

1 Early Oligocene record of an Iceberg Alley in the Weddell Sea
2 from quartz sand microtextural analysis at ODP Site 696

3 **Victoria Hojnacki¹ and Sandra Passchier¹**

4 *¹Department of Earth and Environmental Studies, Montclair State University, 1 Normal Avenue,
5 Montclair, New Jersey, 07043, USA*

6 **ABSTRACT**

7 The greenhouse to icehouse transition at the Eocene-Oligocene boundary (34 Ma) marks
8 the appearance of continental scale glaciation in Antarctica. The material recovered from the
9 Ocean Drilling Program Site 696 is the only record spanning this major climatic shift in the
10 Weddell Sea region. Using Scanning Electron Microscopy, quartz microtextures on thirteen
11 samples across the Eocene-Oligocene Transition were analyzed to understand the degree of
12 glacial modification and the transportation history of the $>150\mu\text{m}$ material. The quartz grains
13 were visually grouped, characterized and interpreted by grain outline, relief and surface
14 microtextures. Glacial textures are present throughout the entire interval (33.2-34.4 Ma) with the
15 proportion of iceberg-rafted grains in each sample decreasing into the Early Oligocene (33.6 Ma)
16 accompanied by an increase in the frequency of eolian and sea-ice rafted grains. Mass
17 accumulation rates reveal that the flux of iceberg rafted debris increases and is coincident with
18 the flux of eolian and sea-ice rafted grains following 33.6 Ma, suggesting a strong coupling
19 between land ice development and high-latitude atmospheric processes. When compared with
20 other Antarctic climate proxy data sets, the intensification of ice rafting at Site 696 occurs after
21 ice-sheet inception in East Antarctica. The prominent influx of terrigenous material after 33.6
22 Ma points to strengthened glacial conditions and, accompanied by major changes in the

23 environment of the Weddell Sea region, supports the idea of a high-latitude role in climate
24 perturbations, in agreement with interpretations of other global proxies.

25 **INTRODUCTION**

26 The transition from greenhouse to icehouse conditions on Earth occurred around 34
27 million years ago in an event known as the Eocene-Oligocene transition (EOT). Oxygen isotope
28 records from benthic foraminifera in the Eastern Equatorial Pacific reveal a two-step process
29 across the EOT (Coxall et al., 2005; Coxall and Wilson, 2011). The initial step is attributed to
30 cooling with a small increase in ice volume, while the second step of the oxygen isotope record
31 is associated with a large ice volume increase (Lear et al., 2008). The second ice build-up is
32 referred to as Oi-1 and represents the inception of a permanent ice sheet in Antarctica. The large
33 response of the cryosphere at the EOT and the global transition to a different climate state is
34 inferred to result from a climate overshoot, where the climate system surpasses the equilibrium
35 state to an extreme and then returns to a more stable state, involving high-latitude atmospheric
36 and ocean circulation feedbacks (Zachos and Kump, 2005).

37 Here we investigate the Antarctic record of the ice-sheet's inception and its high-latitude
38 environmental impacts in the Weddell Sea. We use a systematic characterization of
39 microtextures on quartz grain surfaces to track the glacial, marine and atmospheric transport
40 history of sediment in a single drill hole spanning the EOT. Numerous studies confirm the
41 existence of the East Antarctic Ice Sheet at the EOT (Scher et al., 2011; Passchier et al., 2017;
42 Carter et al., 2017; Gulick et al., 2017). However, paleorecords provide varying time frames for
43 the development of a marine-based West Antarctic Ice Sheet (Carter et al., 2017; Galeotti et al.,
44 2016; Anderson et al., 2011). Previous grain texture work carried out on samples from Ocean
45 Drilling Program (ODP) Hole 696B has provided evidence for ice rafting in the Weddell Sea

46 almost 2.5 million years before the EOT (Carter et al., 2017). Additionally, upper Eocene
47 sediments from the SHALDRIL expeditions in the Antarctic Peninsula region also contain ice-
48 rafted debris with quartz grains exhibiting high angularity and glacial surface features. These
49 textures are interpreted to represent early Alpine glaciation (Kirshner and Anderson, 2011), with
50 large-scale West Antarctic Ice Sheet growth and expansion occurring in the Miocene (Anderson
51 et al., 2011).

52 This study builds upon previous work by contributing a record of ice-rafted fluxes
53 covering the Eocene-Oligocene transition. Microtextural analysis of quartz grains present an
54 opportunity to understand the transportation history of coarse material in high-latitude marine
55 mudstones (Helland and Holmes, 1997; St. John et al., 2015). Scanning electron microscopy
56 (SEM) and a known group of surface textures can be used to identify past glacial transport
57 (Whalley & Krinsley, 1974; Mahaney, 2002; Sweet & Brannan, 2016). Observations of iceberg-
58 rafted debris (IBRD) released from icebergs calved from floating glacial ice, are separated from
59 sea ice-rafted debris (SIRD) released from ice forming at the surface of the ocean during winter
60 freezing. Distinguishing between these two types of ice rafting in environmental reconstructions
61 is important because of the different roles of glacial ice vs. sea ice in Earth System processes. As
62 the second step of the oxygen isotope record across the EOT is interpreted as a large ice volume
63 increase (Lear et al., 2008), it is expected that quartz surface textures show an increase in glacial
64 signature, i.e. IBRD, into the Early Oligocene due to glacial advance to the coast and increased
65 iceberg rafting.

66 MATERIALS AND METHODS

67 The samples selected for analysis are from ODP Site 696. Hole 696B was drilled as a part
68 of Leg 113 of the Ocean Drilling Program. Site 696, within Iceberg Alley, is located on the

69 southeast margin of the South Orkney Microcontinent ($61^{\circ}50.959'\text{S}$, $42^{\circ}55.996'\text{W}$) at a water
70 depth of 650 meters (Figure 1). Icebergs calving off the Antarctic Ice Sheet follow the Antarctic
71 Coastal Current into the Weddell Sea, where they melt and release sediment to the ocean floor,
72 here tracked as IBRD. Therefore, this site provides the opportunity to obtain a record of ice sheet
73 development.

74 Samples in this study are from subunit VIIB at 548.9-579.4 meters below seafloor (mbsf)
75 and sample positions range in depth from 549.11 to 577.95 mbsf (Cores 696B-53R to 56R). The
76 major lithology of the subunit is dark gray to black claystone and clayey mudstone. Within the
77 subunit, small dropstones are reported in Cores 53R and 54R (Shipboard Scientific Party, 1988).
78 Grain size distributions throughout subunit VIIB (Light, 2017; Lepp, 2018; Horowitz, 2021)
79 were used, in addition to gravel occurrence (Shipboard Scientific Party, 1988), to select samples
80 for this study. Thirty-three samples were disaggregated with deionized water and the use of an
81 ultrasonic bath, before sieving to obtain the $>150\text{ }\mu\text{m}$ fraction.

82 Thirteen samples with sufficient $>150\text{ }\mu\text{m}$ weight percent were selected for further
83 analysis using SEM. The $>150\text{ }\mu\text{m}$ fraction of each of the 13 samples was viewed under an
84 optical microscope and ~ 40 quartz grains were selected and mounted onto an aluminum stage
85 with carbon tape. The grain mounts received a gold coating to reduce charging. Using a Hitachi
86 S-3400N SEM in the Microscopy and Microanalysis Research Laboratory at Montclair State
87 University, the grains were analyzed with a probe current of 50 mA and an accelerating voltage
88 of 15 kV. Energy dispersive spectrometry (EDS) was used to verify the composition of each
89 grain. Images of each grain were captured using a secondary electron (SE) detector. Grains that
90 were not silica or those that had non-detrital morphology were excluded from further
91 microtextural analysis. Inspection of the EDS signatures and SE images revealed a majority of

92 the excluded grains were plagioclase or silicified remnants of foraminifera, diatoms, or
93 radiolaria.

