALDI techniques [42-44]. However, very few attempts have
been made to handle data acquired from ambient SCMS metabolomics
[45-48]. In our previous studies, a generalized data analysis workflow
was introduced for SCMS metabolomic data analysis. This workflow,
which consists of data pretreatment, multivariate analysis, and univar-
iate analysis, was adopted from traditional methods in LC-MS data
processing [48]. However, unlike most well-established LC-MS and MSI

experiments, which are generally conducted using programmed,
pre-loaded sampling and data acquisition process, most ambient SCMS
metabolomics studies of single cells are commonly associated with
improvised single cell sampling and segmented signal due to experi-
mental conditions and operations, causing incompatibility with existing
data processing tools that were designed for LC-MS and MSI [49,50].
Therefore, the previously published workflow with traditional LC-MS
data pretreatment approaches still have drawbacks such as lack of
operational convenience and accuracy of m/z value determination. As
any separation can potentially induce sample loss and dilution, in the
SCMS studies of small molecules (e.g., metabolites), analyte separation
is generally not performed prior to MS analysis, resulting in mass spectra
with large numbers of peaks. Analysis of dense peaks heavily relies on
the comparison between measured accurate mass from the spectra with
calculated exact mass from known compound structures in the database
[51]. Particularly, accurate mass measurements provide crucial infor-
mation for molecular identification in untargeted metabolomics studies.
Therefore, retaining all the valuable information obtained from high
resolution mass spectra is a crucial need for SCMS metabolomics data
pre-processing.

In actual MS experiments, the accurate m/z (mass-to-charge ratio)
value of an ion is determined by the mean value of individual mea-
surements containing the corresponding peaks. For MS analysis of un-
known substances, such as in untargeted SCMS metabolomics studies,
accuracy of m/z measurement cannot be defined without knowing the
“correct” reference, making precision a more important factor in the
process of data analysis. Among all data-processing steps (e.g., peak
picking, peak alignment, intensity normalization, and mass correction),
peak alignment is the step designed to correct the random variation in
the measurement of the same peak, rendering the measured m/z values
of the peaks for further advanced analysis (e.g., multivariate analysis,
data visualization, and structure identification). Without peak align-
ment, ion signals from the same substance can be mistakenly split into
multiple peaks, while a poor alignment might merge ions from different
substance into the same peak; both types of outcomes lead to a misin-
terpretation of MS data. In addition, complexity of datasets induced by
improper peak alignment not only alters the output of advanced data
analysis methods, but also significantly increases the cost for further
processing.

Among all developed peak alignment algorithms, binning is a
method commonly used in numerous studies due to its simplicity.
Briefly, for the convenience of data analysis, the entire range of the m/z
values of a mass spectrum is divided into a large number of equidistant
small chunks (i.e., bins) through a histogram-based method [52,53].
Although binning can significantly reduce the computational cost, this
method possesses multiple intrinsic drawbacks [53-55]. First, the
outcome of data processing is influenced by the parameters of bins,
including bin width and bin position. Peaks could be artificially merged,
split, or shifted due to unideal bin parameters, resulting in a loss of in-
formation. Second, using linear equidistant bins can lead to unequal
mass error (i.e., ppm) of MS measurement. For example, as a commonly
used bin width, 0.01 Da mass difference corresponds to 100 ppm at 100
Da, but 5 ppm at 2000 Da. Thus, binning cannot take full advantage of
the capabilities of the high resolutions of mass spectrometers, which
provide advantages of accurate measurements (i.e., m/z values) of
numerous species in complex samples. Due to its intrinsic drawbacks,
binning method cannot effectively extract molecular information from
complex SCMS metabolomics data, which heavily rely on accurate mass
measurement.

In this study, we introduce MassLite, a user-friendly, Python-based
platform with graphical user interface (GUI) specifically designed for
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Fig. 1. Setup of the Single-probe SCMS experiment.

