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Assessing cross-contamination in spike-sorted electrophysiology data
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ABSTRACT

Recent advances in extracellular electrophysiology now facilitate the recording of spikes from
hundreds or thousands of neurons simultaneously. This has necessitated both the development of
new computational methods for spike sorting and better methods to determine spike sorting
accuracy. One longstanding method of assessing the false discovery rate (FDR) of spike sorting
— the rate at which spikes are assigned to the wrong cluster — has been the rate of inter-spike-
interval (ISI) violations. Despite their near ubiquitous usage in spike sorting, our understanding
of how exactly ISI violations relate to FDR, as well as best practices for using ISI violations as a
quality metric, remain limited. Here, we describe an analytical solution that can be used to
predict FDR from ISI violation rate. We test this model in silico through Monte Carlo
simulation, and apply it to publicly available spike-sorted electrophysiology datasets. We find
that the relationship between ISI violation rate and FDR is highly nonlinear, with additional
dependencies on firing frequency, the correlation in activity between neurons, and contaminant
neuron count. Predicted median FDRs in public datasets were found to range from 3.1% to
50.0%. We find that stochasticity in the occurrence of ISI violations as well as uncertainty in
cluster-specific parameters make it difficult to predict FDR for single clusters with high
confidence, but that FDR can be estimated accurately across a population of clusters. Our
findings will help the growing community of researchers using extracellular electrophysiology
assess spike sorting accuracy in a principled manner.

SIGNIFICANCE STATEMENT

High-density silicon probes are widely used to record the activity of large populations of neurons
while animals are engaged in complex behavior. In this approach, each electrode records spikes
from many neurons, and “spike sorting” algorithms are used to group the spikes originating from
each neuron together. This process is error-prone, however, and so the ability to assess spike
sorting accuracy is essential for properly interpreting neural activity. The rate of inter-spike-
interval (ISI) violations is commonly used to assess spike sorting accuracy, but the relationship
between ISI violation rate and sorting accuracy is complex and poorly understood. Here, we
describe this relationship in detail and provide guidelines for how to properly use ISI violation
rate to assess spike sorting accuracy.
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INTRODUCTION

Extracellular electrophysiology has become an increasingly popular method for studying neuronal
activity at the population level. Silicon probes containing dozens or hundreds of densely packed
electrode sites can be used to observe neuronal action potentials in many neurons simultaneously.
This multiplexed signal acquisition, however, often necessitates the assignment of observed action
potentials to individual neurons - “spike sorting” - as a critical first step prior to many analyses
(Rey et al., 2015; Todorova et al., 2014). Approaches for spike sorting vary, though all generally
involve comparisons of observed action potential waveforms within and across electrodes, and
then grouping similar spikes — thought to be produced by the same neuron — together, forming
clusters (Gibson et al., 2012; Quiroga & Panzeri, 2013). Ideally, each cluster is composed
principally of true positive (TP) spikes from a single neuron making it a “well isolated” cluster.
Spikes from this single neuron can be erroneously excluded from the cluster, resulting in false
negatives (FNs). The primary focus of this work, however, is false positives (FPs), wherein spikes
are misassigned to a cluster whose activity is meant to correspond to a different neuron. Clusters
with substantial “contamination” by FPs thus represent the combined activity of multiple neurons.

False positives are a persistent problem in spike sorting that results from frequently unavoidable
similarities in action potential waveforms, occurrence of spikes at overlapping times,
nonstationarity in waveform shape, and recording noise. Contamination can distort the activity of
a cluster, potentially leading to incorrect conclusions about how single neurons encode
information. For instance, a population of neurons recorded during a task with two cues may
contain neurons responsive to just one cue or the other. However, poor sorting may lead to cluster
cross-contamination between these two phenotypes, giving the impression that neurons in this
region respond to both cues. The prevalence of FPs in a single cluster, recording session, or dataset
can be described by the false discovery rate (FDR), a value that ranges between 0 and 1 and reports
the proportion of sorted spikes that have been misassigned. While FNs can also be a concern, as
they can decrease recorded spike frequencies and thus reduce statistical power in subsequent
analyses (Hill et al., 2011), FNs should not generally alter the overall patterns of activity associated
with individual clusters and are thus of less concern than FPs.

Algorithmic approaches to spike sorting for high-density silicon probe electrophysiology have
seen concentrated development over the last decade, with researchers now selecting from a number
of competing options for high-throughput automated spike sorting (Bestel et al., 2012; Buccino et
al., 2020; Chaure et al., 2018; Chung et al., 2017; Jun et al., 2017; J. H. Lee et al., 2017; Pachitariu
et al., 2016; Saif-ur-Rehman et al., 2021; Toosi et al., 2021), yet concomitant techniques for post
hoc analysis of spike-sorted data (Barnett et al., 2016; Hill et al., 2011; Magland et al., 2020;
Neymotin et al., 2011; Pouzat et al., 2002) have been given comparatively less attention. Sorting
quality metrics generally fall into two categories: assessment of cluster overlap using
dimensionally reduced representations of sorted spike waveforms, e.g. L-ratio (Schmitzer-Torbert
et al., 2005), isolation distance (Harris et al., 2001), D-prime (Hill et al., 2011), and silhouette
score, or empirical measures known to be related to cluster isolation and sorting difficulty, e.g.
signal-to-noise ratio, presence ratio, firing range, and inter-spike interval (ISI) violations. Among
all these metrics, ISI violations are unique in that they are tightly linked to the occurrence of FPs.
Biophysical limitations prevent neurons from producing consecutive spikes within their absolute
refractory period, meaning the presence of action potentials spaced by less than the absolute
refractory period, an ISI violation, is always the result of at least one FP.
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ISI violations are typically reported as a fraction of the total number of spikes assigned to a
cluster. The ISI violation rate (ISIy) — the number of ISI violations divided by the total number of
spikes assigned to a cluster — is often interpreted subjectively with only a general understanding
that a lower ISI; is associated with a lower FDR. Often, although not always, it is appreciated that
most FP spikes do not produce ISI violations and so ISIy << FDR. Previous work has estimated
the relationship between ISIy and FDR (Hill et al., 2011; Llobet et al., 2022) using simplifying
assumptions, but the accuracy and limitations of predicting cluster FDR on the basis of ISI
violations under realistic experimental conditions have not been assessed.

