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ABSTRACT:
Anticipatory coarticulation is a highly informative cue to upcoming linguistic information: listeners can identify that

the word is ben and not bed by hearing the vowel alone. The present study compares the relative performances of

human listeners and a self-supervised pre-trained speech model (wav2vec 2.0) in the use of nasal coarticulation to

classify vowels. Stimuli consisted of nasalized (from CVN words) and non-nasalized (from CVCs) American

English vowels produced by 60 humans and generated in 36 TTS voices. wav2vec 2.0 performance is similar to

human listener performance, in aggregate. Broken down by vowel type: both wav2vec 2.0 and listeners perform

higher for non-nasalized vowels produced naturally by humans. However, wav2vec 2.0 shows higher correct classifi-

cation performance for nasalized vowels, than for non-nasalized vowels, for TTS voices. Speaker-level patterns

reveal that listeners’ use of coarticulation is highly variable across talkers. wav2vec 2.0 also shows cross-talker vari-

ability in performance. Analyses also reveal differences in the use of multiple acoustic cues in nasalized vowel clas-

sifications across listeners and the wav2vec 2.0. Findings have implications for understanding how coarticulatory

variation is used in speech perception. Results also can provide insight into how neural systems learn to attend to the

unique acoustic features of coarticulation.VC 2024 Acoustical Society of America.
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I. INTRODUCTION

There is an enormous amount of variation in speech.

One large source of variability is due to coarticulation, or

the acoustic effects of overlapping articulations from adja-

cent sounds in the speech signal. Coarticulation is a natural

and essential property of speech dynamics because it per-

mits speech to be produced in a fluid and intelligible manner

(e.g., Fowler and Saltzman, 1993). For instance, vowels

before nasal consonants are produced with some amount of

nasality since the velum-lowering gesture from the follow-

ing sound begins early and overlaps with the vowel. Since

coarticulation is a natural and systematic feature of speech,

human listeners are highly sensitive to its variation: they use

coarticulation to predict upcoming sounds in order to more

efficiently comprehend the speaker’s message (Fowler,

1984). For instance, looking at the example of anticipatory

coarticulatory nasality in English from the side of a per-

ceiver, listeners can identify that a word they are hearing is

bun, and not bud based on hearing nasal coarticulation on

the vowel only. This indicates that coarticulatory nasaliza-

tion provides cues to lexical identity even before the final

consonant is pronounced (Ali et al., 1971; Ohala and Ohala,

1995; Beddor et al., 2013).

Yet, there are many open questions about how the use

of anticipatory coarticulatory cues present on vowels to cat-

egorize speech might vary across different types of contexts,

speakers, and comprehenders. The current study asks to

what extent machine speech recognition systems use antici-

patory coarticulation present on vowels to make classifica-

tions of speech in ways similar to, or different from, human

listeners. We investigate this by testing classifications by a

widely used Self-Supervised Pretrained speech model

(wav2vec 2.0 [W2V2]) (Baevski et al., 2020) of American

English nasalized and non-nasalized vowels (spliced out of

context and presented in isolation) produced by 96 distinct

voices. Perceptual responses to these vowels by human lis-

teners are also examined, and we compare listener and

machine classification performance.

Since coarticulation is systematic and provides predic-

tive information, one hypothesis is that the machine recogni-

tion system will use nasal coarticulatory cues to accurately

classify vowels in ways similar to how human listeners per-

form. Alternatively, this speech model might outperform

humans in use of coarticulation to perform linguistic classi-

fications. More specifically, human listeners typically per-

ceive vowel nasalization in the context of a nasal consonant

and at least partially attribute the acoustic effects of coarti-

culation to its source (Beddor and Krakow, 1999; Zellou,

2017); so hearing vowels spliced from their appropriate

coda contexts might sound phonetically shifted or otherwise
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odd to listeners, leading to lower performance. Meanwhile,

the speech model is more likely to interpret coarticulatory-

acoustic cues as inherent to the vowel. Speech models, such

as W2V2, have been primarily designed to perform

automatic speech recognition (ASR) but it has also proved

efficient for other tasks (Kunze et al., 2017; Lian et al.,
2018). While global, human-level performance is the goal in

developing ASR systems, investigating whether there are

context-specific asymmetries in speech recognition system

performance is one step to achieving fine-grained sensitivi-

ties to speech variation that parallel human listeners.

Another open question is whether speech models handle

cross-speaker variation in the same ways that human listen-

ers do. Coarticulation has been shown to vary extensively

across individual speakers (Beddor and Krakow, 1999;

Zellou, 2017; Yu and Zellou, 2019). Therefore, we also

examine cross-speaker variation in the performance of

W2V2, relative to human listeners, in classifications of

nasal-coarticulated vowels. Investigating how speech mod-

els designed for ASR systems classify coarticulated speech

is practically important for understanding how deep learning

handles within- and across-speaker variation.

Finally, we also compare human vs machine perfor-

mance in classification of coarticulated vowels across

naturally produced speech and synthetic voices (i.e., text-to-

speech [TTS] generated from those openly available by

several companies). It is a new digital era: the number of

spoken language interactions between machines and humans

are common and increasing every day due to voice-

activated AI devices in the home (Ammari et al., 2019).
Thus, it is relevant and apt to ask how speech perception

might vary across human–human vs human–device (and,

even device–device) interactions.

A. Coarticulation in speech recognition

There is a growing body of work investigating how lis-

teners use coarticulation during speech perception.

