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ABSTRACT 31 

Recent advances in extracellular electrophysiology now facilitate the recording of spikes from 32 

hundreds or thousands of neurons simultaneously. This has necessitated both the development of 33 

new computational methods for spike sorting and better methods to determine spike sorting 34 

accuracy. One longstanding method of assessing the false discovery rate (FDR) of spike sorting 35 

– the rate at which spikes are assigned to the wrong cluster – has been the rate of inter-spike-36 

interval (ISI) violations. Despite their near ubiquitous usage in spike sorting, our understanding 37 

of how exactly ISI violations relate to FDR, as well as best practices for using ISI violations as a 38 

quality metric, remain limited. Here, we describe an analytical solution that can be used to 39 

predict FDR from ISI violation rate. We test this model in silico through Monte Carlo 40 

simulation, and apply it to publicly available spike-sorted electrophysiology datasets. We find 41 

that the relationship between ISI violation rate and FDR is highly nonlinear, with additional 42 

dependencies on firing frequency, the correlation in activity between neurons, and contaminant 43 

neuron count. Predicted median FDRs in public datasets were found to range from 3.1% to 44 

50.0%. We find that stochasticity in the occurrence of ISI violations as well as uncertainty in 45 

cluster-specific parameters make it difficult to predict FDR for single clusters with high 46 

confidence, but that FDR can be estimated accurately across a population of clusters. Our 47 

findings will help the growing community of researchers using extracellular electrophysiology 48 

assess spike sorting accuracy in a principled manner. 49 

SIGNIFICANCE STATEMENT 50 

High-density silicon probes are widely used to record the activity of large populations of neurons 51 

while animals are engaged in complex behavior.  In this approach, each electrode records spikes 52 

from many neurons, and “spike sorting” algorithms are used to group the spikes originating from 53 

each neuron together.  This process is error-prone, however, and so the ability to assess spike 54 

sorting accuracy is essential for properly interpreting neural activity. The rate of inter-spike-55 

interval (ISI) violations is commonly used to assess spike sorting accuracy, but the relationship 56 

between ISI violation rate and sorting accuracy is complex and poorly understood.  Here, we 57 

describe this relationship in detail and provide guidelines for how to properly use ISI violation 58 

rate to assess spike sorting accuracy.  59 



INTRODUCTION 60 

Extracellular electrophysiology has become an increasingly popular method for studying neuronal 61 

activity at the population level.  Silicon probes containing dozens or hundreds of densely packed 62 
electrode sites can be used to observe neuronal action potentials in many neurons simultaneously. 63 
This multiplexed signal acquisition, however, often necessitates the assignment of observed action 64 
potentials to individual neurons - “spike sorting” - as a critical first step prior to many analyses 65 
(Rey et al., 2015; Todorova et al., 2014). Approaches for spike sorting vary, though all generally 66 

involve comparisons of observed action potential waveforms within and across electrodes, and 67 
then grouping similar spikes –  thought to be produced by the same neuron – together, forming 68 
clusters (Gibson et al., 2012; Quiroga & Panzeri, 2013). Ideally, each cluster is composed 69 
principally of true positive (TP) spikes from a single neuron making it a “well isolated” cluster. 70 
Spikes from this single neuron can be erroneously excluded from the cluster, resulting in false 71 

negatives (FNs). The primary focus of this work, however, is false positives (FPs), wherein spikes 72 

are misassigned to a cluster whose activity is meant to correspond to a different neuron. Clusters 73 
with substantial “contamination” by FPs thus represent the combined activity of multiple neurons.  74 

     False positives are a persistent problem in spike sorting that results from frequently unavoidable 75 
similarities in action potential waveforms, occurrence of spikes at overlapping times, 76 
nonstationarity in waveform shape, and recording noise. Contamination can distort the activity of 77 
a cluster, potentially leading to incorrect conclusions about how single neurons encode 78 
information. For instance, a population of neurons recorded during a task with two cues may 79 

contain neurons responsive to just one cue or the other. However, poor sorting may lead to cluster 80 
cross-contamination between these two phenotypes, giving the impression that neurons in this 81 

region respond to both cues. The prevalence of FPs in a single cluster, recording session, or dataset 82 
can be described by the false discovery rate (FDR), a value that ranges between 0 and 1 and reports 83 

the proportion of sorted spikes that have been misassigned. While FNs can also be a concern, as 84 
they can decrease recorded spike frequencies and thus reduce statistical power in subsequent 85 

analyses (Hill et al., 2011), FNs should not generally alter the overall patterns of activity associated 86 
with individual clusters and are thus of less concern than FPs. 87 

     Algorithmic approaches to spike sorting for high-density silicon probe electrophysiology have 88 

seen concentrated development over the last decade, with researchers now selecting from a number 89 
of competing options for high-throughput automated spike sorting (Bestel et al., 2012; Buccino et 90 
al., 2020; Chaure et al., 2018; Chung et al., 2017; Jun et al., 2017; J. H. Lee et al., 2017; Pachitariu 91 
et al., 2016; Saif-ur-Rehman et al., 2021; Toosi et al., 2021), yet concomitant techniques for post 92 
hoc analysis of spike-sorted data (Barnett et al., 2016; Hill et al., 2011; Magland et al., 2020; 93 

Neymotin et al., 2011; Pouzat et al., 2002) have been given comparatively less attention. Sorting 94 
quality metrics generally fall into two categories: assessment of cluster overlap using  95 

dimensionally reduced representations of sorted spike waveforms, e.g. L-ratio (Schmitzer-Torbert 96 
et al., 2005), isolation distance (Harris et al., 2001), D-prime (Hill et al., 2011), and silhouette 97 
score, or empirical measures known to be related to cluster isolation and sorting difficulty, e.g. 98 
signal-to-noise ratio, presence ratio, firing range, and inter-spike interval (ISI) violations. Among 99 
all these metrics, ISI violations are unique in that they are tightly linked to the occurrence of FPs. 100 

Biophysical limitations prevent neurons from producing consecutive spikes within their absolute 101 
refractory period, meaning the presence of action potentials spaced by less than the absolute 102 
refractory period, an ISI violation, is always the result of at least one FP.  103 



