

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

1 **Demonstration of Si-doped Al-rich Regrown Al(Ga)N Films on 2 AlN/Sapphire with $>10^{15}/\text{cm}^3$ Carrier Concentration using CCS- 3 MOCVD reactor**

4 Swarnav Mukhopadhyay^{a)}, Parthasarathy Seshadri, Mobinul Haque, Shuwen Xie, Ruixin Bai, Surjava
5 Sanyal, Guangying Wang, Chirag Gupta, Shubhra S. Pasayat

6 Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI,
7 53706, USA

8 ^{a)} Author to whom correspondence should be addressed: swarnav.mukhopadhyay@wisc.edu

9 **Abstract:**

10 Thin Si-doped Al-rich ($x_{\text{Al}}>0.85$) regrown Al(Ga)N layers were deposited on AlN on Sapphire
11 template using metal-organic chemical vapor deposition (MOCVD) techniques. The optimization
12 of the deposition conditions such as temperature (1150 °C), V/III ratio (750), deposition rate (0.7
13 Å/s), and Si concentration ($6\times10^{19}/\text{cm}^3$) resulted in a high charge carrier concentration ($>10^{15}$
14 cm^{-3}) in the Si-doped Al-rich Al(Ga)N films. A pulsed deposition condition with pulsed
15 triethylgallium (TEGa) and a continuous flow of trimethylaluminum (TMAI) and ammonia
16 (NH_3) was employed to achieve a controllable Al composition $x_{\text{Al}}>0.95$ and to prevent
17 unintended Ga incorporation in the AlGaN material deposited using the close-coupled
18 showerhead reactor. Also, the effect of unintentional Si incorporation on free charge carrier
19 concentration at the regrowth interface was studied by varying the thickness of the regrown
20 Al(Ga)N layer from 65 nm to <300 nm. A maximum charge carrier concentration of 4.8×10^{16}
21 $/\text{cm}^3$ and $7.5\times10^{15} / \text{cm}^3$ were achieved for $\text{Al}_{0.97}\text{Ga}_{0.03}\text{N}$ and AlN films with thickness <300 nm
22 compared to previously reported n-Al(Ga)N films with thickness ≥400 nm deposited using
23 MOCVD technique.

24 High-performance power devices with voltage handling capabilities of several kVs are currently
25 in high demand in the power electronics industry. The ultrawide bandgap (UWBG)
26 semiconductors such as Al-rich Al(Ga)N have shown numerous promise for high-voltage
27 operation¹⁻⁶. Similarly, Al(Ga)N-based deep ultra-violet (DUV) emitters, such as light emitting
28 diodes (LEDs) and laser diodes (LDs) are also showing promising performance⁷⁻¹⁰. Enhancing
29 the performance of power and optoelectronic devices requires adequate doping control in Al-rich
30 AlGaN films. The Al-rich AlGaN films with $x_{\text{Al}}>0.85$ suffer from the low conductivity of the
31 film due to higher activation energy of n and p-type dopants, such as Si and Mg, respectively¹¹⁻¹⁵. Si-doped Al-rich $\text{Al}_x\text{Ga}_{1-x}\text{N}$ ($x_{\text{Al}}>0.85$) films often exhibit self-compensation and DX center
32 formation, limiting free charge carrier availability in the film¹⁶⁻¹⁸. It is also reported that the
33 cation vacancy (V_{III}) complex formation with Si (V_{III}-Si), which behaves like an acceptor trap
34 state is also a conductivity limiting factor^{11,16}. Additionally, Al(Ga)N deposited via MOCVD
35 contains unintentional carbon impurities, which act as a compensating acceptor (C_N)¹¹.
36 Optimized deposition conditions to reduce V_{III}-Si complex formation require deposition at lower
37 temperatures while reducing C_N formation in Al(Ga)N needs higher deposition temperature¹⁹. So,
38 a trade-off must be created to obtain highly conductive films. Si-doped AlN films (Al-polar and

