
RESEARCH PAPER

Deep learning in vivo catheter tip locations
for photoacoustic-guided cardiac interventions

Mardava R. Gubbi ,a,* Fabrizio Assis,b Jonathan Chrispin,b

and Muyinatu A. Lediju Bell a,c,d

aJohns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland,

United States
bJohns Hopkins Medical Institutions, Division of Cardiology, Baltimore, Maryland, United States

cJohns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
dJohns Hopkins University, Department of Computer Science, Baltimore, Maryland, United States

ABSTRACT. Significance: Interventional cardiac procedures often require ionizing radiation

to guide cardiac catheters to the heart. To reduce the associated risks of ionizing

radiation, photoacoustic imaging can potentially be combined with robotic visual ser-

voing, with initial demonstrations requiring segmentation of catheter tips. However,

typical segmentation algorithms applied to conventional image formation methods

are susceptible to problematic reflection artifacts, which compromise the required

detectability and localization of the catheter tip.

Aim: We describe a convolutional neural network and the associated customiza-

tions required to successfully detect and localize in vivo photoacoustic signals from

a catheter tip received by a phased array transducer, which is a common transducer

for transthoracic cardiac imaging applications.

Approach: We trained a network with simulated photoacoustic channel data to

identify point sources, which appropriately model photoacoustic signals from the tip

of an optical fiber inserted in a cardiac catheter. The network was validated with an

independent simulated dataset, then tested on data from the tips of cardiac catheters

housing optical fibers and inserted into ex vivo and in vivo swine hearts.

Results: When validated with simulated data, the network achieved an F1 score of

98.3% and Euclidean errors (mean ± one standard deviation) of 1.02� 0.84 mm for

target depths of 20 to 100 mm. When tested on ex vivo and in vivo data, the network

achieved F1 scores as large as 100.0%. In addition, for target depths of 40 to 90 mm

in the ex vivo and in vivo data, up to 86.7% of axial and 100.0% of lateral position

errors were lower than the axial and lateral resolution, respectively, of the phased

array transducer.

Conclusions: These results demonstrate the promise of the proposed method

to identify photoacoustic sources in future interventional cardiology and cardiac

electrophysiology applications.
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1 Introduction

Cardiac interventional procedures are often performed to diagnose and treat cardiac arrhythmias

(e.g., ∼18,000 to 44,500 cardiac catheter ablation procedures have been performed annually in

the United States1). These procedures generally require catheter delivery from an insertion point

in the thigh to the heart via the femoral vein. One of the most serious and potentially life-

threatening complications of catheter ablations is the risk of cardiac perforation,1 which can

be minimized with state-of-the-art catheter tip visualization methods.

A combination of fluoroscopy2,3 and intracardiac ultrasound4 is currently used to provide the

real-time localization information of the catheter tip within the heart needed to mitigate com-

plications and to guide the catheter tip toward targets of interest. However, fluoroscopy exposes

both patients and operators to ionizing radiation,5,6 resulting in biological effects7 such as radio-

dermatitis,8,9 increased cancer risks,10–13 and genetic defects,11,13 from catheter ablation proce-

dures requiring fluoroscopy.2 Additional challenges include the lack of depth information in

monoplane fluoroscopic images, resulting in catheter tip depth localization errors of up to

10 mm,14 and the poor fluoroscopic contrast of anatomical features limiting catheter tip locali-

zation relative to surrounding anatomy.3 While intracardiac ultrasound imaging generally pro-

vides suitable views of a cardiac catheter, it does not provide depth information and it requires

additional fluoroscopy, electromagnetic tracking, and skilled operators to provide a more global

reference frame.15 Transthoracic ultrasound imaging is a potential option to provide depth infor-

mation, but it is challenged by acoustic clutter,16 catheter tips having similar echogenicity to the

myocardium,17 and shadowing from the ribs.18

Photoacoustic imaging coupled with robotic visual servoing was previously introduced as

a method to guide biopsy needles in phantoms and ex vivo tissue samples19,20 and catheter tips

in vivo.17,21 Photoacoustic imaging utilizes pulsed laser light to excite optical absorbers in a

region of interest. These absorbers convert the absorbed optical energy to acoustic energy

(i.e., mechanical pressure waves), which can be sensed by a standard ultrasound transducer, then

reconstructed to create a photoacoustic image.22–25 When coupled with visual servoing, a robot

arm holds the ultrasound transducer, and a dedicated algorithm segments the tip of the optical

fiber in the beamformed image.19,20,26 The robot then tracks the fiber tip and guides the transducer

to a desired location that centers the photoacoustic signal in the image. Therefore, photoacoustic

visual servoing coupled with ultrasound imaging has the potential to overcome the limitations of

existing catheter guidance techniques (e.g., fluoroscopy) by not requiring exposure to ionizing

radiation, by providing depth information relative to a body surface, and by offering the global

reference frame of the robot arm.17,21

Despite the many benefits of photoacoustic visual servoing coupled with ultrasound imag-

ing, reflection artifacts resulting from highly echoic structures cause bright reflections in the

beamformed photoacoustic image, which can be challenging for the segmentation step.19,20,27

To overcome this challenge, deep learning methods were previously leveraged to identify needle

tips and catheter tips directly from raw photoacoustic channel data rather than beamformed

images.28–32 In particular, a convolutional neural network was trained with simulated data to

detect photoacoustic point sources,28–32 including photoacoustic signals originating from an opti-

cal fiber tip housed in either a needle surrounded by water,29–31 a needle surrounded by ex vivo

tissue,32 or a cardiac catheter located in an in vivo femoral vein.32 This previous work also dem-

onstrates the importance of correctly modeling the ultrasound receiver when implementing deep

learning to detect photoacoustic sources and remove reflection artifacts.30 These major contri-

butions were initially demonstrated with a linear array ultrasound transducer.28–32 Subsequent

work from our group demonstrated the applicability of these techniques to detect needle tips

and catheter tips in simulated and in vivo intravasular photoacoustic channel data acquired with

phased array transducers.33,34 In cardiac imaging applications, phased array transducers are desir-

able due to their lower acoustic frequencies (which enable increased imaging depths), their

smaller physical footprint when imaging between the ribs, and their larger image field of view

(FOV) relative to their footprint.

In addition to developing a deep learning catheter tip detection method with a phased array

transducer, we developed a deep learning-based photoacoustic visual servoing system using a

phased array transducer.35 This system identified and tracked the tip of a hollow-core needle in

a plastisol phantom and ex vivo chicken breast tissue, based on information provided in raw
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channel data, thus completely bypassing the image formation and segmentation steps. While this

deep learning-based photoacoustic visual servoing system reduced needle tip tracking errors rel-

ative to a segmentation-based system,35 the required deep learning-based source detections were

susceptible to misclassification errors when translated from the simulation to experimental

domain, resulting in an increased reliance on temporal checks to verify the validity of the

detected source position. These temporal validity checks were implemented across multiple con-

secutive frames, which reduces the maximum possible movement speed for successful in vivo

tracking of the needle tip.