     ISI violations are typically reported as a fraction of the total number of spikes assigned to a 104 

cluster.  The ISI violation rate (ISIv) – the number of ISI violations divided by the total number of 105 

spikes assigned to a cluster – is often interpreted subjectively with only a general understanding 106 
that a lower ISIv is associated with a lower FDR.  Often, although not always, it is appreciated that 107 
most FP spikes do not produce ISI violations and so ISIv << FDR.  Previous work has estimated 108 
the relationship between ISIv and FDR (Hill et al., 2011; Llobet et al., 2022) using simplifying 109 
assumptions, but the accuracy and limitations of predicting cluster FDR on the basis of ISI 110 

violations under realistic experimental conditions have not been assessed.  111 

     Here, we developed a comprehensive model explaining the relationship between ISIv and FDR 112 
following spike sorting with respect to cluster contamination, neuronal firing frequency, the 113 
temporal relationships between neurons, and the number of neurons contributing FPs. We 114 

benchmark the accuracy of this model in silico through Monte Carlo simulation and explore 115 

limitations in the accuracy of FDR estimation imposed by in vivo recording conditions.  Finally, 116 

we apply this model to publicly available spike-sorted electrophysiology data to estimate FDRs 117 
from ISI violations in published studies and provide researchers with intuition about the range of 118 
FDRs expected in silicon probe electrophysiology. 119 

MATERIALS AND METHODS 120 

Table 1 – Symbols used 121 

Symbol Description Units 

𝐹𝐷𝑅 False Discovery Rate Unitless or % 

𝐼𝑆𝐼𝑣 Inter-Spike-Interval violation rate Unitless or % 

𝑓𝑡  Total observed firing frequency Hz 

𝑓TP Frequency of true positive spikes Hz 

𝑓FP Frequency of false positive spikes Hz 

𝑓𝑣 Frequency of ISI violations Hz 

𝜏 Neuronal refractory period s 

τc Spike sorting censor period s 

τe Effective refractory period s 

N Number of contaminant neurons - 

𝑛 
Number of elements in a firing 

frequency vector 
- 

 122 

 123 



Monte-Carlo simulation of neural spike trains  124 

Stochastic neural spike trains were simulated using Elephant (Electrophysiology Analysis Toolkit) 125 

(Yegenoglu et al., 2018). Specifically, neurons were modeled as either homogeneous or 126 
inhomogeneous Poisson processes (van Vreeswijk, 2010) using either the 127 
StationaryPoissonProcess or the NonStationaryPoissonProcess functions of the 128 
spike_train_generation module. Custom Python scripts were used for subsequent simulation and 129 
analysis. While Poisson point processes were used for all simulations of neural spike trains, post 130 

hoc custom simulations of gamma, inverse Gaussian, and log-normal point processes indicated 131 
that observed results did not seem to depend on any particular point process or ISI coefficient of 132 
variation (Extended Data Fig. 3-1). A refractory period of 2.5 ms was assumed for all simulations 133 
as well as all calculations in Table 2. Almost all datasets examined were recorded from mouse 134 
cortical neurons, however for data collected from different cell types or animal models, this 135 

parameter would need to be adjusted accordingly. Simulating “infinite” contaminant neurons was 136 

accomplished by simulating a single contaminant neuron with no refractory period. Simulated 137 
recording durations varied depending on the desired level of certainty in ISIv and need to emulate 138 

realistic recording conditions. These times included ~28 hours (Fig. 3A-B), ~17 hours (Fig. 3C), 139 

12 hours (Fig. 3D), 30 min (Fig. 2B), and 10 min (Fig. 2A; Fig. 2C; Fig.4B-C)  140 

Monte Carlo simulation of cluster populations  141 
In some simulations, all parameters were varied simultaneously to produce populations of clusters 142 

with a wide range of physiologically feasible parametric combinations (Fig. 3D; Fig. 4B-C). For 143 
each cluster, the following multistep process was used: (1) FDR, N, and ft were randomly sampled 144 

from bounded probability distributions. Specifically, FDR was sampled from bounded Cauchy 145 
distributions as these were found to most accurately replicate ISIv distributions found in 146 
electrophysiological data when simulated. Different population median and mean FDRs were 147 

obtained by adjusting the location and scale of the Cauchy distribution. ft was randomly selected 148 

from a bounded uniform distribution: [4, 20] (Fig. 3D), [1, 10] (Fig. 4B), and [4, 16] (Fig. 4C). 149 
Possible values of N were uniformly chosen from among the following values: [1, 2, 5, ∞]. This 150 
was found to be the most balanced way to sample N, as the effect of contaminant neuron count on 151 

ISI violation occurrence increases logarithmically. (2) Unit vector PSTHs were randomly selected 152 

from one of the datasets in Table 2 to serve as 𝑓TP and 𝑓FP. These were selected uniformly from 153 
among all clusters present in the dataset. (3) These PSTHs were then scaled appropriately and 154 
combined to reach the desired ft and FDR. The correct scaling was determined using a function 155 

optimization routine (minimize_scalar, SciPy) that sought to minimize the difference between each 156 
scaled PSTH’s current and desired average firing frequency. TP-FP covariance obtained using this 157 
method varied from -49.2 to 113.7 Hz2. Longer simulated recording times were attained through 158 
repeated simulation of these PSTHs. 159 

Calculation of peristimulus time histograms (PSTHs) 160 
PSTHs of cluster responses for in vivo electrophysiology data were calculated using bin sizes of 161 

50 ms. Predicted median and mean FDR were found to be largely unaffected by bin size selection 162 
in trial-averaged PSTHs. For continuously recorded data, the greatest length of time that could be 163 
extracted around each cue without overlapping between “trials” was used to generate trial-164 
averaged PSTHs.  165 

Estimating unknown cluster parameters 166 
When predicting FDR using recorded data, only limited information is available about each sorted 167 

cluster. 𝑓𝑡 and ISIv can be computed directly. τ can be obtained through prior knowledge of 168 



electrophysiological properties of neurons in the organism and brain region being recorded from. 169 

𝑓FP can be estimated through examination of other sorted clusters present in the recording session. 170 
Estimating N is not straightforward. 171 

     To account for uncertainty in N, two approaches can be taken. A reasonable guess (e.g. 2, 3) 172 

can be chosen, and simply plugged directly into the equation, or multiple values representing 173 
extreme cases can be input and their results averaged. For example, FDR can be calculated by 174 
assuming N equals either 1 or ∞, and then taking the average of results from these two cases. 175 
Empirically, we found this equivalent to assuming a single N of approximately 2-3. Our results 176 
indicate that FDR estimates are not highly sensitive to the particular choice of N (Fig. 2C).  177 

     Depending on the assumed N, 𝑓FP can be estimated from either other single clusters or averaged 178 

combinations of clusters. For example, if an N of 1 is assumed, 𝑓FP can be directly obtained from 179 

other random clusters, while if an N of 2 is assumed, 𝑓FP can be obtained by taking the average of 180 

2 other random clusters. If an N of ∞ is assumed, 𝑓FP can be obtained from a global average PSTH. 181 