Here, we developed a comprehensive model explaining the relationship between ISI, and FDR
following spike sorting with respect to cluster contamination, neuronal firing frequency, the
temporal relationships between neurons, and the number of neurons contributing FPs. We
benchmark the accuracy of this model in silico through Monte Carlo simulation and explore
limitations in the accuracy of FDR estimation imposed by in vivo recording conditions. Finally,
we apply this model to publicly available spike-sorted electrophysiology data to estimate FDRs
from ISI violations in published studies and provide researchers with intuition about the range of
FDRs expected in silicon probe electrophysiology.

MATERIALS AND METHODS

Table 1 — Symbols used

Symbol Description Units
FDR False Discovery Rate Unitless or %
IS1, Inter-Spike-Interval violation rate Unitless or %

ft Total observed firing frequency Hz
frp Frequency of true positive spikes Hz
frp Frequency of false positive spikes Hz
fv Frequency of ISI violations Hz
T Neuronal refractory period s
Tc Spike sorting censor period ]
Te Effective refractory period ]
N Number of contaminant neurons -

Number of elements in a firing
frequency vector
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Monte-Carlo simulation of neural spike trains

Stochastic neural spike trains were simulated using Elephant (Electrophysiology Analysis Toolkit)
(Yegenoglu et al., 2018). Specifically, neurons were modeled as either homogeneous or
inhomogeneous  Poisson  processes (van  Vreeswijk, 2010) using either the
StationaryPoissonProcess or the  NonStationaryPoissonProcess  functions of the
spike train generation module. Custom Python scripts were used for subsequent simulation and
analysis. While Poisson point processes were used for all simulations of neural spike trains, post
hoc custom simulations of gamma, inverse Gaussian, and log-normal point processes indicated
that observed results did not seem to depend on any particular point process or ISI coefficient of
variation (Extended Data Fig. 3-1). A refractory period of 2.5 ms was assumed for all simulations
as well as all calculations in Table 2. Almost all datasets examined were recorded from mouse
cortical neurons, however for data collected from different cell types or animal models, this
parameter would need to be adjusted accordingly. Simulating “infinite” contaminant neurons was
accomplished by simulating a single contaminant neuron with no refractory period. Simulated
recording durations varied depending on the desired level of certainty in ISIy and need to emulate
realistic recording conditions. These times included ~28 hours (Fig. 3A-B), ~17 hours (Fig. 3C),
12 hours (Fig. 3D), 30 min (Fig. 2B), and 10 min (Fig. 2A; Fig. 2C; Fig.4B-C)

Monte Carlo simulation of cluster populations

In some simulations, all parameters were varied simultaneously to produce populations of clusters
with a wide range of physiologically feasible parametric combinations (Fig. 3D; Fig. 4B-C). For
each cluster, the following multistep process was used: (1) FDR, N, and f; were randomly sampled
from bounded probability distributions. Specifically, FDR was sampled from bounded Cauchy
distributions as these were found to most accurately replicate ISIy distributions found in
electrophysiological data when simulated. Different population median and mean FDRs were
obtained by adjusting the location and scale of the Cauchy distribution. f; was randomly selected
from a bounded uniform distribution: [4, 20] (Fig. 3D), [1, 10] (Fig. 4B), and [4, 16] (Fig. 4C).
Possible values of N were uniformly chosen from among the following values: [1, 2, 5, oo]. This
was found to be the most balanced way to sample N, as the effect of contaminant neuron count on
ISI violation occurrence increases logarithmically. (2) Unit vector PSTHs were randomly selected
from one of the datasets in Table 2 to serve as frp and fgp. These were selected uniformly from
among all clusters present in the dataset. (3) These PSTHs were then scaled appropriately and
combined to reach the desired f; and FDR. The correct scaling was determined using a function
optimization routine (minimize scalar, SciPy) that sought to minimize the difference between each
scaled PSTH’s current and desired average firing frequency. TP-FP covariance obtained using this
method varied from -49.2 to 113.7 Hz2. Longer simulated recording times were attained through
repeated simulation of these PSTHs.

Calculation of peristimulus time histograms (PSTHs)

PSTHs of cluster responses for in vivo electrophysiology data were calculated using bin sizes of
50 ms. Predicted median and mean FDR were found to be largely unaffected by bin size selection
in trial-averaged PSTHs. For continuously recorded data, the greatest length of time that could be
extracted around each cue without overlapping between “trials” was used to generate trial-
averaged PSTHs.

Estimating unknown cluster parameters
When predicting FDR using recorded data, only limited information is available about each sorted

cluster. ft and ISIy can be computed directly. T can be obtained through prior knowledge of
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electrophysiological properties of neurons in the organism and brain region being recorded from.
frp can be estimated through examination of other sorted clusters present in the recording session.
Estimating N is not straightforward.