In this paper, we present our achievements when translating our deep learning approach

from simulated data, plastisol phantom data, and ex vivo chicken breast tissue data to ex vivo

and in vivo cardiac data, including new technical strategies when using the desired phased array

transducer. We first train a network with simulated channel data frames, which are formatted to

accommodate the FOV of a phased array transducer, including multiple noise levels, signal

amplitudes, and sound speeds to ensure robustness to channel noise, target amplitude, and sound

speed differences. We additionally introduce a new approach to improve network performance on

ex vivo and in vivo data by matching the amplitude histograms of the experimentally acquired and

simulated channel data frames. We validate our network on previously unseen simulated data and

test our network on ex vivo and in vivo cardiac data. In addition, we characterize the performance

of the trained network on the ex vivo and in vivo cardiac data before and after the histogram

matching transformation to demonstrate the advantages of the transformation in the context

of point source localization. While this successful source localization performance is sufficient

for our deep learning-based photoacoustic visual servoing system, we also render network-based

images of the detected simulated, ex vivo, and in vivo photoacoustic sources to qualitatively

demonstrate the ability of our system to improve photoacoustic source visibility in cardiac

applications.

The remainder of this paper is organized as follows. Section 2 describes the processes imple-

mented for our simulation methods, experimental data acquisition, network training and testing,

performance assessment, and visualization approaches. Section 3 details the results of the pre-

sented methods. Section 4 discusses the implications and future potential of our work, and Sec. 5

concludes the paper with a summary of our major findings.

2 Methods and Materials

2.1 Datasets

2.1.1 Simulated datasets for training and validation

Channel data received by a phased array transducer were simulated in k-Wave.36 Each simulation

consisted of a point source in a two-dimensional (2D) simulation grid consisting of a homo-

geneous medium. The top row of each simulation grid was populated with sensing elements

to record the local pressure distribution at each time instant of the simulation. The initial pressure

distribution corresponding to the point source was smoothed using a Blackman filter.37 The sens-

ing elements were designed to simulate an Alpinion (Seoul, South Korea) SP1-5 phased array

ultrasound transducer with an element width of 220 μm, a kerf of 80 μm, an aperture width of

19.2 mm, and a sampling frequency of 40 MHz. Each simulated channel data frame contained

3117 total samples in the axial dimension (i.e., 12 cm imaging depth with sound speed

1540 m∕s), with additional simulation parameters describing the received channel data listed

in Table 1.

A total of 20,000 raw photoacoustic channel data frames were generated. Each frame con-

tained a waveform corresponding to a point source of diameter 0.1 mm. In addition, a random

subset of the frames contained an additional waveform corresponding to a reflection artifact.

These reflection artifacts were generated as described by Allman et al.31 (i.e., a true photoacoustic

source signal was shifted deeper into the image by the Euclidean distance between the source and

reflector locations).

Unlike implementations for a linear array transducer,28–32 the FOVof a phased array trans-

ducer in a scan-converted image extends laterally beyond the width of the raw channel data

frame.33–35 To implement this additional constraint, the channel data frames were zero-padded
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to match the dimensions of a scan-converted phased array image, as demonstrated in Fig. 1. To

improve the performance of the network38,39 and reduce the overall training and inference

times,40 these zero-padded channel data frames were then resized from their original dimensions

of 1132 × 3117 pixels to 256 × 256 pixels. This resizing increased the width and height of each

pixel corresponding to the lateral and axial image dimensions, respectively (e.g., from 150.0 and

38.5 μm, respectively, to 662.9 and 468.8 μm, respectively, when the sound speed was

1540 m∕s). For brevity, these zero-padded and resized channel data frames will be referred

to as processed channel data frames.

For each processed channel data frame, bounding boxes of dimensions 32 × 16 pixels were

generated, centered on the positions of sources and artifacts within the frame. These bounding

boxes were allowed to exist in the zero-padded region, as shown in Fig. 1. The coordinates and

class (i.e., source or artifact) of each bounding box are collectively referred to as position anno-

tations. An annotated image in the simulated dataset consisted of the processed channel data

frame combined with the corresponding position annotations. The totality of annotated images

were randomly split into training (80%) and validation (20%) datasets.

2.1.2 Ex vivo and in vivo datasets for testing

To acquire ex vivo experimental data, a swine heart was excised and suspended in a waterbath

inside an acrylic box with an acoustic window on one side, as shown in Fig. 2(a). A 1 mm core-

diameter optical fiber was inserted through the inferior vena cava into the right atrium and right

ventricle. The other end of the optical fiber was coupled to a Phocus Mobile laser (Opotek,

Carlsbad, California) operating at a 750 nm wavelength with a pulse rate of 10 Hz. The fiber

tip was imaged by an Alpinion (Seoul, South Korea) E-Cube 12R scanner connected to an SP1-5

Fig. 1 Example channel data image surrounded by zero-padded regions to match the dimensions

of a beamformed, scan-converted image, including one source located directly under the trans-

ducer aperture and one reflection artifact with a wavefront peak located outside the transducer

aperture. The locations of the peaks of the source and artifact wavefronts are denoted by the blue

and orange bounding boxes, respectively.

Table 1 Range and increment size of simulated point targets and surrounding media.

Parameters Min Max Increment

Axial position (mm) 20 100 0.25

Lateral position (mm) −57 57 0.25

Channel SNR (dB) −5 2 Random

Object intensity (multiplier) 0.75 1.1 Random

Speed of sound (m/s) 1440 1640 6
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phased array ultrasound transducer. The ultrasound transducer was fixed to the acoustic

window using a clamp. This photoacoustic imaging system was used to acquire 233 channel

data frames at an imaging depth of 12 cm with varying transducer positions and optical fiber

insertion depths.

To acquire in vivo data using the same photoacoustic imaging system described above, two

swine were catheterized with approval from the Johns Hopkins University Animal Care and Use

Committee. Each swine was fully anesthetized and positioned supine on an operating table. A

1 mm core-diameter optical fiber was inserted into a 5F inner-diameter cardiac catheter (St. Jude

Medical, St. Paul, Minnesota) forming a fiber-catheter pair. The ultrasound transducer was held

in place by a Sawyer Robot (Rethink Robotics, Boston, Massachusetts), as shown in Fig. 2(b),

which overviews the entire in vivo setup. After the fiber-catheter pair was inserted in a femoral

vein sheath and advanced toward the heart [Fig. 2(c)], the laser was pulsed at a wavelength of

750 nm and raw channel data frames were acquired with the catheter tip located in the heart while

imaging at a depth of 12 cm. A total of 30 and 40 raw channel data frames were acquired during

the first and second swine procedures, respectively, with average laser energies of 2.67 mJ and

608.5 μJ, respectively (corresponding to fluence values at the fiber tip of 340 and 19.37 mJ∕cm2,

respectively). Data from the first and second in vivo experiments described herein were initially

published by Graham et al.17 and Gonzalez et al.,41 respectively. As noted by Graham et al.,17 the

laser fluence of 340 mJ∕cm2 during the first in vivo experiment exceeded the 25.6 mJ∕cm2

safety limit defined by the American National Standards Institute for human skin at a wavelength

of 750 nm.42 However, no safety limits are currently defined for lasers in direct contact with

cardiac tissue, and a histopathological analysis of the excised swine heart revealed no pathologic

changes.17

For each channel data frame acquired during the ex vivo and in vivo experiments, a photo-

acoustic image was reconstructed using delay-and-sum (DAS) beamforming, then scan con-

verted to manually identify the position of the fiber tip in the image and generate the

corresponding position annotations for the image. Each raw channel data frame was also

zero-padded and resized to form a processed channel data frame, which was then combined with

the corresponding position annotations to form an annotated image. Hereafter, the set of ex vivo

annotated images will be referred to as the “Ex Vivo Heart” dataset, and the sets of in vivo anno-

tated images from the first and second swine catheterization procedures will be referred to as the

“In Vivo Heart 1” and “In Vivo Heart 2” datasets, respectively.

