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Machine Learning Guided Rational Design of a Non-Heme
Iron-Based Lysine Dioxygenase Improves its Total Turnover

Number

R. Hunter Wilson,™ Daniel J. Diaz,™“ Anoop R. Damodaran,*® and

Ambika Bhagi-Damodaran*"

Highly selective C—H functionalization remains an ongoing
challenge in organic synthetic methodologies. Biocatalysts are
robust tools for achieving these difficult chemical transforma-
tions. Biocatalyst engineering has often required directed
evolution or structure-based rational design campaigns to
improve their activities. In recent years, machine learning has
been integrated into these workflows to improve the discovery
of beneficial enzyme variants. In this work, we combine a
structure-based self-supervised machine learning framework,
MutComputeX, with classical molecular dynamics simulations to
down select mutations for rational design of a non-heme iron-

Introduction

Selective and catalytic activation of aliphatic C—H bonds
remains a long-standing challenge in synthetic chemistry."™
Biocatalysis has emerged as a potential solution as enzymes can
perform C—H bond activation with high degrees of regio-,
chemo-, and stereoselectivity.* Late-stage, biocatalytic incor-
poration of desired functional groups streamline synthetic
pathways and offer more sustainable solutions for challenging
synthetic transformations. In particular, installation of hydroxyl
groups into inert C—H bonds have been achieved with both
heme-containing P450s and 2-oxoglutarate(20G)-dependent
non-heme iron metalloenzymes.">' Protein engineering strat-
egies such as structure-based rational design or directed
evolution have been implemented to improve yields and
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dependent lysine dioxygenase, LDO. This approach consistently
resulted in functional LDO mutants and circumvents the need
for extensive study of mutational activity before-hand. Our
rationally designed single mutants purified with up to 2-fold
higher expression yields than WT and displayed higher total
turnover numbers (TTN). Combining five such single mutations
into a pentamutant variant, LPNYl LDO, leads to a 40%
improvement in the TTN (218+3) as compared to WT LDO
(TTN =160 2). Overall, this work offers a low-barrier approach
for those seeking to synergize machine learning algorithms
with pre-existing protein engineering strategies.

enzyme stability."*"" P450 enzymes have been engineered to
catalyze a diverse scope of reactions; however, a significant
drawback to these systems is the requirement of a reductase
protein partner or the presence of a costly NADPH regeneration
system.”>?! By contrast, 20G-dependent non-heme iron-de-
pendent enzymes only require the relatively inexpensive 20G
co-substrate to catalyze their reactions. Despite this conven-
ience, engineering campaigns involving 20G-dependent en-
zymes involving non-native substrates often have limited
turnovers.?*?¥ However, recent work from Maloney and co-
workers demonstrated the evolution of Pip4H to catalyze the
hydroxylation of a non-native substrate for > 15000 turnovers;
though, these results were only achieved after screening
thousands of mutants and sampling the sequence space of
every amino acid position."

Machine learning (ML) is being increasingly involved in
protein engineering campaigns to decrease the overwhelming
sampling of sequence space and produce improved
biocatalysts.”’*? Leveraging these new ML tools could enable
more rapid discovery of hotspot residues primed for muta-
genesis via rational design or library generation for directed
evolution. While ML tools can be integrated into engineering
workflows, they often require extensive training datasets either
from enzyme-specific reaction assays or non-structural genetic
data.®**¥ Tailoring of extensive datasets for each specific
enzyme still requires burdensome front-work from researchers.
Thus, synergizing self-supervised pretrained ML frameworks
with existing rational design strategies offers a low-barrier
solution for identifying potentially beneficial mutations in an
engineering campaign.