94 Prior to the detailed microtextural classification of the detrital quartz grains, the images
95 of the quartz grains were randomly renamed to conceal their stratigraphic position in order to
96 avoid bias in the identification of textures and depositional environments. The grains were
97 visually classified into five grain types based on the environmental interpretation of the overall
98 appearance of the grain (Hodel et al., 1988; Mahaney, 2002; Vos et al., 2014). The grains were
99 then inspected with the use of a checklist including grain outline, grain relief, and 22
100 microtextures (Figure 2, Table 1). The textures encountered on a given grain were rated by the
101 percent of grain coverage (absent <2%, present 2-25%, common 25-75%, abundant >75%). The
102 results were analyzed by frequency of occurrence (%), defined by the percentage of grains with a
103 given texture or of a given grain type in each sample.

104 According to the initial report from Site 696, material from subunit VIIB was tentatively
105 thought to range in age from Early Miocene to Late Paleogene. Since the drilling of this site,
106 dinocyst biostratigraphy was added to create an updated age model (Wei and Wise, 1990;
107 Houben et al., 2011, 2013) that better constrains the EOT in Hole 696B. This study used the
108 youngest four tie points from the age model developed by Hojnacki et al. (2022), based on
109 datums in Houben et al. (2013). The linear sedimentation rate in the Late Eocene was ~ 2.2
110 cm/kyr. Sedimentation rate around the EOT slowed to ~ 0.5 cm/kyr, with a higher sedimentation
111 rate of ~ 5.0 cm/kyr during the Early Oligocene.

112 Mass accumulation rates (MAR) were calculated using >150 μm weight fraction of the
113 terrigenous material and values reported in the ODP Site 696 initial report. The following
114 equations were used to calculate mass accumulation rates (St. John et al., 2008).

115 MAR = TERR CS x DBD x LSR (1)

116 Grain type MAR = TERR CS x DBD x LSR x grain type (2)

117 Where CS is the weight fraction of the $>150 \mu\text{m}$ terrigenous material (Table S1), DBD is dry
118 bulk density (Table S2), LSR is the linear sedimentation rate, and grain type is the frequency of
119 the given grain type in the sample.

120 RESULTS

121 Grain Types

122 Grain types A through E are classified on the basis of grain outline, relief and the
123 combination of microtextures present (Table 2; Figure 2). Textures are identified with the aid of
124 observations and classification of grains from modern sedimentary environments (Mahaney,
125 2002; Vos et al., 2014). **Grain type A** is dominated by angular to subangular outlines and high
126 stress textures like large conchoidal fractures, subparallel linear fractures, straight steps and
127 fracture faces. These textures are common and occur on 50% or greater of type A grains. Grain
128 type A ranges in frequency from 4 to 60% and is dominant in samples below ~ 569 mbsf,
129 followed by a decline in frequency up core (Figure 3). **Grain type B** is dominated by subangular
130 to subrounded outlines and dissolution weathering. Dissolution weathering is present on all
131 grains within type B and generally covers more than 25% of the grain's surface. Type B grains
132 range in frequency from 17 to 56%, with a general increase up core (Figure 3). **Grain type C** is
133 subangular to subrounded in outline and contains abundant upturned plates. Upturned plates
134 occur on over 90% of type C grains and a majority of those grains have upturned plates coverage
135 greater than 25%. Type C grains range in frequency from 0 to 39%, with the highest frequencies
136 occurring above ~ 563 mbsf (Figure 3). **Grain type D** is identified by euhedral overgrowth.
137 Type D is only present in 4 of the 13 samples and makes up a small percentage of those samples

138 (Figure 3). **Grain type E** is composed of grains with subangular to subrounded outline with
139 textures like conchoidal fractures, subparallel linear fractures, arcuate steps and V-shaped pits in
140 low abundance (>40%). The frequency of type E grains ranges from 4 to 32% with a noticeable
141 increase above ~563 mbsf (Figure 3). **Grain type F** is comprised of silica grains that are not
142 terrigenous, and only make up 6 out of 378 total studied grains.

143 **Stratigraphic changes in grain morphology, sand weight percent and IBRD MAR**

144 **Core 53R (548.9-558.5 mbsf):** Four samples from Core 53R were analyzed for this study. The
145 most abundant grain types in these samples are type B (34%) and type C (30%). Samples from
146 core 53R are characterized by a subangular to subrounded outline. Adhering particles,
147 dissolution weathering, and upturned plates are the most commonly occurring surface features
148 with moderate frequency (Figure 4). Mechanical textures like large conchoidal fractures and
149 subparallel linear fractures occur in lower frequencies. The samples in this core more commonly
150 have chemical textures in comparison to mechanical. The dominance of chemical textures in this
151 core is associated with a high proportion of type B grains.

152 **Core 54R (558.5-568.2 mbsf):** Three samples from Core 54R were analyzed. Core 54R grains
153 are predominately type B (38%) and type C (33%). Samples from Core 54R are characterized by
154 subangular to subrounded outline. Dissolution weathering, adhering particles, and upturned
155 plates occur with moderate frequency (Figure 4). Low frequencies of large conchoidal fractures,
156 subparallel linear fractures, straight and arcuate steps and fracture faces are noted. The high
157 percentage of grain type B accounts for the high percentage of chemical features like dissolution
158 weathering that is common in this core.

159 **Core 55R (568.2-577.9 mbsf):** Five samples from Core 55R were examined for surface textures.
160 50% of grains from Core 55R are classified as grain type A. These samples are characterized by

161 a subangular to angular outline. Adhering particles and granular precipitation occur with high
162 frequency in these samples (Figure 4). Mechanical textures such as large conchoidal fractures,
163 subparallel linear fractures, straight and arcuate steps and fracture faces occur with moderate
164 frequency.

165 **Core 56R (577.9-587.6 mbsf):** Only one sample was analyzed from Core 56R. Grain type A
166 dominates the sample in this core accounting for 50%. This sample contains grains with
167 subangular to angular outlines. Adhering particles and granular precipitation occur in high
168 frequency (Figure 4). Mechanical features like large conchoidal fractures, subparallel linear
169 fractures, straight and arcuate steps and fracture faces have moderate occurrences.

170 Microtextures commonly associated with glacial transport like large conchoidal fracture
171 ($>10\mu\text{m}$), subparallel linear fracture, straight steps, arcuate steps, fracture face, straight groove,
172 curved groove, and adhering particles (Whalley & Krinsley, 1974; Mahaney, 2002, Vos et al.,
173 2014) generally show decreasing frequency up core (Figure 5). Similarly, grain outline decreases
174 in angularity up core (Figure 6). The decrease in glacial textures and grain angularity occur while
175 grain types B, C and E increase in frequency (Figure 3). Conversely, both $>150\mu\text{m}$ fraction
176 weight percent and MAR increases above ~ 563 mbsf, with two peaks occurring at ~ 563 mbsf
177 and ~ 552 mbsf (Figure 7).

178 **DISCUSSION**

179 **Interpretation of Grain Types**

180 Grains of **type A** are characterized by angular to subangular outline and high stress
181 textures like large conchoidal fractures, subparallel linear fractures, straight steps and fracture
182 faces, which are interpreted to represent iceberg rafted debris (IBRD) of primary glacial origin
183 (Table 2) (Whalley & Krinsley, 1974; Mahaney, 2002; Vos et al., 2014). There is a relative

184 difference, in degree of grain relief and crushing textures, between ice-sheet and alpine glacial
185 quartz microtextures, however, the lack of secondary textures on type A grains support the
186 interpretation of ice-sheet quartz microtextures (Mahaney et al., 1988). Grain **type B** exhibits
187 common sea ice-rafted debris (SIRD) textures such as subrounded outlines and dissolution
188 weathering (Dunhill, 1998; St. John et al., 2015). The difference in the grain morphology of
189 iceberg and sea-ice rafted grains is caused by sea ice-rafted grains spending time in a periglacial
190 environment and experiencing an overprinting of textures, while iceberg transport preserves the
191 primary glacial signature characteristic of IBRD grains (St. John et al., 2015). Grain **type C** is
192 dominated by upturned plates which is associated with eolian transport (Margolis & Krinsley,
193 1971; Vos et al., 2014; Mahaney, 2002). Grain **type E** is composed of grains with subangular to
194 subrounded outline with textures like conchoidal fractures, subparallel linear fractures, arcuate
195 steps and V-shaped impact pits in low frequencies. These grains have abraded surfaces and edge
196 rounding and generally appear more mature than fresh glacial grains. The rounding and abrasion
197 on these grains point to a low to moderate subaqueous transport (Hodel et al., 1988). Both Hodel
198 et al. (1988) and Sweet and Brannan (2016) show that increased distance traveled downstream
199 can cause the rounding and abrasion seen in type E grains.