Coarticulation is a natural and systematic property of

speech. Thus, it has been proposed that listeners attend to

coarticulatory details to make predictions about, or more

efficiently process, upcoming linguistic information (Lahiri

and Marslen-Wilson, 1991; Beddor, 2009; Beddor et al.,
2013; Scarborough and Zellou, 2013). Since vowel nasality

in English always and only occurs in the context of a nasal

consonant, the presence of nasalization provides reinforcing

evidence about the identity of an upcoming nasal coda.

Indeed, many past studies have shown that American

English listeners use coarticulatory information as soon as it

is available to identify a lexical item, supporting this

hypothesis (Beddor et al., 2013; Zellou, 2022; Zellou et al.,
2023).

Moreover, people are now regularly talking with

machines and rely on them to accurately understand their

speech; thus, it is relevant to ask whether technological sys-

tems rely on acoustic features to classify words in the same

ways that human listeners do. Do ASR systems use

coarticulatory information to classify speech similarly to

how human listeners use it? Neural networks are machine

learning tools that use high-dimensional spaces to perform

classifications. Speech recognition systems using artificial

neural networks have shown drastic improvements in recent

years, particularly when they are designed and trained to

take into account coarticulatory patterns (Kanthak and Ney,

2002; Ansary and Salehi, 2004; Mun et al., 2022). One

understudied aspect of ASR performance is coarticulatory

variation (Liu et al., 2020). While prior work has achieved

some success in synthesizing visual output, such as facial

animation (Deng et al., 2006) and videos of talking speakers

(Liu et al., 2020) by testing ASR performance on speech

coarticulation, many open questions remain. We ask

whether W2V2 uses coarticulatory cues to correctly identify

that a vowel is either nasalized or non-nasalized in ways that

parallel how human listeners perform classifying the same

set of stimuli (i.e., analogous to a human identifying the

word is bent from the vowel alone in Beddor et al., 2013).
More specifically, we ask whether there are the same

patterns of linguistic classifications across nasalized and

non-nasalized vowel types for a machine speech recognition

model and human perceivers. Overall comparison with

human-level accuracy is the gold standard of evaluating the

performance of artificial models. However, such global

comparisons might be masking underlying differences in

how human perceivers and neural networks categorize dif-

ferent types of speech sounds. Most broadly, understanding

what specific types of sound patterns that are difficult for

machine recognizers can be informative to improve their

performance with further fine-tuning.

The current study focuses specifically on coarticulatory

vowel nasality. For instance, while coarticulation is useful

for listeners, there is also evidence that orality (or, the

absence of nasalization) is a strong cue that listeners use to

identify that the upcoming sound is unequivocally not a

nasal consonant. Moreover, studies of English, Korean, and

Mandarin show that there is a huge amount of variation

across and within languages in degree of nasal coarticulation

(Scarborough and Zellou, 2013; Cho et al., 2017; Jang et al.,
2018; Li et al., 2020). Since nasal coarticulation varies so

much, listeners might be sensitive to the fact that orality is a

more reliable cue than nasality in a language where vowel

nasality occurs only contextually (i.e., due to coarticulation

from nasal consonants). Indeed, there is already some evi-

dence that listeners more systematically use orality as a cue,

compared to nasality, in classifying isolated vowels. For

instance, Zellou (2022) investigated listeners’ perception of

coarticulatory variation across a range of speakers, using a

coda-completion task, the same perception task we use in

the current study. Overall, that study found that listeners

were above chance at identifying nasal vs oral codas from

hearing the vowel alone. However, there is an asymmetry in

performance for oral vs nasalized vowels: correct identifica-

tion of the coda was lower for nasal-coarticulated vowels,

compared to oral vowels. Also, relative to oral vowels,

nasalized vowels in English are more ambiguous, more
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likely to be misperceived in isolation, and less likely to be

accurately discriminated (Wright, 1986; Beddor, 1993;

Zellou, 2017). Therefore, together, the empirical evidence

suggests that listeners can use nasal coarticulation to predict

that an upcoming sound is a nasal coda, yet oral vowels pro-

vide more reliable cues to coda identity in English. The use

of coarticulation supports models of speech perception

where listeners use available systematic details in the acous-

tic signal to efficiently process speech (Beddor, 2009). Yet,

the asymmetry between oral and nasalized vowels is also

informative. There are two possible explanations for this

pattern. For one, it could be because English listeners’ expe-

rience with nasality as only a coarticulatory cue (i.e., it only

occurs in the presence of a nasal consonant) means they are

just more sensitive to orality. Another possibility is that

coarticulation is just acoustically more variable across

words and speakers, since it is non-contrastive. For instance,

recent work has found cross-speaker variation in the weight-

ing of multiple acoustic features associated with coarticula-

tory nasality (Zellou and Cohn, 2024). This might mean that

nasalization is a slightly less robust cue than orality for

listeners.

Comparing human and machine classifications of nasal-

ized and non-nasalized vowels in American English can

tease apart these possibilities. We investigate whether neural

network speech classifiers show the same classification pat-

terns as human listeners. On the one hand, if neural net-

works are trained on natural American English speech input,

we might predict that it will mimic the patterns of categori-

zations displayed by human listeners: it will use coarticula-

tion to categorize vowels as nasalized, but overall

performance will be highest for oral vowels. On the other

hand, since coarticulation is a systematic property of vowels

and the neural network could attend to this type of variation

differently than humans, the W2V2 model might show sen-

sitivity to coarticulatory details to a greater extent than

human listeners. In either outcome, comparison of W2V2’s

and listeners’ classification of nasalized and non-nasalized

vowels can provide insight into the role of coarticulation in

speech perception, either as a universal acoustic clue or

something that perceivers are sensitive to based on their

language-specific experience.