Clusters for deriving 𝑓FP can be restricted to those on the same or nearby electrode sites. 182 

Estimation of FDR in simulated cluster populations and electrophysiology datasets 183 
For FDR predictions in both simulated cluster populations (Fig. 3D, Fig. 4B-C) and 184 

electrophysiology datasets (Table 2), the following methodology was used. An N of both 1 and ∞ 185 
were assumed: in the former case, a given sorted cluster was compared to every other cluster in 186 

the simulation or recording session, while in the latter, it was compared to a single global 𝑓FP. The 187 
final FDR is the mean of the (N = 1) cases averaged with the (N = ∞) case. 188 

     For estimating FDR in electrophysiology datasets (Table 2), clusters for deriving 𝑓FP were not 189 
restricted to those on the same or nearby electrode sites due to uncertainty about each dataset’s 190 
probe geometry. Probe geometry was also not implemented in simulations of cluster populations 191 

(Fig. 3D, Fig. 4B-C). A single τ of 2.5 ms was used for every dataset, all of which were comprised 192 

of recordings from mouse brains. This refractory period was modified by the censor period, when 193 
necessary. Censor periods were determined through visual inspection of aggregated per-cluster ISI 194 
histograms across the entire dataset. For selecting datasets to examine, only papers published in 195 

the last 10 years with publicly available spike-sorted electrophysiology data were considered. No 196 
limits or minimums were placed on cluster count, and no sorting methods were specifically 197 

included or excluded. In some datasets, spontaneous activity was recorded without a cue to 198 
calculate PSTHs around. In such cases, FDR was initially predicted using firing frequency vectors 199 

calculated across the entire session. However, these predictions were found to be sensitive to bin 200 
size used, therefore the predicted FDR assuming homogeneous firing is given instead (Table 1; 201 
Eq. 9).  202 

Theoretical limits of predicted FDR 203 

Due to stochasticity associated with ISIv estimates, observed ISIv values sometimes exceed 204 
theoretical bounds given by the chosen parameters, producing imaginary predicted FDRs. In such 205 
cases the predicted FDR is capped at its theoretical maximum for a given (assumed) number of 206 
contaminant neurons. (Eq. 1). This maximum is derived from the fact that given a certain N, if 207 

predicted FDR exceeds FDRmax, a lower FDR could be attained by simply selecting a different 208 
neuron within the sorted cluster to be the TP neuron. When FDR is being calculated by averaging 209 
the (N = 1) and (N = ∞) cases, FDRmax is the average of these two cases’ maximums: 0.75. 210 



𝐹𝐷𝑅𝑚𝑎𝑥 =
𝑁

𝑁 + 1
 (1) 211 

Code availability 212 

Code for calculating FDR with user-provided spike-sorted electrophysiology data, reproducing 213 

figures, and simulating neuronal firing and spike sorting is available via GitHub 214 
(https://github.com/economolab/DCISIv). 215 

RESULTS 216 
 217 
The relationship between ISIv and FDR is complex 218 

We sought to understand how the occurrence of ISI violations depends on underlying cluster FDR 219 
and how other underlying characteristics of neuronal activity might affect this relationship. To this 220 

end, we focused on three variables likely to have a meaningful effect on the occurrence of ISI 221 
violations: neuronal firing frequency (Fig. 1A), temporal correlation of activity amongst the 222 
recorded population of neurons (Fig. 1B), and the number of contaminant neurons (Fig. 1C).  223 

Figure 1 - Factors affecting the relationship between ISIv and FDR. Schematic representation of occurrence of ISI 224 
violations for a cluster with varying firing frequencies (A) TP-FP covariance (B), and numbers of contaminant 225 
neuron(s) (C). In all cases, underlying FDR between the two cases is the same, while observed ISIv varies as a 226 
consequence of changes in these characteristics of neuronal activity. Blue corresponds to true positive (TP) spikes, 227 
and red corresponds to false positive (FP) spikes. Overhead dots indicate observed ISI violations. τ represents the 228 
neuronal refractory period. ISI violations can occur between TPs and FPs (TP-to-FP) or, if multiple contaminant 229 
neurons are present, FPs and other FPs (FP-to-FP).      230 

     To determine how these variables affect the relationship between ISIv and FDR, we used 231 
Monte-Carlo simulations of neural spiking to examine how the relationship between ISIv and FDR 232 
might change as a consequence of varying each parameter in isolation. Total cluster firing 233 

frequency was found to have a dramatic effect on ISI violation production, since overall firing 234 
frequency played a large role in determining the likelihood that any given FP spike would produce 235 
an ISI violation. Critically, clusters with lower firing frequencies and clusters with higher firing 236 
frequencies could both present with the same ISIv, even when they had markedly different 237 
underlying FDRs (5% - 50%) (Fig. 2A). These results indicated a nonlinear relationship between 238 

https://github.com/economolab/DCISIv


ISI violation production and firing frequency not accounted for by simply dividing the number of 239 

ISI violations by the number of spikes (ISIv). The temporal overlap between TPs and FPs was also 240 

found to strongly modulate ISI violation production, although not as strongly as cluster firing 241 
frequency (Fig. 2B). Variable TP-FP covariance (0.8 to -0.5 Hz2) altered the probability of any 242 
given FP leading to an ISI violation, resulting in three clusters with substantially different FDRs 243 
(13% - 36%) presenting with the same ISIv and firing frequency. Lastly, number of contaminant 244 
neurons was also found to modulate ISI violation production, although not as meaningfully as 245 

other variables (Fig. 2C). Greater numbers of contaminant neurons increased the odds of ISI 246 
violations between pairs of FPs, meaning the same observed ISI violation rate was associated with 247 
a slightly lower FDR in cases of multiple contaminant neurons vs. just one contaminant neuron. 248 
The dependence of this phenomenon on FP-to-FP violations (Fig. 1C) means its effects only 249 
became meaningful at high FDRs (>0.25) and total firing frequencies (>10 Hz).  250 

Figure 2 - Simulated ISI distributions with variable underlying neuronal characteristics. Representative ISI 251 
histograms with all factors kept constant except total cluster firing frequency (A), TP-FP covariance (B) and 252 
contaminant neuron count (C). ISIs within the red rectangle are shorter than the refractory period and correspond to 253 
ISI violations. ISI violation rate is identical across conditions in each row. In (A), ISI violations may appear to 254 
constitute a smaller proportion of total ISIs in higher firing frequency conditions, but this is only because these 255 
conditions have lower average ISIs and all conditions are plotted within the same 0-25 ms ISI domain. Simulated 256 
firing frequencies were as indicated (A), 2 Hz (B), and 10 Hz (C). Simulated firing was either homogeneous (A, C) or 257 
inhomogeneous (B). In (A), outlines of the histograms in the right two panels are overlaid to scale with high 258 



transparency on the left panel. Blue corresponds to true positive (TP) spikes, and red corresponds to false positive 259 
(FP) spikes. FP firing frequency traces (B) are schematics only. The case of “infinite” contaminant neurons was 260 
simulated using a single contaminant neuron with no refractory period.    261 