SCMS metabolomics data pretreatment. Compared with the existing
SCMS metabolomics analysis tools, this new software package possesses
multiple advantages. First, this platform is robust to handle SCMS data
acquired from intermittent acquisition processes, in which ion signals
from individual cells are sequentially segmented. Second, MassLite can
take full advantage of high-resolution mass spectrometers by main-
taining high mass-resolution of peaks during peak alignment process.
Third, automatic cell region selection is used to replace the existing
labor-intensive, manual process to increase processing throughput.
Fourth, the algorithms of peak alignment and background removal have
been improved to be specifically compatible with SCMS metabolomics
data. Last, the computational cost was significantly reduced with our
purposed dynamic grouping method. Although the capability of this tool
was demonstrated using the data generated from the Single-probe SCMS
method performed using a Thermo Orbitrap XL mass spectrometer, data
produced from other SCMS techniques and platforms can be converted
to standard.mzML format and then processed by MassLite.

2. Method
2.1. Cell culture

In this study, a human colorectal carcinoma cell line (HCT-116)
(ATCC, Rockville, MD, USA) was used as a model. Cells were cultured in
McCoy’s 5A Medium (Fisher Scientific Company LLC, IL, USA). The
medium was supplemented with 10 % fetal bovine serum (GE Health-
care Bio-science Corp, Marlborough, MA, USA) and 1 % penicillin-
streptomycin (Life Technologies Corporation, Grand Island, NY, USA).
The cells were incubated at 37 °C in the presence of 5 % CO5. Once the
confluence of the HCT-116 cells reached 80 %, the cells were passaged.
Cells were transferred into 12-well plates, and a glass coverslip (18 mm
in diameter) was placed in each well. 2 mL of diluted cell suspension
(1x10° cells/well) were added to each well in the 12-wells plate, fol-
lowed by overnight incubation to enable cell attachment.

2.2. SCMS experiment

SCMS experiments were performed using the established Single-
probe SCMS technique as reported in our previously studies [28,46,56,
57]. A Single-probe was fabricated by embedding a solvent-providing
fused silica capillary (0.D. 105 pm; L.D. 40 pm, Polymicro Technolo-
gies, Phoenix, AZ), a nano-ESI emitter (pulled from the same fused silica
capillary using a butane micro torch) into a dual-bore quartz needle
(produced from dual-bore quartz tubing (O.D. 500 pm; I.D. 127 pm,
Friedrich & Dimmock, Millville, NJ) using a laser micropipette puller
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Fig. 2. Schematic data processing workflow of MassLite.

(Sutter P-2000, Sutter Instrument, Novato, CA)). The Single-probe de-
vice was coupled to a LTQ Orbitrap XL mass spectrometer (Thermofisher
Scientific, San Jose, CA) (Fig. 1). The sampling solvent (acetonitrile with
0.1 % formic acid) was continuously delivered (flowrate 200 nL/min) to
the solvent-providing capillary. A glass coverslip containing cells was
rinsed by fresh 0.9% (w/w) ammonium formate, and then placed onto
the XYZ-translational stage (step size = 0.1 pm). Guided by a digital
microscope (Shenzhen D&F Co., China), a target cell was selected and
sampled by gradually moving the stage. Cellular metabolites were
extracted by the liquid junction formed at the tip of the Single-probe,
and immediately ionized and analyzed. MS analysis parameters are lis-
ted as follows: ionization voltage +4.5 kV, mass range 200-1500, mass
resolution 60,000 at m/z 400, 1 microscan, 500 ms max injection time,
and automatic gain control (AGC, 1E6) on.

2.3. Data pretreatment

MS data obtained from the experiment must undergo pretreatment
prior to further advanced analysis. For SCMS metabolomics data
handled by our platform in this study, the data pretreatment includes
format conversion, algebraic transformation, void scan selection, cell
scan selection, peak alignment, background peak removal, and data
exportation (Fig. 2). The entire data processing was performed using
MassLite, except that data format conversion (i.e., from .raw to .mzML)
was conducted through other existing tools. The converted data was
imported into our platform, and algebraic transformation, which
allowed us to use relative mass difference to describe the original m/z
difference among peaks, was performed. Next, a void scan filter was
applied to distinguish intermittent scans during the data acquisition
process. Then, the filtered scans of each cell were grouped based upon
the extracted ion chromatogram of selected cell markers. Afterwards,
peak alignment was performed with dynamic grouping to correct the
mass shift of peaks. Last, background peaks can be selected and removed
prior to data exportation.