2.2 Network Architecture and Training Procedure

A Faster R-CNN network43 with a Resnet-10144 feature extractor was implemented to determine

point source locations. This network was initialized with pre-trained weights from the ImageNet

Fig. 2 Experimental setups to acquire ex vivo and in vivo cardiac data. (a) The ex vivo setup con-

tained a swine heart suspended in a waterbath with an optical fiber inserted into the inferior vena

cava. The ultrasound transducer was placed in contact with the acoustic window of the box to

perform imaging. The in vivo setup contained an ultrasound transducer attached to the end effector

of a Sawyer robot and placed in contact with a swine. The ultrasound transducer was used to

(b) track the trajectory of the tip of a catheter-fiber pair advanced via the femoral vein to the heart

and (c) acquire channel data from the tip of the catheter–fiber pair located in the right atrium of the

heart, with the transducer placed to obtain a subcostal view.
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dataset,45 then fine-tuned for 20 epochs with a batch size of 4 and a base learning rate of 1 × 10−3

on two NVidia (Santa Clara, California) Titan X (Pascal) GPUs, using data parallelization and the

gradient aggregation method described by Goyal et al.46 This fine-tuning process was performed

using the training dataset described in Sec. 2.1.1 and the Detectron2 software package.47 The

network was trained to detect each acoustic waveform present in an input channel data frame,

classify the waveform as corresponding to a point source or reflection artifact, and locate the peak

of the detected waveform. This peak was not visible in the photoacoustic channel data when the

lateral location of the source or artifact resided in the zero-padded region, as shown in Fig. 1. In

this case, the network was required to both classify the waveform and extrapolate the position of

its peak using the visible portion of the waveform present in the input channel data frame. The

network outputs for each input image were formatted as a list of object detections consisting of

the identified class (i.e., source or artifact), the object location (i.e., bounding box pixel coor-

dinates), and a confidence score between 0 and 1.

When implemented on the two NVidia GPUs noted above, the network training process took

∼4 h to complete. After training, the network performed inference on input images at an average

rate of 0.074 s per image, translating to an achievable frame rate of 13.5 Hz for real-time photo-

acoustic source localization.

2.3 Validation and Testing

2.3.1 Filtering based on confidence scores and evaluation of network
detections

To evaluate the performance of our network on the validation dataset described in Sec. 2.1.1, we

filtered the network detections based on their confidence scores using an optimal confidence

score threshold described below, then defined the retained detections as true positives, false pos-

itives, or misclassifications using their bounding box coordinates and classes described in

Sec. 2.2. A network detection was defined as a true positive based on three criteria: (1) the con-

fidence score of the detection was above the optimal threshold, (2) a ground truth of the same

class was present in the associated annotations, and (3) the intersect-over-union between the

bounding boxes of the detection and the ground truth was greater than 0.5. A network detection

was defined as a false positive if it satisfied criterion 1 above, but either failed criterion 2, or

satisfied criterion 2 and failed criterion 3. A network detection was further categorized as a mis-

classification if it met the definition of false positives above and, in addition, there was a ground

truth of the opposite class (i.e., source ground truths for artifact detections and vice versa) sat-

isfying criterion 3 above. Detections with confidence scores greater than the optimal threshold

corresponding to their class were retained, and the remaining detections were discarded. These

retained detections and their definitions (i.e., true positive, false positive, or misclassification)

were then used to compute the recall, precision, and F1 scores,48 as well as the misclassification

and missed detection rates31 for the source and artifact classes in the validation dataset.

To compute the optimal confidence score thresholds, we utilized the technique presented by

Allman et al.31 using the corresponding receiver operating characteristics (ROC) curves for each

class (i.e., source or artifact). These ROC curves represented the quality of network detections

and were characterized using the area under the curve (AUC) reported separately for each

class.49,50 To construct the ROC curve for each class, we varied the confidence score threshold

from 0 to 1, filtered the network detections in the validation dataset based on the confidence

scores, then computed the true positive rate and false positive rate using the definitions of true

positives and false positives above. Once the ROC curve was constructed, a line was defined with

a slope equal to the number of false positives divided by the number of true positives for that

class, assuming a confidence score threshold of zero. This line was then shifted from the ideal

operating point (i.e., the point with a true positive rate of unity and a false positive rate of zero)

down and to the right until it intersected with the ROC curve. The first intersection of this line

with the ROC curve was determined to correspond to the optimal confidence score threshold for

the given class (i.e., 0.526 and 0.719 for the source and artifact classes, respectively).

To evaluate the performance of the network on the test datasets described in Sec. 2.1.2, the

network detections for each test dataset were filtered using the optimal confidence score thresh-

olds computed for the validation dataset (i.e., 0.526 and 0.719 for the source and artifact classes,
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respectively), then categorized as true positives, false positives, or misclassifications based on the

definitions above. Recall, precision, F1 score, misclassification rate, and missed detection rate

(i.e., the same performance metrics reported for the validation dataset) were computed for the

source class using the retained detections for each test dataset.

2.3.2 Histogram matching to improve network performance

As described in Sec. 2.1.2, our experimental datasets were acquired with different laser energies

and additional processing was applied to match these datasets to the dimensions and structure of

the annotated images in the simulated datasets for testing purposes. These factors contributed to

dissimilarities between our simulated and acquired datasets as well as information loss in the ex

vivo and in vivo datasets, which adversely affected target detectability in the processed channel

data frames. This reduction in target detectability is anticipated to limit the ability of our network

to detect and localize targets in the ex vivo and in vivo processed channel data frames.

To improve the performance of the simulation-trained network on ex vivo and in vivo data,

histogram matching was performed, using the simulated dataset as a reference. To implement

histogram matching, amplitude histograms were created for each processed channel data frame

described in Sec. 2.1, using the inclusive range 0 to 255 with 64 bins. Each processed channel data

frame in the ex vivo and in vivo datasets (described in Sec. 2.1.2) was then transformed to match

the reference histogram of a randomly selected processed channel data frame in the simulated

dataset (described in Sec. 2.1.1), which we refer to as histogram-matched channel data frames.