200 **Intensification of Ice Rafting**

201 The results of this research indicate that quartz sand grains carrying a glacial signature
202 are reaching Site 696 across the EOT. Iceberg rafted debris (IBRD) is present throughout the
203 study interval in varying percentages. Previous work at Site 696 already provided evidence for
204 iceberg-rafted and sea ice-rafted debris indicating glacial calving in the Weddell Sea region 2.5
205 million years prior to the EOT (Carter et al., 2017). However, microtextural work on
206 SHALDRIL expedition samples indicates alpine glaciation of the Antarctic Peninsula occurred

207 during the Late Eocene (Kirshner & Anderson, 2011). With the inclusion of previously
208 unsampled cores spanning the EOT and the calculation of mass accumulation rates of iceberg-
209 rafted debris (IBRD MAR), the record provides evidence for increasing glacial sediment supply
210 after 33.6 Ma (Figure 7) while also supporting the findings of Carter et al (2017). The low
211 occurrence of V-shaped percussions and edge rounding present on type A grains and the
212 abundance of fresh glacial textures exclude the possibility the increased sedimentation rates of
213 coarse fraction around ~33.6 Ma is related to bottom currents. As demonstrated by the work of
214 Sweet and Brannan (2016), glacial textures decrease with the distance of bedload transport from
215 a glacial source and fluvial (subaqueous transport) textures increase. Additionally, the increase in
216 IBRD MAR coincides with the appearance of dropstones in the Early Oligocene (cores 53R and
217 54R). The heavy mineral assemblage of the >150 μm fraction points to a provenance in the
218 sedimentary and metamorphic rocks of the southern and western Weddell Sea (Figure S2) for the
219 IBRD MAR maxima in Cores 54R and 53R (above 563 mbsf; ~33.6 Ma) (Supplemental
220 Material). The IRBD MAR and heavy mineral provenance indicates growth of the West
221 Antarctic Ice Sheet in the Early Oligocene following East Antarctic ice advance, in agreement
222 with the interpretation of the mud provenance for this site (Hojnacki et al., 2022).

223 **Environmental Conditions in the Weddell Sea**

224 The upcore decrease in the proportion of grains with glacial textures seen in the samples
225 from Site 696 (Figure 4) is produced by an influx of grain types other than IBRD. The frequency
226 of sea ice-rafted debris (SIRD), eolian, and periglacial grains increases after ~33.6 Ma (Figure
227 7). SIRD is present in moderate frequencies throughout the entire Eocene-Oligocene section but
228 generally increases in the Oligocene (Figure 3). Increases in sea-ice formation during the
229 expansion of the West Antarctic Ice Sheet explains the increased frequency and SIRD MAR

230 throughout the study interval. The endemic Southern Ocean plankton ecosystem developed
231 ~33.6 Ma and was driven by cooling and ice sheet expansion and associated sea-ice formation
232 (Houben et al., 2013). The frequency of *Protoperidiniaceae* at Site 696 increases through the
233 interval of this study. In particular, the appearance of *Selenopemphix antarctica*, coincides with
234 the major peak of SIRD at 33.5 Ma (Figure 7) (Houben et al., 2013). *Selenopemphix antarctica* is
235 a dominant dinocyst in the modern Antarctic sea-ice zone (Houben et al., 2013) and its
236 abundance correlates with that of grain type B representing the seaice-rafted material.

237 In addition to the increase in ice-rafted material, eolian grains have a maximum
238 abundance after 33.6 Ma. The increase in wind delivered grains to the site is coincident with
239 glacial intensification and is consistent with the modeling efforts of Goldner et al (2014). The
240 coupled ocean-atmosphere model demonstrates the effects of the inception of the Antarctic ice
241 sheet. One of these effects includes changes in atmospheric circulation associated with the
242 glacial topography of the continent, which increased surface wind around Antarctica (Goldner et
243 al., 2014). There are multiple mechanisms through which these eolian grains could have been
244 deposited. The deposition of the grains could be the result of deposition in water after wind
245 transportation, transportation via sea-ice or via melting of ice shelves. Eolian sediments become
246 concentrated in melt ponds on the top of ice shelves and during the break-up of an ice shelf, large
247 amounts of these eolian deposits can be released to the sea floor (Gilbert and Domack, 2003).
248 The low abundance of type E grains compared to the grain types A-D in the EOT sediment of
249 Site 696, suggest that periglacial subaqueous modification of sand grains contributed less
250 material than the primary IBRD, SIRD, and eolian fractions (Figure 7).

251 Geochemical and sedimentological data from around the Antarctic point to major
252 changes in ice extent, glacial erosion, and high-latitude climate at the EOT (Figure 7). An

253 oxygen isotope record from Maud Rise in the Southern Ocean shows a cooling and ice building
254 phase associated with the greenhouse to icehouse transition (Diester-Haass & Zahn, 1996;
255 Vonhof et al., 2000; Bohaty et al., 2012). Additionally, seawater neodymium isotopes from the
256 Kerguelen Plateau in the Southern Ocean clearly demonstrate increased physical erosion signals
257 associated with the expansion of the East Antarctic Ice Sheet followed by erosion repression due
258 to a reduction in uncovered areas and a colder glacial regime (Scher et al., 2011). An upper
259 Eocene diatomaceous claystone with interbedded sand in Prydz Bay is inferred as the arrival of
260 glaciers at sea level (Strand et al., 2003). IBRD MAR from Site 696 in the Weddell Sea region of
261 West Antarctica point to glacial intensification occurring in the Early Oligocene, later than the
262 glacial expansion in East Antarctica (Figure 7) and increases in SIRD and eolian MARs confirm
263 the results of previous studies (Houben et al., 2013; Goldner et al., 2014).

264 This study's record shows a peak pulse of $>150 \mu\text{m}$ material followed by a return to
265 background input (Figure 7) at the end of the EOT. This work and other global records document
266 the climate system surpassing the equilibrium state (climate overshoot), ultimately returning to a
267 more stable state. $\delta^{18}\text{O}$ values confirm a pattern of an abrupt positive shift at 33.7 Ma (Oi-1);
268 following this event oxygen isotope values gradually begin to fall after 33 Ma (Diester-Haass
269 and Zahn, 1996; Zachos et al., 1996; Coxall et al., 2011). Similar to the Site 696 record, IBRD
270 deposition at the Kerguelen Plateau has a short episode (~75 kyr) of significant ice rafting at Oi-
271 1 followed by a cessation of IBRD deposition (Scher et al., 2011). Along with the neodymium
272 record, the Kerguelen Plateau IBRD record provides support to Zachos and Kumps (2005)
273 modeling that suggests that the Oi-1 event is a climate overshoot and that the climate system
274 eventually returned to a steady state after an increase in atmospheric CO₂ following a reduction
275 in temperature and weatherable area. Site 696's peak in IBRD flux in the Early Oligocene signals

276 marine ice-sheet growth, with IBRD delivery from the West Antarctic Ice Sheet, followed by a
277 return to a more reduced stable ice sheet, and a reduction in the IBRD flux into the Weddell Sea.
278 Site 696, located within the modern-day Iceberg Alley, allowed for the observation of this
279 climate overshoot at a high-latitude site in the Weddell Sea.

280 CONCLUSIONS

281 A transportation history of sand grains within Iceberg Alley in the Weddell Sea region
282 during the EOT is provided by microtextural analysis of samples from ODP Site 696. The
283 presence of grains exhibiting typical glacial textures in all samples confirm that icebergs are
284 reaching the region from the Late Eocene to the Early Oligocene. Mass accumulation rates of the
285 IBRD and SIRD fraction provide evidence for intensification of glacial conditions around 33.6
286 Ma, after the growth and expansion of the East Antarctic Ice Sheet. The increase in glacial grains
287 is accompanied by an influx of eolian grains demonstrating the changing surface climate
288 conditions associated with the development of the Antarctic Ice Sheet. The pulse of $>150 \mu\text{m}$
289 material at the site at 33.5 Ma supports the idea of ice-sheet overshoot in the Early Oligocene.