To account for uncertainty in N, two approaches can be taken. A reasonable guess (e.g. 2, 3)
can be chosen, and simply plugged directly into the equation, or multiple values representing
extreme cases can be input and their results averaged. For example, FDR can be calculated by
assuming N equals either 1 or oo, and then taking the average of results from these two cases.
Empirically, we found this equivalent to assuming a single N of approximately 2-3. Our results
indicate that FDR estimates are not highly sensitive to the particular choice of N (Fig. 2C).

Depending on the assumed N, fgp can be estimated from either other single clusters or averaged
combinations of clusters. For example, if an N of 1 is assumed, fgp can be directly obtained from
other random clusters, while if an N of 2 is assumed, fp can be obtained by taking the average of
2 other random clusters. If an N of oo is assumed, fgp can be obtained from a global average PSTH.
Clusters for deriving fzp can be restricted to those on the same or nearby electrode sites.
Estimation of FDR in simulated cluster populations and electrophysiology datasets
For FDR predictions in both simulated cluster populations (Fig. 3D, Fig. 4B-C) and
electrophysiology datasets (Table 2), the following methodology was used. An N of both 1 and oo
were assumed: in the former case, a given sorted cluster was compared to every other cluster in

the simulation or recording session, while in the latter, it was compared to a single global fgp. The
final FDR is the mean of the (N = 1) cases averaged with the (N = o0) case.

For estimating FDR in electrophysiology datasets (Table 2), clusters for deriving fgp were not
restricted to those on the same or nearby electrode sites due to uncertainty about each dataset’s
probe geometry. Probe geometry was also not implemented in simulations of cluster populations
(Fig. 3D, Fig. 4B-C). A single t of 2.5 ms was used for every dataset, all of which were comprised
of recordings from mouse brains. This refractory period was modified by the censor period, when
necessary. Censor periods were determined through visual inspection of aggregated per-cluster ISI
histograms across the entire dataset. For selecting datasets to examine, only papers published in
the last 10 years with publicly available spike-sorted electrophysiology data were considered. No
limits or minimums were placed on cluster count, and no sorting methods were specifically
included or excluded. In some datasets, spontaneous activity was recorded without a cue to
calculate PSTHs around. In such cases, FDR was initially predicted using firing frequency vectors
calculated across the entire session. However, these predictions were found to be sensitive to bin
size used, therefore the predicted FDR assuming homogeneous firing is given instead (Table 1;
Eq.9).

Theoretical limits of predicted FDR

Due to stochasticity associated with ISIy estimates, observed ISI, values sometimes exceed
theoretical bounds given by the chosen parameters, producing imaginary predicted FDRs. In such
cases the predicted FDR is capped at its theoretical maximum for a given (assumed) number of
contaminant neurons. (Eq. 1). This maximum is derived from the fact that given a certain N, if
predicted FDR exceeds FDRmax, a lower FDR could be attained by simply selecting a different
neuron within the sorted cluster to be the TP neuron. When FDR is being calculated by averaging
the (N =1) and (N = o0) cases, FDRmax 1s the average of these two cases’ maximums: 0.75.
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Code availability

Code for calculating FDR with user-provided spike-sorted electrophysiology data, reproducing
figures, and simulating neuronal firing and spike sorting is available via GitHub
(https://github.com/economolab/DCISIv).

RESULTS

The relationship between ISI, and FDR is complex

We sought to understand how the occurrence of ISI violations depends on underlying cluster FDR
and how other underlying characteristics of neuronal activity might affect this relationship. To this
end, we focused on three variables likely to have a meaningful effect on the occurrence of ISI
violations: neuronal firing frequency (Fig. 1A), temporal correlation of activity amongst the
recorded population of neurons (Fig. 1B), and the number of contaminant neurons (Fig. 1C).
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Figure 1 - Factors affecting the relationship between ISIy and FDR. Schematic representation of occurrence of ISI
violations for a cluster with varying firing frequencies (A) TP-FP covariance (B), and numbers of contaminant
neuron(s) (C). In all cases, underlying FDR between the two cases is the same, while observed ISI, varies as a
consequence of changes in these characteristics of neuronal activity. Blue corresponds to true positive (TP) spikes,
and red corresponds to false positive (FP) spikes. Overhead dots indicate observed ISI violations. T represents the
neuronal refractory period. ISI violations can occur between TPs and FPs (TP-to-FP) or, if multiple contaminant
neurons are present, FPs and other FPs (FP-to-FP).