2.3.3 Quantifying effects of histogram matching on ex vivo and in vivo images

To quantify the impact of histogram matching on improving the similarity between ex vivo and in

vivo processed images and the reference simulated processed images, we utilized the total varia-

tion distance (TVD, described as intersection distance by Cha51), the Jeffrey divergence52 (JD),

and the χ2 statistic.53 Each processed channel data frame in the ex vivo and in vivo datasets was

normalized, amplitude histograms were constructed, and the TVD, JD, and χ
2 statistics were

computed using the following expressions:

EQ-TARGET;temp:intralink-;e001;117;373TVD ¼ 1 −
X

255

k¼0

minfheðxkÞ; hsðxkÞg; (1)

EQ-TARGET;temp:intralink-;e002;117;319JD ¼
X

255

k¼0

�

heðxkÞ log

�

heðxkÞ

heðxkÞ þ hsðxkÞ

�

þ hsðxkÞ log

�

hsðxkÞ

heðxkÞ þ hsðxkÞ

��

; (2)

EQ-TARGET;temp:intralink-;e003;117;282χ
2 ¼

X

255

k¼0

�

ðheðxkÞ − hsðxkÞÞ
2

heðxkÞ þ hsðxkÞ

�

; (3)

where he and hs are the amplitude histograms constructed from pixels in corresponding experi-

mental and reference (i.e., simulated) processed channel data frames, respectively (using the inclu-

sive range 0 to 255 with 256 bins), and xk is the mean value of k’th bin. These metrics were

additionally implemented with histogram-matched channel data frames replacing processed chan-

nel data frames to achieve the desired comparisons of pre- and post-histogram-matching results.

To quantify the effect of histogram matching on the detectability of photoacoustic point

sources in the ex vivo and in vivo datasets, we utilized the generalized contrast-to-noise ratio

(gCNR), a metric initially designed to measure target detectability in ultrasound images,54 with

previously demonstrated applications to photoacoustic imaging.55,56 Although gCNR was pre-

viously measured after implementing beamforming in these cases, the same principle of sepa-

rability between target and background regions is applicable to the recorded waveforms in

photoacoustic channel data frames originating from point sources. Therefore, gCNR is uniquely

utilized herein to provide information about the separability of waveform signals from their sur-

rounding background in the channel data. To calculate this channel gCNR, target and background

regions of interest (ROIs) of size 18.2 mm (width) × 5 mm (height) were first defined in the

zero-padded channel data frames in the ex vivo and in vivo datasets, then copied to the same
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locations in corresponding processed and histogram-matched channel data frames originating

from the same raw data. Each target ROI was laterally centered in the corresponding image and

axially shifted 1 mm distal to the ground truth source position to surround the waveform cor-

responding to the point source. Each background ROI was located 10 mm proximal to the cor-

responding target ROI to ensure complete separation between the two ROIs. After normalizing

each image to the brightest pixel and extracting pixel amplitudes from the target and background

ROIs, power histograms hi and ho were constructed for the target and background regions,

respectively, using the inclusive range 0 to 1 with 256 bins, and channel gCNR was measured

from these histograms as follows:

EQ-TARGET;temp:intralink-;e004;114;628gCNRch ¼ 1 −
X

255

k¼0

minfhiðxkÞ; hoðxkÞg; (4)

where hi and ho were derived from zero-padded, processed, or histogram-matched channel data

frames in the ex vivo and in vivo datasets.

To determine the impact of histogram matching on the final outputs of interest, the

histogram-matched channel data frames from the ex vivo and in vivo datasets were input to the

trained network, and the detections output by the network were filtered and categorized as true

positives, false positives, or misclassifications using the procedure for test datasets described in

Sec. 2.3.1. The associated performance metrics (i.e., recall, precision, F1 score, misclassification

rate, and missed detection rate) were computed for the source class. These metrics were then

compared to the metrics obtained with processed channel data frames prior to histogrammatching.

2.4 Source Localization Performance Metrics

To establish a baseline for the source localization performance achievable by our network, we

measured the lateral and axial resolution of our photoacoustic imaging system with a 450 μm-

diameter copper wire suspended in a water bath and illuminated by a 5 mm-diameter optical fiber

bundle. Note that the diameter of this wire is considered to be consistent with that of a point

target, because it is smaller than the theoretical resolution of our imaging system (i.e., the wire is

a line target).17,57,58 The opposite end of the fiber bundle was interfaced to the Phocus Mobile

laser described in Sec. 2.1.2. The illuminated portion of the wire was imaged using the Alpinion

E-Cube 12R scanner and SP1-5 transducer mentioned in Sec. 2.1.2. The transducer was affixed

to a UR5e (Universal Robots, Denmark) robotic arm. Photoacoustic channel data were acquired

with the wire laterally centered underneath the transducer (i.e., lateral position of 0 mm) to match

the lateral positions of the majority of targets in the ex vivo and in vivo datasets. The axial position

of the wire was varied by moving the robot arm in 10 mm increments, resulting in axial target

depths spanning 20 to 100 mm, which is similar to the ranges of axial positions occurring in the

simulated (i.e., 20 to 100 mm), ex vivo (i.e., 43.17 to 63.23 mm), and in vivo datasets (i.e., 63.03

to 91.62 mm). At each fixed position of the wire, 50 frames of raw channel data were acquired.

Photoacoustic images were reconstructed from these channel data frames using DAS beamform-

ing, and the resolution was measured as the full width at half maximum57,58 of the target in the

lateral and axial dimensions of each beamformed image.

To quantify the source localization accuracy of our network, we implemented two distinct

processes for the simulated and ex vivo or in vivo datasets. For the simulated training and val-

idation datasets, the absolute lateral, absolute axial, and Euclidean distance errors between the

ground truth and detected sources were measured as functions of the ground truth source positions

in the annotated image. The mean ± one standard deviation of the position errors was reported

for each simulated dataset. In addition, these errors were reported separately for ground truth

positions directly underneath and outside the transducer aperture to demonstrate the difference

in localization performance when the wavefront peak was either visible or not visible in the chan-

nel data region. Finally, the absolute lateral and axial position errors were reported separately for

ground truth axial positions in the range 15 to 105 mm, separated into nine distinct groups (for

direct comparison with resolution measurements, which were obtained in 10 mm increments, as

described above). To form these nine groups, position errors were sorted based on the associated

ground truth positions, with ground truth axial positions greater than an odd multiple of 5 mm and

less than or equal to the next odd multiple of 5 mm included in the same group (e.g., group 1 is
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defined by errors associated with: 15 mm < ground truth axial positions ≤ 25 mm). Similarly, the

absolute lateral and axial position errors were reported separately for ground truth lateral positions,

incremented by 10 mm for comparison with the axial position groupings.

For each ex vivo and in vivo test dataset, we reported lateral and axial position errors between

the network detections and manually annotated ground truth source positions. These results are

not further split into lateral regions as implemented for the simulated data because a majority of

these data were acquired with the catheter tip directly underneath the transducer in the lateral

dimension. However, the lateral and axial position errors were reported separately for ground

truth axial positions in the range 35 to 95 mm, separated into six distinct groups incremented

by 10 mm, for direct comparison with the resolution measurements, as described above.