2.3.1. Data import

The SCMS raw data is complex as it contains a variety of different ion
signals of cellular analytes and non-analytes (Fig. S1). To make MassLite
compatible with SCMS metabolomics data acquired from all types of
mass spectrometers, the algorithm in our platform was designed on basis
of a universal MS data format, mzML [58]. For the Single-probe SCMS
data tested here, the original file generated using a Thermo Orbitrap
LTQ XL mass spectrometer was in .raw format, which was converted into
the widely-used .mzML format using MSConvert incorporated in Proteo-
Wizard [58-60]. The converted data was read using pymzML package in
our Python platform to extract the m/z values and intensities of the
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peaks. Peak picking was then conducted to obtain centroid peaks for
each MS scan prior to further processing.

2.3.2. Algebraic transformation

As most MS studies utilize mass accuracy or mass measurement error
(i.e., the difference between an individual measurement and the true
value) in the unit of ppm, relative mass difference is likely a more
straightforward way to describe the difference between two m/z values.
In order to perform simpler peak comparison during the pretreatment
process, we performed a scaled, dynamic logarithmic transformation to
intuitively describe the relative mass difference in the unit of ppm. In
addition, this algorithm reflects mass accuracy with respect to m/z
values, minimizing the influence of mass range on peak comparison.

For two peaks at (%)1 and <’;”>2 (assuming (%)1 > (%)2), their

relative mass difference can be described as:

Appm [ (/m m 1 m m
1), G/ 1G) (L)

When these two peaks are very close to each other, as generally observed

in MS analysis with slight mass shifts from scan to scan, the absolute

(Eq- 1)
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difference is significantly smaller than their m/z values. <m> + (m)
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can be redeemed as 2 x (%) , and we have
2

Appm [ /m _(m m
=), ())/ (), =2
By reorganizing the formula, we have
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Taking logarithmic transformation on both sides, we have
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ln(1+ 106 >7ln <Z>1 In <Z>2 (Eq. 4

When these two peaks are close enough to each other, Appm —0. Given
that linaln (14x) =x according to Taylor expansion, we have the
xX—

following representation:
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Thus, when transformation f (%) =In <%> x 10° is applied on two close

(Eq. 5)

neighboring peaks, we have
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Pairwise Euclidean distance between transformed m/z values, i.e.

f ((%) ) —f ((%) >, can reflect the relative mass difference of the
1 2

original m/z values in the unit of ppm, enabling fast processing and peak
matching in the subsequent steps. In practical applications, a linear shift
was included according to the lower limit of the mass range being
detected.

2.3.3. Void scan removal

A typical ambient SCMS metabolomics dataset consists of informa-
tive scans (i.e., signals of cellular analytes along with coexisting solvent
background and culture media) and void scans (i.e., scans containing
only instrument noise without identifiable species from cell analyte,
solvent background, or culture media) (Fig. S1). The void scans are
commonly included in data acquisition processes, mostly due to certain
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operations during experiments (e.g., cell sampling is paused or inter-
rupted while data acquisition is continuously running). To automatically
identify the void scans within the file, K-means, an unsupervised clus-
tering method, was used to analyze intensity histogram of MS spectra for
each scan. Because the intensity histogram reflects the general profiles
of detected ions, significant changes of global pattern are expected be-
tween informative and void scan signals. For the actual K-means input,
options of Uniform Manifold Approximation and Projection (UMAP) and
logarithmic scaling are provided for transformation of the intensity
histogram to enhance the discrimination between void scans and other
scans. TIC (total ion current) of the clusters generated by the unsuper-
vised K-means method can be visualized in the GUI for inspection, and
clusters matching the definition of void scans can be dropped to reduce
workload for the subsequent processes.

2.3.4. Selection of MS scans of single cells

To further increase the throughput of SCMS data processing, we
developed an algorithm to automatically differentiate scans represent-
ing single cells from those from background such as solvent or cell
culture media. First, a chromatogram was generated based upon the
intensity of cell markers selected by users. For example, m/z 782.58 and
760.56 are commonly detected ions in cells, and they were selected as
default indicators of single cell detection (i.e., marker signals). Second,
an initial Gaussian smoothing was performed for extracted ion chro-
matogram (EIC) to avoid unideal splits of signals from each single cell
due to signal fluctuation during the data acquisition process. Third, MS
scans of cells and background were defined. After the maxima and
minima of ion intensities of the selected markers in the MS scans were
primarily found, a finer global search across the whole chromatogram
was conducted, minimizing the generation of artificial peaks due to ion
intensity fluctuation. A stricter intensity requirement for peak search
within maxima found in the previous search was applied to account for
possible peak splitting issue due to signal fluctuation in the EIC. In the
current study, the regions containing marker signals >20 % (default
value) of the local maxima were defined as cell regions, whereas region
containing marker signals <5 % (default value) of the local maxima
were regarded as background regions unless otherwise defined.