Herein, we explore a ML-guided rational design strategy for
the engineering of LDO, a recently characterized 20G-depend-
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ent lysine dioxygenase (Figure 1A; referred to as ‘Hydrox’ in the
previous work).?? LDO catalyzes the installation of a hydroxyl
group into a chemically inert C—H bond on the C, (y) carbon of
lysine. y-hydroxy-lysine is a useful building block for high-value
scaffolds in pharmaceutical and polymer industries; thus,
engineering biocatalysts for its efficient production is
desirable.**! We synergized the structure-based self-super-
vised framework MutComputeX® with molecular dynamics
(MD) simulations to identify mutations capable of increasing
the total turnover number (TTN) of LDO. Overall, our ML-guided
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Figure 1. Machine learning-guided protein engineering of a non-heme iron
20G-dependent dioxygenase. A) The non-heme iron enzyme, Lysine
dioxygenase (LDO) catalyzes the hydroxylation of an aliphatic C—H bond at
the C, position of lysine. 20G and molecular oxygen are co-substrates;
succinate and CO, are generated as byproducts. B) Rational design workflow
overview starting from the single mutant sequence space of LDO and
ending with our six designed single mutants. C) Crystal structure of LDO
(PDB: 7JSD) showing ML-identified mutational hotspots as blue spheres. Iron
displayed as an orange sphere, 20G and Lysine are shown as beige and
purple sticks, respectively.
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rational design of LDO demonstrates a readily adoptable
strategy for improving the catalytic performance of metal-
loenzyme biocatalysts.

Results and Discussion
Computational Design of LDO Variants

In the absence of extensive mutational data with LDO,
application of data-driven ML algorithms for designing variants
with enhanced catalytic activity was not possible. Nevertheless,
with the crystal structure of lysine-bound LDO in hand,*” we
could use a structure-based self-supervised framework, Mut-
ComputeX, to enhance its developability and catalytic activity.
MutComputeX is trained on >21000 sequence-balanced pro-
tein structures and can identify residues that are chemically
incongruent with their surrounding chemical environment
(microenvironment). Zero-shot predictions by the MutCompute
platform have previously been shown to increase the turnovers
and thermostability of several enzymes across a wide range of
functions and we posited that it will generalize to LDO.B"#-5%
Using the LDO crystal structure (PDB: 7JSD) as input, MutCom-
puteX identified 73 mutational hotspots (i.e. residues where the
wildtype amino acid was not the top predicted amino acid) of
260 total residues in the protein (Figure 1B). Setting a cut-off
filter of 15% WT probability, we down-selected 17 different
mutational hotspots where the WT amino acid was disfavored
(Table S1). We note that most of these amino acids are present
on the surface of LDO. We inspected the crystal structure at the
17 down-selected mutational sites and developed 24 mutations
by rational design based on the local protein environment
(Table S2). Since MutComputeX suggests amino acid substitu-
tions at each hotspot residue, those were considered in our
rational design strategy. We intentionally avoided mutational
hotspots proximal (<12.5A) to the iron center, as it's been
demonstrated that enzyme activity in 20G-dependent non-
heme iron enzymes can be greatly diminished by mutations
proximal to the iron center.”'™¥ To verify potentially stabilizing
interactions (due to increased H-bonding or hydrophobic
packing interactions, etc.), we conducted MD simulations of our
24 rationally designed variants (Table S2). All mutational results
were compared to simulations of WT LDO to discern whether
new interactions were beneficial and did not diminish those
present in the WT protein. This allowed us to narrow our
experimental studies to six mutations (Figure 1C).

We began our MD analysis with the T9 L MutComputeX
prediction. We rationalized from a structural analysis that this
mutation will improve the hydrophobic packing with the
surrounding hydrophobic pocket comprising of Leul0, lleu6,
Val99, and Leu49 (Figure 2A). This design was supported by a
lower temperature factor (B-factor) observed across MD simu-
lations compared to the WT (Figure 2A inset and Figure S1).
Glu103 was the next target of our study and is located on a
heavily strained turn connecting two alpha helices (Figure S2).
MutComputeX predicted a proline at E103, and we anticipate
that proline would help relax this strain and stabilize the helix-
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Figure 2. LDO variant design by Molecular Dynamics simulations. A) T9 L
variant (blue) can increase hydrophobic interactions by burying into an
adjacent pocket (teal); inset: B-factor of pocket from MD simulations. B)
Mutation of Phe134 (blue) to Tyr increases the stability within a highly polar
pocket (cyan); inset: change in solvent H-bonding upon mutation. C) T183I
mutant (blue) can bury into an adjacent hydrophobic pocket (cyan) to
increase hydrophobic interactions; inset: B-factor of pocket from MD
simulations.