2.5 Visualizing Sources Using Network Position Estimates

To demonstrate the potential for visual display of the phased array network outputs, we employed

the artifact removal method proposed by Allman et al.31 Examples of estimated source positions

from each dataset were each represented within a grid matching the FOVof a DAS-beamformed

and scan-converted image. Each source was plotted as a circle centered on the estimated source

position with radius of 2σ, where σ is the standard deviation of the Euclidean distance errors in

the simulated validation dataset. These network-based images were visually compared with

images reconstructed using traditional DAS beamforming and scan conversion to demonstrate

the improved source visibility and the absence of reflection artifacts in the network-based images.

The generation of human-interpretable images with improved source visibility is one alternative

application of the outputs of a deep learning-based point source localization system (our previous

work demonstrated providing these outputs directly to a robotic control system to track a needle

tip using photoacoustic visual servoing35).

3 Results

3.1 Simulated Data Performance

Figure 3 shows ROC curves for simulated sources and artifacts in the validation dataset. These

ROC curves reveal that the quality of detections was similar for both sources and artifacts, with

AUC values of 0.953 and 0.972, respectively. Additional network performance metrics (i.e.,

recall, precision, F1 scores, misclassification rates, and missed detection rates) are reported

in Table 2. While the network was better at detecting sources compared to reflection artifacts

with recall values of 98.5% and 85.1% for sources and artifacts, respectively, the precision values

were similarly high (i.e., 98.1% and 96.9%, respectively), resulting in F1 scores of 98.3% and

90.6% for sources and artifacts, respectively. The network was less susceptible to misclassifi-

cation and missed detection errors for sources (i.e., 0.2% and 1.3%, respectively) compared to

artifacts (i.e., 3.0% and 11.8%, respectively).

Figure 4 shows network performance as a function of ground truth source positions for the

validation dataset. In Fig. 4(a), a map of correctly detected, misclassified, and missed sources are

Fig. 3 Receiver operating characteristic curves for the simulated source and artifact classes in the

validation dataset.
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overlaid on a grid containing the FOVof the phased array transducer in gray. There is no apparent

relationship between the axial position of the source and the detection, misclassification, and

missed detection rates of the network. However, the source detection rate [shown in blue in

Fig. 4(a)] appears to decrease with an increase in the lateral displacement of the source from

the center of the transducer. Figure 4(a) also depicts an increase in missed sources that are lat-

erally displaced by �35 mm from the center of the transducer, as indicated by the increased

presence of yellow circles near the edges of the transducer FOV. In addition, seven of the

4000 simulated sources in the validation dataset were misclassified as artifacts.

Confirming the qualitative observations described above, Fig. 4(b) shows a histogram of the

source detection rate as a function of the lateral displacement of simulated sources from the

center of the transducer. The network detected 99.7% of sources within�5 mm of the transducer

center. This detection rate was retained for sources with lateral displacements of up to �30 mm

from the transducer center. A decrease in source detection rate to 93.4% was observed as the

lateral displacement increased to �50 mm from the transducer center. Therefore, photoacoustic

point source detection effectiveness is greatest near the center of the transducer, which is of most

importance in photoacoustic visual servoing applications with deep learning.35

Figure 5 shows box plots of the lateral and axial position errors of correctly identified

sources as functions of lateral and axial ground truth positions relative to the transducer center

for the simulated validation and training sets. The interquartile ranges and peak outlier magni-

tudes of both the lateral [Fig. 5(a)] and axial position errors [Fig. 5(c)] were lowest near the lateral

center of the transducer, further highlighting the dependence on lateral positions noted above. In

Fig. 5(b), an increase in interquartile range and peak outlier magnitudes was observed in the

lateral position error as the depth increased from 20 to 100 mm. However, in Fig. 5(d), the axial

position errors did not significantly change with variation in depth. In addition, position errors

Fig. 4 (a) Map of detected, misclassified, and missed sources in the simulated validation dataset

overlaid on the scan-converted image FOV. (b) Source detection rates as a function of ground truth

lateral positions relative to the transducer.

Table 2 Network performance on simulated sources and artifacts

in the validation dataset.

Performance metric Sources Artifacts

Recall (%) 98.5 85.1

Precision (%) 98.1 96.9

F1 score (%) 98.3 90.6

Misclassification rate (%) 0.2 3.0

Missed detection rate (%) 1.3 11.8
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were generally larger in the lateral dimension [Figs. 5(a) and 5(b)] compared to the axial dimen-

sion [Figs. 5(c) and 5(d)]. Finally, the magnitudes of the median lateral and axial position errors

were consistently smaller than the mean lateral and axial resolution, respectively, reported in

Table 3 and shown in Figs. 5(b) and 5(d) for comparison. Note that the majority of position

error magnitudes are less than the resolution of the ultrasound transducer. In the lateral dimen-

sion, 88.9% and 87.1% of network detections in the training and validation datasets, respectively,

had absolute position errors less than the mean lateral resolution. In the axial dimension, 99.1%

and 99.8% of detections in the training and validation datasets, respectively, had absolute posi-

tion errors less than the mean axial resolution.

Table 4 reports the mean and standard deviation of the absolute lateral, absolute axial, and

Euclidean distance errors in the simulated training and validation datasets. Similar mean absolute

position errors were observed in the training and validation datasets in the lateral (i.e., 0.90 and

0.95 mm, respectively) and axial (i.e., 0.26 and 0.27 mm, respectively) dimensions. These mean

absolute position errors were reduced for ground truth positions directly under the transducer

compared to those outside the transducer aperture. These observations are similarly consistent

when considering the Euclidean distance errors in Table 4 (i.e., similar errors for the training and

validation datasets, decreased errors for ground truth positions directly under the transducer com-

pared to outside the transducer).

3.2 Histogram Matching on Ex Vivo and In Vivo Heart Data

Figure 6 demonstrates the effect of the histogram matching procedure on a processed channel

data frame from the In Vivo Heart 1 dataset. The wavefront corresponding to the catheter tip is

Fig. 5 Absolute [(a), (b)] lateral and [(c), (d)] axial position errors of correctly identified sources as

functions of the [(a), (c)] lateral and [(b), (d)] axial positions of the ground truth sources with respect

to the ultrasound transducer in the simulated training and validation datasets. The mean (b) lateral

and (d) axial resolutions reported in Table 3 are also shown for comparison (purple ×). The hori-

zontal line within and the height of each box represent the median and interquartile range, respec-

tively. The vertical lines above and below each box extend to the maximum and minimum values,

excluding outliers (i.e., circles), which are defined as values exceeding 1.5 times the interquartile

range.
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initially difficult to identify [Fig. 6(a)], although the corresponding histogram indicates the pres-

ence of signals with two distinct amplitude ranges [Fig. 6(b)]. After histogram matching with a

randomly selected simulated processed channel data frame [Figs. 6(c) and 6(d)], the visibility of

the wavefront corresponding to the catheter tip is improved [Fig. 6(e)] as quantified by the

improvement in gCNRch from 0.182 before histogram matching to 0.796 after histogram match-

ing. The corresponding amplitude histogram in Fig. 6(f) is more similar to the reference histogram

in Fig. 6(d) when compared to the original in vivo histogram in Fig. 6(b). In this example, the

TVD, JD, and χ2 statistics between the histograms of the channel data regions of the simulated and

in vivo frames were successfully reduced from initial values of 0.989, −0.043, and 1.961, respec-

tively, to values of 0.625, −0.842, and 0.926, respectively, for the histogram-matched result. Note

that the zero-padded regions of each processed channel data frame were not included in this

assessment because they remained unchanged after the histogram matching transformation.