To determine how these variables affect the relationship between ISIy and FDR, we used
Monte-Carlo simulations of neural spiking to examine how the relationship between ISIy and FDR
might change as a consequence of varying each parameter in isolation. Total cluster firing
frequency was found to have a dramatic effect on ISI violation production, since overall firing
frequency played a large role in determining the likelihood that any given FP spike would produce
an ISI violation. Critically, clusters with lower firing frequencies and clusters with higher firing
frequencies could both present with the same ISIy, even when they had markedly different
underlying FDRs (5% - 50%) (Fig. 2A). These results indicated a nonlinear relationship between
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239  ISI violation production and firing frequency not accounted for by simply dividing the number of
240 ISl violations by the number of spikes (ISIy). The temporal overlap between TPs and FPs was also
241  found to strongly modulate ISI violation production, although not as strongly as cluster firing
242  frequency (Fig. 2B). Variable TP-FP covariance (0.8 to -0.5 Hz?) altered the probability of any
243  given FP leading to an ISI violation, resulting in three clusters with substantially different FDRs
244 (13% - 36%) presenting with the same ISIy and firing frequency. Lastly, number of contaminant
245  neurons was also found to modulate ISI violation production, although not as meaningfully as
246  other variables (Fig. 2C). Greater numbers of contaminant neurons increased the odds of ISI
247  violations between pairs of FPs, meaning the same observed ISI violation rate was associated with
248  aslightly lower FDR in cases of multiple contaminant neurons vs. just one contaminant neuron.
249  The dependence of this phenomenon on FP-to-FP violations (Fig. 1C) means its effects only
250  became meaningful at high FDRs (>0.25) and total firing frequencies (>10 Hz).
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251 Figure 2 - Simulated ISI distributions with variable underlying neuronal characteristics. Representative ISI
252 histograms with all factors kept constant except total cluster firing frequency (A), TP-FP covariance (B) and
253 contaminant neuron count (C). ISIs within the red rectangle are shorter than the refractory period and correspond to
254 ISI violations. ISI violation rate is identical across conditions in each row. In (4), ISI violations may appear to
255 constitute a smaller proportion of total ISIs in higher firing frequency conditions, but this is only because these
256 conditions have lower average ISIs and all conditions are plotted within the same 0-25 ms ISI domain. Simulated
257 firing frequencies were as indicated (4), 2 Hz (B), and 10 Hz (C). Simulated firing was either homogeneous (4, C) or
258 inhomogeneous (B). In (4), outlines of the histograms in the right two panels are overlaid to scale with high
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transparency on the left panel. Blue corresponds to true positive (TP) spikes, and red corresponds to false positive
(FP) spikes. FP firing frequency traces (B) are schematics only. The case of “infinite” contaminant neurons was
simulated using a single contaminant neuron with no refractory period.

Analytical model of the relationship between ISI, and FDR

We next sought to derive an analytical model describing the dependence of underlying FDR on
observed ISIy that incorporates each of these variables. To that end, we first considered a simplified
case in which two neurons are each firing homogeneously, or at a constant frequency, and spikes
from both neurons are being assigned to the same cluster. Each TP spike produces a double sided

“violation window” in time. If an FP spike occurs within that window, an ISI violation is observed
(Eq. 2; Fig. 1C).

fo = fep2Tfrp) (2)

Here, we represent the number of ISI violations observed per second as fy, the neuronal absolute
refractory period as t, and the frequencies with which the two neurons produce TP and FP spikes
as frp (TP frequency) and frp (FP frequency). Note that frp and frp may not necessarily represent
the total firing frequencies of the neurons producing the TP and FP spikes, only the frequencies at
which spikes from those neurons are assigned to a sorted cluster. These can be one and the same,
e.g., for a neuron contributing TPs with no false negatives. Also note that frp and frp cannot be
measured experimentally, instead representing unseen parameters of spike train generation. By
making substitutions based on a few simple relationships (Eq. 3-5), Eq. 2 can be solved using the
quadratic formula, defining FDR as a function of the following experimentally observable
variables: ISIy, T, and f; — the total observed firing frequency of the cluster (Eq. 6; see Appendix
for intermediate steps). The larger root is ignored, i.e. the term under the square root is subtracted
and not added, because the neuron with the most spikes in the cluster is de facto considered the
TP-contributing neuron.

_b
ISI, = 7 (3)
_fee
FDR = 7 (4)
fe = frp t+ frp (5)

1
FDR=-| 1~ (6)

Some spike sorting algorithms make use of a censor period, whereby spikes detected within a
certain minimum distance, t¢, of another spike are ignored. In such cases, the size of the violation
window produced by each true positive spike is shortened by this censor period producing a new
effective refractory period: te = T — tc. Implementation of 1. produces (Eq. 7), which is equivalent
to a rearranged form of the equation derived in (Hill et al., 2011).

fo = frpQTefrp) (7)
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At the other extreme, consider a situation where the spikes comprising a cluster are generated
by an infinite number of neurons. In reality, there can never be an infinite number of contaminant
neurons, but this term is a convenient shorthand for describing the limiting case where there as
many contaminant neurons as FPs. In this limiting case, any FP can produce an ISI violation with
any other FP, necessitating the addition of a second term wherein FP spikes now produce double-
sided violation windows as well. This term is scaled by a factor of one half to prevent double
counting of FPs producing ISI violations with one another. Implementation of this term produces
(Eq. 8), which is equivalent to a rearranged form of the equation derived in (Llobet et al., 2022).
This equation can be solved for FDR using substitutions and the quadratic formula as previously.

1
fo = fepRTefrp) + EfFP (27 frp) (8)

For an unspecified number of contaminant neurons N, an additional scaling factor of (N — 1)/N
can be added to the FP-FP ISI violations term (Eq. 9). This factor can be interpreted as the fraction
of all FPs available for any given contaminant neuron’s spikes to produce ISI violations with, e.g.,
1/2 for N =2, 2/3 for N = 3. This equation, like previous iterations, can be rearranged to solve for
FDR with an additional dependence added on N.

B 1/N -1
fo = fepRTefrp) + > (T) fep (27 frp) 9)

In the more biologically relevant case of inhomogeneous firing, or neural spiking frequencies
that vary over time, frp, frp, f;, and f, can all be considered not as constants but as functions of time
(i.e. vector quantities). While this spiking nonstationarity must be taken into account, a time-
varying estimate of FDR would be a needless level of granularity and also highly inaccurate given
the stochastic nature of neuronal spiking and ISI violations, so of primary interest is a time-
averaged estimate of the relationship between violation frequency (f,) and underlying variables.
In this case, the frequency of violations depends not on the product of the average values of frp

and frp, but on the expected value of their element-wise product, IE[ pr pr]:

_ 5 o 1/N-1 5 o
o = 2B frefie] + 5 (——) 22 Elfrooe] (10)

For two vectors representing firing frequency over time pr and pr of length n elements, this
expected value can be calculated as follows:

E[fopfip] = 12T (11)

n

Equation 10 can then be solved for | f;:p|, the vector magnitude of f;P, using the quadratic

formula (Eq. 12). Unit vector fgp can subsequently be scaled by | pr|, averaged, and finally

divided by the mean total firing frequency of the cluster to obtain a time-averaged estimate of FDR
(Eq. 13).
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1\1 2 1 a FP
FDR = <E>;Z(|fFP|fFP) = 7 (13)

Here, D corresponds to the dot product of the unit vectors representing total cluster spike
frequency and cluster FP spike frequency, D = f, - fgp. This can be thought of more generally as
representing the degree to which the time-varying total cluster spike frequency temporally overlaps
with the time-varying FP spike frequency. This final equation depends upon a number of
parameters specific to each cluster to obtain a single FDR estimate: (1) the effective refractory
period te, (2) the temporal distribution of activity in the cluster of interest (f;) and (3) of other

clusters contributing FP spikes (fgp), (4) the observed ISI violation rate ISIy, (5) the number of
contaminant neurons N. For information on how one can estimate these parameters from
experimental data, see Materials and Methods.

Prediction of FDR in silico

To both assess our model’s predictive power as well as more generally illustrate relationships
between model variables, we next simulated neural spike trains while varying all relevant
parameters across a range of biologically relevant values and then attempted to predict FDR from
the observed ISI,. In this case, parameters like N and fgp that may normally have associated
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uncertainty are known exactly. Simulating long periods of time (up to 28 hours of recording time)
also enables highly accurate estimates of ISI;.

Figure 3 - Relationship between single cluster FDR and observed ISIv. (A) Dependence of ISI, on total firing
frequency given varying FDRs and contaminant neuron counts. Lines correspond to analytical predictions; dots
correspond to simulation results. Plotted data apply to both primary and gray axes, the latter provide an inset for the
former. (B) Dependence of ISI, on FDR given varying firing frequencies and contaminant neuron counts. Conventions
as in (A4). (C) Prediction of FDR from observed ISI, with temporally inhomogeneous firing frequencies using either
the homogeneous model (E£q. 9) or the inhomogeneous model (Eq. 10). (D) Prediction of FDR from observed ISI, for
100 total clusters simulated across a range of physiologically relevant underlying neuronal characteristics. Total firing
frequency was varied between 4 and 20 Hz, N was varied between 1 and oo, and fzp was obtained by averaging across
other clusters (see Materials and Methods for more details). Red line is the unity line, or perfect concurrence between
predicted and true FDR; dashed gray line is the line of best fit. Root mean square error (RMSE) calculated with respect
to the unity line. Simulated firing was either homogeneous (4, B) or inhomogeneous (C, D). The model used for FDR
predictions was either homogeneous (4, B) or inhomogeneous (D), or both were used (C).

For both homogeneous and inhomogeneous firing we found that analytical FDR predictions
closely approximated the true underlying FDRs (Fig. 3). For homogeneous firing specifically,
observed ISIy was found to strongly depend on FDR and total cluster firing frequency, as expected
(Fig. 3A). A linear dependence was observed of ISIy on firing frequency at fixed FDR and
contaminant neuron counts, despite ISIy often being assumed to already have normalized for
cluster firing frequency. Furthermore, FDR was found to scale quadratically with increasing ISIy
at a fixed firing frequency and contaminant neuron count (Fig. 3B). ISIy values of 0.1-1%
represent typical thresholds in literature for considering a cluster well isolated (Boucher et al.,
2023; Chandrasekaran et al., 2017; Jadhav et al., 2009; Roy & Wang, 2012; Wright et al., 2021;
Zhao et al., 2023). Yet, our results indicate that FDRs associated with these ISI, values vary
considerably with the firing frequency of the cluster in question (Fig. 3A-B). As an illustration, an
ISIy of 0.5% reflected a desirable 5% FDR for a cluster firing at 20 Hz, or a much higher 50%
FDR for one firing at 3 Hz. In general, contaminant neuron count was of limited consequence
unless the cluster in question had both a high firing frequency and high FDR, making FP-FP
violations frequent enough to meaningfully affect overall ISI violation incidence.

When the activity of clusters was inhomogeneous in time, errors in FDR predicted with the
homogeneous model (Eq. 9) scaled linearly with the temporal covariance of TPs and FPs (Fig.
3C). Positive covariance increased the ISI violation rate at the same FDR, resulting in
overestimation of FDR, while negative covariance conversely decreased ISI violations, resulting
in underestimation of FDR. When inhomogeneous firing was appropriately taken into account (Eq.
10), predicted FDR closely approximated true FDR regardless of the covariances in neuronal
firing. When the activity of clusters contributing TP spikes and FP spikes varied independently in
time (inhomogeneous, but zero covariance) the probability of TP-FP violations was unchanged
compared to homogeneous spiking. Therefore, under these conditions, the homogeneous and
inhomogeneous predictions agree even if the generation of TPs and FPs individually may not
necessarily be homogeneous.

We next attempted to predict FDR from ISIy (Eq. 12-13) in a population of clusters simulated
inhomogeneously across a broad, randomized parameter space. Regardless of the precise
combination of parameters for any given cluster, predicted FDR and true FDR agreed with low
root mean square error (RMSE) (Fig. 3D; RMSE = 0.02). This prediction accuracy also
generalized to simulations of non-Poisson point processes across a range of possible ISI
coefficients of variation (Extended Data Fig. 3-1; RMSE = 0.01 — 0.02)
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Prediction of FDR under realistic conditions

Our model performed well when ISIy and other parameters were known exactly, although
benchmarking simulations indicated that predictions of FDR are sensitive to small changes in ISIy
(Fig. 3), particularly at lower firing frequencies (Fig. 3B). We next wanted to determine whether
FDR could be accurately predicted from recordings of finite duration with noisy ISIy estimates and
when exact values of N and fgp are unknown. Simulating spiking for finite durations, we found
that observed ISI, values were normally distributed around their true values (Fig. 4A), with
increasing recording time decreasing the variance of this distribution, as expected.