turn-helix motif. Indeed, MD simulations with this variant
displayed an average 0.5 A lower root mean square deviation
(RMSD) of the helix-turn-helix backbone atoms with E103P
mutant as compared to WT LDO, suggesting this variant could
relax the apparent strain. The F134Y predictions is located on
the protein surface embedded in a hydrogen bond network
(Lys65, Arg67, Asp137, Glu133, and Ser83 residues) and is
participating in a cation-n interactions with Arg67. Thus, we
rationalized that mutating this residue to a polar tyrosine would
not only increase solubility but would strengthen the solvent-
exposed hydrogen bond network while maintaining the cation-
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n interaction with Arg67 (Figure 2B). Indeed, we observe that
the F134Y variant can form new H-bonds with water molecules
present in the pocket (Figure 2B inset and Figure S3). Residue
Thr183 is semi-solvent exposed and adjacent to the hydro-
phobic residues 1le180, Trp143, and Val168 (Figure 2C). Here,
MutComputeX predicts lle, which we rationalize will improve
hydrophobic packing. MD simulations of T183] demonstrate a
20% lower B-factor for the hydrophophic pocket, supporting
that the T183l mutant would experience tighter hydrophobic
packing (Figure 2C and Figure S4). In addition to predictions
with the LDO crystal structure, we performed MutComputeX
predictions on frames from MD simulations of WT LDO to
account for the effects of protein dynamics into our rational
design strategy. As a result, two more mutational hotspots were
identified. First, substitution of Ala135 with a polar Asn was
anticipated to form new H-bonds with residues on an adjacent
loop (Figure S5). Indeed, the MD simulations predicted new H-
bonds with the side chains of Ser136 and Asp217. Additionally,
mutating surface exposed Ala to Asn increases H-bonds with
water, likely improving solubility. Finally, MutComputeX flagged
the solvent-exposed Cys185 for mutagenesis. Removing solvent
exposed cysteine residues is critical for developing enzymes
with high turnovers because it preempts promiscuous oxidation
that can deactivate the enzyme. We mutated C185 to its
isosteric, redox-inactive counterpart: serine. MD simulations
demonstrate the major impact of this mutation is increased H-
bonding interactions with Asn181 and Glu182, located within
the residing alpha helix (Figure S6).

As all these residues are distal (>12.5A) from the LDO
active site, they have the potential to form stabilizing
interactions without sacrificing enzyme activity. Parsing through
all residues distal from the active site would require time-
consuming front-end labor. By leveraging MutComputeX, non-
intuitive mutational hotspots were readily identified, enabling
rapid structural rationalization and curation of mutational
designs. Since MutComputeX relies solely on a static structure
and does not account for steric and electronic changes induced
by a mutation, it is better at identifying residues primed for
mutagenesis rather than predicting specific mutations. Thus,
our MD simulations were instrumental in screening viable
mutations created by ML-guided rational design (Table S2). For
example, despite position Tyr18 having a low WT probability
(1.9%), mutation of this residue to Phe (as suggested by
MutComputeX) resulted in the elimination of H-bonds with the
backbone carbonyls of Met42/Arg43 as well as an increased B-
factor of the local hydrophobic pocket (Figure S7). Another
MutComputeX prediction, N181 W, resulted in a sharp increase
in the B-factor of its adjacent hydrophobic pocket, weakening
local hydrophobic interactions (Figure S8). Given these ob-
served deleterious interactions, neither of these designs were
expressed or purified. By synergizing MutComputeX with MD
simulations, we were able to propose six mutants for
experimental evaluation of hydroxylation activity (Figure 1B and
Q.
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Purification of LDO Variants and Thermostability Analysis

WT LDO and all designed variants were expressed as His-
Tagged constructs and purified by affinity chromatography.
Interestingly, five of six variants were expressed in greater yields
than WT, implying they exhibited increased solubility and/or
folding dynamics™” (Figure S9). The C185S mutant was isolated
with approximately half the yield compared to WT, indicating
that Cys185 may serve a structural role. Notably, Cys185 is the
only cysteine residue in LDO, and it cannot form any intra-
molecular disulfide bonds. Disulfide bonds are also absent
between monomeric chains in the crystal structure. Given that
the other five mutations appeared to increase the protein
yields, we also designed and purified a combinatorial mutant
containing the other five mutations (T9 L/E103P/F134Y/A135N/
T183l), which resulted in a variant with ~2.5-fold improvement
in protein expression. We refer to this quintuple variant as
LPYNI LDO.