Table 5 reports the mean and standard deviation of the TVD, JD, and χ
2 statistics for histo-

grams of the visible channel data regions of processed and histogram-matched channel data

frames in the ex vivo and in vivo datasets with the corresponding simulated reference frames

used for histogram matching. With histogram matching applied to the Ex Vivo Heart, In

Vivo Heart 1, and In Vivo Heart 2 datasets, the mean TVD values decreased by 0.081,

0.082, and 0.048, respectively, the mean JD values decreased by 0.195, 0.198, and 0.147,

Table 4 Mean ± standard deviation of absolute lateral, absolute axial, and Euclidean distance

errors between network detections and ground truth simulated sources. Results are reported for

all source positions and after stratifying by source lateral positions located between or within the

zero-padded regions in processed channel data frames (i.e., under and outside the transducer,

respectively).

Lateral error (mm) Axial error (mm) Euclidean error (mm)

Training All 0.90� 0.78 0.26� 0.28 0.96� 0.79

Under 0.55� 0.33 0.10� 0.08 0.57� 0.32

Outside 0.97� 0.83 0.29� 0.29 1.05� 0.84

Validation All 0.95� 0.83 0.27� 0.29 1.02� 0.84

Under 0.54� 0.32 0.10� 0.08 0.57� 0.31

Outside 1.04� 0.87 0.30� 0.31 1.12� 0.89

Table 3 Mean ± standard deviation of lateral and axial resolution measurements for the Alpinion

SP1-5 phased array ultrasound transducer as functions of target depth (i.e., the axial position of the

target) when the target was laterally centered (i.e., lateral position of 0 mm).

Axial position (mm) Lateral resolution (mm) Axial resolution (mm)

22.61 1.87� 0.02 1.35� 0.04

32.17 2.35� 0.14 1.35� 0.03

41.64 2.71� 0.10 0.85� 0.12

51.21 3.34� 0.10 1.01� 0.19

62.04 3.96� 0.09 0.85� 0.00

71.23 4.58� 0.09 0.85� 0.00

81.59 5.06� 0.15 0.85� 0.02

92.30 5.55� 0.13 0.68� 0.00

102.49 6.35� 0.14 0.76� 0.09
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respectively, and the mean χ
2 statistics decreased by 0.237, 0.237, and 0.147, respectively.

Overall, these results demonstrate the ability of histogram matching to reduce dissimilarities

of ex vivo and in vivo data relative to the simulated data used to train the network.

Figure 7 shows examples of raw channel data images from the In Vivo Heart 1 and In Vivo

Heart 2 datasets after zero-padding, resizing, and histogram matching, with the target and back-

ground ROIs shown with blue and orange boxes, respectively. For the In Vivo Heart 1 dataset, in

Fig. 7(a), the waveform corresponding to the source spans the width of the channel data region in

the zero-padded channel data frame. In addition, the waveform is visibly distinguishable from the

background with a gCNRch of 0.935. The detectability of this waveform was reduced after

resizing [Fig. 7(b)], resulting in a gCNRch measurement of 0.753. Despite this reduction, the

network successfully identified the source in Fig. 7(b). After histogram matching [Fig. 7(c)],

Table 5 Mean ± one standard deviation of image amplitude histogram distances (i.e., TVD, JD,

and χ
2 statistic) between ex vivo and in vivo datasets and corresponding simulated channel data

frames and the gCNRch in ex vivo and in vivo processed channel data frames before and after

histogram matching (HM).

Dataset

Relative to simulated data

gCNRchTVD JD χ
2 Statistic

Ex Vivo Heart Before HM 0.991� 0.006 −0.027� 0.016 1.972� 0.018 0.606� 0.265

After HM 0.910� 0.103 −0.222� 0.221 1.735� 0.291 0.640� 0.280

In Vivo Heart 1 Before HM 0.990� 0.004 −0.030� 0.014 1.970� 0.013 0.792� 0.073

After HM 0.908� 0.081 −0.228� 0.168 1.733� 0.217 0.794� 0.072

In Vivo Heart 2 Before HM 0.991� 0.013 −0.021� 0.023 1.976� 0.032 0.348� 0.125

After HM 0.943� 0.078 −0.148� 0.179 1.829� 0.225 0.386� 0.129

Fig. 6 [(a), (c), (e)] Photoacoustic channel data frames and [(b), (d), (f)] corresponding histograms of

amplitude data from images of a catheter tip in an in vivo swine heart from the In Vivo Heart 1 dataset

[(a), (b)] before and [(e), (f)] after histogrammatching with [(c), (d)] data from a simulated point source.
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the detectability of the waveform improved with a measured gCNRch of 0.854, and the network

continued to successfully identify the source. In comparison, for the In Vivo Heart 2 dataset, after

zero-padding [Fig. 7(d)], the signal amplitude of the waveform corresponding to the catheter tip

was reduced when compared to that in Fig. 7(a), resulting in a reduced gCNRch of 0.597. After

resizing [Fig. 7(e)], the left edge of the waveform was indistinguishable from the background,

with a gCNRch of 0.221 (which is 0.376 lower compared to the zero-padded channel data frame),

and the network did not detect this waveform. After histogram matching [Fig. 7(f)], the left edge

of the waveform remained indistinguishable from the background, but the gCNRch improved to

0.383, resulting in a successful detection of the source waveform. The last column of Table 5

summarizes the mean and standard deviation of gCNRch measurements in processed channel

data frames of the ex vivo and in vivo datasets before and after histogram matching. The mean

gCNRch measurements in the Ex Vivo Heart, In Vivo Heart 1, and In Vivo Heart 2 datasets dem-

onstrate increases of 0.034, 0.002, and 0.038, respectively, with histogram matching. Overall,

these results demonstrate the ability of our histogram matching technique to increase the detect-

ability of the waveforms corresponding to the source in ex vivo and in vivo datasets.

Table 6 reports the precision, recall, F1 scores, misclassification rates, and missed detection

rates for sources in the ex vivo and in vivo datasets, before and after histogram matching.

Fig. 7 Example [(a), (d)] zero-padded, [(b), (e)] processed, and [(c), (f)] histogram-matched chan-

nel data frames from the In Vivo Heart 1 (top) and In Vivo Heart 2 (bottom) datasets, each origi-

nating from the same raw channel data. The ROIs correspond to the target (i.e., waveforms

associated with the catheter tip) and background, defined to calculate the following gCNRch mea-

surements: (a) 0.935, (b) 0.753, (c) 0.854, (d) 0.597, (e) 0.221, and (f) 0.383.