To assess the effect of noisy ISIy estimates on FDR predictions, we again simulated spiking
while simultaneously varying all previously described parameters, but this time recording duration
was restricted to 10 minutes (Fig. 4B-C). In this case, we found that FDR predictions for individual
clusters were substantially less accurate (RMSE = 0.13), although they did not deviate
systematically from true FDRs (Fig. 4B). Even with this highly restricted recording time, FDR
population statistics could be estimated across a set of clusters with high fidelity so long as a
sufficient number of clusters were sampled (Fig. 4C). For example, median FDR and mean FDR
could be predicted with RMSEs of 0.03 and 0.02 respectively across 1,000 clusters. Predicted
median FDRs were slightly overestimated at high true median FDR (>0.25).

We next sought to determine the duration of neural recordings necessary to obtain accurate
estimates of ISIy, and thus, FDR, in single clusters. To accomplish this, we simulated clusters with
various firing frequencies and FDRs, and determined the recording time sufficient to produce a
coefficient of variation (CV) of the predicted FDR of 20% (Fig. 4D; e.g. 50% + 10% or 5% £ 1%).
Surprisingly, we found that clusters with firing frequencies of 1-2 Hz required observations across
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409  hundreds of minutes to produce accurate estimates of single cluster FDR, an infeasible recording
410 time in many common experimental paradigms. For clusters with firing frequencies greater than 5
411  Hz, FDRs between 5-30% could be estimated accurately using tens of minutes of spiking data.
412 Figure 4 - Prediction of FDR for single clusters and populations. (A) Probability density functions of observed %
413 ISI, for a prototypical 8 Hz, 15% FDR cluster recorded for varying time lengths. These parameters produce a true %
414 ISI, of 0.5%, a value that has been used as a threshold for considering clusters well-isolated (Chandrasekaran et al.,
415 2017; Guo et al., 2014; Jadhav et al., 2009) (B) Prediction of FDR in single clusters recorded for 10 minutes. All
416 parameters varied simultaneously across a range of physiologically relevant underlying neuronal characteristics. Total
417 firing frequency was varied between 1 and 10 Hz, N was varied between 1 and oo, and fzp was obtained by averaging
418 across other clusters (see Materials and Methods for more details). Ceiling effect of predicted FDR at 0.75 due to
419  theoretical limit of FDR when predicting with unknown N (see Materials and Methods). Red line is the unity line, or
420 perfect concurrence between predicted and true FDR; dashed gray line is the line of best fit. Root mean square error
421 (RMSE) calculated with respect to the unity line. (C) Prediction of median and mean FDR in 1,000 cluster populations.
422 Cluster FDRs are Cauchy-distributed around the population mean. Total firing frequency was varied between 4 and
423 16 Hz, otherwise parameters varied simultaneously and conventions as in (B). (D) Minimum recording time required
424  for predictions of FDR in a single cluster to have a CV of 20%.
425 We used our model to estimate the FDRs of clusters contained within 12 publicly available
426  datasets that included spike-sorted electrophysiology recordings (Table 2). For all datasets, the
427  inhomogeneous model (Eq. 10) was used, with the exception of Stringer et al., 2019 and Juavinett
428  etal., 2019. Animal behavior in these datasets was not trial-based, and so it was not straightforward
429  to accurately estimate time-varying firing frequencies, necessitating the use of the homogeneous
430 model (Eq.9) (see Materials and Methods). Given limitations associated with single cluster FDR
431  predictions (Fig. 4B), estimated median and mean FDR were reported across all clusters present
432  in each dataset. An average median FDR of 12.9% + 13.5% (s.d.) was observed along with an
433 average mean FDR of 24.1% + 9.2% (s.d.). No obvious correlations between cluster count, spike
434  sorting methodology, or recording technology and dataset FDR were observed. With the exception
435  of (Juavinett et al., 2019), median estimated FDRs were consistently lower than mean estimated
436  FDRs. This implies that cluster FDR distributions in recorded electrophysiology datasets tend to
437  be right-skewed, composed of a large proportion of clusters possessing FDRs closer to 0 as well
438 as a broadly distributed complement of more contaminated clusters, some of which potentially
439  reaching FDRs well above 0.5.
440  Table 2 - Median and mean FDR of publicly available spike-sorted electrophysiology datasets
Authors Median FDR Mean FDR # Clusters Te Probe Sorter
(£ s.e.) (£s.e.) (ms)
Xu et al. H2/H3
3.1% (0.5)  143%(0.4) 3,046 0 Kilosort
Nature (2022) Cam. Neuro.
Economo et al. H2
3.1%(0.6)  12.5%(0.5) 1,988 0.25 JRClust
Nature (2018) Cam. Neuro.

Steinmetz et al.