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

40 N-polar) deposited via MBE exhibits high free carrier concentration ($>10^{18}/\text{cm}^3$) due to metal-rich growth conditions and low deposition temperatures, reducing $\text{V}_{\text{III}}\text{-Si}$ formation^{12,20}.
41 However, using a similar deposition method with MOCVD is challenging. So far, Taniyasu et
42 al.^{21,22} and Bagheri et al.²³ have shown $\sim 10^{17}/\text{cm}^3$ ²¹ and $\sim 2 \times 10^{15}/\text{cm}^3$ ^{22,23} of free charge carrier
43 concentration in Si-doped AlN using MOCVD by controlling the Si doping concentration and
44 managing the point defects, respectively.
45
46 While much research exists on Si-doped Al-rich Al(Ga)N deposition using vertical and
47 horizontal MOCVD reactors, few studies focus on using close-coupled showerhead (CCS)
48 reactors^{16,24,25}. The CCS reactors are widely accepted for commercially producing III-nitride
49 films and are easily scalable²⁶. However, the CCS reactors are known to have issues with
50 unintentional Ga incorporation^{26,27}, which makes it difficult to obtain a controllable Al
51 composition $x_{\text{Al}} > 0.95$ in AlGaN. Since AlN has low n-type conductivity, depositing $x_{\text{Al}} = 0.95$ -
52 0.97 AlGaN may offer better n-type conductivity while minimizing lattice mismatch with AlN
53 buffer layers or the substrate. Also, AlGaN thin films with Al composition $x_{\text{Al}} = 0.1$ -0.95 have low
54 thermal conductivity compared to AlN or GaN due to dominant phonon-alloy scattering
55 phenomena^{28,29}. The phonon-alloy scattering decreases exponentially as the Al composition
56 becomes $x_{\text{Al}} > 0.95$, thus the thermal conductivity of AlGaN enhances rapidly²⁹. Using AlGaN
57 films ($x_{\text{Al}} > 0.95$) with higher thermal conductivity enhances heat dissipation, benefiting power
58 electronics and deep UV emitters.
59 In both power electronics and DUV emitters, low-resistive Al-rich n-AlGaN is required to obtain
60 ohmic contacts^{30,31}. Also, highly conductive n⁺⁺-AlGaN layers are necessary to establish ohmic
61 contacts to perform Hall measurements on Al-rich n-AlGaN films. It has been observed that
62 obtaining ohmic contact with the Al-rich ($x_{\text{Al}} > 0.85$) AlGaN is non-trivial³². For low contact
63 resistivity ($< 1 \mu\Omega \cdot \text{cm}^2$), a high n-type dopant concentration ($> 10^{19}/\text{cm}^3$), like Si, is required in the
64 Al-rich n-AlGaN layer. However, increased Si doping concentration can degrade material quality
65 and introduce v-pits and dislocations³³, which is undesirable for power and optoelectronic
66 devices. So, developing a low-resistance Al-rich n⁺⁺-AlGaN layer with smooth surface
67 morphology is crucial for improving the efficiency of the AlGaN-based devices.
68 In previous studies, regrown III-nitride materials using MOCVD have shown high unintentional
69 Si incorporation at the regrowth interface^{34,35}. This high unintentional Si concentration ($> 5 \times 10^{19}$
70 $/\text{cm}^3$) can behave as deep acceptor levels causing reduced free carrier concentration in Si-doped
71 AlN^{21,36}. So, reducing unintentional Si incorporation or its adverse effects would increase free
72 charge carrier concentration in regrown Si-doped thin Al-rich Al(Ga)N films.
73 This study demonstrated an optimized deposition condition of regrown n-type Si-doped Al-rich
74 Al(Ga)N films on an AlN/sapphire template using a CCS MOCVD reactor to maximize free
75 electron concentration. The impact of deposition conditions on free electron concentration was
76 assessed. Controllable Al composition of $x_{\text{Al}} > 0.95$ was non-trivial to achieve in the CCS reactor
77 due to unintentional Ga incorporation. Even after increasing the Al-containing precursor flow
78 while keeping the Ga-containing precursor flow constant, the Al composition did not increase.
79 Thus, for obtaining $\text{Al}_{0.97}\text{Ga}_{0.03}\text{N}$, a pulsed deposition condition was pursued, rather than a
80 continuous deposition condition. Furthermore, an unintentional Si incorporation at the AlN

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

81 template and regrown n-Al(Ga)N interface affected the electrical performance of the regrown n-
 82 Al(Ga)N films. A thicker Al(Ga)N layer (>300 nm) exhibited a higher free charge carrier
 83 concentration compared to a thinner layer (<100 nm). The total thickness of the Al(Ga)N layer
 84 was kept below 300 nm as obtaining a higher conductivity film with a lower thickness would be
 85 cost-effective. Finally, this work showed state-of-the-art free carrier concentration with the
 86 thinnest layer of regrown n-AlN on AlN/Sapphire template compared with the reported results
 87 from n-AlN deposited on different substrates such as bulk AlN, SiC and Sapphire^{21-23,37,38}.

88 Al-rich Al(Ga)N films (65 ± 5 nm) were deposited on AlN/sapphire templates in the CCS
 89 MOCVD reactor using triethylgallium (TEGa), trimethylaluminum (TMAI) as group-III
 90 precursors and ammonia (NH₃) as group-V precursor. Silane was used as a gaseous precursor for
 91 Si doping. First, different deposition conditions such as deposition temperatures (1050 °C, 1100
 92 °C, 1150 °C, and 1210 °C), V/III ratio (530, 750 and 3000), deposition rate (0.52 Å/s, 0.7 Å/s,
 93 and 1 Å/s), and Si concentration (4×10^{19} /cm³, 6×10^{19} /cm³, and 8×10^{19} /cm³) were used to find
 94 the optimized deposition condition to maximize free carrier concentration of n-AlN (Table 1).
 95 The V/III ratio was varied by increasing the NH₃ flow while keeping the TMAI flow constant. To
 96 adjust the deposition rate of AlN, the TMAI flow rate was altered while maintaining a constant
 97 V/III ratio. Next, the TMAI/TEGa ratio was varied to obtain different Al compositions of Al_xGa_{1-x}N ($0.57\leq x_{Al}\leq1$) (Table 2). An Al composition $x_{Al}>0.95$ was achieved with pulsed deposition,
 98 continuously supplying TMAI and NH₃, while pulsing TEGa with a 4-second ON/OFF cycle. H₂
 99 served as the carrier gas for Al(Ga)N deposition. Finally, a thickness series of Al_xGa_{1-x}N (x_{Al}
 100 = 0.97 ± 0.005) and AlN up to 280 nm was conducted to analyze the impact of unintentional Si
 101 incorporation at the interface on free charge carrier concentration.
 102

103 Table 1. Optimization of maximum charge carrier concentration in Si-doped AlN (65 ± 5 nm)

Experiments	Temperature (°C)	V/III ratio	Deposition Rate (Å/s)	Si (/cm ³)	n _s (/cm ³)
EA1	1050	750	0.7	6×10^{19}	4×10^{13}
	1100				1×10^{14}
	1150				1.5×10^{14}
	1210				N/A
EA2	1150	530	0.7	6×10^{19}	6×10^{13}
		750			1.5×10^{14}
		3000			7×10^{13}
EA3	1150	750	0.52	6×10^{19}	2×10^{13}
			0.7		1.5×10^{14}
			1		1.51×10^{14}
EA4	1150	750	0.7	4×10^{19}	1×10^{14}
				6×10^{19}	1.5×10^{14}
				8×10^{19}	N/A

104

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

105 Table 2. Variation of TMAI/TEGa ratio for obtaining different Al composition

Experiments	Temperature (°C)	V/III ratio	Deposition Rate (Å/s)	Si (/cm ³)	TMA/TEGa ratio	x _{Al}
E _{B1}	1150	750	0.7	6×10 ¹⁹	∞	1
E _{B2}			~1		12.69	0.97 (Pulsed)
E _{B3}			~1		12.69	0.95
E _{B4}			0.92		6.43	0.93
E _{B5}			0.88		2.87	0.86
E _{B6}			1.12		0.64	0.57

106

107 The composition of the Al(Ga)N was measured using omega-2theta and reciprocal space
 108 mapping (RSM) techniques with the high-resolution X-ray diffraction (XRD) Panalytical
 109 Empyrean tool. The surface roughness of the Al(Ga)N films was measured by atomic force
 110 microscopy (AFM) using Bruker Icon AFM in tapping mode. The carrier concentration of the n-
 111 Al(Ga)N films was measured using mercury CV and Hall measurements using Lake Shore MCS-
 112 EMP-4T-V and the Toho HL9980 hall measurement systems. The Si concentration and Al/Ga
 113 ratio were measured by the secondary ion mass spectroscopy (SIMS) method using the Cameca
 114 SIMS measurement tool.