Table 6 Network performance on ex vivo and in vivo data before and after histogram matching.

Performance metric

Ex Vivo Heart In Vivo Heart 1 In Vivo Heart 2

Before After Before After Before After

Recall (%) 71.2 79.0 100.0 100.0 2.5 87.5

Precision (%) 96.5 97.9 100.0 100.0 100.0 94.6

F1 score (%) 82.0 87.4 100.0 100.0 4.9 90.9

Misclassification rate (%) 0.0 0.4 0.0 0.0 0.0 0.0

Missed detection rate (%) 28.8 20.6 0.0 0.0 97.5 12.5
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No change was observed in the In Vivo Heart 1 dataset with recall, precision, and F1 scores of

100.0% and misclassification and missed detection rates of 0.0%, both before and after histogram

matching. In the Ex Vivo Heart dataset, the recall, precision, and F1 scores increased by 7.8%,

1.4%, and 5.4%, respectively, after histogram matching, and the missed detection rate decreased

by 8.2% after histogram matching. Conversely, the misclassification rate for the Ex Vivo Heart

dataset increased from 0.0% to 0.4% after histogram matching. In the In Vivo Heart 2 dataset, the

network output a single detection for the entire dataset of 40 images before histogram matching.

This single detection was a true positive, resulting in a precision of 100.0% and a recall

(i.e., detection rate) of 2.5%. After histogram matching, the number of network detections in the

In Vivo Heart 2 dataset increased to 37 (35 of which were true positives). As a result, the precision

decreased by 5.4% to 94.6% and recall increased by 85.0% to 87.5%, leading to improvements in

the F1 score and missed detection rate, with no change to the misclassification rate.

Figure 8 shows the box plots of the lateral [Fig. 8(a)] and axial [Fig. 8(b)] position errors of

correctly identified sources as functions of axial ground truth positions relative to the transducer

for the ex vivo and in vivo datasets after histogram matching. Comparison of the position errors in

Fig. 5 with the position errors in Figs. 8(b) and 8(d) reveals generally larger errors with the ex vivo

and in vivo datasets (Fig. 8) relative to the simulated validation set results (Fig. 5) at similar axial

target depths, though the outliers in the simulated dataset are more consistent with the ex vivo and

in vivo results. In addition, comparison of the position errors in Fig. 8 with the corresponding

resolution measurements reveals that the median position errors are consistently lower than the

corresponding resolution measurements for each source depth. When compared to the lateral and

axial resolution reported in Table 3 (with means replicated in Fig. 8), the majority of position error

magnitudes are smaller than the resolution (similar to the results obtained with the simulated

datasets in Fig. 5). In the Ex Vivo Heart, In Vivo Heart 1, and In Vivo Heart 2 datasets,

88.6%, 100.0%, and 100.0% of network detections, respectively, had absolute lateral errors less

than the mean lateral resolution. In the axial dimension, 67.2%, 86.7%, and 62.9% of network

detections in the Ex Vivo Heart, In Vivo Heart 1, and In Vivo Heart 2 datasets, respectively, had

absolute axial position errors less than the mean axial resolution of the ultrasound transducer.

3.3 Deep Learning-Based Improvement in Source Visualization

Figure 9 shows zero-padded channel data, DAS-beamformed images, and network-based images

visualizing photoacoustic point sources in simulated, ex vivo, and in vivo data (from the simulated

validation, Ex VivoHeart, and In VivoHeart 2 datasets, respectively). The zero-padded channel data

show waveforms corresponding to sources and artifacts spanning the width of the raw channel data

region. In addition, the channel data regions of the ex vivo and in vivo images show distortions in

Fig. 8 Absolute (a) lateral and (b) axial position errors of correctly identified sources as functions of

the ground truth axial positions of the sources with respect to the ultrasound transducer in the ex

vivo and in vivo datasets. The mean (a) lateral and (b) axial resolutions reported in Table 3 are also

shown for comparison (purple ×). The horizontal line within and the height of each box represent

the median and the interquartile range, respectively. The vertical lines extending above and below

each box extend to the maximum and minimum values, excluding outliers (i.e., circles), which are

defined as values exceeding 1.5 times the interquartile range.
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the waveforms in the axial dimension. The DAS-beamformed images show distortions in the

source shapes with the energy from the point source dispersed over a wider region in the

DAS images compared to the network-based images. The DAS-beamformed images also contain

reflection artifacts, resulting in potential confusion regarding the location of the point source. This

limitation is overcome in the network-based images. In each case, the network-based image pro-

vides the clearest view of the source as a white circle on the black background denoting the image

FOV. The radius of each circle is 2σ ¼ 1.68 mm, based on the standard deviation of the Euclidean

distance error reported in Table 4 for the validation dataset (consisting of all data combined).

4 Discussion

This paper is the first to present deep learning-based photoacoustic source localization results

achieved within ex vivo and in vivo hearts with a phased array transducer. To successfully detect

point sources and reflection artifacts at any location in the phased array FOV, we introduce new

methods to prepare the raw channel data frames for input to the deep neural network. These

methods comprise a novel combination of: (1) zero-padding channel data frames to match the

FOV of a scan-converted image, (2) resizing the zero-padded images to improve the network

performance, and (3) histogram matching ex vivo and in vivo images to simulated images from

a validation dataset. Neither zero-padding nor the associated extrapolation of waveform peaks

enabled by zero-padding were applied to previous linear array data or networks.28–32,57

We can appreciate that zero-padding and image resizing contributed to the high network

performance in simulated data (i.e., recall and precision of 98.5% and 98.1%, respectively, see

Table 2) based on the following observations. First, the extrapolation of source positions from

partially visible waveforms, which would not have been possible without zero-padding (due to

limitations surrounding the placement of bounding boxes), indicates that zero-padding was a

major contributing factor to the performance achieved by our network (Table 2). Second, the

recall and precision values reported in Table 2 exceeded the recall and precision values of

84.3% and 90.7%, repectively, which were previously achieved by Allman et al.33,34 with

Fig. 9 Simulated, ex vivo swine heart, and in vivo swine heart (top, middle, and bottom, respec-

tively) samples of raw photoacoustic channel data, DAS images, and convolutional neural net-

work-based images (left, center, and right, respectively) obtained with a phased array transducer.
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zero-padding of phased array data. This performance improvement is likely due to the additional

image resizing step that we implemented for the first time herein. Otherwise, with partially vis-

ible waveform peaks, our performance was higher than that achieved by Allman et al.31 with

linear array data and fully visible waveforms (i.e., recall and precision values of 91.6% and

89.4%, respectively), which is likely due to multiple domain differences.

The inclusion of histogram matching and corresponding gCNRch improvements (Table 5)

ultimately resulted in recall improvements of 7.8% and 85.0% relative to the pre-histogram-

matching performance on the Ex Vivo Heart and In Vivo Heart 2 datasets, respectively

(Table 6). There were also some metrics that were not impacted or improved by histogram match-

ing, revealing three key insights regarding its implementation. First, it is important to consider the

effects of histogram matching on both recall and precision (i.e., the F1 score) when attempting to

improve network performance, as an increase in one metric may be accompanied by a decrease in

the other. Second, acceptably low misclassification rates were achieved before and after histogram

matching, suggesting that signal amplitude is not the only factor considered by the network for the

classification task. Third, histogram matching did not impact the already excellent network per-

formance (e.g., 100.0% recall, precision, and F1 scores) on the In Vivo Heart 1 dataset, indicating

that the approach will not degrade otherwise excellent performance.