Analytical model of the relationship between ISIv and FDR 262 
We next sought to derive an analytical model describing the dependence of underlying FDR on 263 
observed ISIv that incorporates each of these variables. To that end, we first considered a simplified 264 

case in which two neurons are each firing homogeneously, or at a constant frequency, and spikes 265 
from both neurons are being assigned to the same cluster. Each TP spike produces a double sided 266 
“violation window” in time.  If an FP spike occurs within that window, an ISI violation is observed 267 
(Eq. 2; Fig. 1C). 268 

𝑓𝑣 = 𝑓FP(2𝜏𝑓TP) (2) 269 

    Here, we represent the number of ISI violations observed per second as fv, the neuronal absolute 270 

refractory period as τ, and the frequencies with which the two neurons produce TP and FP spikes 271 

as fTP (TP frequency) and fFP (FP frequency). Note that fTP and fFP may not necessarily represent 272 
the total firing frequencies of the neurons producing the TP and FP spikes, only the frequencies at 273 

which spikes from those neurons are assigned to a sorted cluster. These can be one and the same, 274 

e.g., for a neuron contributing TPs with no false negatives. Also note that fTP and fFP cannot be 275 
measured experimentally, instead representing unseen parameters of spike train generation. By 276 
making substitutions based on a few simple relationships (Eq. 3-5), Eq. 2 can be solved using the 277 

quadratic formula, defining FDR as a function of the following experimentally observable 278 
variables: ISIv, τ, and ft – the total observed firing frequency of the cluster (Eq. 6; see Appendix 279 

for intermediate steps). The larger root is ignored, i.e. the term under the square root is subtracted 280 

and not added, because the neuron with the most spikes in the cluster is de facto considered the 281 

TP-contributing neuron.  282 

𝐼𝑆𝐼𝑣 =
𝑓𝑣

𝑓𝑡

(3) 283 

𝐹𝐷𝑅 =
𝑓FP

𝑓𝑡

(4) 284 

𝑓𝑡 = 𝑓𝑇𝑃 + 𝑓FP (5) 285 

𝐹𝐷𝑅 =
1

2
(1 − √1 −

2𝐼𝑆𝐼𝑣

𝜏𝑓𝑡
) (6) 286 

     Some spike sorting algorithms make use of a censor period, whereby spikes detected within a 287 
certain minimum distance, τc, of another spike are ignored. In such cases, the size of the violation 288 
window produced by each true positive spike is shortened by this censor period producing a new 289 

effective refractory period: τe = τ – τc. Implementation of τe produces (Eq. 7), which is equivalent 290 
to a rearranged form of the equation derived in (Hill et al., 2011). 291 

𝑓𝑣 = 𝑓FP(2𝜏𝑒𝑓𝑇𝑃) (7) 292 



     At the other extreme, consider a situation where the spikes comprising a cluster are generated 293 

by an infinite number of neurons. In reality, there can never be an infinite number of contaminant 294 

neurons, but this term is a convenient shorthand for describing the limiting case where there as 295 
many contaminant neurons as FPs. In this limiting case, any FP can produce an ISI violation with 296 
any other FP, necessitating the addition of a second term wherein FP spikes now produce double-297 
sided violation windows as well. This term is scaled by a factor of one half to prevent double 298 
counting of FPs producing ISI violations with one another. Implementation of this term produces 299 

(Eq. 8), which is equivalent to a rearranged form of the equation derived in (Llobet et al., 2022). 300 
This equation can be solved for FDR using substitutions and the quadratic formula as previously. 301 

𝑓𝑣 = 𝑓FP(2𝜏𝑒𝑓𝑇𝑃) +
1

2
𝑓FP(2𝜏𝑒𝑓FP) (8) 302 

     For an unspecified number of contaminant neurons N, an additional scaling factor of (N – 1)/N 303 

can be added to the FP-FP ISI violations term (Eq. 9). This factor can be interpreted as the fraction 304 
of all FPs available for any given contaminant neuron’s spikes to produce ISI violations with, e.g., 305 
1/2 for N = 2, 2/3 for N = 3. This equation, like previous iterations, can be rearranged to solve for 306 
FDR with an additional dependence added on N. 307 

𝑓𝑣 = 𝑓FP(2𝜏𝑒𝑓𝑇𝑃) +
1

2
(

𝑁 − 1

𝑁
) 𝑓FP(2𝜏𝑒𝑓FP) (9) 308 

     In the more biologically relevant case of inhomogeneous firing, or neural spiking frequencies 309 

that vary over time, fTP, fFP, ft, and fv can all be considered not as constants but as functions of time 310 

(i.e. vector quantities). While this spiking nonstationarity must be taken into account, a time-311 

varying estimate of FDR would be a needless level of granularity and also highly inaccurate given 312 

the stochastic nature of neuronal spiking and ISI violations, so of primary interest is a time-313 

averaged estimate of the relationship between violation frequency (𝑓𝑣̅) and underlying variables. 314 

In this case, the frequency of violations depends not on the product of the average values of fTP 315 

and fFP, but on the expected value of their element-wise product, 𝔼[𝑓𝑇𝑃𝑓FP]: 316 

𝑓𝑣̅ = 2𝜏𝑒𝔼[𝑓TP𝑓FP] +
1

2
(

𝑁 − 1

𝑁
) 2𝜏𝑒𝔼[𝑓FP𝑓FP] (10) 317 

     For two vectors representing firing frequency over time 𝑓TP and 𝑓FP of length n elements, this 318 
expected value can be calculated as follows: 319 