2.3.5. Peak alignment with dynamic grouping

Due to multiple factors (e.g., the intrinsic performance of instrument
and fluctuation of ion signals and instrument conditions), mass shift
generally occurs during MS analysis [61-63]. Because accurate m/z
values provide important information for molecular identification, mass
shift correction is critical in high resolution MS studies, in which mul-
tiple ions with similar m/z values can be simultaneously detected.
Inappropriate handling of mass shift may result in artifacts such as peak
splitting, loss of peaks, or inaccurate m/z assignment. To compensate for
the mass shift across different scans, peak alignment must be performed.
For the ease of processing and precise m/z value description, centroiding
on all peaks was performed, keeping only one m/z value of peak center
and one intensity value for each peak. All centroid peaks along with
their transformed m/z values from all imported scans were included for
peak alignment. Hierarchical clustering was performed for observed
peaks to find internal matching among themselves. The cluster size was
set as double of the desired mass shift tolerance for hierarchical clus-
tering, ensuring the coverage for each aligned peak is within the
threshold. For example, if the maximum mass shift tolerance is less than
5 ppm, a 10-ppm cluster size is adopted to guarantee that only peaks
within +5 ppm shift from the center will be included. Thus, the mass
accuracy of peak alignment was guaranteed (e.g., within 5 ppm in the
above example). With the algebraic transformation performed in earlier
steps, simple one-dimensional Euclidean distance can be redeemed as
the relative mass difference between the m/z values of different peaks.
To reduce the cost of pairwise distance calculations in the hierarchical
clustering process, we utilized “divide and conquer” strategy. In general,
this strategy decomposes a given problem into multiple smaller
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subproblems, and solutions to subproblems are then combined to solve
the given problem. We developed a so-called “dynamic grouping”
method to split the data in chunks, eliminating unnecessary comparison
of peaks from different data chunks which accounted for most of the cost
from direct comparison (Fig. 3). The ranked peaks are divided into
multiple different groups and processed individually, reducing the cost
as a function of the total number of groups (see “Cost reduction of dy-
namic grouping” in the SI). To address potential peak splitting issues due
to this dividing strategy, boundary checks, which compared data at the
boundary between two adjacent chunks, were added to merge split
peaks due to chunk division. This binning-free method can maintain
higher mass resolution from the original data.

2.3.6. Background removal

During ambient SCMS measurement, particularly for live cell anal-
ysis, interfering ions generated from impurities in solvent or species in
cell culture media are generally detected along with cellular contents.
To eliminate these artifacts in analysis, interfering ions should be treated
as background and excluded. Thus, aligned peaks with their highest
intensities in one of the background scan regions, which could be
automatically determined in the cell scan selection step, were regarded
as the background substance and subsequentially filtered from the data.
Compared with the traditional binning method for background removal,

our algorithm is capable of distinguishing peaks from background sub-
stances and cell analytes, which possess similar m/z values, without
prior knowledge of the cell systems.

3. Result and discussion
3.1. Graphical user interface

The graphical user interface (GUI) (Fig. 4) was built using tkinter
package in Python. In our current design, the GUI has six major parts:
data read-in, void scan filter, cell sorting, peak alignment, exportation
filter, and debugging modules. Detailed description of each part is
provided in the following context, and the user manual is included in the
Supplementary Material.

3.2. Parameter optimization for void scan filter

Because the global spectral features of the void scans are significantly
different from those of informative scans, which contain signal from
cellular analytes and solvent background, the clustering was based on
the intensity histogram, which can describe the overall feature of the
entire MS spectrum. A series of different parameters needed for the
generation of the intensity histogram were tested, along with two
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Fig. 5. Test of descrimination enhancement techniques (logarithm scaling and UMAP) after histogram generation. Unsupervised clustering results in each plot are
labeled in different colors. The interval is 50 Da and cluster number in K-means is n = 3 (i.e., Groups 1, 2, and 3). Results were obtained using (A) no scaling, (B) only
logarithm scaling, (C) only UMAP, or (D) both logarithm scaling and UMAP. The clusters with the lowest ion intensities (Group 1 in B and Group 3 in C) are labeled as
void scans. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

different techniques (i.e., logarithmic scaling and UMAP dimensionality
reduction) aiming at enhancement of discrimination between void scans
and other scans.