The objective of histogram matching is to reduce signal amplitude dissimilarities between

simulated and experimental training and testing data, respectively. However, even though there

was an initial amplitude dissimilarity between the simulated and In VivoHeart 1 datasets (Fig. 6),

reducing this dissimilarity with histogram matching did not affect the already excellent network

performance. Thus, dissimilarities are evidently not the only factor affecting the performance of a

simulation-trained network when applied to ex vivo and in vivo datasets. Other possible factors

include the absolute signal amplitudes in the ex vivo and in vivo datasets, the shapes of the wave-

forms corresponding to the sources, and the position distributions of sources relative to the

transducer.33,34 In addition, the performance significantly improved when applying histogram

matching to data acquired with low laser energies (i.e., 608.5 μJ for In Vivo Heart 2 versus

2.67 mJ for In Vivo Heart 1 datasets), which highlights the potential of our techniques to reduce

the minimum laser energy required to ensure consistent point source detection and localization

(e.g., to achieve system miniaturization during photoacoustic-guided surgical and interventional

procedures56 and safe imaging under extended procedure durations59).

As opposed to previous results with linear array networks, which achieved similar locali-

zation errors across multiple depth or lateral positions,32 the position errors achieved by the net-

work and approach presented herein depended on the ground truth lateral and axial positions, as

shown in Figs. 5(a)–5(c). The increases in lateral and axial position errors with lateral position

[Figs. 5(a) and 5(c), respectively] for the phased array network are likely due to the required

extrapolation of the position of the waveform peak. In particular, waveform information

decreases with the lateral displacement of the source from the transducer center, yet knowledge

of the waveform peak is critical to accurately detect and locate sources. In addition, the larger

lateral position errors with increasing depth [Fig. 5(b)] are likely due to the increased range of

lateral positions with depth arising from the geometry of a phased array image FOV.

The mean absolute axial and lateral position errors for simulated sources in the validation data-

set were 0.27 and 0.95 mm, respectively, as reported in Table 4. These errors are larger than the

0.088 mm (axial) and 0.103 mm (lateral) position errors reported by Bell57 when summarizing

previous work with linear array networks, likely because of the resolution difference between the

phased and linear array transducers. For simulated sources in the validation dataset, the phased array

network presented herein achieved mean absolute axial position errors ranging 0.10 to 0.30 mm,

depending on the ground truth source position, as reported in Table 4. A majority (i.e., 99.8%) of

these axial errors are within the mean axial resolution measurements of the phased array transducer

[Fig. 5(d)]. Similarly, a majority of the obtained lateral errors in Fig. 5(b) (i.e., 87.1%) are within the

mean lateral resolution measurements in Fig. 5(b) for corresponding target depths. It is promising

that a majority of these results are within the resolution of the transducer.

Despite the nuances described above, the simulation-trained network presented herein suc-

cessfully translated to experimental ex vivo and in vivo data, in some cases with better perfor-

mance on ex vivo and in vivo data than on the simulated validation data. As reported in Tables 2

and 6, the ranges of recall (i.e., 79.0% to 100.0%), precision (i.e., 94.6% to 100.0%), and
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F1 scores (i.e., 87.4% to 100.0%) achieved by our network on ex vivo and in vivo data were

consistent with values achieved for the simulated validation dataset. In addition, our network

achieved higher recall, precision, and F1 scores in the In Vivo Heart 1 dataset (i.e., 100.0%,

100.0%, and 100.0%, respectively) compared to the simulated validation dataset (i.e., 98.5%,

98.1%, and 98.3%, respectively). These improved performance values are likely due to the

reduced lateral displacements of the source from the transducer in the ex vivo and in vivo data

compared to the simulated data, leading to improved source detection rates. The higher energies

employed to acquire this dataset could also be responsible for the improved performance.

One limitation of our approach is that catheter tips outside the imaging plane of the trans-

ducer may not be detected if located outside of the depth-dependent elevation beamwidth (i.e., at

least 2 mm width based on data provided by the manufacturer). However, when not in the heart,

the catheter is anticipated to be confined to vessels, which will have a diameter no larger than

2.2 cm.60–65 In addition, with the lateral dimension of the transducer aligned with the direction of

catheter travel, we previously demonstrated the successful implementation of a real-time, robot-

assisted photoacoustic target tracking system using phased array ultrasound transducers that pro-

vide 2D images.20,35 These systems compensated for the reported elevation resolution by using

the robotic control and elevation plane search algorithms developed by our group.17,20,35

Alternatively, a transducer with volumetric imaging capabilities can be employed to localize the

catheter tip in three spatial dimensions in a single image. Regarding reflection artifact detection,

our study was limited to characterizing this particular performance on simulated data, because

characterizations on ex vivo or in vivo data would have required manual annotations derived from

photoacoustic images (e.g., the DAS-beamformed image of the In Vivo Heart 2 dataset in Fig. 9),

which is not always feasible (e.g., due to uncertainty about the peak locations of partially visible

waveforms in phased array channel data).

The proposed network-based photoacoustic source visualization method for phased array

data has potential utility in multiple possible future scenarios. First, as previously proposed

by Allman et al.,31,34 this method may be used to distinguish between photoacoustic point sources

and reflection artifacts, relying on the classification accuracy of the network and avoiding the

inaccuracies inherent to traditional image reconstruction algorithms using beamforming. Second,

this method may be integrated with our previously presented deep learning-based photoacoustic

visual servoing system,35 leveraging the network outputs generated for robotic tracking to simul-

taneously generate high quality human-interpretable images of the source being tracked. Third,

these network-based images may be superimposed on traditional ultrasound images to provide

clinicians with real-time visual information of catheter tips during cardiac procedures. Finally,

the proposed methods have the potential to be extended to other applications of deep learning in

photoacoustics66 and biomedical optics.67,68

5 Conclusion

We successfully demonstrated new approaches to improve the performance of a deep learning-

based photoacoustic point source localization system operating on raw channel data acquired

with a phased array transducer for cardiac applications. Image resizing in tandem with channel

data zero-padding was implemented during network training to detect and localize point sources

in simulated data. We successfully translated this simulation-trained network to ex vivo and in

vivo images of a catheter tip. We characterized the performance of the network on this exper-

imental data before and after introducing a novel amplitude-based histogram matching strategy.

Subsequently, we demonstrated the applicability of our successfully trained network to improve

the visibility of photoacoustic point sources and remove reflection artifacts in phased array

photoacoustic images. Promising applications of this work include integration with previously

presented deep learning-based robotic visual servoing systems leveraging existing network out-

puts to ultimately improve robotic tracking and human-interpretable visualization of catheter tips

during cardiac procedures.
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