. 4.0% (0.2) 25.1% (0.2) 33,997 0 Neuropixels 1.0 Kilosort
Nature (2019)




Gao et al. H2/A4

4.4% (0.7 18.7% (0.6 1,923 0.5 UltraMegaSort2000
Nature (2018) 2 (0.7 2 (06) Cam. Neuro. raviegasor
Lietal. A4
4.5% (0.8) 19.7% (0.7) 1,543 0.85 UltraMegaSort2000
Nature (2016) NeuroNexus
Inagaki et al. HH-2/Neuropixels 2.0 )
6.2% (0.3) 17.7% (0.3) 7,968 0.25 ) JRClust/Kilosort
Cell (2022) Janelia/N.A.
Guo et al. A4/A2
6.5% (0.7) 18.8% (0.6) 1,936 0.85 UltraMegaSort2000
Nature (2017) NeuroNexus
Finkelstein et al. H2
N 10.5% (0.5)  20.1% (0.4) 3,385 0.25 JRClust
Nat. Neuro. (2021) Cam. Neuro.
Sylwestrak et al. . )
Cell (2022) 12.8% (0.4)  29.1% (0.3) 10,548 0.25 Neuropixels 2.0 Kilosort
e
Stringer et al. ]
+ 21.9% (0.5)  33.1% (0.4) 6,446 0 Neuropixels 1.0 Kilosort
Science (2019)
Chinta & Pluta )
Nat. C. (2023) 28.2% (1.3)  36.2% (1.0) 991 0 NeuroNexus Kilosort
at. Comm.
Juavinett et al. )
50.0% (0.8)  44.3% (0.7) 2,018 0 Neuropixels 1.0 Kilosort

eLife (2019)° T

441 * Clusters labeled “multi” or “MUA” excluded
442 t Calculated using homogeneous model (Eq. 9)

443 Importantly, no attempts were made to curate clusters included in analysis from each dataset;
444  all available sessions and clusters were assessed, with the exception of clusters labeled “multi” or
445  “MUA” in datasets with cluster quality annotations. It’s possible that some datasets were pre-
446  curated, with clusters discarded according to some exclusion criteria prior to being uploaded, while
447  others were shared un-curated. Depending on the nature of the scientific question being addressed,
448  better cluster isolation is undoubtedly a larger priority for some datasets than others. For these
449  reasons and due to uncertainty in assessing censor period in each dataset, we emphasize that these
450  findings should serve generally as an overall survey of the range of expected contamination levels
451  indatasets produced using widely used methods rather than as a commentary on individual datasets
452  or spike sorting methodologies.

453  DISCUSSION

454  Inter-spike interval violations are the most commonly employed metric of accuracy in spike
455  sorting, serving as an indication of the false discovery rate (FDR) — the rate at which spikes are
456  erroneously assigned to the wrong cluster. Here, we used Monte Carlo simulations to demonstrate
457  that the inter-spike interval violation rate (ISIy) is related to FDR through a complex relationship
458  that depends on many factors, including (1) the neuronal firing frequency, (2) the temporal
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correlation in activity between neurons contributing to a cluster, and (3) the number of neurons
contributing spikes to a cluster - in that order of descending importance. We derived an analytical
model that can be used to predict FDR from ISy that incorporates these factors and determine the
accuracy with which FDR can be inferred during finite-length recordings at the level of single
clusters and datasets. Finally, we used this model to assess the FDR of clusters contained in
publicly available spike-sorted electrophysiology datasets to provide bounds on the accuracy that
can be reasonably expected by experimenters. Our study makes four central contributions.

First, we derive an analytical model that can be used to estimate FDR from ISIy accurately across
a broad parameter space.

Second, we explicitly demonstrate that FDR is not linearly related to ISIy, but depends critically
on the total cluster spike frequency. While this dependence can be inferred from previous work
(Hill et al., 2011; Llobet et al., 2022), our results underscore the inappropriateness of using ISIy as
an inclusion criterion for single clusters — which is still a common practice in many studies using
spike sorted data. Across a common range of firing frequencies (~2 to 12 Hz), clusters with the
same ISy can be associated with both low (~5%) and very high (~50%) FDRs (Figs. 2A, 3A).

Third, we find that estimates of FDR at the single cluster level are noisy due to the stochasticity of
ISI violations as well as uncertainty in cluster-specific parameters (Fig. 4B) — but estimates at the
population level are highly robust (Fig. 4C). As a point of reference, our results suggest that ISIy
can be estimated accurately enough to predict single-cluster FDRs within 20% of their true values
in one-hour recordings only when firing frequencies are greater than ~5 Hz. Even for clusters that
meet these requirements, however, experimental uncertainty in parameters like FP-TP covariance
and contaminant neuron counts make single cluster FDRs difficult to predict with high confidence.
Alternatively, population-level statistics of FDR, obtained by averaging across all the clusters in a
dataset, can be accurately predicted with recording durations as low as 10 minutes.

Finally, we predict FDR on the basis of ISI violations in publicly available datasets for the first
time. FDR population statistics covered a wide range (median: 3.1 — 50.0%; mean: 12.5 - 44.3%)
and could be estimated with low standard error (s.e. median: 0.2-1.3%; s.e. mean: 0.2-1.0%).
Datasets with low FDR were not associated with any obvious external features of data collection,
spike sorting methodology, or recording technology and the variance in FDRs across datasets is
likely a function of the variable importance of low FDR for the scientific goals of individual
studies.

Monte Carlo simulations for validating prediction of FDR

Given the absence of high cluster count spike-sorted extracellular neural recordings with
associated per-neuron ground truth patch clamp data, Monte Carlo simulation presents itself as an
attractive tool for studying the theoretical mechanisms by which a given level of contamination in
a sorted cluster translates into observed ISI violations. Neural spiking was simulated in this work
as a collection of independent Poisson processes, a common assumption that has been validated
across a number of organisms, brain regions, and behavioral contexts (Abbott & Dayan, 2005;
Roxin et al., 2008; Shinomoto & Tsubo, 2001; Tolhurst et al., 1981; Werner & Mountcastle, 1965).
Furthermore, the equations derived in this work were equally accurate when applied to simulations
of non-Poisson point processes across a range of ISI coefficients of variation, implying that they
likely generalize to any renewal process that produces independent and identically distributed ISIs
with a physiological coefficient of variation (Extended Data Fig. 3-1). Beyond this foundation,
only aspects of neuronal firing and spike sorting thought to potentially be relevant to ISI violation
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production were modeled, namely varying firing frequency amplitudes, temporally
inhomogeneous firing, and differing contaminant neuron counts. If an additional aspect not
accounted for in this description plays a significant role in determining the relationship between
ISI, and FDR, then in silico validation may not reflect true congruence between analytical
prediction and reality.