115

116 The Si-doped AlN films deposited at different temperatures showed a prominent trend of how the
 117 trade-off between V_{III} and C_N can be obtained in Table 1 (E_{A1}). An increase in the temperature
 118 from 1050 °C to 1150 °C, increased the free charge carrier concentration from 4×10¹³/cm³ to
 119 1.5×10¹⁴/cm³. We speculate that this 3.75 times increase in the charge concentration may have
 120 been related to the reduction of the C_N, which acts as an acceptor-type trap. At lower deposition
 121 temperatures, C incorporation becomes very high in MOCVD-deposited III-nitride materials due
 122 to the formation of C-group-III bonds^{23,39,40}. The presence of the methyl groups in the TMAI was
 123 the main reason for the C incorporation. Increasing the temperature promotes the elimination of
 124 C from the group-III element by breaking the C-group-III bonds. A sharp decrease in the carrier
 125 concentration was observed when the deposition temperature was increased beyond 1150 °C. It
 126 was demonstrated previously in the literature that with increasing deposition temperature, the V_{III}
 127 formation increases^{16,23,40}. So, the probability of V_{III}-Si complex formation increases rapidly.
 128 Thus, the sharp decrease in carrier concentration was presumably related to the V_{III}-Si complex
 129 formation, like the trend observed by Washiyama *et al.*^{23,40}. As the maximum charge was
 130 observed at 1150 °C, the rest of the experiments were performed at 1150 °C.

131 In the next set of experiments, the V/III ratio was varied from 530 to 3000 to identify the effect
 132 of C_N and N vacancy formation on the free charge carrier concentration, as shown in Table 1
 133 (E_{A2}). At a low V/III ratio (530), the N vacancy formation probably increased which enhanced
 134 the C incorporation in the N sites, forming C_N⁴⁰. It caused a lower charge carrier concentration of
 135 6×10¹³/cm³. When the V/III ratio was increased from 530 to 750, the charge increased by 2.5

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

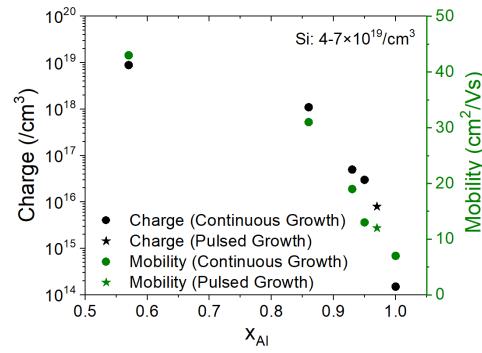
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

136 times, reaching $1.5 \times 10^{14}/\text{cm}^3$, indicating less C_N formation. However, a high V/III ratio (3000)
137 decreased the charge carrier concentration again from $1.5 \times 10^{14}/\text{cm}^3$ to $7 \times 10^{13}/\text{cm}^3$. We speculate
138 that the reduction in the charge carrier concentration was related to the increased group-III
139 vacancy formation with increased NH_3 ⁴⁰.

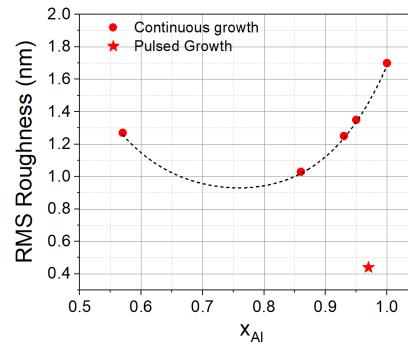
140 Next, the effect of the deposition rate on the charge carrier concentration was observed, shown in
141 Table 1 (E_{A3}). The increase in deposition rate from 0.57 Å/s to 0.72 Å/s showed an increase in
142 the charge concentration from $2 \times 10^{13}/\text{cm}^3$ to $1.5 \times 10^{14}/\text{cm}^3$. We speculate that increased
143 deposition rate reduced desorption of group-III species, suppressing V_III formation, similar to
144 findings in high-composition n-AlGaN layers reported by another group in ref.⁴¹. However, with
145 increasing TMAI flow rate the unintentional C concentration also increases, thus the chances of
146 C_N formation also increase^{39,41,42}. So, a very high TMAI flow rate would cause detrimental
147 effects in terms of film conductivity. A further increase in the deposition rate from 0.72 Å/s to 1
148 Å/s, did not increase the charge carrier concentration significantly, likely due to the trade-off
149 between reduced V_III and increased C_N concentration with increasing TMAI flow rate⁴¹. Further
150 increments in the TMAI flow rate can increase C_N formation. Thus, the deposition rate was
151 maintained at 0.7 Å/s to avoid excess C_N formation.

152 Next, a silicon concentration variation was performed to identify the optimal Si concentration
153 needed to obtain the highest charge in the AlN layers as shown in Table 1 (E_{A4}). As expected,
154 increasing the Si concentration from $4 \times 10^{19}/\text{cm}^3$ to $6 \times 10^{19}/\text{cm}^3$ increased the charge
155 concentration from $10^{14}/\text{cm}^3$ to $1.5 \times 10^{14}/\text{cm}^3$. However, increasing Si concentration from
156 $6 \times 10^{19}/\text{cm}^3$ to $8 \times 10^{19}/\text{cm}^3$ decreased the charge concentration sharply, indicating the self-
157 compensation phenomena of Si^{23,40}. At very high Si concentrations, the V_III -Si complex
158 formation, which acts as a compensator, becomes more energetically favorable⁴⁰. Thus, at high Si
159 concentrations, the V_III -Si complex concentration increases, enhancing the compensation of free
160 charge carriers and causing Si self-compensation⁴⁰. So, a Si concentration of $6 \times 10^{19}/\text{cm}^3$ was
161 chosen to be optimal.