B. Cross-speaker coarticulatory variation

Another question addressed in the current study is

whether across-speaker patterns of nasalized vowel classifi-

cations are similar for the W2V2 speech model as it is for

human listeners. There is a great deal of variation within

and across speakers in its realization. For instance, the

degree of nasal coarticulation (realized as vowel nasality

produced in words with CVN structure) varies greatly across

American English speakers (Zellou, 2017, 2022). An exami-

nation of the cross-speaker differences in Zellou (2022)

revealed a large amount of variability in how individual

talkers implement coarticulatory vowel nasalization and

thus how their coarticulated vowels provided predictive

cues. For instance, some talkers produce coarticulated vow-

els that were systematically identified as originating from

CVN words, while other speakers produced coarticulated

vowels that provided little cues to coda nasalization since

they were exclusively categorized as coming from CVC

items. Oral vowels, on the other hand, provided consistent

cues for listeners to coda orality across speakers.

Do machine recognition systems show the same cross-

talker variability in speech classifications as human listen-

ers? On the one hand, a major goal in the development of

speech recognition technology is a neural network that dis-

plays minimal cross-speaker variation (e.g., Huang, 1992).

Thus, investigating whether an artificial neural network can

achieve talker-independent ability to use coarticulation in

speech classification would be one step toward this practical

goal. On the other hand, talker-independence is not the real-

ity for speech perception by human listeners. For instance,

some speakers are just more intelligible than other speakers,

in ways that are systematic (e.g., by dialect in Clopper and

Bradlow, 2008) or idiosyncratic (Bradlow et al., 1996).

Thus, if W2V2 displays talker-dependent classification of

vowels, it would be useful to know if these patterns mirror

those displayed by human listeners, or whether they vary in

some systematic, but meaningful, way.

1. Comparing naturally produced vs TTS voices

As mentioned above, understanding how speech per-

ception varies across naturally produced speech and TTS is

relevant in an era where human-machine conversational

interactions are a daily occurrence. Furthermore, ASR sys-

tems are increasingly being trained on TTS speech, as well

(Fazel et al., 2021). Hence, the design approach of the cur-

rent study is 2� 2: comparing the use of coarticulation for

classification in naturally produced speech vs TTS by

human listeners and a machine speech recognizer.

There is some prior work investigating acoustic proper-

ties of coarticulation in industry-generated TTS and its

effect on listener perception. For instance, Ferenc Segedin

et al. (2019) found that acoustic nasality for TTS voices

generated for Amazon’s Alexa devices was more phoneti-

cally ambiguous than naturally produced human speech.

Zellou et al. (2021) compared acoustic nasality in CVN con-

texts across different types of TTS and found a larger differ-

ence in acoustic nasality between oral and nasalized vowels

in concatenative TTS than neural TTS. They also found that

TTS voices containing larger differences in coarticulatory

nasalization between oral and nasalized vowels (as in the

concatenative TTS voices) correlated with higher listener

discrimination. These studies suggest that TTS contains

more ambiguous coarticulatory cues but, at the same time,

like for naturally produced speech, there is variation across

TTS voices and that listeners track and use the patterns of

coarticulation in synthesized speech to comprehend the

speech signal. There is no prior work, to our knowledge,

comparing use of coarticulation for machine classification

of naturally produced speech vs TTS speech.
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C. Acoustic cue use in perception of vowel
nasalization

Does an ASR system use the multiple cues for coarti-

culatory information in the acoustic signal to categorize

speech in the same way as human listeners? There are mul-

tiple acoustic properties associated with vowel nasaliza-

tion. Vowel nasalization manifests itself acoustically as

dampening of the amplitude of the first formant spectral

peak (A1) and the introduction of a low-frequency nasal

resonance, which increases in amplitude as degree of nasal-

ization increases (P0). One acoustic measure for nasaliza-

tion is quantified by subtracting one measure from the

other, A1-P0 (Chen, 1997; Styler, 2017). There are addi-

tional acoustic differences across nasalized and non-

nasalized vowels. The frequency of F1, which is typically

modulated by tongue height, has been shown to be different

across nasalized and non-nasalized vowel counterparts

(Carignan, 2017). Nasalized vowels also display wider F1

bandwidths than oral vowels (Hawkins and Stevens, 1985;

Stevens, 2000; Styler, 2017). Voice quality can also differ

across nasalized vowels, with nasalization correlating with

more breathy phonation metrics (Garellek et al., 2016) and
smaller spectral tilt values (e.g., measured as A3-P0 in

Styler, 2017). Much prior work has shown that listeners use

these acoustic features to some extent when perceiving

vowel nasalization (Beddor et al., 1986; Krakow et al.,
1988; Wright, 1986).

Thus, another research question addressed in the cur-

rent study is whether similar acoustic features are used

(and, used to the same extent) by listeners and artificial

learning models in correct categorizations of nasal-

coarticulated vowels. While comparing overall perception

patterns across human perceivers and W2V2 can reveal

fundamental similarities or differences in how they catego-

rize coarticulated speech, we can also examine whether

there are differences in the use of specific acoustic features

in making these classifications across people and machine

learning models.

Pruthi and Espy-Wilson (2007) trained a support vector

machine classifier on multiple acoustic cues to vowel nasali-

zation, including F1 frequency, F1 bandwidth, A1-P0, and

spectral tilt and found high levels of accuracy in categoriza-

tions of vowels extracted from natural speech corpora.