In our experience of analyzing SCMS metabolomics data of
mammalian cells acquired using the Single-probe SCMS techniques,
lipid signals are significantly increased when cellular contents are
extracted and detected, especially in the range of m/z 700-800 Da [28,
64]. On the other hand, appearance of ions of cell analytes suppresses
the base peak intensities in background scan, usually in the range of m/z
350-550 Da. This trend is also expected in studies using other SCMS
platforms. To ensure important features in the MS spectra, including

Alignment with mspalign function in Matlab

m/z Intensity m/z Intensity
2121517 1.00x107 206.7635 6.74x10%
. Inaccurate equidistant peaks .
213.1384 1.55x10 Low signal-to-noise ratio 207.1141 1.64x10
214.1251 2.59x10° — 209.1622 9.03x10%
215.1118 2.60x10°6 211.0937 6.31x107
216.0985 2.72x106 211.8430 6.76x10%
217.0853 3.23x10° High-resolution peaks 212.1617 5.83x108
218.0720 2.71x106 High signal-to-noise ratio 213.1651 2.85x107
219.0587 4.32x10° 214.2785 6.51x10%
220.0454 2.51x10°6 216.6202 6.39x10%
221.0321 8.75x10°

both cellular analytes and background species, can be captured in the
intensity histogram, we tested both 50-Da and 100-Da intervals to
generate histograms from data in m/z 50-2000 Da. Our results indicate
that although histograms with smaller intervals may retain more details
of the spectra, the extra amount of information decreased the efficiency
for machine learning classification, deviating from our purpose for quick
detection. In contrast, larger intervals could possibly fail to capture
changes in spectra features if the intensity of ions fluctuates within the
same interval.

To perform clustering and acquire efficient identification of void
scans, different strategies have been used to enhance discrimination

Alignment with MassLite

Fig. 6. Comparison between mspalign (MATLAB) and MassLite results. Peaks generated from mspalign function (by binning) possess inaccurate m/z values (due to the
artifact of equidistant peaks (Am/z = 0.9867)) and low S/N ratios (due to accumulated noise). MassLite provides aligned peaks with higher mass accuracy and higher

S/N ratios.
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between void scans and other scans. Based upon previous observations
in our Single-probe SCMS data, void scans usually contain lower signal
intensities compared with other informative scans. Logarithmic scaling
is likely a quick, feasible strategy to identify void scans. Although the
original ion intensities can better reflect relative ion abundances, loga-
rithmic transformations can reduce signal intensities’ differences for
ions with significantly different abundances, enhancing the detection of
low intensity ions. However, if low-intensity ions are not observed in
void scans, dimensionality reduction tools provide alternative options.
UMAP, a powerful technique with relatively low computational cost
compared with other nonlinear dimensionality reduction methods, has
been adopted as an example and tested. In addition, the effect of loga-
rithmic scaling and dimensionality reduction using UMAP were tested
both individually and jointly.

Although the SCMS data is not labeled beforehand for unsupervised
clustering, certain criteria must be defined to match the goal of quick
identification of void scans through clustering. Given that the variance
between scans of the same type of signal can hardly be estimated due to
the heterogeneity among individual cells, the total number of clusters
would be a more practical parameter to guide the process compared
with cluster variation. In a typical ambient SCMS measurement of live
cells, ion signals are primarily attributed to three types of sources:
cellular analytes, solvent background, and cell culture media. With
possible subpopulations existing within each type, a total number of
cluster n > 3 would be a reasonable blind guess suitable for different
types of SCMS experiments. In the following discussion, the default
cluster number (n = 3) was used in unsupervised clustering (by K-
means), resulting in three groups (Group 1, 2, and 3) of ions (Fig. 5).
Although these cluster numbers are not associated with any specific
biological features, the cluster with the lowest ion intensities was
regarded as the void scans. We used a total of 24 combinations of
different approaches (i.e., UMAP, logarithm scaling, cluster number, and
bin width) to test the same dataset (Fig. S2), and part of the results are
shown in Fig. 6.