162 All n-AlN samples (E_{A1}-E_{A4}) had similar dislocation densities ($4.2\text{--}4.6 \times 10^8/\text{cm}^2$) measured using
163 omega-rocking curve measurement at (0 0 2) and (1 0 2) AlN reflection, making the effect of
164 dislocation densities on free-carrier concentration negligible.


165 After optimizing deposition conditions for Si-doped AlN, various Al composition AlGaN films
166 were deposited to assess charge incorporation efficiency in different alloys. It was observed that
167 the charge incorporation efficiency exponentially increased with the increase of Ga mole fraction
168 in AlGaN⁴³. Nearly 5 orders of magnitude increase in charge carrier concentration was observed
169 when the Ga mole fraction increased from $x_{\text{Ga}} = 0$ to 0.43 (Figure 1). Also, the mobility of the
170 Al(Ga)N film increased from $\sim 7 \text{ cm}^2/\text{Vs}$ to $45 \text{ cm}^2/\text{Vs}$ with increasing Ga mole fraction (x_{Ga})
171 from 0 to 0.43. The mobility of the n-Al_{0.57}Ga_{0.43}N film (45 cm^2/Vs) was similar to that reported
172 mobility (30–86 cm^2/Vs) in the literature^{41,44–47} for n-AlGaN films ($x_{\text{Al}} = 0.60 \pm 0.03$) and charge of
173 $10^{18}\text{--}2 \times 10^{19}/\text{cm}^3$. Further mobility improvement is possible by enhancing the material's
174 crystalline quality. Achieving AlGaN with $x_{\text{Ga}} < 0.05$ in the CCS reactor was non-trivial, as the Ga
175 mole fraction (x_{Ga}) saturated at 0.05. Increasing TMAI flow by 38% did not reduce the Ga mole
176 fraction, with both TMAI and TEGa precursors flowing continuously (continuous deposition

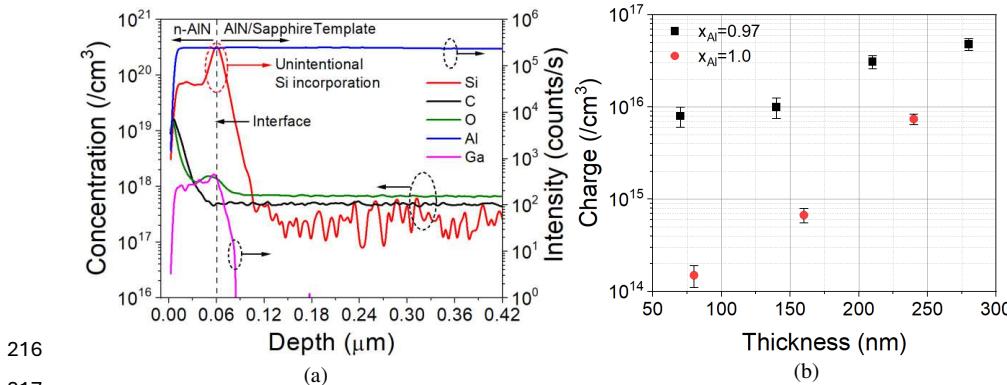
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.


PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

177 mode). This saturation of Ga incorporation was mostly related to the unintentional Ga
 178 incorporation in the reactor chamber, as also reported elsewhere^{26,27}. So, for obtaining
 179 $\text{Al}_{0.97}\text{Ga}_{0.03}\text{N}$, the pulsed deposition condition was used as described in the experimental methods
 180 section. The deposition rate of the pulsed and continuous modes was identical due to the TMAI
 181 molar flow-dominated deposition condition. Pulsed mode deposition showed no superlattice or
 182 forbidden peak (0 0 L, where L is an odd number) in the omega-2theta XRD scan^{48,49},
 183 confirming uniform Ga incorporation in the AlGaN films.

184 AFM scans showed that with a reduction of Ga composition, surface roughness increased for
 185 $\text{Al}(\text{Ga})\text{N}$ films (65 ± 5 nm) deposited with continuous deposition mode. However, a clear
 186 difference in the surface roughness was observed between the continuous deposition mode and
 187 the pulsed deposition mode thin films. The pulsed deposition mode showed almost 4 times lower
 188 surface roughness (0.42 nm) compared to all the continuous mode samples (trend line) (Figure
 189 2). We speculate the pulsed mode deposition increased the diffusion length of the group-III
 190 adatoms which helped to improve the surface roughness⁵⁰.

191 Figure 1. Charge concentration in different Al compositions of $\text{Al}(\text{Ga})\text{N}$ films (65 ± 5 nm) with a
 192 Si concentration between $4-7 \times 10^{19}/\text{cm}^3$



193
 194 Figure 2. Effect of the surface roughness (AFM scan of $10 \times 10 \mu\text{m}^2$) of the $\text{Al}(\text{Ga})\text{N}$ films (65 ± 5
 195 nm) with different compositions of the Al and different deposition modes