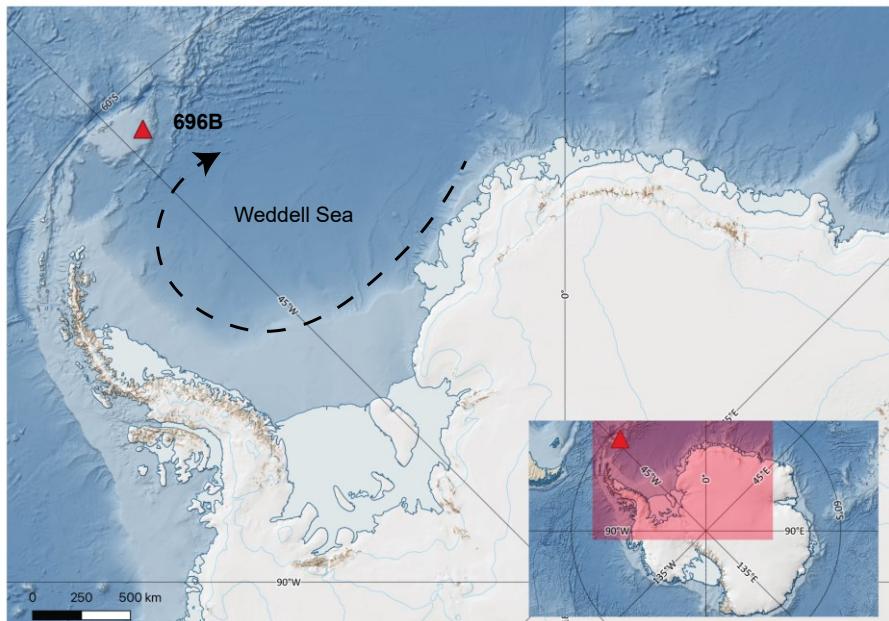
290 ACKNOWLEDGEMENTS

291 This research used samples and/or data provided by the Ocean Drilling Program (ODP). This
292 project was supported by NSF Award 1743643 to SP. Dr. Laying Wu (Microscopy and
293 Microanalysis Research Laboratory at Montclair State University) is thanked for her guidance
294 with sample preparation for the SEM work. We thank three anonymous reviewers for their
295 suggestions and insights.

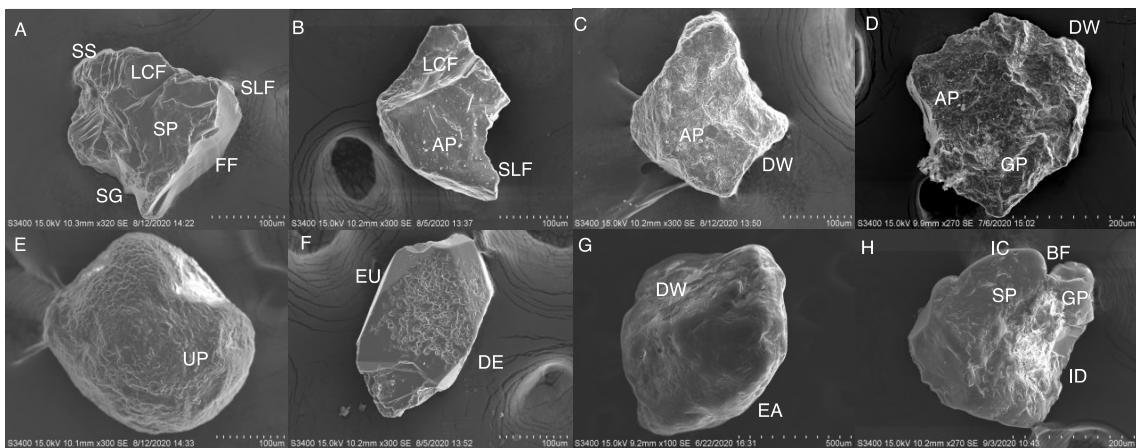
296 **REFERENCES CITED**

- 297 Anderson, J.B., Warny, S., Askin, R.A., Wellner, J.S., Bohaty, S.M., Kirshner, A.E., Livsey,
298 D.N., Simms, A.R., Smith, T.R., Ehrmann, W. & Lawver, L.A., 2011, Progressive
299 Cenozoic cooling and the demise of Antarctica's last refugium: *Proceedings of the*
300 *National Academy of Sciences of the United States of America*, v. 108, p. 11356–11360,
301 doi:10.1073/pnas.1014885108.
- 302 Bohaty, S.M., Zachos, J.C., & Delaney, M.L., 2012, Foraminiferal Mg/Ca evidence for Southern
303 Ocean cooling across the Eocene-Oligocene transition: *Earth and Planetary Science*
304 *Letters*, v. 317-318, p. 251-261, doi:10.1016/j.epsl.2011.11.037.
- 305 Carter, A., Riley, T.R., Hillenbrand, C., & Rittner, M., 2017, Widespread Antarctic glaciation
306 during the late Eocene: *Earth and Planetary Science Letters*, v. 458, p. 49–57,
307 doi:10.1016/j.epsl.2016.10.045.
- 308 Coxall, H.K., & Wilson, P.A., 2011, Early Oligocene glaciation and productivity in the eastern
309 equatorial Pacific: Insights into global carbon cycling: *Paleoceanography and*
310 *Paleoclimatology*, v. 26, doi:10.1029/2010PA002021.
- 311 Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., & Backman, J., 2005, Rapid stepwise onset of
312 Antarctic glaciation and deeper calcite compensation in the Pacific Ocean: *Nature*, v.
313 433, p. 53–57, doi: 10.1038/nature03135.
- 314 Diester-Haass, L. & Zahn, R., 1996, Eocene-Oligocene transition in the Southern Ocean: History
315 of water mass circulation and biological productivity: *Geology*, v. 24, p. 163-166,
316 doi:10.1130/0091-7613(1996)024<0163:EOTITS>2.3.CO;2.
- 317 Dunhill, G., 1998, Comparison of Sea-Ice and Glacial-Ice Rafted Debris Grain Size, Surface
318 Features, and Grain Shape: *USGS Open File Report 98-367*.

- 319 Galeotti, S., et al., 2016, Antarctic Ice Sheet variability across the Eocene-Oligocene boundary
320 climate transition: *Science*, v. 352, p. 76-80, doi:10.1126/science.aab0669.
- 321 Gilbert R., & Domack, E.W., 2003, Sedimentary record of disintegrating ice shelves in a
322 warming climate, Antarctic Peninsula: *Geochemistry, Geophysics, Geosystems*, v4, no. 4,
323 doi:10.1029/2002GC000441.
- 324 Goldner, A., Herold, N. & Huber, M., 2014, Antarctic glaciation caused ocean circulation
325 changes at the Eocene-Oligocene transition: *Nature*, v. 511, p. 574-577, doi:
326 10.1038/nature13597.
- 327 Gulick, S.P.S, Shevenell, A.E., Montelli, A., Fernandez, R., Smith, C., Warny, S., Bohaty, S.M.,
328 Sjunneskog, C., Leventer, A., Frederick, B., & Blankenship, D.D., 2017, Initiation and
329 long-term instability of the East Antarctic Ice Sheet: *Nature*, v 552, p. 225-229,
330 doi.org/10.1038/nature25026
- 331 Helland, P.E. & Holmes, M.A., 1997, Surface textural analysis of quartz sand grains from ODP
332 Site 918 off the southeast coast of Greenland suggest glaciation of southern Greenland at
333 11 Ma: *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 135, p. 109-121,
334 doi:10.1016/S0031-0182(97)00025-4.
- 335 Hodel, K.L., Reimnitz, E., & Barnes, P.W., 1988, Microtextures of quartz grains from modern
336 terrestrial and subaqueous environments, North Slope of Alaska: *Journal of Sedimentary
337 Petrology*, v. 58, p. 24-32, doi:10.1306/212F8D00-2B24-11D7-8648000102C1865D.
- 338 Hojnacki, V., Lepp, A., Horowitz Castaldo, J., States, A., Li, X., & Passchier, S., 2022, Impact
339 of Eocene-Oligocene Antarctic glaciation on the paleoceanography of the Weddell Sea:
340 *Paleoceanography and Paleoclimatology*, v. 37, doi: 10.1029/2022PA004440