However, no prior work, to our knowledge, has compared

relative acoustic cue weightings across human listeners and

W2V2 models trained on speech. We ask whether there are

differences in phonetic cue weighting across human listen-

ers and W2V2 by relating categorization patterns to a set of

acoustic features. If W2V2 uses the same acoustic features

as human listeners to classify nasalized vowels, there will be

no difference in relative cue weightings of these properties

across perception and classification data for nasalized vow-

els. On the other hand, differences in how these acoustic

properties predict human and machine classifications of

nasalized vowels will indicate that the neural network uses

spectral features of vowel nasalization differently than

listeners.

D. Current study

In the current study, we investigate the role of nasal

coarticulation by two different types of comprehenders

(human listeners and a W2V2 pre-trained speech model for

ASR) in two different types of voices (human speakers and

TTS voices). First, we elicited CVN and CVC words by 60

human speakers and generated the same set of words from

36 distinct TTS voices. Next, we played the spliced CV por-

tions of the words to listeners who performed a word com-

pletion task (i.e., “is the word ben or bed?”). Then, we

extracted the acoustic features of each stimulus using a

W2V2-large model and ran a deep neural network to clas-

sify nasalized and non-nasalized vowels. The aim of this

work is to address three basic research questions. (1) How

do classification patterns of nasal-coarticulated and non-

nasalized vowels vary across human listeners and automatic

speech classifiers. (2) Do cross-speaker classification pat-

terns, across a range of different talkers including naturally

produced human speech and TTS voices, vary in similar

ways across listeners and W2V2? (3) Do human listeners

and W2V2 use the multiple acoustic features of nasalized

vowels in similar ways to classify coarticulated vowels?

We compare human listeners and a state-of-the art

speech recognition model on use of coarticulation in linguis-

tic classification. Coarticulation is an important acoustic fea-

ture that is quite variable across speakers and contexts.

Thus, we ask how good speech models are at using this fea-

ture to recognize language (i.e., compared to the standard

reference, which is human listener performance). We

selected W2V2 because it is a state-of-the art speech model

that is used by lots of researchers and language technology

engineers. Our findings can be informative about how the

most advanced speech recognition models handle variation

in coarticulatory cues. They can also shed light on how

speech recognition models work (e.g., how it weighs various

acoustic cues).

II. EXPERIMENT 1: PERCEPTION OF HUMAN
SPEAKERS AND TTS VOICES

A. Methods

1. Target words

Target words included 5 sets of CVC and CVN minimal

pairs containing non-high vowels (/A/, /æ/, /ˆ/, /E/, /ow/):
bod, bon, bad, ban, bud, bun, bed, ben, bode, bone. We

focus on non-high vowels following prior work on nasal

coarticulatory patterns in American English (Beddor and

Krakow, 1999; Zellou, 2022.)

Each target word was placed in a carrier phrase: “__,

the word is __.”

2. Human speakers

The speakers were 60 native speakers of American

English (49 female, 11 male, age range¼ 18–33 years old,
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average age¼ 19.6 years old; all reported to be born and

raised in California), recruited through the University of

California-Davis subject pool. Participants received course

credit for their participation. The elicitation was conducted

over a single session, lasting approximately 30min, in a

sound-attenuating booth at the University of California-

Davis Phonetics Lab. Recordings were made using a Shure

WH20 XLR head-mounted microphone and digitally sam-

pled at a 44.1-kHz sampling rate.

3. TTS voices

The same set of target words in carrier sentences was

generated in 36 American English TTS voices available

through three different platforms. Nine Siri voices’ produc-

tions were generated using the command line on an Apple

computer (OSX 10.13.6) and changing the Siri voice setting

in system preferences (7 female: Agnes, Allison, Ava,

Princess, Samantha, Susan, Victoria; 2 male: Alex, Fred).

Six Amazon Polly voices’ productions were generated using

the AWS Polly online console (4 female: Joanna, Kendra,

Kimberly, Salli; 2 male: Joey, Matthew). While the Amazon

Polly voices are only available in 6 adult speakers, we gen-

erated all items in the two different TTS generation techni-

ques: neural (generated via neural speech synthesis, the

most naturalistic) and “standard” (generation via parametric

speech synthesis, the more robotic type), resulting in 12 dis-

tinct voices. We also generated the productions in 15 voices

available through the Microsoft Azure online console (9

female: Amber, Aria, Ashley, Cora, Elizabeth, Jenny,

Michelle, Monica, Sara; 6 male: Brandon, Christopher,

Davis, Eric, Guy, Jacob), all generated in the default

“general” speaking style and with the speaking speed and

pitch values at their default settings. The Microsoft Azure

voices are generated via Neural TTS speech synthesis.

Apple announced in 2019 that the original version of Siri

(i.e., the “Samantha” voice) was originally generated using

concatenative speech synthesis via unit selection, but the

new version will be generated using Neural TTS.

Information about the TTS method used to synthesize the

other Apple voices was not publicly available.

4. Stimulus preparation

The words were extracted from the carrier phrases and

prepped for presentation in the perception experiment.

Stimuli for the perception experiment consisted of CV sylla-

bles spliced from the CVC and CVN word productions by

the 60 human speakers and the 39 TTS voices. Following

the method used by Ohala and Ohala (1995), the syllables

were then gated into white noise, at a level 5 dB less than

the peak intensity of the vowel. In other words, the last 5ms

of the vowel overlapped with noise, which then continued

for 150ms after the vowel ended; the purpose of this was to

avoid a stop-bias that might occur with the syllables

abruptly ending in silence.