Best practices for using ISI violations in spike sorting

When attempting to determine the success of spike-sorting operations post-hoc, ISI violation
fraction is frequently used as a per-cluster inclusion criterion. However, unless a cluster is recorded
for a long enough time period given its firing frequency and true FDR, and difficult-to-estimate
cluster-specific parameters are known, it can be difficult to predict FDR using ISI violations at the
single cluster level with high confidence. Use of ISI violation fractions in this way can easily result
in situations where highly contaminated clusters are erroneously kept while less contaminated
clusters are discarded. We posit that the most straightforward and robust use case for ISIy is as a
tool for predicting population-level statistics of FDR when coupled with a sound theoretical
understanding of how cluster contamination translates into ISI violations (Eq. 10, 12, 13).
Investigators can obtain an accurate estimate of median and mean cluster FDR across a session or
dataset and then decide whether they are satisfied with these levels of cross-contamination, or if
additional effort to improve cluster isolation is needed.

When curating spike-sorted data, it is critical that both algorithmic and manual sorters do not
specifically remove individual spikes that generate ISI violations. Typically, only a small fraction
of contaminant spikes produce ISI violations; targeted removal of spikes producing ISI violations
can reduce ISy substantially without meaningfully reducing the FDR, thus producing clusters that
seem well isolated based on their ISIy, even when they are not. In effect, this practice does not
accomplish anything except eliminating the predictive power of ISIy for underlying FDR.

Current state of spike sorting predicted using ISI violations

This work estimates an average median FDR of ~13% and an average mean FDR of ~24% in
publicly available electrophysiology datasets. The lower median FDR compared to mean FDR
across virtually all datasets examined indicates right-skewed FDR distributions. This likely arises
as a consequence of FDR having a theoretical floor of 0, with most datasets having many cluster
FDRs close to this floor. It may also be a consequence of most spike sorting datasets being
composed of two distinct types of clusters: relatively easier to sort clusters whose FDRs typically
fall close to 0 and relatively harder to sort clusters whose FDRs are likely to fall more broadly over
the theoretical range of FDR (0-1).

In the absence of any clear rationale for variance in FDR as predicted using ISIy among publicly
available spike-sorted datasets (Table 2), degree and execution of manual curation presents itself
as a promising explanatory candidate. While modern spike-sorting algorithms serve as an excellent
basis for sorting vast quantities of electrophysiology data, many investigators still manually merge,
split, and discard algorithmically obtained output clusters to further improve cluster isolation.
Time, effort, and skill applied to manual curation are difficult to quantify and therefore unlikely to
be reported in literature, although such differences are likely to have a material effect on the final
quality of cluster isolation. The median and mean FDRs of the datasets examined here as well as
the tendency toward right-skewed FDR distributions support the idea that all datasets are
composed of both well and poorly isolated clusters.

Necessity of high-quality spike sorting
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It has been posited that well-sorted clusters are not a necessity for many types of neural data
analyses, particularly those concerned with studying population dynamics (Christie et al., 2014;
Trautmann et al., 2019). In some applications, however, well-isolated clusters remain a critical
precondition for answering relevant neuroscientific questions. Characterizing the responsivity of
specific cell types that have been identified on the basis of genetic expression, projection target,
waveform shape, or activity in vivo represents an expansive line of inquiry wherein high-quality
cluster isolation is key (Deubner et al., 2019; Ding et al., 2022; Estebanez et al., 2017; E. K. Lee
et al., 2021; Takatoh et al., 2022). Ultimately, the level of cluster isolation necessary for a given
study is highly dependent upon the biological questions of interest. The work herein aims to clarify
the relationship between ISI violations and cluster contamination, as well as provide a tool by
which overall spike sorting quality can be quickly assessed with a direct, interpretable, and
accurate metric, thereby streamlining assessments of sorting performance and increasing
confidence that desired cluster isolation levels have been reached.
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Extended Data Figure 3-1 — Prediction of FDR in non-Poisson point processes. Prediction of FDR from observed
ISI, when simulating neural spiking by drawing ISIs from gamma distributions (A), inverse Gaussian distributions
(B), or log-normal distributions (C). 100 total clusters simulated in each panel across a range of physiologically
relevant underlying neuronal characteristics. Total firing frequency was varied between 4 and 20 Hz, N was varied
between 1 and 10, and frp was obtained by averaging across other clusters (see Materials and Methods for more
details). Coefficient of variation (CV) of ISI distributions varied from 0.5 to 2. Red line is the unity line, or perfect
concurrence between predicted and true FDR; dashed gray line is the line of best fit. Root mean square error (RMSE)
calculated with respect to the unity line. Simulated firing was homogeneous and the model used for FDR predictions
was also homogeneous (Eg. 9). A gamma distribution with CV =1 is identical to an exponential distribution, producing
a Poisson point process. Bottom raster plots show gamma distributed spiking of an example 10 Hz neuron at various
CVs. Stacked points indicate spikes occurring in quick succession.
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585  Derivation of Eq. 6
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