MutComputeX-guided protein engineering has been shown
to enhance the thermostability of designed variants, resulting
in increased melting points (T,) and turnovers.”'**! To assess
the melting points of WT and designed LDO variants, we
employed a thermal shift assay (TSA) to investigate how
individual mutations impacted overall protein stability. In the
apo forms of the protein, WT LDO had a T,, of 31.0°C with most
of the other variants containing slightly lower T,, (within 2°C)
(Figure S10). Only A135 N and C185S displayed melting points
drastically lower than WT (—4.0°C), while T183l and the
combinatorial LPYNI variant displayed elevated T,, values (+2.2
and + 2.7 °C, respectively). We note that since the variants were
designed and simulated in a Fe/20G-bound state, we would
not know how our designs would behave in an apo state.

To validate our designs, we performed the TSA in the
presence of metal and 20G substrates to capture a state more
similar to our simulations (Figure S11). Interestingly, the T, of
the WT increases to 50.7°C, a +19.7 °C shift relative to the apo
form of the protein. This implies that metal and 20G binding
result in new protein-stabilizing interactions to form a more
stable and catalytically active state. Lending credence to this,
no crystal structure of a 20G-dependent dioxygenase has been
solved without the active site metal, suggesting an important
structural role.*>*" Additionally, this iron-dependent enzyme
family forms extensive H-bonding interactions with the 20G
substrate, securing its position within the active site.?9%>%6%%% A
similar increase in T, is observed across all variants, indicating
that they can still bind cofactors necessary for catalysis. Relative
to WT, most variants exhibit modest increases in T, (+0.2-
0.5°C for T9L, E103P, and F134Y) while T183l exhibits a T,
3.5°C greater than WT. Analogous to the apo protein, A135N
and C185S have lowered melting temperatures (—2.4°C and
—4.2°C, respectively) relative to the ligand-bound WT. The
combinatorial mutant, LPYNI displays a modest decrease in T,,
of 0.9°C relative to WT, indicating that the stabilizing/destabiliz-
ing effects of individual mutations are not additive when
stacked.

We also investigated the effect of adding the substrate
lysine to the protein complex (Figure 3A-C). Upon binding the
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Figure 3. Melting point analysis for designed variants (A - F134Y, B - T183l,
C - LPYNI) as compared to WT. All proteins were constituted with Mn?*,
20G, and Lysine. Vertical lines are references for the WT and variant melting
points.

substrate, the melting point of the WT LDO protein complex
increases to 54.5°C (+3.8°C relative to LDO without lysine).
Once again, it appears that structural changes are occurring
upon substrate binding that increase the stability of the overall
complex. Recent structural studies in an analogous 20G-
dependent dioxygenase, HalD, demonstrated that upon sub-
strate binding, a lid closes over the active site, securing the
substrate’s orientation near the reactive iron center.®” Given
our observed increase in melting temperatures upon lysine
binding, a similar conformational change might also occur in
LDO. Similar to WT, all mutants display an increase in T, upon
binding substrate lysine (Figures 3A-C and S11). Most lysine
bound mutants (T9L, E103P, and F134Y) display similar melting
temperatures to the WT protein (within 0.5°C), while T183lI
displays an increased T, (+3.0°C). While the quintuple LPYNI
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variant displayed a slightly lower overall T,, than WT, the onset
of melting was observed at temperatures higher than WT
indicating higher stability under ambient conditions (Figure 3C).
Overall, these thermostability measurements and expression
yields reveal that these mutations do not necessarily enhance
the T,, of the enzyme-substrate-cofactor ternary complex but
rather improve solubility and/or folding dynamics.