5. Participants

Participants were 166 native American English speakers

(mean age: 19.4 years old), recruited from the University of

California-Davis Psychology Subject Pool. They received

course credit for participation. None of the participants

reported any speech or hearing impairments. This study was

approved by the University of California-Davis Institutional

Review Board, and all participants completed informed

consent.

6. Procedure

The experiment, conducted online using Qualtrics,

began with a sound calibration procedure: participants heard

one sentence produced by each speaker (not used in experi-

mental trials), presented in silence at 60 dB, and were asked

to identify the sentence from three multiple choice options,

each containing a phonologically close target word (e.g.,

they hear “Bill asked about the host” and are given options

for sentences ending in host, toast, coast). After, they were

instructed to not adjust their sound levels again during the

experiment. Participants completed a word completion task.

The task was designed following the paradigm used by

Ohala and Ohala (1995). On a given trial, listeners heard

one of the speakers produce either a CV syllable (truncated

from a CVC word) or a C~V syllable (truncated from a CVN

word) gated into noise. Then, listeners select which one of

two minimal pair choices (either a CVC or CVN word, cor-

responding to the minimal pair option for that syllable) the

syllable was originally taken from.

Eight experimental lists were generated containing all

of the stimulus items from 12 talkers (randomly selected).

Each list contained only one type of speaker: 5 lists con-

tained only human speakers, 3 lists contained only TTS

speakers. Participants were randomly assigned to one of the

lists, in either the human speaker condition (n¼ 94 partici-

pants) or the TTS voices condition (n¼ 72 participants).

[Note: The perception data on the human speaker stimuli

was previously analyzed in Zellou (2022). The present study

includes this subset along with novel data from the percep-

tion of the TTS voices.]

In order to keep the experiment a reasonable length,

only the first production of each word from the frame sen-

tence was used in the perception study.

B. Results

Word identification accuracy on each trial was coded

binomially (1¼ correct intended word identification,

0¼ incorrect). Listeners’ global mean performance in iden-

tifying the coda correctly based on the vowel information

alone is 78.5%. Figure 1 displays the aggregated word iden-

tification accuracy results by vowel type and speaker type.

For the human speakers, aggregated lexical identification of

items across speakers is above chance performance for both

non-nasalized (93.1%) and nasalized (71.7%) vowels, with

an overall accuracy rate of 82.4%. For the TTS voices, per-

formance is very high for the non-nasalized vowels (91.5%)
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but close to chance for the nasalized vowels (47.6%). The

overall correct identification for TTS voices was 69.9%.

The accuracy data were modeled using a mixed-effects

logistic regression with lme4 R package (Bates et al., 2015).
Estimates for p values were computed using the lmerTest
package (Kuznetsova et al., 2015). Fixed effects included

vowel type (nasalized vs non-nasalized), speaker type (TTS

vs human), and the two-way interaction. Random effects

included by-listener and by-speaker random intercepts as

well as by-listener random slopes for vowel type and by-

speaker random slopes for vowel type. Contrasts were sum-

coded.

Table I provides the summary statistics for the model.

There was an effect of vowel type: overall, listeners are less

accurate identifying the original lexical item for nasalized

vowels compared to oral vowels. There was an effect of

speaker type indicating that listeners are more accurate at

coda-identifications from the vowel when produced by

human voices than TTS voices. There was also an interac-

tion between vowel type and speaker type. As seen in Fig. 1,

the difference in accuracy across TTS and human voices for

nasalized vowels is large, relative to that for oral vowels:

listeners perform better at word identifications for nasalized

vowels for human voices than for TTS voices, while the dif-

ferences across voice types for non-nasalized vowels were

similar.

Table I also reports the variance and standard deviation

for the random effects of the model. Notably, there is a large

amount of variation in listeners’ ability to correctly identify

words across vowel types for individual speakers as there is

for speaker types (human vs TTS). To further investigate

this, Fig. 2 (for human speakers) and Fig. 3 (for TTS voices)

plot mean correct listener identifications by vowel type for

each speaker. As seen, there is variation in accurate word

identification across speakers for both human and TTS voi-

ces. However, as seen in both figures, the cross-speaker vari-

ation is largest for nasalized vowels. In other words, correct

identification of the word for nasalized vowels, specifically,

is highly speaker-dependent.

FIG. 1. Accurate word identification rates by listeners for nasalized and

non-nasalized vowels for naturally produced stimuli (human speakers) and

TTS stimuli.

TABLE I. Summary statistics from the logistic mixed effects model run on

word identification accuracy.

Coefficient SE z value p value

Intercept 1.78 0.07 24.2 <0.001

Vowel type (nasalized) –1.24 0.08 –14.73 <0.001

Speaker type (human) 0.39 0.07 5.42 <0.001

Vowel type � speaker type 0.25 0.08 2.96 <0.01

Random effects Variance SD

Listener (intercept) 0.28 0.53

Vowel type 0.38 0.61

Speaker (intercept) 0.27 0.52

Vowel type 0.37 0.60

Number of observations (n¼ 27 440), listeners (n¼ 166), speakers (n¼ 96).

FIG. 2. Mean accurate word identification rates (and standard errors) by lis-

teners for nasalized and non-nasalized vowels for each of the human

speakers.