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

196 The SIMS measurement of Si-doped AlN showed very high unintentional Si incorporation at the
 197 interface between the regrown AlN and the AlN template (Figure 3a). This closely resembled the
 198 high unintentional silicon incorporation observed in regrown GaN films using MOCVD, as
 199 documented in the literature^{34,35}. The unintentional Si incorporation was related to the presence
 200 of the residual Si in the MOCVD chamber as reported previously³⁵. It was hypothesized that this
 201 high unintentional silicon incorporation led to carrier compensation^{21,36}, and pinning the fermi-
 202 level away from the conduction band causing a depletion near the regrowth interface. Therefore,
 203 increasing the thickness of the regrown layer minimized the adverse effect of the compensating
 204 interface and enhanced the free carrier concentration. This suggests that Si-doping in our
 205 regrown Al(Ga)N layers was optimal, with actual doping efficiency exceeding measured values
 206 in samples with lower thickness (65±5 nm). The charge concentration increased by ~6 times for
 207 $\text{Al}_{0.97}\text{Ga}_{0.03}\text{N}$, with 4 times increase in thickness reaching $4.8 \times 10^{16}/\text{cm}^3$, reaching the highest
 208 reported free carrier concentration in $x_{\text{Al}}=0.97 \pm 0.005$ n-AlGaN. A slight increase in Ga content
 209 ($x_{\text{Ga}}=0.005$) was observed from RSM measurements as n-Al_{0.97}Ga_{0.03}N thickness increased from
 210 70 nm to 280 nm, primarily due to v-pit-assisted unintentional Ga incorporation⁵¹. Similarly, for
 211 AlN, the charge was enhanced by almost 50 times achieving $7.5 \times 10^{15}/\text{cm}^3$ while the thickness
 212 was increased by 3 times (Figure 3b). This demonstrates that the compensation effect of the
 213 unintentional Si incorporation was more drastic in AlN compared to Al_{0.97}Ga_{0.03}N. This may be
 214 due to the higher likelihood of forming the DX^{-1} state of the Si and V_{III}-Si complex in n-AlN,
 215 which significantly reduces the free electron concentration compared to n-AlGaN⁵².

216 Figure 3. (a) SIMS measurement of Si-doped AlN (65±5nm) film (b) Thickness vs charge
 217 concentration for $\text{Al}_{0.97}\text{Ga}_{0.03}\text{N}$ and AlN films

218 SIMS measurement of Al(Ga)N films (65±5 nm) showed an Al/Ga ratio of ~1000 for AlN,
 219 indicating unintentional Ga incorporation (~0.1%) was below the alloy level⁵³. Finally, the AFM
 220 measurement of 280 nm n-Al_{0.97}Ga_{0.03}N and 240 nm n-AlN showed smooth surface morphology
 221 with a surface roughness of 0.56 nm and 0.13 nm (2 μm × 2 μm), respectively (Figure 4). A
 222 larger v-pit depth of ~25 nm was observed in n-Al_{0.97}Ga_{0.03}N compared to ~1 nm in n-AlN,
 223 which was the reason behind the increased roughness in Al_{0.97}Ga_{0.03}N. The v-pit depth difference
 224
 225

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

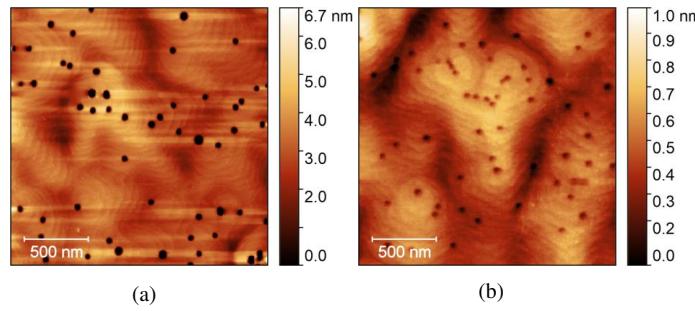
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

226 between n-Al_{0.97}Ga_{0.03}N and n-AlN films with similar Si doping ($6 \times 10^{19}/\text{cm}^3$) may result from
227 ~3 times higher dislocation density and strain in the n-Al_{0.97}Ga_{0.03}N layer. Pulsed deposition
228 conditions will be further improved to reduce dislocation density in the n-Al_{0.97}Ga_{0.03}N layer.

229

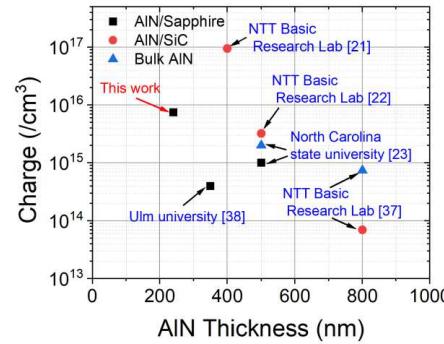
230

231 Figure 4. AFM image (2 $\mu\text{m} \times 2 \mu\text{m}$) of (a) 280 nm n-Al_{0.97}Ga_{0.03}N ($R_a=0.56 \text{ nm}$) and (b) 240 nm
232 n-AlN ($R_a=0.13 \text{ nm}$)


233 The obtained free charge carrier concentration in Si-doped AlN measured using Hall
234 measurement was compared with the state-of-the-art n-AlN films deposited using MOCVD as
235 reported in the literature (Figure 5). A high free carrier concentration of $7.5 \times 10^{15}/\text{cm}^3$ with the
236 lowest AlN thickness (240 nm) was demonstrated in this study (Figure 5). This aids n⁺⁺-AlN
237 contact development for AlN or Al-rich AlGaN power devices and offers insights into improving
238 the regrown interface quality to boost free carrier concentration. However, the mobility was still
239 below 10 $\text{cm}^2/\text{V.s}$, which needs to be improved significantly by reducing the dislocation density,
240 as reported previously^{23,37}.

241

242 Figure 5. Comparative study of the free charge carrier concentration with AlN thickness for
243 different AlN templates


244

245 In conclusion, this study demonstrates methods to obtain high free carrier concentrations in Si-
doped high composition ($x_{\text{Al}} > 0.9$) AlGaN using a commercially available CCS reactor by

(a)

(b)

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

246 optimizing deposition temperature, V/III ratio, deposition rate, and Si concentration. Pulsed
247 deposition yielded $\text{Al}_{0.97}\text{Ga}_{0.03}\text{N}$ in a CCS reactor with 0.42 nm surface roughness and a charge
248 concentration of $4.8 \times 10^{16}/\text{cm}^3$, the highest reported to date. Moreover, the study found that
249 increasing regrown AlN thickness reduces the impact of unintentional Si incorporation at the
250 AlN/sapphire interface, boosting free carrier concentrations. A maximum free carrier
251 concentration of $7.5 \times 10^{15}/\text{cm}^3$ was obtained with 240 nm regrown AlN on the AlN on sapphire
252 templates. Further reduction of DX state formation, Si self-compensation, and V_{III}-Si complex
253 formation would significantly improve charge concentration in n-AlN films, benefiting AlN-
254 based power devices and deep UV emitters.