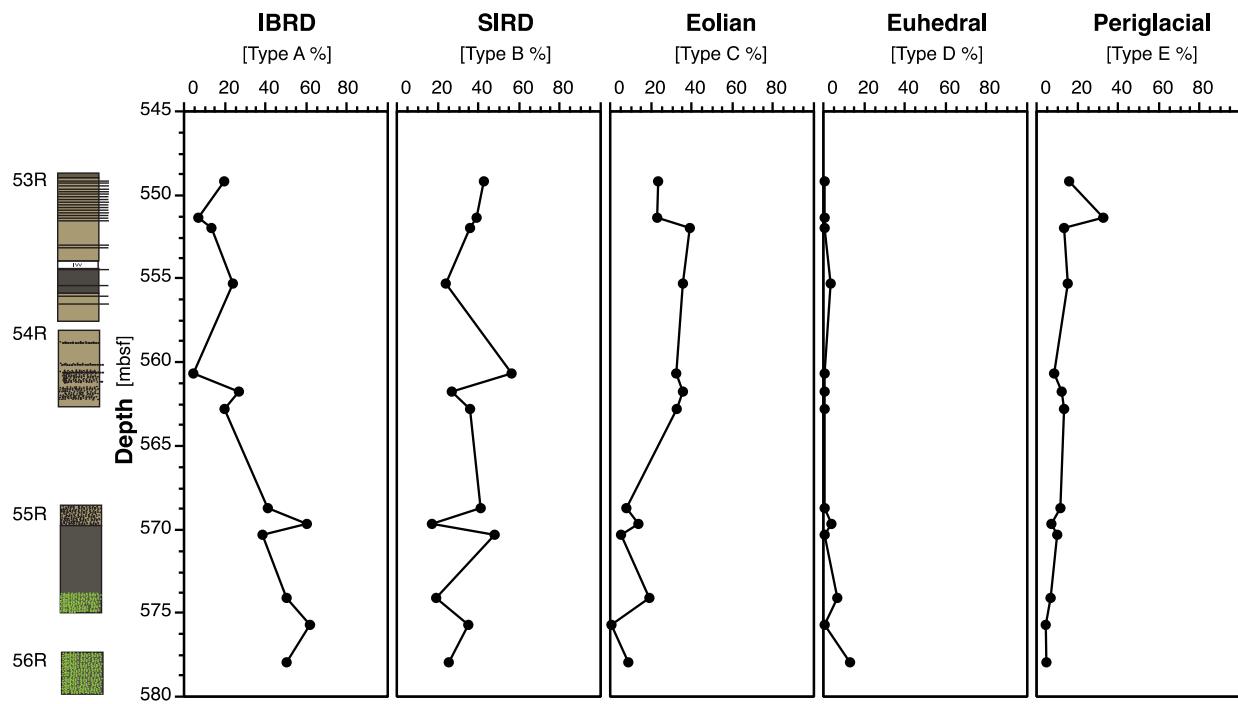

- 341 Horowitz, J., 2021, Identification of ice-rafted debris in the Weddell Sea to characterize
342 glaciation at the Eocene-Oligocene transition [M.S. Thesis]: Montclair State University.
- 343 Houben, A. J., Bijl, P. K., Guerstein, G. R., Sluijs, A., & Brinkhuis, H., 2011, Malvinia
344 *escutiana*, a new biostratigraphically important Oligocene dinoflagellate cyst from the
345 Southern Ocean: Review of Palaeobotany and Palynology, v. 165(3-4), p. 175-182,
346 doi:10.1016/j.revpalbo.2011.03.002.
- 347 Houben, A.J.P., et al., 2013, Reorganization of Southern Ocean plankton ecosystem at the onset
348 of Antarctic glaciation: *Science*, v. 340, p. 341–344, doi:10.1126/science.1223646.
- 349 Kirshner, A. E., & Anderson, J. B., 2011, Cenozoic glacial history of the northern Antarctic
350 Peninsula: A micromorphological investigation of quartz sand grains, in Anderson, J.B.,
351 and Wellner, J., eds., *Tectonic, climatic, and cryospheric evolution of the Antarctic
352 Peninsula*, American Geophysical Union, v. 63, p. 153-165, doi:10.1029/SP063.
- 353 Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K. & Rosenthal, Y., 2008, Cooling and ice
354 growth across the Eocene-Oligocene transition: *Geology*, v. 36, p. 251–254,
355 doi:10.1130/G24584A.1.
- 356 Lepp, A.P., 2018, Geochemical and sedimentological analysis of marine sediments from ODP
357 Site 696 and implications for the onset of Antarctic glaciation [M.S. Thesis]: Montclair
358 State University.
- 359 Light, J.J, 2017, Geochemical and particle size analysis of East Antarctic shelf sediments
360 through the Eocene Oligocene transition [M.S. Thesis]: Montclair State University.
- 361 Mahaney, W.C., 2002, *Atlas of Sand Grain Surface Textures and Applications*: New York,
362 Oxford University Press, 237 p.

- 363 Mahaney, W.C., Vortisch, W., & Julig, P., 1988, Relative differences between glacially crushed
364 quartz transported by mountain and continental ice, some examples from North America
365 and East Africa: *American Journal of Science*, v. 288, p. 810–826, doi:10.
366 2475/ajs.288.8.810
- 367 Margolis, S.V., & Krinsley, D.H., 1971, Submicroscopic frosting on eolian and subaqueous
368 quartz sand grains: *Geological Society of American Bulletin*, v. 82, p. 3395-3406,
369 doi:10.1130/0016-7606(1971)82[3395:SFOEAS]2.0.CO;2.
- 370 Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, P.K. & Bohaty, S.M., 2017, An Antarctic
371 stratigraphic record of stepwise ice growth through the Eocene-Oligocene transition:
372 *Bulletin of the Geological Society of America*, v. 129, p. 318–330,
373 doi:10.1130/B31482.1.
- 374 Scher, H.D., Bohaty, S.M., Zacos, J.C. & Delaney, M.L., 2011, Two-stepping into the icehouse:
375 East Antarctic weathering during progressive ice-sheet expansion at the Eocene–
376 Oligocene transition: *Geology*, v. 39(4), 383–386, doi:10.1130/G31726.1.
- 377 Shipboard Scientific Party, 1988, Site 696, in Barker, P. F., Kennett, J. P., et al., *Proceedings of*
378 *the Ocean Drilling Program, Initial Reports*, 113: College Station, TX.
- 379 St. John, K., 2008, Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on
380 the Lomonosov Ridge: *Paleoceanography and Paleoclimatology*, v. 23, doi:
381 10.1029/2007PA001483.
- 382 St. John, K., Passchier, S., Tantillo, B., Darby, D., & Kearns, L., 2015, Microfeatures of modern
383 sea-ice-rafted sediment and implications for paleo-sea-ice reconstructions: *Annals of*
384 *Glaciology*, v. 56, p. 83-93, doi:10.3189/2015AoG69A586.