Catalytic Assessment of Designed LDO Variants

While our TSA measurements indicate that the designed
enzymes can bind their co-substrates, we wanted to assess their
catalytic viability. Specifically, we wanted to assess their ability
to hydroxylate lysine relative to the WT scaffold. To that end,
we designed hydroxylation assays in which LDO variants were
incubated with all necessary substrates (iron, 20G, L-lysine)
under aerobic conditions (Figure 1A). After separation of protein
from the reaction mixture, the lysine reactants and products
were derivatized with a hydrophobic 6-aminoquinolyl-N-hy-
droxysuccinimidyl carbamate (AQC) tag. Derivatization with the
AQC tag provides a chromophore for UV detection and enables
retention of highly polar amino acids for reverse-phase HPLC
analysis (Figure 4A). In control reactions lacking LDO, a single
peak for AQC-tagged lysine is present in the chromatogram
(R;=4.8 min). The predominant peak at 2.2 min (Bis-AMQ) is a
common byproduct of derivatization with AQC.*® In reactions
incubated with WT LDO, a new peak appears at an earlier
retention time (R,=4.3 min), indicative of the installation of a
polar functional group into lysine. This implies the successful
formation of y-hydroxy-lysine, which we validated via accurate
mass measurements: the reaction product exhibited an m/z of
252.1055, with a mass error of 2.8 ppm, validating its identity
(Figure S12). From the reaction, we determined a total turnover
number (TTN) of 160+2 for WT LDO, which is in good
agreement with the previously reported 136 as determined by
mass spectrometric analysis.?”

After establishing our assay with WT LDO, we evaluated the
catalytic efficiency of our designed LDO variants. HPLC
chromatograms displayed lower amounts of reactant lysine and
increased amounts of y-hydroxy-lysine present in the reaction
mixture relative to the WT reaction (Figure 4A). Interestingly, all
variants displayed a greater TTN than the WT enzyme (Fig-
ure 4B). Even mutations that decreased the T,, of LDO (A135N
and C1859), resulted in increased TTN over WT LDO. While the
individual mutants modestly increased TTN by 16-40 turnovers,
we were intrigued as to whether the combinatorial LPYNI
variant would perform better than the individual mutants.
Indeed, LPYNI LDO displayed a TTN of 218+ 3, performing 1.4-
fold better than WT. Despite this improvement in activity, we
observe diminishing returns in TTN from the incorporation of
individual mutants, analogous to results obtained from directed
evolution campaigns. In a recent study, a 20G-dependent
hydroxylase was evolved to function on a non-native substrate
after sampling thousands of variants for activity."” While the
increases in activity here can be perceived as marginal
compared to gains from directed evolution, our engineering
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Figure 4. Hydroxylation assay analysis for LDO and designed variants. A)
HPLC-UV detection of AQC-tagged lysine and y-OH-lysine from a control
reaction lacking LDO (top), a reaction with WT LDO (middle), and a reaction
with LPYNI LDO (bottom). B) Total Turnover Number (TTN) for WT and LDO
variants in the hydroxylation assay (n=3). Horizontal line is a reference for
the WT TTN. Error bars are the standard deviation from three independent
reactions.

strategy still produced functional, improved variants with only 7
purified enzymes. Additionally, our rational design strategy
circumvents the need for extensive front-end mutagenesis
campaigns for generating training data for activity-specific ML
algorithms. Overall, our rational design strategy results in
biocatalysts with significantly improved expression yields and
more favorable TTN while avoiding mutations in the primary
and secondary coordination spheres of the iron center.

Despite these variants not displaying enhanced melting
points, all were still able to improve the total turnover number
(Figure 4B). Notably, mutations distal from the active site have
been shown to influence protein conformational dynamics to
enhance enzymatic activity.*** To probe if an altered dynamics
was the molecular basis for this improved activity, we again
employed MD simulations to characterize WT and LPYNI LDO