FIG. 3. Mean accurate word identification rates (and standard errors) by lis-

teners for nasalized and non-nasalized vowels for each of the TTS voices.
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III. EXPERIMENT 2: W2V2 CLASSIFICATION OF
HUMAN AND TTS VOICES

A. Methods: W2V2

An attention mechanism is integrated into the W2V2

model, which is primarily utilized for speech recognition

tasks (Hinton et al., 2012). Its architecture comprises three

key components: a convolutional encoder for processing

raw audio signals and extracting speech representations, a

quantization module for discretizing these latent representa-

tions, and an attention mechanism known as Transformer
(Vaswani et al., 2017). The latter allows the extraction of

context vectors by capturing information across the entire

audio sequence, thereby facilitating interactions among vari-

ous latent representations. As a self-supervised training

model, W2V2 does not require a large volume of manually

annotated data to perform a task, unlike other deep learning

models (Lee et al., 2021; Radford et al., 2023). It undergoes
pre-training on a substantial corpus of unannotated audio

(53 000 h) and can subsequently be fine-tuned with less

labeled data for specific tasks (Baevski et al., 2020). Our uti-
lization of the W2V2 model follows the “feature probing”

approach (Guillaume et al., 2023; Triantafyllopoulos et al.,
2022; Shah et al., 2021; Ma et al., 2021), whereby it serves

as a feature extractor from audio data, without fine-tuning

the model on annotated data. The encoded audio was then

used as input to a multi-layer perceptron classifier to evalu-

ate the presence of nasal coarticulation in speech.

The model was first trained on three English corpora:

the Buckeye corpus of conversational American English

speech (Pitt et al., 2005), the Timit corpus (Garofolo, 1993),

and the UCLA corpus (Keating et al., 2021). Two categories

were considered: “nasal” with one of the five vowels (/A/, /æ/,
/ˆ/, /E/, /ow/; target words provided in II.A.1) followed by a

nasal consonant (/m/ or /n/) vs “non-nasal” with one of the

five vowels not followed by a nasal consonant. A total of

54 232 occurrences (27 116 nasal and 27 116 non-nasal)

were used for training. For the training to take place, CVN

and CVC sequences were extracted from natural speech

with a Praat script with a rectangular window in order to

include phonetic contexts. The extracted raw waveforms

were encoded using the open-source pre-trained model

W2V2-large. This feature extractor allows the construction

of a 1024-dimensional vector for the entire provided audio

signal. Pasad et al. (2021) looked for linguistic and acoustic

information present in the different transformer layers of the

W2V2 model and compared this information between

layers. They found that phonetic identity is most represented

in the 11th, 18th, and 19th layers of the W2V2-large model,

hence our choice of the 18th layer in this work. Our multi-

layer perceptron classifier consisted of 12 fully connected

layers (with respectively 1024, 1024, 512, 512, 256, 256,

128, 128, 64, 64, 32, and 16 neurons) followed by a dropout

layer to avoid overfitting, and a ReLu activation function

was applied in each layer. At the end of the classifier, the

classification layer was initialized with a sigmo€ıd activation

with a binary cross-entropy loss function. The classification

algorithm classifies into two distinct categories: nasalized

and non-nasalized.

To implement and train a network, we used Keras neu-

ral network library. AdamW optimization was applied as a

stochastic gradient descent method with a learning rate of

0.000125 and a decay of 0.01. The batch size was 128, and

the number of epochs was fixed to 150 with early stopping

strategy.

The model was tested using the same stimuli described

in Sec. II A. It is important to note that the model was

trained on CVC or CVN structures and then evaluated on

CV stimuli extracted from CVC/CVN items (without the

noise added at the end, as described in Sec. II A 4). The vec-

tor representations of these stimuli were generated using the

same procedure as the training set, utilizing a W2V2-large

model. The evaluation of the classifier was conducted using

the same words that were perceived by the participants in

the perception test, totaling 600 stimuli (300 nasalized and

300 oral) produced by human voices and 320 stimuli (180

nasalized and 180 oral) generated by TTS voices.

B. Results

We coded each token as classified as the nasal or non-

nasal category based on the assigned probability value by

W2V2: a probability greater than 0.5 of belonging to the

nasal category is coded as a nasal classification; otherwise,

the vowel is classified as non-nasal. Classifications for each

item were coded binomially for being correct (¼1) or incor-

rect (¼0).

The overall performance of the W2V2 in correctly clas-

sifying the identity of the coda based on the vowel informa-

tion alone was 80.8%. The mean percentage correct

classification rates for nasal-coarticulated and non-nasal

vowels across human and TTS voices are provided in Fig. 4.

The overall result for the human voices was 87% accuracy.

For the human voices, W2V2 correctly classified 80.7% of

nasalized vowels and 93.3% of non-nasalized vowels. The

overall result for TTS voices was 70.5%; 89.4% correct

FIG. 4. Correct classification rates by W2V2 for nasalized and non-

nasalized vowels for naturally produced stimuli (human speakers) and TTS

stimuli.
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classification of nasalized vowels and 51.7% of non-

nasalized vowels.

The correct classifications data were modeled using a

mixed-effects logistic regression with lme4. Fixed effects

included vowel type (nasalized vs non-nasalized), speaker

type (TTS vs human), and their interaction. Random effects

structure consisted of by-speaker random intercepts and by-

speaker random slopes for vowel type. Contrasts were sum-

coded.

Table II provides the summary statistics from the

W2V2 classifications logistic model. There was an effect of

vowel type: overall, W2V2 is better at classifying the nasal-

ized vowels, compared to the non-nasalized vowels. There

was an effect of speaker type: W2V2 performs better for

human voices than for TTS voices. There was also an

interaction between vowel type and speaker type, which is

illustrated in Fig. 4: while W2V2 performs higher for non-

nasalized vowels than nasalized vowels in human voices,

the lowest rate of correct classifications is for the non-

nasalized vowels produced by the TTS voices.