255

256 Acknowledgment:

257 The authors gratefully acknowledge Lake Shore Cryotronics and Toho Technology for providing
258 the Hall measurement results. The research is partially funded by the NSF CAREER (ECCS-
259 2338683), NSF ASCENT (ECCS-2328137) and ARPA-E ULTRAFAST (AWD00001917).

260 References:

261 ¹ S. Bajaj, A. Allerman, A. Armstrong, T. Razzak, V. Talesara, W. Sun, S.H. Sohel, Y. Zhang, W. Lu, A.R.
262 Arehart, F. Akyol, and S. Rajan, "High Al-Content AlGaN Transistor With 0.5 A/mm Current Density and
263 Lateral Breakdown Field Exceeding 3.6 MV/cm," *IEEE Electron Device Lett.* **39**(2), 256–259 (2018).

264 ² I. Abid, R. Kabouche, F. Medjdoub, S. Besendorfer, E. Meissner, J. Derluyn, S. Degroote, M. Germain,
265 and H. Miyake, "Remarkable Breakdown Voltage on AlN/AlGaN/AlN double heterostructure," in *2020*
266 *32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD)*, (IEEE, Vienna,
267 Austria, 2020), pp. 310–312.

268 ³ J. Mehta, I. Abid, R. Elwaradi, Y. Cordier, and F. Medjdoub, "Robust $\text{Al}_{0.23}\text{Ga}_{0.77}\text{N}$ channel HFETs on
269 bulk AlN for high voltage power electronics," *E-Prime - Advances in Electrical Engineering, Electronics*
270 and *Energy* **5**, 100263 (2023).

271 ⁴ D.H. Mudiyanselage, D. Wang, B. Da, Z. He, and H. Fu, "Over 600 V Lateral AlN-on-AlN Schottky
272 Barrier Diodes with Ultra-Low Ideality Factor," *Appl. Phys. Express* **17**(7), 074001 (2024).

273 ⁵ D.H. Mudiyanselage, D. Wang, B. Da, Z. He, and H. Fu, "High-voltage AlN Schottky barrier diodes on
274 bulk AlN substrates by MOCVD," *Appl. Phys. Express* **17**(1), 014005 (2024).

275 ⁶ K. Hussain, A. Mamun, R. Floyd, M.D. Alam, M.E. Liao, K. Huynh, Y. Wang, M. Goorsky, M.V.S.
276 Chandrashekhar, G. Simin, and A. Khan, "High figure of merit extreme bandgap $\text{Al}_{0.87}\text{Ga}_{0.13}\text{N}$ -
277 $\text{Al}_{0.64}\text{Ga}_{0.36}\text{N}$ heterostructures over bulk AlN substrates," *Appl. Phys. Express* **16**(1), 014005 (2023).

278 ⁷ B.K. SaifAddin, A.S. Almogbel, C.J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S.P. DenBaars, and
279 J.S. Speck, "AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates," *ACS Photonics*
280 **7**(3), 554–561 (2020).

281 ⁸ N. Lobo-Ploch, F. Mehnke, L. Sulmoni, H.K. Cho, M. Guttmann, J. Glaab, K. Hilbrich, T. Wernicke, S.
282 Einfeldt, and M. Kneissl, "Milliwatt power 233 nm AlGaN-based deep UV-LEDs on sapphire substrates,"
283 *Appl. Phys. Lett.* **117**(11), (2020).

284 ⁹ Z. Zhang, M. Kushimoto, A. Yoshikawa, K. Aoto, C. Sasaoka, L.J. Schowalter, and H. Amano, "Key
285 temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-
286 temperature continuous-wave lasing," *Appl. Phys. Lett.* **121**(22), (2022).

287 ¹⁰ Z. Zhang, M. Kushimoto, M. Horita, N. Sugiyama, L.J. Schowalter, C. Sasaoka, and H. Amano, "Space
288 charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity
289 doping for UV-C laser diodes," *Appl. Phys. Lett.* **117**(15), (2020).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