When directly using data from the previous step (algebra trans-
formation) as the K-means input, the difference between void scans and
low intensity scans was much less significant, leading to insufficient
discrimination between void scans and other types of scans in the
clustering result (Fig. 5A). To address this issue, logarithmic and UMAP
transformation were tested for their capabilities to enhance the sepa-
ration of scans with low intensities, both individually and synergisti-
cally. Logarithmic scaling was adopted because void scans tend to
possess considerably lower ion signals compared with informative scans.
Alternatively, nonlinear dimensionality reduction can catch the simi-
larities within each group of scans to differentiate void scans from other
scans, and therefore UMAP was adopted as an example of nonlinear
dimensionality reduction to treat the data. When working individually,
either logarithmic or UMAP transformation provided satisfactory clus-
tering output for the purpose of identifying void scans. One of the three
clusters matched our definition for void scans (i.e., the one with the
lowest ion intensities among all clusters), leaving two clusters repre-
senting informative scans. For example, Group 1 is regarded as the void
scans when logarithmic scaling is on and UMAP is off (Fig. 5B), whereas
Group 3 consists of the void scans when logarithmic scaling is off and
UMAP is on (Fig. 5C). However, simultaneously implementing both
logarithmic scaling and UMAP tends to lead to undesired results, in
which only one group (Group 2) was shown. To effectively sort out void
scans, either logarithmic or UMAP transformation is adequate without
causing artificial split. In addition, different intervals used for histogram
generation seemed to be the least sensitive parameter because either 100
or 50 Da interval in the range of m/z 100-2000 provided enough fea-
tures for the K-means clustering.

3.3. Alignment result

To evaluate the performance of our peak alignment algorithm, a
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Fig. 7. Histogram showing the relationship between relative mass difference
(ppm) of adjacent peaks and the number of aligned peaks acquired from Mas-
sLite, Geena 2, and MZmine 3. The inset illustrates the details in the zoomed-
in region.

dataset collected from 16 cells, which consists of 2176 MS scans, was
tested using MassLite, MATLAB (i.e., mspalign function), Geena 2 [65],
and MZmine 3 [34]. The existing platforms (e.g., MATLAB, Geena 2, and
MZmine 3) have been widely used for MS data processing. Due to
intrinsic drawbacks of binning, equidistant peaks (i.e., Am/z = 0.9867
between two neighboring peaks) were produced from mspalign in
MATLAB, and the aligned results with this artifact cannot accurately
represent peak locations in the original MS spectra (Fig. 5). In addition,
the binning method in MATLAB resulted in low signal-to-noise (S/N)
ratios, primarily due to the accumulated noise in the binning process, as
well as increased computational costs. In contrast, MassLite successfully
filtered such noise and provided improved S/N ratios of the aligned data
with reduced computational resources.

Geena 2 was also tested in this work. However, this online platform
could not handle this entire dataset from 16 cells (with 2176 MS scans)
with 5 ppm mass shift tolerance because the data size is over the memory
limit of Geena 2. Alternatively, a truncated dataset of 4 cells (with 830
MS scans) at default 0.1 Da mass shift tolerance was submitted and
processed by Geena 2. Both MZmine 3 and MassLite were able to handle
the original entire dataset. To investigate the mass accuracy maintained
by each platform, all aligned peaks were re-ordered in ascending order,
and the relative mass difference between adjacent peaks were calculated
using our algebraic transformation. The relative mass difference be-
tween adjacent peaks can reflect the ability of data processing platforms
on resolving peaks with similar m/z values. For an intuitive view, a
histogram showing the distribution of relative mass differences between
adjacent peaks was generated (Fig. 7). As illustrated in the zoomed-in
region of the histogram, compared to Geena 2 and MZmine 3, MassLite
was able to better differentiate more signals within 5-10 ppm apart from
each other, demonstrating its superior capability of aligning peaks from
MS spectra at a higher resolution. In fact, the 5-ppm cut-off was used in
the current study, whereas users can determine the suitable values ac-
cording to the specific studies. Lower cut-off values can be potentially
used to treat MS data acquired using mass spectrometers with higher
resolving power. The examples of raw data as well as alignment results
obtained using Geena 2, MZmine 3, and MassLite are provided in the
Supplementary Material (Tables S1-54).

3.4. Computational cost for alignment

The computational cost, including both CPU time and memory
usage, for peak alignment was evaluated with or without dynamic
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Table 1
Time cost for peak alignment.