𝔼[𝑓TP𝑓FP] =
𝑓TP ∙ 𝑓FP

𝑛
(11) 320 

     Equation 10 can then be solved for |𝑓FP|, the vector magnitude of 𝑓FP, using the quadratic 321 

formula (Eq. 12).  Unit vector 𝑓FP can subsequently be scaled by |𝑓FP|, averaged, and finally 322 

divided by the mean total firing frequency of the cluster to obtain a time-averaged estimate of FDR 323 
(Eq. 13). 324 



|𝑓FP| =
𝑁

𝑁 + 1
(𝐷|𝑓𝑡| − √𝐷2|𝑓𝑡|

2
− (

𝑁 + 1

𝑁
) (

𝑓𝑡̅𝐼𝑆𝐼𝑣𝑛

𝜏𝑒
)) (12) 325 

𝐹𝐷𝑅 = (
1

𝑓𝑡̅

)
1

𝑛
∑(|𝑓FP|𝑓FP) =

𝑓𝐹̅𝑃

𝑓𝑡̅

(13) 326 

     Here, D corresponds to the dot product of the unit vectors representing total cluster spike 327 

frequency and cluster FP spike frequency, 𝐷 = 𝑓𝑡 ∙ 𝑓FP. This can be thought of more generally as 328 
representing the degree to which the time-varying total cluster spike frequency temporally overlaps 329 
with the time-varying FP spike frequency. This final equation depends upon a number of 330 
parameters specific to each cluster to obtain a single FDR estimate: (1) the effective refractory 331 

period τe, (2) the temporal distribution of activity in the cluster of interest (𝑓𝑡) and (3) of other 332 

clusters contributing FP spikes (𝑓FP), (4) the observed ISI violation rate ISIv, (5) the number of 333 
contaminant neurons N. For information on how one can estimate these parameters from 334 
experimental data, see Materials and Methods.  335 

Prediction of FDR in silico 336 

To both assess our model’s predictive power as well as more generally illustrate relationships 337 

between model variables, we next simulated neural spike trains while varying all relevant 338 
parameters across a range of biologically relevant values and then attempted to predict FDR from 339 

the observed ISIv. In this case, parameters like N and 𝑓FP that may normally have associated 340 



uncertainty are known exactly.  Simulating long periods of time (up to 28 hours of recording time) 341 

also enables highly accurate estimates of ISIv.  342 

Figure 3 - Relationship between single cluster FDR and observed ISIv. (A) Dependence of ISIv on total firing 343 
frequency given varying FDRs and contaminant neuron counts. Lines correspond to analytical predictions; dots 344 
correspond to simulation results. Plotted data apply to both primary and gray axes, the latter provide an inset for the 345 
former. (B) Dependence of ISIv on FDR given varying firing frequencies and contaminant neuron counts. Conventions 346 
as in (A). (C) Prediction of FDR from observed ISIv with temporally inhomogeneous firing frequencies using either 347 
the homogeneous model (Eq. 9) or the inhomogeneous model (Eq. 10). (D) Prediction of FDR from observed ISIv for 348 
100 total clusters simulated across a range of physiologically relevant underlying neuronal characteristics. Total firing 349 
frequency was varied between 4 and 20 Hz, N was varied between 1 and ∞, and 𝑓𝐹𝑃 was obtained by averaging across 350 
other clusters (see Materials and Methods for more details). Red line is the unity line, or perfect concurrence between 351 
predicted and true FDR; dashed gray line is the line of best fit. Root mean square error (RMSE) calculated with respect 352 
to the unity line. Simulated firing was either homogeneous (A, B) or inhomogeneous (C, D). The model used for FDR 353 
predictions was either homogeneous (A, B) or inhomogeneous (D), or both were used (C).          354 

     For both homogeneous and inhomogeneous firing we found that analytical FDR predictions 355 

closely approximated the true underlying FDRs (Fig. 3). For homogeneous firing specifically, 356 
observed ISIv was found to strongly depend on FDR and total cluster firing frequency, as expected 357 
(Fig. 3A). A linear dependence was observed of ISIv on firing frequency at fixed FDR and 358 

contaminant neuron counts, despite ISIv often being assumed to already have normalized for 359 
cluster firing frequency. Furthermore, FDR was found to scale quadratically with increasing ISIv 360 

at a fixed firing frequency and contaminant neuron count (Fig. 3B). ISIv values of  0.1-1% 361 
represent typical thresholds in literature for considering a cluster well isolated (Boucher et al., 362 
2023; Chandrasekaran et al., 2017; Jadhav et al., 2009; Roy & Wang, 2012; Wright et al., 2021; 363 

Zhao et al., 2023). Yet, our results indicate that FDRs associated with these ISIv values vary 364 
considerably with the firing frequency of the cluster in question (Fig. 3A-B). As an illustration, an 365 

ISIv of 0.5% reflected a desirable 5% FDR for a cluster firing at 20 Hz, or a much higher 50% 366 
FDR for one firing at 3 Hz. In general, contaminant neuron count was of limited consequence 367 

unless the cluster in question had both a high firing frequency and high FDR, making FP-FP 368 
violations frequent enough to meaningfully affect overall ISI violation incidence.  369 

     When the activity of clusters was inhomogeneous in time, errors in FDR predicted with the 370 

homogeneous model (Eq. 9) scaled linearly with the temporal covariance of TPs and FPs (Fig. 371 
3C). Positive covariance increased the ISI violation rate at the same FDR, resulting in 372 

overestimation of FDR, while negative covariance conversely decreased ISI violations, resulting 373 
in underestimation of FDR. When inhomogeneous firing was appropriately taken into account (Eq. 374 
10), predicted FDR closely approximated true FDR regardless of the covariances in neuronal 375 
firing. When the activity of clusters contributing TP spikes and FP spikes varied independently in 376 
time (inhomogeneous, but zero covariance) the probability of TP-FP violations was unchanged 377 

compared to homogeneous spiking. Therefore, under these conditions, the homogeneous and 378 
inhomogeneous predictions agree even if the generation of TPs and FPs individually may not 379 

necessarily be homogeneous.  380 

     We next attempted to predict FDR from ISIv (Eq. 12-13) in a population of clusters simulated 381 
inhomogeneously across a broad, randomized parameter space. Regardless of the precise 382 
combination of parameters for any given cluster, predicted FDR and true FDR agreed with low 383 

root mean square error (RMSE) (Fig. 3D; RMSE = 0.02). This prediction accuracy also 384 
generalized to simulations of non-Poisson point processes across a range of possible ISI 385 

coefficients of variation (Extended Data Fig. 3-1; RMSE = 0.01 – 0.02)  386 



Prediction of FDR under realistic conditions 387 

Our model performed well when ISIv and other parameters were known exactly, although 388 

benchmarking simulations indicated that predictions of FDR are sensitive to small changes in ISIv 389 
(Fig. 3), particularly at lower firing frequencies (Fig. 3B).  We next wanted to determine whether 390 
FDR could be accurately predicted from recordings of finite duration with noisy ISIv estimates and 391 

when exact values of N and 𝑓FP are unknown. Simulating spiking for finite durations, we found 392 
that observed ISIv values were normally distributed around their true values (Fig. 4A), with 393 
increasing recording time decreasing the variance of this distribution, as expected.   394 