290 ¹¹ I. Bryan, Z. Bryan, S. Washiyama, P. Reddy, B. Gaddy, B. Sarkar, M.H. Breckenridge, Q. Guo, M.
291 Bobea, J. Tweedie, S. Mita, D. Irving, R. Collazo, and Z. Sitar, "Doping and compensation in Al-rich
292 AlGaN grown on single crystal AlN and sapphire by MOCVD," *Appl. Phys. Lett.* **112**(6), (2018).
293 ¹² H. Ahmad, Z. Engel, C.M. Matthews, S. Lee, and W.A. Doolittle, "Realization of homojunction PN
294 AlN diodes," *J. Appl. Phys.* **131**(17), (2022).
295 ¹³ P. Bagheri, A. Klump, S. Washiyama, M. Hayden Breckenridge, J.H. Kim, Y. Guan, D. Khachariya, C.
296 Quiñones-García, B. Sarkar, S. Rathkanthiwar, P. Reddy, S. Mita, R. Kirste, R. Collazo, and Z. Sitar,
297 "Doping and compensation in heavily Mg doped Al-rich AlGaN films," *Appl. Phys. Lett.* **120**(8), (2022).
298 ¹⁴ H. Ahmad, J. Lindemuth, Z. Engel, C.M. Matthews, T.M. McCrone, and W.A. Doolittle, "Substantial P-
299 Type Conductivity of AlN Achieved via Beryllium Doping," *Advanced Materials* **33**(42), 2104497
300 (2021).
301 ¹⁵ M.E. Zvanut, J.P. Hanle, S. Paudel, R. Page, C. Savant, Y. Cho, H.G. Xing, and D. Jena, "An electron
302 paramagnetic resonance study of the electron transport in heavily Si-doped high Al content Al_xGa_{1-x}N,"
303 *AIP Advances* **13**(12), (2023).
304 ¹⁶ I. Prozheev, F. Mehnke, T. Wernicke, M. Kneissl, and F. Tuomisto, "Electrical compensation and cation
305 vacancies in Al rich Si-doped AlGaN," *Appl. Phys. Lett.* **117**(14), (2020).
306 ¹⁷ M.S. Brandt, R. Zeisel, S.T.B. Gönnenwein, M.W. Bayerl, and M. Stutzmann, "DX behaviour of Si
307 donors in AlGaN alloys," *Physica Status Solidi (b)* **235**(1), 13–19 (2003).
308 ¹⁸ X.T. Trinh, D. Nilsson, I.G. Ivanov, E. Janzén, A. Kakanakova-Georgieva, and N.T. Son, "Stable and
309 metastable Si negative-U centers in AlGaN and AlN," *Appl. Phys. Lett.* **105**(16), (2014).
310 ¹⁹ J. Wang, F. Xu, L. Zhang, J. Lang, X. Fang, Z. Zhang, X. Guo, C. Ji, C. Ji, F. Tan, X. Yang, X. Kang, Z.
311 Qin, N. Tang, X. Wang, W. Ge, and B. Shen, "Progress in efficient doping of Al-rich AlGaN," *J. Semicond.*
312 **45**(2), 021501 (2024).
313 ²⁰ M.I. Khan, C. Lee, and E. Ahmadi, "Demonstration of controllable Si doping in N-polar AlN using
314 plasma-assisted molecular beam epitaxy," *Appl. Phys. Lett.* **124**(6), (2024).
315 ²¹ Y. Taniyasu, M. Kasu, and N. Kobayashi, "Intentional control of n-type conduction for Si-doped AlN
316 and Al_xGa_{1-x}N (0.42≤x≤1)," *Appl. Phys. Lett.* **81**(7), 1255–1257 (2002).
317 ²² Y. Taniyasu, M. Kasu, and T. Makimoto, "Electrical conduction properties of n-type Si-doped AlN with
318 high electron mobility (>100cm²V⁻¹s⁻¹)," *Appl. Phys. Lett.* **85**(20), 4672–4674 (2004).
319 ²³ P. Bagheri, C. Quiñones-García, D. Khachariya, S. Rathkanthiwar, P. Reddy, R. Kirste, S. Mita, J.
320 Tweedie, R. Collazo, and Z. Sitar, "High electron mobility in AlN:Si by point and extended defect
321 management," *J. Appl. Phys.* **132**(18), (2022).
322 ²⁴ J. Stellmach, M. Pristovsek, Ö. Savaş, J. Schlegel, E.V. Yakovlev, and M. Kneissl, "High aluminium
323 content and high growth rates of AlGaN in a close-coupled showerhead MOVPE reactor," *Journal of
324 Crystal Growth* **315**(1), 229–232 (2011).
325 ²⁵ L. Spasevski, G. Kusch, P. Pampili, V.Z. Zubialevich, D.V. Dinh, J. Bruckbauer, P.R. Edwards, P.J.
326 Parbrook, and R.W. Martin, "A systematic comparison of polar and semipolar Si-doped AlGaN alloys
327 with high AlN content," *J. Phys. D: Appl. Phys.* **54**(3), 035302 (2020).
328 ²⁶ G. Deng, L. Zhang, Y. Wang, J. Yu, Y. Niu, H. Qian, X. Li, Z. Shi, and Y. Zhang, "Ga-free AlInN films
329 growth by close-coupled showerhead metalorganic chemical vapor deposition," *Micro and
330 Nanostructures* **165**, 207191 (2022).
331 ²⁷ M. Mrad, Y. Mazel, G. Feuillet, and M. Charles, "Avoiding Gallium Pollution in Close-Coupled
332 Showerhead Reactors, Alternative Process Routes," *Physica Status Solidi (a)* **220**(16), 2200824 (2023).
333 ²⁸ W. Liu, and A.A. Balandin, "Thermal conduction in Al_xGa_{1-x}N alloys and thin films," *J. Appl. Phys.*
334 **97**(7), (2005).
335 ²⁹ D.Q. Tran, R.D. Carrascon, M. Iwaya, B. Monemar, V. Darakchieva, and P.P. Paskov, "Thermal
336 conductivity of Al_xGa_{1-x}N (0<=x<=1) epitaxial layers," *Phys. Rev. Mater.* **6**(10), 104602 (2022).
337 ³⁰ M. Hiroki, Y. Taniyasu, and K. Kumakura, "High-Temperature Performance of AlN MESFETs With
338 Epitaxially Grown n-Type AlN Channel Layers," *IEEE Electron Device Lett.* **43**(3), 350–353 (2022).
339 ³¹ M. Kneissl, T.-Y. Seong, J. Han, and H. Amano, "The emergence and prospects of deep-ultraviolet
340 light-emitting diode technologies," *Nat. Photonics* **13**(4), 233–244 (2019).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

341 ³² R. France, T. Xu, P. Chen, R. Chandrasekaran, and T.D. Moustakas, "Vanadium-based Ohmic contacts
342 to n-AlGaN in the entire alloy composition," *Appl. Phys. Lett.* **90**(6), (2007).

343 ³³ D. Nilsson, E. Janzén, and A. Kakanakova-Georgieva, "Strain and morphology compliance during the
344 intentional doping of high-Al-content AlGaN layers," *Appl. Phys. Lett.* **105**(8), (2014).

345 ³⁴ K. Fu, H. Fu, X. Deng, P.-Y. Su, H. Liu, K. Hatch, C.-Y. Cheng, D. Messina, R.V. Meidanshahi, P. Peri,
346 C. Yang, T.-H. Yang, J. Montes, J. Zhou, X. Qi, S.M. Goodnick, F.A. Ponce, D.J. Smith, R. Nemanich,
347 and Y. Zhao, "The impact of interfacial Si contamination on GaN-on-GaN regrowth for high power
348 vertical devices," *Appl. Phys. Lett.* **118**(22), (2021).