- 385 Sweet, D.E., & Brannan, D.K., 2016, Proportion of glacially to fluvially induced quartz grain
386 microtextures along the Chitina River, SE Alaska, U.S.A.: *Journal of Sedimentary*
387 *Research*, v. 86, p. 749-761, doi:10.2110/jsr.2016.49.
- 388 Strand, K., Passchier, S., & Näsi, J., 2003, Implications of quartz grain microtextures for the
389 onset Eocene/Oligocene glaciation in Prydz Bay, ODP Site 1166, Antarctica:
390 *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 198, p. 101-111,
391 doi:10.1016/S0031-0182(03)00396-1.
- 392 Vonhof, H.B., Smit, J., Brinkhuis, H., Montanari, A., & Nederbragt, A.J., 2000, Global cooling
393 accelerated by early late Eocene impacts: *Geology*, v. 28, p. 687-690, doi:10.1130/0091-
394 7613(2000)28<687:GCABEL>2.0.CO;2.
- 395 Vos, K., Vandenberghe, N., & Elsen, J., 2014, Surface textural analysis of quartz grains by
396 scanning electron microscope (SEM): From sample preparation to environmental
397 interpretation: *Earth-Science Reviews*, v. 128, p. 93-104,
398 doi:10.1016/j.earscirev.2013.10.013
- 399 Whalley, B., & Krinsley, D., 1974, A scanning electron microscope study of surface textures of
400 quartz grains from glacial environments: *Sedimentology*, v. 21, p. 87-105,
401 doi:10.1111/j.1365-3091.1974.tb01783.x
- 402 Wei, W. & Wise, S.W., 1990, Middle Eocene to Pleistocene calcareous nannofossils recovered
403 by Ocean Drilling Program Leg 113 in the Weddell Sea, in Barker, PF; Kennett, JP; et
404 al., *Proceedings of the Ocean Drilling Program, Scientific Results*, College Station, TX,
405 p. 639-666.

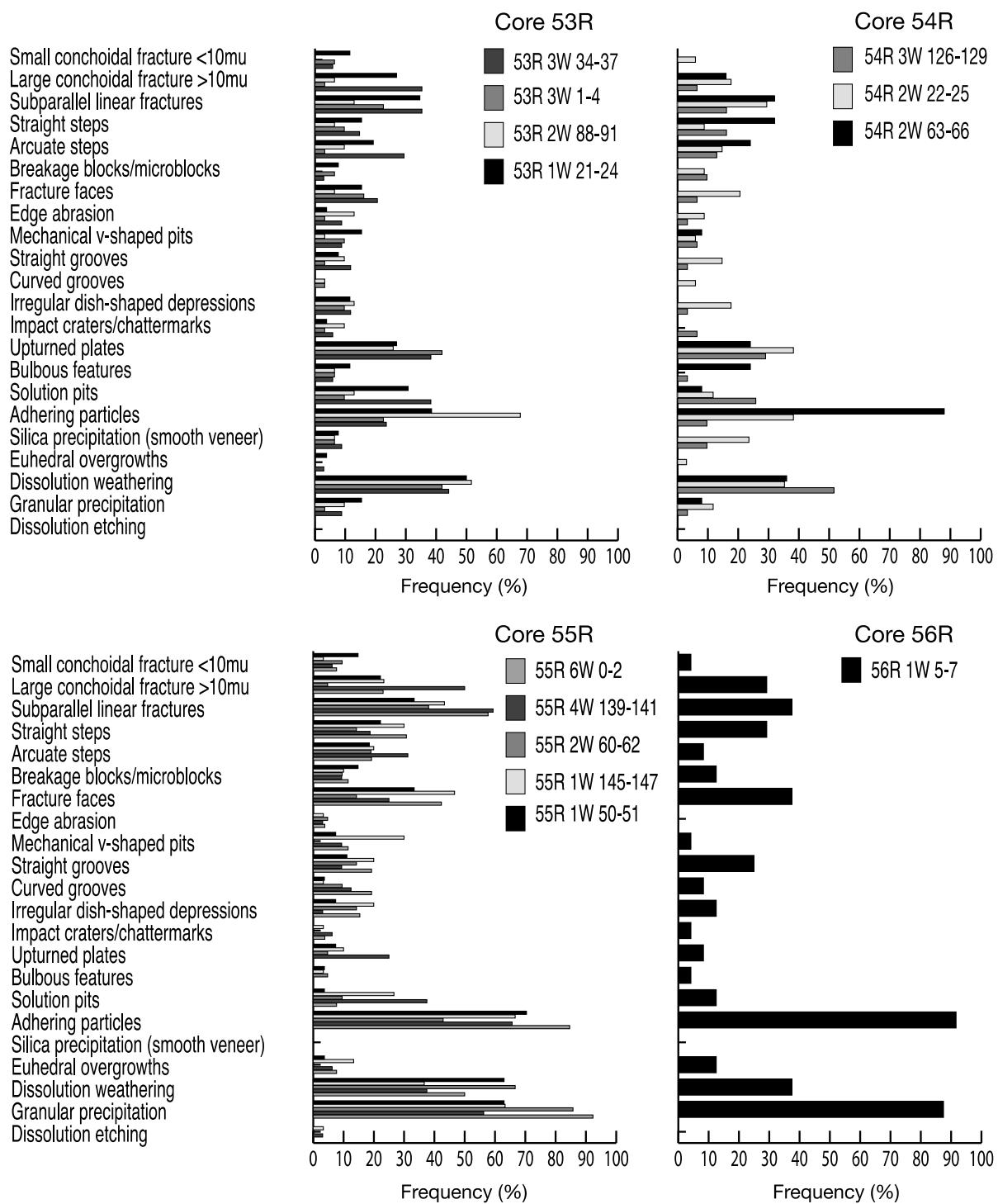
- 406 Zachos, J.C., & Kump, L.R., 2005, Carbon cycle feedbacks and the initiation of Antarctic
407 glaciation in the earliest Oligocene: *Global and Planetary Change*, 47, p. 51-66,
408 doi:10.1016/j.gloplacha.2005.01.001
- 409 Zachos, J. C., Quinn, T.M., & Salamy, K.A., 1996, High-resolution (104 years) deep-sea
410 foraminiferal stable isotope records of the Eocene-Oligocene climate transition,
411 *Paleoceanography and Paleoclimatology*, 11, p. 251–266, doi:10.1029/96PA00571