     To assess the effect of noisy ISIv estimates on FDR predictions, we again simulated spiking 395 
while simultaneously varying all previously described parameters, but this time recording duration 396 
was restricted to 10 minutes (Fig. 4B-C). In this case, we found that FDR predictions for individual 397 

clusters were substantially less accurate (RMSE = 0.13), although they did not deviate 398 

systematically from true FDRs (Fig. 4B). Even with this highly restricted recording time, FDR 399 
population statistics could be estimated across a set of clusters with high fidelity so long as a 400 

sufficient number of clusters were sampled (Fig. 4C). For example, median FDR and mean FDR 401 

could be predicted with RMSEs of 0.03 and 0.02 respectively across 1,000 clusters. Predicted 402 
median FDRs were slightly overestimated at high true median FDR (>0.25).  403 

     We next sought to determine the duration of neural recordings necessary to obtain accurate 404 

estimates of ISIv, and thus, FDR, in single clusters. To accomplish this, we simulated clusters with 405 
various firing frequencies and FDRs, and determined the recording time sufficient to produce a 406 
coefficient of variation (CV) of the predicted FDR of 20% (Fig. 4D; e.g. 50% ± 10% or 5% ± 1%). 407 

Surprisingly, we found that clusters with firing frequencies of 1-2 Hz required observations across 408 



hundreds of minutes to produce accurate estimates of single cluster FDR, an infeasible recording 409 

time in many common experimental paradigms. For clusters with firing frequencies greater than 5 410 

Hz, FDRs between 5-30% could be estimated accurately using tens of minutes of spiking data.  411 

Figure 4 - Prediction of FDR for single clusters and populations. (A) Probability density functions of observed % 412 
ISIv for a prototypical 8 Hz, 15% FDR cluster recorded for varying time lengths. These parameters produce a true % 413 
ISIv of 0.5%, a value that has been used as a threshold for considering clusters well-isolated (Chandrasekaran et al., 414 
2017; Guo et al., 2014; Jadhav et al., 2009)  (B) Prediction of FDR in single clusters recorded for 10 minutes. All 415 
parameters varied simultaneously across a range of physiologically relevant underlying neuronal characteristics. Total 416 
firing frequency was varied between 1 and 10 Hz, N was varied between 1 and ∞, and 𝑓𝐹𝑃 was obtained by averaging 417 
across other clusters (see Materials and Methods for more details). Ceiling effect of predicted FDR at 0.75 due to 418 
theoretical limit of FDR when predicting with unknown N (see Materials and Methods). Red line is the unity line, or 419 
perfect concurrence between predicted and true FDR; dashed gray line is the line of best fit. Root mean square error 420 
(RMSE) calculated with respect to the unity line. (C) Prediction of median and mean FDR in 1,000 cluster populations. 421 
Cluster FDRs are Cauchy-distributed around the population mean. Total firing frequency was varied between 4 and 422 
16 Hz, otherwise parameters varied simultaneously and conventions as in (B). (D) Minimum recording time required 423 
for predictions of FDR in a single cluster to have a CV of 20%. 424 

     We used our model to estimate the FDRs of clusters contained within 12 publicly available 425 
datasets that included spike-sorted electrophysiology recordings (Table 2). For all datasets, the 426 

inhomogeneous model (Eq. 10) was used, with the exception of Stringer et al., 2019 and Juavinett 427 
et al., 2019. Animal behavior in these datasets was not trial-based, and so it was not straightforward 428 

to accurately estimate time-varying firing frequencies, necessitating the use of the homogeneous 429 
model (Eq. 9) (see Materials and Methods). Given limitations associated with single cluster FDR 430 
predictions (Fig. 4B), estimated median and mean FDR were reported across all clusters present 431 

in each dataset. An average median FDR of 12.9% ± 13.5% (s.d.) was observed along with an 432 
average mean FDR of 24.1% ± 9.2% (s.d.). No obvious correlations between cluster count, spike 433 

sorting methodology, or recording technology and dataset FDR were observed. With the exception 434 
of (Juavinett et al., 2019), median estimated FDRs were consistently lower than mean estimated 435 

FDRs.  This implies that cluster FDR distributions in recorded electrophysiology datasets tend to 436 
be right-skewed, composed of a large proportion of clusters possessing FDRs closer to 0 as well 437 

as a broadly distributed complement of more contaminated clusters, some of which potentially 438 
reaching FDRs well above 0.5.  439 

Table 2 - Median and mean FDR of publicly available spike-sorted electrophysiology datasets 440 

Authors Median FDR 
(± s.e.) 

Mean FDR 
(± s.e.) 

# Clusters τc 
(ms) 

Probe Sorter 

Xu et al.  

Nature (2022) 
3.1% (0.5) 14.3% (0.4) 3,046 0 

H2/H3 

Cam. Neuro. 
Kilosort 

Economo et al.  

Nature (2018) 
3.1% (0.6) 12.5% (0.5) 1,988 0.25 

H2 

Cam. Neuro. 
JRClust 

Steinmetz et al.  

Nature (2019)
*
 

4.0% (0.2) 25.1% (0.2) 33,997 0 Neuropixels 1.0 Kilosort 



Gao et al.  

Nature (2018) 
4.4% (0.7) 18.7% (0.6) 1,923 0.5 

H2/A4 

Cam. Neuro. 

NeuroNexus 

UltraMegaSort2000 

Li et al.  

Nature (2016) 
4.5% (0.8) 19.7% (0.7) 1,543 0.85 

A4 

NeuroNexus 
UltraMegaSort2000 

Inagaki et al.  

Cell (2022) 
6.2% (0.3) 17.7% (0.3) 7,968 0.25 

HH-2/Neuropixels 2.0 

Janelia/N.A. 
JRClust/Kilosort 

Guo et al.  

Nature (2017) 
6.5% (0.7) 18.8% (0.6) 1,936 0.85 

A4/A2 

NeuroNexus 

Janelia 

UltraMegaSort2000 

Finkelstein et al.  

Nat. Neuro. (2021)
*
 

10.5% (0.5) 20.1% (0.4) 3,385 0.25 
H2 

Cam. Neuro. 
JRClust 

Sylwestrak et al.  

Cell (2022) 
12.8% (0.4) 29.1% (0.3)   10,548 0.25 Neuropixels 2.0 Kilosort 

Stringer et al.  