Analytica Chimica Acta 1325 (2024) 343124

16.2 MB dataset

2.83 GB dataset

Group size* Alignment cost (s) Normalized cost

2xn 3.17 34 %
3xn 3.13 34 %
10 x n 4.53 49 %
Without grouping 9.21 100 %

Group size Alignment cost (h) Normalized cost
15 xn 5.4 11 %

2xn 7.1 15 %

3xn 10.4 22%

Without grouping >48 100 %

n: number of total scans in the file.

grouping. The computational cost depends on both the total number of
scans and the total number of peaks in each scan. Because of the variance
among the MS profiles in each particular scan, the number of peaks in
each scan is subject to change. The total number of peaks is positively
correlated, but in a non-linear fashion, with the number of scans. Among
all data pretreatment steps, peak alignment without binning is the most
expensive part due to the pairwise distance calculation and distance
matrix update during hierarchical clustering. Regular pairwise com-
parison (i.e., without grouping) between peaks requires computational
cost to the second power of total number of peaks. Although binning can
reduce the computational cost, the loss of mass accuracy in peak
alignment step limited its applicability on SCMS metabolomics data. To
overcome these challenges, we proposed a dynamic grouping method
(Fig. 3). Dynamic grouping reduces the computational cost for peak
alignment using a “divide and conquer” strategy. When the whole
dataset was divided into multiple chunks, the number of unnecessary
comparisons between peaks was largely reduced. Particularly, this
strategy eliminated the comparisons between peaks from different
chunks, which could theoretically reduce the cost by second power to
the number of chunks. To overcome the potential peak splitting issue
due to the boundaries of the chunks, we implemented an automatic
check at the boundary of adjacent neighboring chunks. This automatic
check method can merge artificially split peaks due to the chunk divi-
sion, which slightly increased the cost by the first power to the number
of chunks. Because computational cost reduction using dynamic
grouping depends on multiple factors (e.g., dataset size, total number of
peaks, and total number of scans and number of chunks), we tested
datasets with a small size (16.2 MB imzML file) and a large size (2.83 GB
imzML file) (Table 1). We discovered that, compared results without
grouping, the time used for peak alignment using dynamic grouping
(with optimized group sizes) was reduced to ~1/3 and ~1/10 for the
small and large datasets, respectively. In addition to time cost, memory
usage is another major concern because storing all pairwise distances (i.
e., without grouping) for millions of peaks, which lead to trillions of
distances, can occupy several TBs of memory, potentially resulting in a
breakdown of the program. Dynamic grouping significantly reduced
both CPU time and memory usage while providing reasonable results,
allowing for customizable studies using a local computer. Additional
details can be found in the Supplementary Material. The method can be
potentially improved when multiple cores are available for parallel
processing.

4. Conclusion

We developed MassLite, a Python-based GUI platform, for the pre-
treatment of SCMS metabolomics data, including void scan filter, cell
scan grouping, peak alignment, and background removal. Experimental
data can be converted into a standard MS data format .mzML and then
processed by MassLite. An algebraic transformation has been introduced
to describe relative m/z difference in an intuitive manner, enabling
faster processing in the following steps. A novel peak alignment has been
implemented into MassLite, allowing for extraction of ion signals with
more accurate m/z values of peaks, including those with low abun-
dances. This function is especially important for untargeted
chromatography-free SCMS metabolomics studies, in which accurate m/

z values provide critical information for molecular identification.
Because all results can be stored prior to exportation, the trade-off be-
tween ‘keeping more low-abundance signal’ and ‘removing more noise’
can be tuned by users using different parameters. The automatic algo-
rithms, which were used for void scan filtering and cell scan selection,
allowed higher throughput and more robust analysis outcome. This
platform can effectively remove background signal and noise, elimi-
nating artifacts in the follow-up analysis with significantly reduced
computational cost. Importantly, MassLite is capable of retaining low-
intensity peaks among complex signals, providing better chances to
find more molecules from limited analytes in single cells. We expect
MassLite to be smoothly adopted to analyze SCMS data collected using
other types of experimental setups.

Code and data availability

Source code of MassLite is available on GitHub: https://github.com/
chemzzchem/MassLite/blob/main/published%20versions/. Raw data
of the Single-probe SCMS experiments can be obtained from the
MassIVE database (MSV000095500).
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