412 Figure and Table Captions

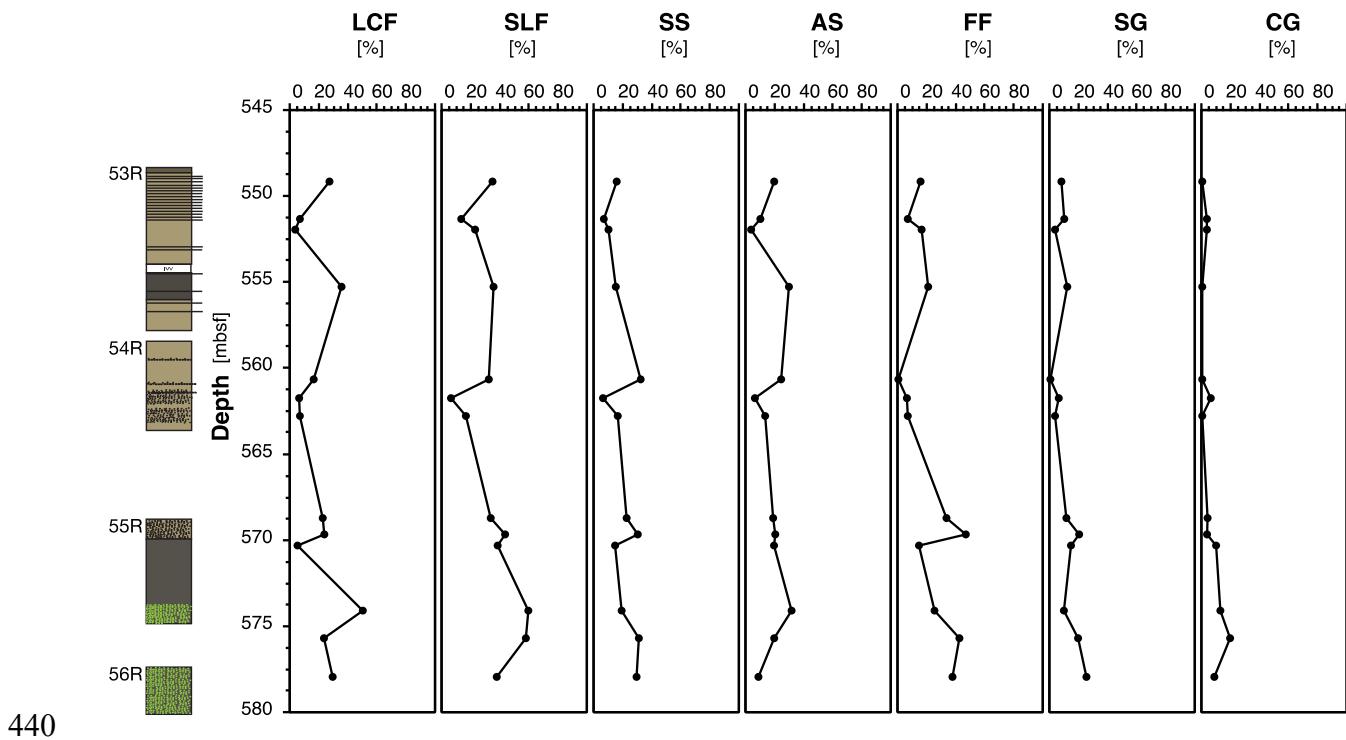


413
414 Figure 1. Map of Antarctica with a red triangle in the Weddell Sea representing ODP Site 696.
415 The dashed black arrow denotes the path of icebergs in Iceberg Alley. Map produced using the
416 Quantarctica compilation in QGIS.

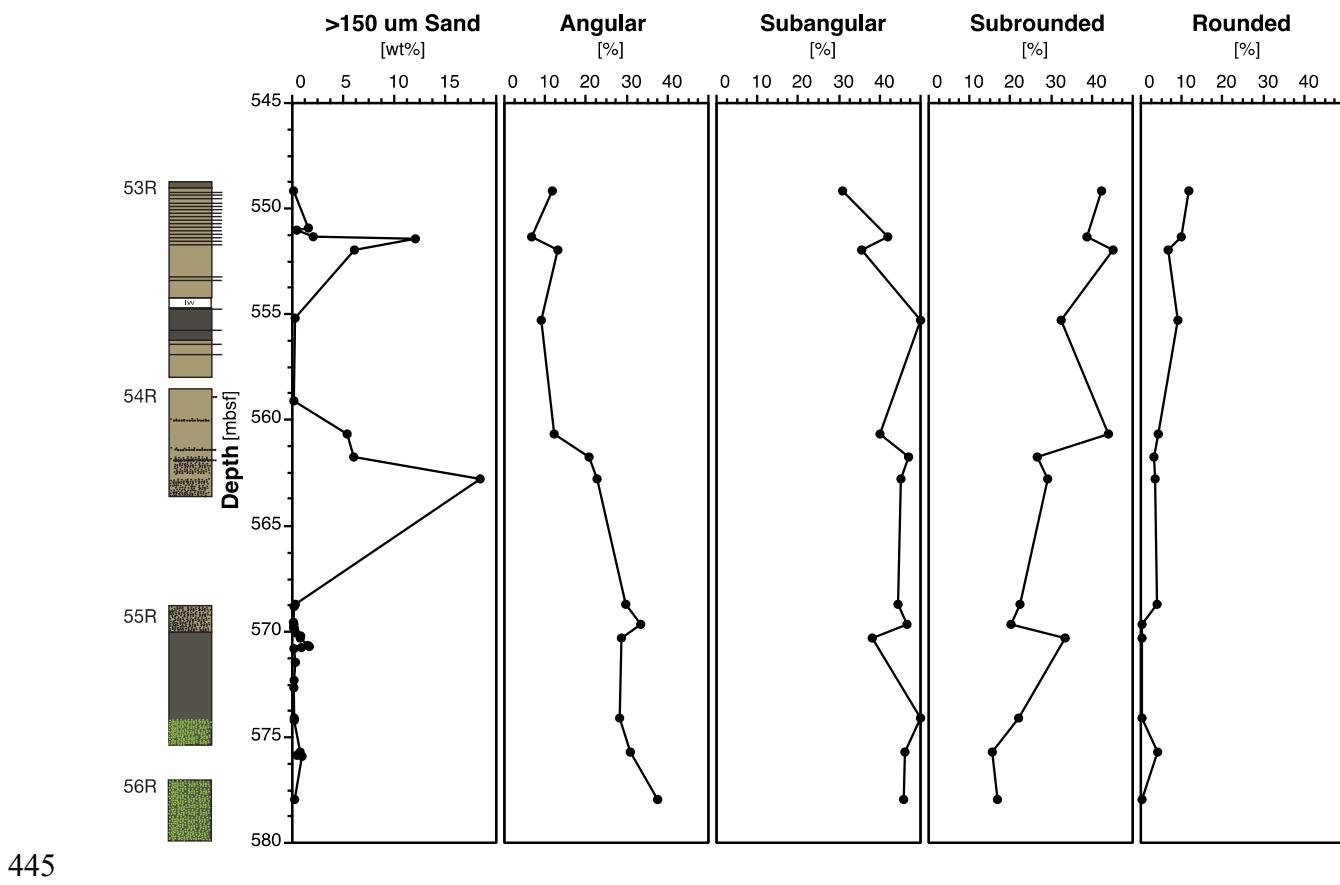
417
418 Figure 2. SEM micrographs of grains from ODP Site 696. (A) Grain type A with an angular
419 outline, high relief, large concoidal fracture, subparallel linear fracture, straight steps, fracture
420 face, straight groove, and solution pits. (B) Grain type A with a subangular outline, medium
421 relief, large conchoidal fracture, subparallel linear fracture and adhering particles. (C) Grain


422 type B with a subangular outline, medium relief, dissolution weathering and adhering particles.
423 (D) Grain type B with subangular outline, medium relief, dissolution weathering, adhering
424 particles and granular precipitation. (E) Grain type C with a subrounded outline, medium relief,
425 and upturned plates. (F) Grain type D with an angular outline, low relief, euhedral overgrowth
426 and dissolution etching. (G) Grain type E with a rounded outline, medium relief, dissolution
427 weathering and edge abrasion. (H) Grain type E with a subrounded outline, medium relief,
428 irregular dish-shaped depressions, impact craters, solution pits, granular precipitation and a
429 bulbous feature. AP = adhering particles, DW = dissolution weathering, GP = granular
430 precipitation, UP = upturned plates, EU = euhedral overgrowth, DE = dissolution etching, EA =
431 edge abrasion, IC = impact craters, SP = solution pits, BF = bulbous feature, ID = irregular
432 dish-shaped depression, SS = straight steps, LCF = large conchoidal fracture ($>10 \mu\text{m}$), SLF =
433 subparallel linear fracture, FF = fracture face, SG = straight groove.