© 2024 The Author(s). ChemBioChem published by Wiley-VCH GmbH
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over longer timescales (triplicate 500 ns productions). Analysis
of the RMSD of the protein backbone atoms between WT and
LPYNI shows that the pentamutant displayed ~0.5 A smaller
deviation than the WT scaffold (Figure S13). This suggests that
the mutant complex displays more ordered dynamics than WT
which could enable greater catalyst lifetimes. Furthermore, the
time to reach an equilibrated state is notably shorter in LPYNI
LDO, indicating the pentamutant readily equilibrates to a stable
conformation. While this provides rudimentary evidence for the
enhanced turnovers of the LPYNI variant, we were curious if
other dynamic effects were at play. More specifically, we
wanted to know if the residues targeted by our rational design
strategy were involved in correlated protein motions, as it's
been demonstrated that distal residues can enhance catalytic
efficiency.®**” To this end, we used our MD simulations to
create Shortest Path Maps®™ to identify correlated residue
motions for both WT and LPYNI LDO (Figure S14 and 15).
Intriguingly, none of the WT residues constituting the pentam-
utant were shown to be involved in significant correlated
protein motions. However independent correlation networks
were formed between the two scaffolds indicating that LPYNI
LDO produces significant variations in the overall protein
dynamics. Previous work incorporating MutCompute has shown
that the platform can target (and propose stabilizing mutations
for) residues that aid in protein folding dynamics.”” Notably,
significant residues identified by the Shortest Paths Maps did
not overlap with those identified by MutComputeX, suggesting
an alternative rational design approach could be implemented
to target these residues for increased catalytic activity.

Next, we assessed the Root-Mean-Square Fluctuation
(RMSF) of WT and LPYNI LDO residues to ascertain whether
certain residues may contribute to protein instability (Fig-
ure S16). Residues with larger fluctuations in their positioning
suggest either poor packing within the protein or a lack of
stabilizing interactions to prevent aberrant protein motions.
Notably, the majority of residues in LPYNI LDO display lower
RMSF than the WT, suggesting that the scaffold exhibits more
ordered protein dynamics. Upon inspection of the residues of
greatest RMSF stabilization, one region corresponds to a highly
flexible loop on the protein exterior, while the other region is
associated with substrate binding and recognition (Fig-
ure 516).°? Due to the greater stability of the C-terminal lysine-
binding loop, it appears that LPYNI LDO may have allowed the
protein to complete more substrate binding/product release
steps before unfolding or other non-catalytic kinetic events
could occur.®™ From our TSA analysis, we note that the onset of
melting of LPYNI LDO was 10°C higher than the WT scaffold,
suggesting greater overall stability at ambient temperatures
(Figure 3C). In summary, incorporation of our rationally de-
signed mutants resulted in more ordered protein conformations
which in turn provided greater turnovers.

Conclusions

We have developed a ML-guided rational design strategy for
enhancing the catalytic TTN of metalloenzymes. As a proof of
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concept, we targeted an iron/20G-dependent hydroxylase
which activates an inert C—H bond on the C, carbon of lysine to
produce y-hydroxy-lysine. By identifying mutational hotspots
with MutComputeX and screening rational designs with MD
simulations, we were able to reduce the overwhelming
sampling of sequence space and identify six potential muta-
tions for purification (Figure 1B). The MutComputeX identified
hotspots throughout the structure enabling facile generation of
rational designs that hedge against deleterious mutations near
the active site. Most variants exhibited similar thermostability as
the WT protein and all variants were able to bind the necessary
substrates for catalysis. All designed variants displayed in-
creased TTN, further validating our design methodology.
Further computational analysis suggests that the LPYNI variant
afforded a more ordered scaffold enabling greater turnovers
before catalyst deactivation. While our present work focuses on
engineering a 20G-dependent hydroxylase, we anticipate that
our rational design method could be applied for improving
other members of this superfamily such as halogenases,
cyclases, and desaturases.”®” Beyond 20G-dependent en-
zymes, this design method can be used towards engineering
metalloenzymes containing more complicated cofactors such as
porphyrins and iron-sulfur clusters.”>”? While this strategy
requires access to an initial crystal structure for ML predictions
and computing resources for MD simulations, these computa-
tional investments are significantly less expensive than high-
throughput strategies for enzyme evolution. Overall, our ML-
guided rational design method enhances the expression and
catalytic activity of industrially relevant biocatalysts.
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