Similar to what was observed for the perception data,

the random effects for W2V2 data’s model reveal large vari-

ance for the by-speaker random slope for vowel type.

Figures 5 and 6 display mean correct classifications by

W2V2 for each of the human speakers and each of the TTS

voices, respectively. As seen, there is wide variation in over-

all classification accuracy across speakers. For human

speakers, like that seen for human listeners, the variation is

largest for the nasalized vowels; yet, in contrast, the varia-

tion for the TTS voices varies greatly across the non-

nasalized vowels.

IV. INVESTIGATING USE OFACOUSTIC CUES BY
LISTENERS ANDW2V2

Our final research question is whether human listeners

and W2V2 use acoustic features of nasalized vowels in simi-

lar ways when making linguistic classifications. We focus

on nasalized vowels only in this analysis since we are inter-

ested in the phonetic features associated with vowel nasal-

ity, in particular.

In order to assess differences in use of acoustic cues in

correctly categorizing nasalized vowels, we measured sev-

eral acoustic properties of the vowels used in the perception

and classification studies (non–noise-masked). First, words

and phonemes were segmented using the Montreal Forced

Aligner (McAuliffe et al., 2017). Following automatic

force-alignment, all of the phoneme boundaries in the target

words were hand verified, and corrected where necessary by

phonetically trained researchers.

For the nasalized vowels only, we then measured A1-

P0 (Chen, 1997): this is a spectral measure of vowel nasali-

zation reflecting the difference between the amplitude of the

low-frequency nasal peak, P0 (found around 250Hz) whose

amplitude increases with increased nasality, and the ampli-

tude of the first formant peak, A1, whose amplitude

decreases with increased nasality. A smaller A1-P0 value

indicates greater acoustic nasality. Since all of the target

words used in the present study contained non-high vowels,

A1-P0 is an appropriate measure. We measured A1-P0 at

8 equidistant points across each nasalized vowel, and the

TABLE II. Summary statistics from the logistic mixed effects model output

for correct classification rates by W2V2.

Coefficient SE z value p value

Intercept 2.11 0.20 10.30 <0.001

Vowel type (nasalized) 0.65 0.21 3.05 <0.01

Speaker type (human) 0.44 0.16 2.74 <0.01

Vowel type � speaker type –0.94 0.17 –5.55 <0.001

Random effects Variance SD

Speaker (intercept) 0.83 0.91

Vowel type 1.12 1.06

Number of observations (n¼ 960), speakers (n¼ 96).

FIG. 5. Mean correct classification rates by W2V2 for nasalized and non-

nasalized vowels for each of the human speakers.

FIG. 6. Mean correct classification rates by W2V2 for nasalized and non-

nasalized vowels for each of the TTS voices.
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average value across points for each vowel was used as our

acoustic nasality value for each item. Also, following prior

work indicating that F1 frequency, F1 bandwidth, and spec-

tral tilt (measured as A3-P0 in Styler, 2017) are also spectral

features that correlate with vowel nasalization, we took

these acoustic measurements at 8 equidistant points across

each nasalized vowel and the average value across points

for each vowel was used. Finally, vowel duration is a feature

of stimuli that will likely influence the ability of any human

perceiver to correctly classify vowels, especially for the

non-high vowels used in the current study (Hillenbrand

et al., 2000). Therefore, vowel duration was also measured.

We ran two separate mixed effects logistic regressions:

one on the perception study coda identification data and one

on the W2V2 classification data. Only the responses for the

nasalized vowels were run in each model, again since we

are interested in the effect of acoustic features systemati-

cally associated with nasalized vowels in the identification

of nasality. The fixed effects structure for both models con-

sisted of main effects of F1 frequency, F1 bandwidth, A1-

P0, and spectral tilt. The model run on listener perception

responses included vowel duration; since the classifier is run

on time-normalized information, we did not include duration

in the W2V2 model. F1 frequency and vowel duration were

logged. All variables were centered and scaled. The model

runs on the perception responses included by-listener and

by-speaker random intercepts. The W2V2 model included

by-speaker random intercepts.

Since our analysis examines multiple acoustic cues asso-

ciated with nasalization (particularly A1-P0 and the features

of F1, bandwidth, and spectral tilt), collinearity of factors is a

potential problem since it violates the assumption of orthogo-

nality of predictors. However, collinearity between variables

can be handled by orthogonalizing predictor variables through

residualization (Gorman, 2010; Zellou and Tamminga, 2014;

Wurm and Fisicaro, 2014). In this method, one member of a

pair of collinear predictors is taken as a baseline (here, A1-P0)

and the other predictor (e.g., F1) is regressed linearly on the

values of the baseline. The values of the second predictor are

then replaced in the model by the residuals of this regression,

which are by definition strictly orthogonal to the baseline pre-

dictor values. Therefore, we regressed F1, F1 bandwidth, and

spectral tilt each individually by A1-P0 and included the resid-

uals of those models as the predictors for F1, F1 bandwidth,

and spectral tilt in each model.