434

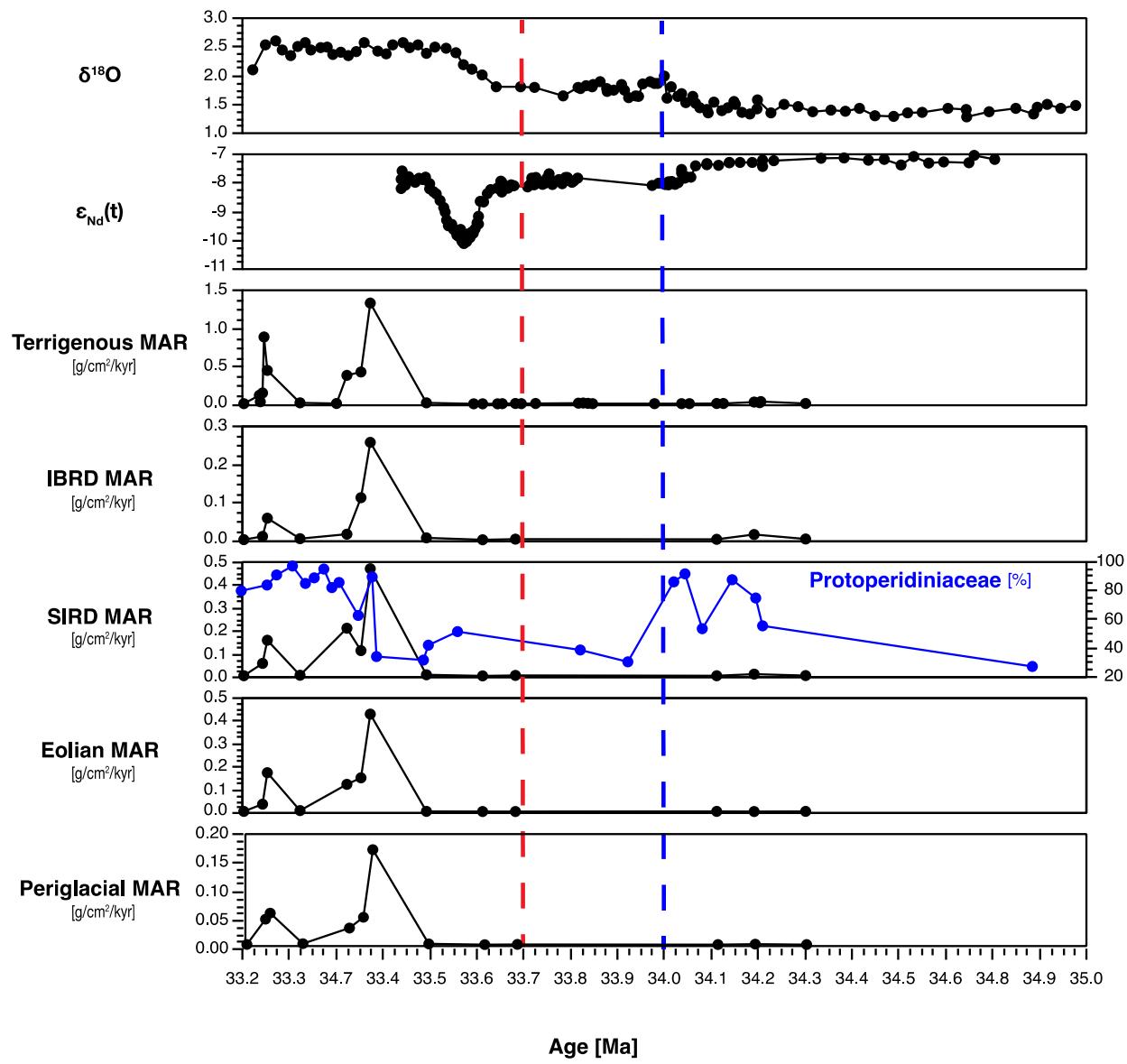

435 Figure 3: Lithologic log after Hojnacki et al. (2022). Grain type frequency (%) plots by depth.

436 Grain types B, C and E increase up core, while type A decreases.



437

438 Figure 4. Frequency of occurrence (%), defined as percentage of grains exhibiting each surface
439 texture in samples by core.



440
441 Figure 5. Changes in glacial texture frequency by depth. Glacial textures generally decrease up
442 core. LCF = large conchoidal fracture >10µm, SLF = subparallel linear fracture, SS = straight
443 steps, AS = arcuate steps, FF = fracture face, SG = straight groove, CG = curved groove, AP =
444 adhering particle.

445

446 Figure 6. Changes in >150 um weight percent and grain outline frequency by depth. Angular
447 outlines decrease up core, while rounded outlines increase.

448

449 Figure 7 – Mass Accumulation rates of bulk terrigenous and iceberg (type A), sea-ice (Type B),
 450 eolian (Type C), and periglacial (Type E) grain types plots on an age model (GTS2012). All
 451 grain types exhibit a major change after ~33.6 Ma when the Antarctic Ice Sheet is expanding.
 452 Oxygen isotope data are from ODP site 689 at Maud Rise (Diester-Haass & Zahn, 1996; Vonhof
 453 et al., 2000; Bohaty et al., 2012), seawater neodymium isotope ratios are from Kerguelen Plateau
 454 (Scher et al., 2011), and protoperidiniaceae frequency is from site 696 (Houben et al., 2013). The
 455 EOT is marked by the blue line. Oi-1 is marked by the red line.

TABLE 1: FREQUENCY (%) OF SURFACE TEXTURES BY SAMPLE

Surface features	Sample ID												
	1	2	3	4	5	6	7	8	9	10	11	12	13
<u>Outline</u>													
Very angular	4	3	0	0	0	3	0	0	0	0	0	4	0
Angular	12	6	13	9	12	21	23	30	33	29	28	31	38
Sub-angular	31	42	35	50	40	47	45	44	47	38	50	46	46
Sub-rounded	42	39	45	32	44	26	29	22	20	33	22	15	17
Rounded	12	10	6	9	4	3	3	4	0	0	0	4	0
Well-rounded	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Relief</u>													
High	4	0	3	3	8	3	6	7	7	10	9	4	4
Medium	73	94	77	82	84	91	90	63	60	71	66	50	50
Low	23	6	19	15	8	6	3	30	33	19	25	46	46
<u>Mechanical Textures</u>													
Small conchoidal fracture <10μm	12	0	6	6	0	6	0	15	3	10	6	8	4
Large conchoidal fracture >10μm	27	6	3	35	16	18	6	22	23	5	50	23	29
Subparallel linear fractures	35	13	23	35	32	29	16	33	43	38	59	58	38
Straight steps	15	6	10	15	32	9	16	22	30	14	19	31	29
Arcuate steps	19	10	3	29	24	15	13	19	20	19	31	19	8
Breakage blocks/microblocks	8	0	6	3	0	9	10	15	10	10	9	12	13
Fracture faces	15	6	16	21	0	21	6	33	47	14	25	42	38
Edge abrasion	4	13	3	9	0	9	3	0	3	5	3	4	0
Mechanical v-shaped pits	15	3	10	9	8	6	6	7	30	0	9	12	4
Straight grooves	8	10	3	12	0	15	3	11	20	14	9	19	25
Curved grooves	0	3	3	0	0	6	0	4	3	10	13	19	8
Irregular dish-shaped depressions	12	13	10	12	0	18	3	7	20	14	3	15	13
Impact craters/chattermarks	4	10	3	6	0	0	6	0	3	0	6	4	4
Upturned plates	27	26	42	38	24	38	29	7	10	5	25	0	8
Bulbous features	12	6	6	6	24	0	3	4	3	5	0	0	4
<u>Chemical Textures</u>													
Solution pits	31	13	10	38	8	12	26	4	27	10	38	8	13
Adhering particles	38	68	23	24	88	38	10	70	67	43	66	85	92
Silica precipitation (smooth veneer)	8	6	6	9	0	24	10	0	0	0	0	0	0
Euhedral overgrowths	4	0	0	3	0	3	0	4	13	0	6	8	13
Dissolution weathering	50	52	42	44	36	35	52	63	37	67	38	50	38
Granular precipitation	15	10	3	9	8	12	3	63	63	86	56	92	88
Dissolution etching	0	0	0	0	0	0	0	0	3	0	3	0	0

458 Table 1. Frequency (%) of surface features by sample. Sample IDs: 1 = 53R 1W 21-24; 2 = 53R
459 2W 88-91; 3 = 53R 3W 1-4; 4 = 53R 5W 34-37; 5 = 54R 2W 63-66; 6 = 54R 3W 22-25; 7 = 54R
460 3W 126-129; 8 = 55R 1W 50-51; 9 = 55R 1W 145-147; 10 = 55R 2W 60-62; 11 = 55R 4W 139-
461 141; 12 = 55R 6W 0-2; 13 = 56R 1W 5-7.

462

463 TABLE 2. GRAIN TYPE SUMMARY

Grain type	Outline	Relief	Textures	Interpretation
A	Angular to Subangular	Varied	Large conchoidal fractures, subparallel linear fractures, straight steps and fracture faces	Iceberg rafted debris
B	Subangular to subrounded	Medium	Abundant dissolution weathering	Sea-ice rafted debris
C	Subangular to subrounded	Medium	Abundant upturned plates	Eolian transport
D	Angular to subangular	High to medium	Euhedral overgrowth	Chemical alternation
E	Subangular to subrounded	Medium	Conchoidal fractures, subparallel linear fractures, arcuate steps and V-shaped pits in low abundance	Periglacial

464

465 Table 2. Description and interpretation of grain types.