Science (2019)
✝
 

21.9% (0.5) 33.1% (0.4) 6,446 0 Neuropixels 1.0 Kilosort 

Chinta & Pluta  

Nat. Comm. (2023) 
28.2% (1.3) 36.2% (1.0) 991 0 NeuroNexus Kilosort 

Juavinett et al.  

eLife (2019)
*✝

 
50.0% (0.8) 44.3% (0.7) 2,018 0  Neuropixels 1.0 Kilosort 

*
 Clusters labeled “multi” or “MUA” excluded   441 

✝
 Calculated using homogeneous model (Eq. 9) 442 

     Importantly, no attempts were made to curate clusters included in analysis from each dataset; 443 
all available sessions and clusters were assessed, with the exception of clusters labeled “multi” or 444 

“MUA” in datasets with cluster quality annotations. It’s possible that some datasets were pre-445 
curated, with clusters discarded according to some exclusion criteria prior to being uploaded, while 446 

others were shared un-curated. Depending on the nature of the scientific question being addressed, 447 
better cluster isolation is undoubtedly a larger priority for some datasets than others. For these 448 
reasons and due to uncertainty in assessing censor period in each dataset, we emphasize that these 449 

findings should serve generally as an overall survey of the range of expected contamination levels 450 
in datasets produced using widely used methods rather than as a commentary on individual datasets 451 
or spike sorting methodologies. 452 

DISCUSSION 453 

Inter-spike interval violations are the most commonly employed metric of accuracy in spike 454 
sorting, serving as an indication of the false discovery rate (FDR) – the rate at which spikes are 455 
erroneously assigned to the wrong cluster.  Here, we used Monte Carlo simulations to demonstrate 456 
that the inter-spike interval violation rate (ISIv) is related to FDR through a complex relationship 457 
that depends on many factors, including (1) the neuronal firing frequency, (2) the temporal 458 



correlation in activity between neurons contributing to a cluster, and (3) the number of neurons 459 

contributing spikes to a cluster - in that order of descending importance.  We derived an analytical 460 

model that can be used to predict FDR from ISIv that incorporates these factors and determine the 461 
accuracy with which FDR can be inferred during finite-length recordings at the level of single 462 
clusters and datasets. Finally, we used this model to assess the FDR of clusters contained in 463 
publicly available spike-sorted electrophysiology datasets to provide bounds on the accuracy that 464 
can be reasonably expected by experimenters.  Our study makes four central contributions. 465 

First, we derive an analytical model that can be used to estimate FDR from ISIv accurately across 466 
a broad parameter space. 467 

Second, we explicitly demonstrate that FDR is not linearly related to ISIv, but depends critically 468 
on the total cluster spike frequency. While this dependence can be inferred from previous work 469 
(Hill et al., 2011; Llobet et al., 2022), our results underscore the inappropriateness of using ISIv as 470 

an inclusion criterion for single clusters – which is still a common practice in many studies using 471 
spike sorted data. Across a common range of firing frequencies (~2 to 12 Hz), clusters with the 472 
same ISIv can be associated with both low (~5%) and very high (~50%) FDRs (Figs. 2A, 3A). 473 

Third, we find that estimates of FDR at the single cluster level are noisy due to the stochasticity of 474 

ISI violations as well as uncertainty in cluster-specific parameters (Fig. 4B) – but estimates at the 475 
population level are highly robust (Fig. 4C). As a point of reference, our results suggest that ISIv 476 
can be estimated accurately enough to predict single-cluster FDRs within 20% of their true values 477 

in one-hour recordings only when firing frequencies are greater than ~5 Hz. Even for clusters that 478 
meet these requirements, however, experimental uncertainty in parameters like FP-TP covariance 479 

and contaminant neuron counts make single cluster FDRs difficult to predict with high confidence. 480 
Alternatively, population-level statistics of FDR, obtained by averaging across all the clusters in a 481 

dataset, can be accurately predicted with recording durations as low as 10 minutes.  482 

Finally, we predict FDR on the basis of ISI violations in publicly available datasets for the first 483 
time. FDR population statistics covered a wide range (median: 3.1 – 50.0%; mean: 12.5 - 44.3%) 484 

and could be estimated with low standard error (s.e. median: 0.2-1.3%; s.e. mean: 0.2-1.0%). 485 
Datasets with low FDR were not associated with any obvious external features of data collection, 486 
spike sorting methodology, or recording technology and the variance in FDRs across datasets is 487 
likely a function of the variable importance of low FDR for the scientific goals of individual 488 

studies. 489 

Monte Carlo simulations for validating prediction of FDR 490 
Given the absence of high cluster count spike-sorted extracellular neural recordings with 491 
associated per-neuron ground truth patch clamp data, Monte Carlo simulation presents itself as an 492 

attractive tool for studying the theoretical mechanisms by which a given level of contamination in 493 
a sorted cluster translates into observed ISI violations. Neural spiking was simulated in this work 494 

as a collection of independent Poisson processes, a common assumption that has been validated 495 
across a number of organisms, brain regions, and behavioral contexts (Abbott & Dayan, 2005; 496 
Roxin et al., 2008; Shinomoto & Tsubo, 2001; Tolhurst et al., 1981; Werner & Mountcastle, 1965). 497 
Furthermore, the equations derived in this work were equally accurate when applied to simulations 498 
of non-Poisson point processes across a range of ISI coefficients of variation, implying that they 499 

likely generalize to any renewal process that produces independent and identically distributed ISIs 500 
with a physiological coefficient of variation (Extended Data Fig. 3-1). Beyond this foundation, 501 
only aspects of neuronal firing and spike sorting thought to potentially be relevant to ISI violation 502 



production were modeled, namely varying firing frequency amplitudes, temporally 503 

inhomogeneous firing, and differing contaminant neuron counts. If an additional aspect not 504 

accounted for in this description plays a significant role in determining the relationship between 505 
ISIv and FDR, then in silico validation may not reflect true congruence between analytical 506 
prediction and reality.   507 

Best practices for using ISI violations in spike sorting 508 

When attempting to determine the success of spike-sorting operations post-hoc, ISI violation 509 
fraction is frequently used as a per-cluster inclusion criterion. However, unless a cluster is recorded 510 
for a long enough time period given its firing frequency and true FDR, and difficult-to-estimate 511 
cluster-specific parameters are known, it can be difficult to predict FDR using ISI violations at the 512 
single cluster level with high confidence. Use of ISI violation fractions in this way can easily result 513 

in situations where highly contaminated clusters are erroneously kept while less contaminated 514 

clusters are discarded. We posit that the most straightforward and robust use case for ISIv is as a 515 

tool for predicting population-level statistics of FDR when coupled with a sound theoretical 516 
understanding of how cluster contamination translates into ISI violations (Eq. 10, 12, 13). 517 
Investigators can obtain an accurate estimate of median and mean cluster FDR across a session or 518 
dataset and then decide whether they are satisfied with these levels of cross-contamination, or if 519 

additional effort to improve cluster isolation is needed.   520 

     When curating spike-sorted data, it is critical that both algorithmic and manual sorters do not 521 
specifically remove individual spikes that generate ISI violations. Typically, only a small fraction 522 

of contaminant spikes produce ISI violations; targeted removal of spikes producing ISI violations 523 
can reduce ISIv substantially without meaningfully reducing the FDR, thus producing clusters that 524 
seem well isolated based on their ISIv, even when they are not.  In effect, this practice does not 525 

accomplish anything except eliminating the predictive power of ISIv for underlying FDR.  526 