349 ³⁵ M. Noshin, R. Soman, X. Xu, and S. Chowdhury, "A systematic study of the regrown interface
350 impurities in unintentionally doped Ga-polar c-plane GaN and methods to reduce the same," *Semicond.
351 Sci. Technol.* **37**(7), 075018 (2022).

352 ³⁶ F. Mehnke, X.T. Trinh, H. Pingel, T. Wernicke, E. Janzén, N.T. Son, and M. Kneissl, "Electronic
353 properties of Si-doped $Al_xGa_{1-x}N$ with aluminum mole fractions above 80%," *J. Appl. Phys.* **120**(14),
354 (2016).

355 ³⁷ Y. Taniyasu, M. Kasu, and T. Makimoto, "Increased electron mobility in n-type Si-doped AlN by
356 reducing dislocation density," *Appl. Phys. Lett.* **89**(18), (2006).

357 ³⁸ S.B. Thapa, J. Hertkorn, F. Scholz, G.M. Prinz, R.A.R. Leute, M. Feneberg, K. Thonke, R. Sauer, O.
358 Klein, J. Biskupek, and U. Kaiser, "Growth and studies of Si-doped AlN layers," *Journal of Crystal
359 Growth* **310**(23), 4939–4941 (2008).

360 ³⁹ A.S. Almogbel, C.J. Zollner, B.K. Saifaddin, M. Iza, J. Wang, Y. Yao, M. Wang, H. Foronda, I.
361 Prozheev, F. Tuomisto, A. Albadri, S. Nakamura, S.P. DenBaars, and J.S. Speck, "Growth of highly
362 conductive Al-rich AlGaN:Si with low group-III vacancy concentration," *AIP Advances* **11**(9), (2021).

363 ⁴⁰ S. Washiyama, P. Reddy, B. Sarkar, M.H. Breckenridge, Q. Guo, P. Bagheri, A. Klump, R. Kirste, J.
364 Tweedie, S. Mita, Z. Sitar, and R. Collazo, "The role of chemical potential in compensation control in
365 Si:AlGaN," *J. Appl. Phys.* **127**(10), (2020).

366 ⁴¹ J. Yang, Y.H. Zhang, D.G. Zhao, P. Chen, Z.S. Liu, and F. Liang, "Realization low resistivity of high
367 AlN mole fraction Si-doped AlGaN by suppressing the formation native vacancies," *Journal of Crystal
368 Growth* **570**, 126245 (2021).

369 ⁴² D.D. Koleske, A.E. Wickenden, R.L. Henry, and M.E. Twigg, "Influence of MOVPE growth conditions
370 on carbon and silicon concentrations in GaN," *Journal of Crystal Growth* **242**(1–2), 55–69 (2002).

371 ⁴³ F. Mehnke, T. Wernicke, H. Pingel, C. Kuhn, C. Reich, V. Kueller, A. Knauer, M. Lapeyrade, M.
372 Weyers, and M. Kneissl, "Highly conductive n-Al_xGa_{1-x}N layers with aluminum mole fractions above
373 80%," *Appl. Phys. Lett.* **103**(21), (2013).

374 ⁴⁴ K. Kataoka, T. Narita, Y. Yagi, K. Nagata, and Y. Saito, "Comprehensive Study of Electron Conduction
375 and Its Compensation for Degenerate Si-Doped AlN-Rich AlGaN," *Physica Status Solidi (RRL) – Rapid
376 Research Letters* **18**(2), 2300055 (2024).

377 ⁴⁵ K.B. Nam, J. Li, M.L. Nakarmi, J.Y. Lin, and H.X. Jiang, "Achieving highly conductive AlGaN alloys
378 with high Al contents," *Appl. Phys. Lett.* **81**(6), 1038–1040 (2002).

379 ⁴⁶ P. Pampili, D.V. Dinh, V.Z. Zubialevich, and P.J. Parbrook, "Significant contribution from impurity-
380 band transport to the room temperature conductivity of silicon-doped AlGaN," *J. Phys. D: Appl. Phys.*
381 **51**(6), 06LT01 (2018).

382 ⁴⁷ K. Nagata, H. Makino, T. Yamamoto, K. Kataoka, T. Narita, and Y. Saito, "Low resistivity of highly Si-
383 doped n-type Al_{0.62}Ga_{0.38}N layer by suppressing self-compensation," *Appl. Phys. Express* **13**(2),
384 025504 (2020).

385 ⁴⁸ D. Korakakis, K.F. Ludwig, and T.D. Moustakas, "Long range order in Al_xGa_{1-x}N films grown by
386 molecular beam epitaxy," *Appl. Phys. Lett.* **71**(1), 72–74 (1997).

387 ⁴⁹ W.H. Sun, J.P. Zhang, J.W. Yang, H.P. Maruska, M.A. Khan, R. Liu, and F.A. Ponce, "Fine structure of
388 AlN/AlGaN superlattice grown by pulsed atomic-layer epitaxy for dislocation filtering," *Appl. Phys. Lett.*
389 **87**(21), (2005).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0231960

390 ⁵⁰ I. Ahmad, B. Krishnan, B. Zhang, Q. Fareed, M. Lachab, J. Dion, and A. Khan, "Dislocation reduction
391 in high Al-content AlGaN films for deep ultraviolet light emitting diodes," *Physica Status Solidi (a)*
392 **208**(7), 1501–1503 (2011).
393 ⁵¹ A. Mogilatenko, J. Enslin, A. Knauer, F. Mehnke, K. Bellmann, T. Wernicke, M. Weyers, and M.
394 Kneissl, "V-pit to truncated pyramid transition in AlGaN-based heterostructures," *Semicond. Sci.
395 Technol.* **30**(11), 114010 (2015).
396 ⁵² T.A. Henry, A. Armstrong, A.A. Allerman, and M.H. Crawford, "The influence of Al composition on
397 point defect incorporation in AlGaN," *Appl. Phys. Lett.* **100**(4), (2012).
398 ⁵³ M.I. Khan, C. Lee, and E. Ahmadi, "Demonstration of controllable Si doping in N-polar AlN using
399 plasma-assisted molecular beam epitaxy," *Appl. Phys. Lett.* **124**(6), (2024).
400
401