Current state of spike sorting predicted using ISI violations 527 

This work estimates an average median FDR of ~13% and an average mean FDR of ~24% in 528 
publicly available electrophysiology datasets. The lower median FDR compared to mean FDR 529 
across virtually all datasets examined indicates right-skewed FDR distributions. This likely arises 530 

as a consequence of FDR having a theoretical floor of 0, with most datasets having many cluster 531 
FDRs close to this floor. It may also be a consequence of most spike sorting datasets being 532 
composed of two distinct types of clusters: relatively easier to sort clusters whose FDRs typically 533 

fall close to 0 and relatively harder to sort clusters whose FDRs are likely to fall more broadly over 534 
the theoretical range of FDR (0-1). 535 

     In the absence of any clear rationale for variance in FDR as predicted using ISIv among publicly 536 
available spike-sorted datasets (Table 2), degree and execution of manual curation presents itself 537 

as a promising explanatory candidate. While modern spike-sorting algorithms serve as an excellent 538 
basis for sorting vast quantities of electrophysiology data, many investigators still manually merge, 539 

split, and discard algorithmically obtained output clusters to further improve cluster isolation. 540 
Time, effort, and skill applied to manual curation are difficult to quantify and therefore unlikely to 541 
be reported in literature, although such differences are likely to have a material effect on the final 542 
quality of cluster isolation. The median and mean FDRs of the datasets examined here as well as 543 
the tendency toward right-skewed FDR distributions support the idea that all datasets are 544 
composed of both well and poorly isolated clusters.  545 

Necessity of high-quality spike sorting 546 



It has been posited that well-sorted clusters are not a necessity for many types of neural data 547 

analyses, particularly those concerned with studying population dynamics (Christie et al., 2014; 548 

Trautmann et al., 2019). In some applications, however, well-isolated clusters remain a critical 549 
precondition for answering relevant neuroscientific questions. Characterizing the responsivity of 550 
specific cell types that have been identified on the basis of genetic expression, projection target, 551 
waveform shape, or activity in vivo represents an expansive line of inquiry wherein high-quality 552 
cluster isolation is key (Deubner et al., 2019; Ding et al., 2022; Estebanez et al., 2017; E. K. Lee 553 

et al., 2021; Takatoh et al., 2022). Ultimately, the level of cluster isolation necessary for a given 554 
study is highly dependent upon the biological questions of interest. The work herein aims to clarify 555 
the relationship between ISI violations and cluster contamination, as well as provide a tool by 556 
which overall spike sorting quality can be quickly assessed with a direct, interpretable, and 557 
accurate metric, thereby streamlining assessments of sorting performance and increasing 558 

confidence that desired cluster isolation levels have been reached.  559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 



EXTENDED DATA 567 

Extended Data Figure 3-1 – Prediction of FDR in non-Poisson point processes. Prediction of FDR from observed 568 
ISIv when simulating neural spiking by drawing ISIs from gamma distributions (A), inverse Gaussian distributions 569 
(B), or log-normal distributions (C). 100 total clusters simulated in each panel across a range of physiologically 570 
relevant underlying neuronal characteristics. Total firing frequency was varied between 4 and 20 Hz, N was varied 571 
between 1 and 10, and 𝑓𝐹𝑃 was obtained by averaging across other clusters (see Materials and Methods for more 572 
details). Coefficient of variation (CV) of ISI distributions varied from 0.5 to 2. Red line is the unity line, or perfect 573 
concurrence between predicted and true FDR; dashed gray line is the line of best fit. Root mean square error (RMSE) 574 
calculated with respect to the unity line. Simulated firing was homogeneous and the model used for FDR predictions 575 
was also homogeneous (Eq. 9). A gamma distribution with CV = 1 is identical to an exponential distribution, producing 576 
a Poisson point process. Bottom raster plots show gamma distributed spiking of an example 10 Hz neuron at various 577 
CVs. Stacked points indicate spikes occurring in quick succession.  578 
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APPENDIX 584 

Derivation of Eq. 6 585 

𝑓𝑣 = 𝑓FP(2𝜏𝑓TP)  586 

𝐼𝑆𝐼𝑣𝑓𝑡 = 𝑓FP(2𝜏(𝑓𝑡 − 𝑓𝐹𝑃))  587 

𝑓𝐹𝑃
2 − 𝑓𝑡𝑓𝐹𝑃 +

𝐼𝑆𝐼𝑣𝑓𝑡

2𝜏
= 0  588 

𝐹𝐷𝑅 =
1

2
(1 − √1 −

2𝐼𝑆𝐼𝑣

𝜏𝑓𝑡
)  589 

Derivation of Eq. 12 590 

𝑓𝑣̅ = 2𝜏𝑒𝔼[𝑓TP𝑓FP] +
1

2
(

𝑁 − 1

𝑁
) 2𝜏𝑒𝔼[𝑓FP𝑓FP]  591 

𝑓𝑣̅ =
2𝜏𝑒

𝑛
(𝑓𝑡 ∙ 𝑓𝐹𝑃 − 𝑓𝐹𝑃 ∙ 𝑓𝐹𝑃) + (

𝑁 − 1

𝑁
) (

𝜏𝑒

𝑛
) |𝑓𝐹𝑃|

2
 592 

𝑓𝑣̅ =
2𝜏𝑒

𝑛
|𝑓𝑡||𝑓𝐹𝑃|(𝑓𝑡 ∙ 𝑓𝐹𝑃) − (

𝑁 + 1

𝑁
) (

𝜏𝑒

𝑛
) |𝑓𝐹𝑃|

2
 593 

0 = |𝑓𝐹𝑃|
2

− (
𝑁

𝑁 + 1
) (2|𝑓𝑡|𝐷)|𝑓𝐹𝑃| + (

𝑁

𝑁 + 1
) (

𝑛

𝜏𝑒
) 𝑓𝑣̅ 594 

|𝑓FP| =
𝑁

𝑁+1
(𝐷|𝑓𝑡| − √𝐷2|𝑓𝑡|

2
− (

𝑁+1

𝑁
) (

𝑓̅𝑡𝐼𝑆𝐼𝑣𝑛

𝜏𝑒
))   595 
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