The summary statistics for the perception model are

provided in Table III. All of the fixed effects of the model

were significant, except for spectral tilt, indicating that

human listeners showed use of multiple acoustic cues shown

to be reliably present on nasalized vowels in making coda

identifications. A lower A1-P0 value on the vowel increased

the likelihood of nasal coda identifications, in line with

work showing that listeners are more likely to identify a

vowel as nasalized in stimuli where A1-P0 decreases

(Scarborough and Zellou, 2013; Zellou and Dahan, 2019). A

negative coefficient for F1 indicates that listeners are more

likely to identify a nasalized vowel as indicating an

upcoming nasal coda as the first formant frequency

decreases, consistent with prior work that the perceptual

effect of vowel nasalization is a raising of the vowel quality

(e.g., Beddor et al., 1986). The model reported that smaller

F1 bandwidth values increased nasal coda identifications,

but spectral tilt does not predict listener responses. Finally,

longer nasalized vowels increased the likelihood of correct

coda identifications. Note that pre-nasal vowels are shorter

in duration than vowels before oral codas (Peterson and

Lehiste, 1960; Zellou and Scarborough, 2019), so the posi-

tive relationship between vowel duration and response accu-

racy within nasalized vowels cannot be related to use of the

temporal property as a feature signaling greater likelihood

of a nasal coda. Rather, this indicates that more acoustic

information helps listeners make linguistic decisions.

Table IV provides the output of the model run on

W2V2 categorizations for nasalized vowels. The only fea-

ture that was significant in the model was spectral tilt:

higher values correlated with more accurate nasal classifica-

tions. While our human listeners did not show sensitivity to

spectral tilt, Styler (2017) showed that nasalized vowels

contain higher spectral tilt values than non-nasal vowels.

V. DISCUSSION

The current study compared how human listeners and a

state-of-the-art speech model (W2V2) use nasal coarticulatory

TABLE III. Logistic mixed effects model output on acoustic features for

correct identifications of nasalized vowels by human listeners.

Coefficient SE z value p value

Intercept 0.66 0.20 3.4 <0.001

A1-P0 –0.86 0.08 –11.28 <0.001

F1 frequency –0.40 0.04 –9.22 <0.001

F1 bandwidth –0.14 0.04 –3.75 <0.001

Spectral tilt –0.04 0.04 –0.94 0.35

Vowel duration 0.67 0.03 22.78 <0.001

Random effects Variance SD

Speaker (intercept) 3.37 1.84

Listener (intercept) 0.44 0.67

Number of observations (n¼ 13 670), speakers (n¼ 96), listeners (n¼ 166).

TABLE IV. Logistic mixed effects model output on acoustic features for

correct classification rates of nasalized vowels by W2V2.

Coefficient SE z value p value

Intercept 2.71 0.36 7.44 <0.001

A1-P0 –0.36 0.25 –1.45 0.15

F1 frequency –0.41 0.26 –1.61 0.11

F1 bandwidth 0.25 0.26 0.94 0.35

Spectral tilt 0.92 0.28 3.32 <0.001

Random effects Variance SD

Speaker (intercept) 3.31 1.82

Number of observations (n¼ 480), speakers (n¼ 96).
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cues in speech to classify vowels as either nasalized or

non-nasalized. Our stimuli were produced by 60 human

talkers and generated by 36 TTS voices (96 total voices).

Half of the vowels were extracted from pre-nasal contexts

(i.e., from words with CVN structure), which contain

nasalization due to coarticulation with the final nasal coda.

The other half of the vowels were taken from an oral coda

context (i.e., CVC words), and thus were non-nasal coarti-

culated. Human listeners completed a coda identification

task, deciding whether each vowel was extracted from a

word ending in a nasal or oral coda. We had a W2V2 per-

form classifications of vowels as either nasalized or non-

nasalized.

A. Listener and W2V2 categorization of nasalized and
non-nasalized vowels

Our first aim was to investigate how the patterns of

W2V2 and human listener classifications differ. Overall, lis-

teners and W2V2 both show similarly overall high perfor-

mance in classifying vowels (78.5% accuracy for listeners

vs 80.8% correct classifications by W2V2). This demon-

strates that acoustic information from coarticulation is suffi-

cient for the W2V2 speech model to categorize English

vowels as either nasalized or non-nasalized when perform-

ing this restricted vowel classification task. Another similar-

ity is that both listeners and W2V2 perform better for the

natural human voices compared to the TTS voices overall.

Although TTS voices have become increasingly naturalistic

in recent years (e.g., van den Oord et al., 2016), even the

most advanced TTS speech (such as those used for Alexa-

or Siri-enabled devices) is less intelligible than naturally

produced speech (e.g., Simantiraki et al., 2018; Aoki et al.,
2022).

We also find that listeners hearing nasalized vowels in

natural voices do perform well at identifying the originally

intended nasal coda. This replicates prior work demonstrat-

ing that listeners use coarticulatory cues to predict upcoming

linguistic information (Ohala and Ohala, 1995; Beddor

et al., 2013). However, listeners’ coda identification accu-

racy is higher for non-nasalized vowels, than for nasalized

vowels. Moreover, nasalized vowels generated by TTS

speech are the most difficult for listeners to correctly catego-

rize (performance was at-chance level). Thus, listeners’

reduced intelligibility for TTS speech only applied to nasal-

ized vowels (oral vowels are identified equally well across

human and TTS voices). This is consistent with prior work

which found that acoustic nasality for TTS voices was more

phonetically ambiguous than nasalized vowels in naturally

produced human speech (Ferenc Segedin et al., 2019). From
a practical perspective, these results, and future work exam-

ining asymmetries in intelligibility across word contexts,

can be used to inform TTS synthesis techniques in order to

improve speech comprehension of generated speech.

We also found systematic differences in W2V2 classifi-

cation across vowel and speaker type. For the human voices,

W2V2 displays patterns of performance across vowel types

that parallel human listener performance (i.e., non-nasalized

> nasalized). Yet, W2V2 shows the reverse pattern of clas-

sification accuracy for TTS voices: higher correct classifica-

tion rates for nasalized vowels and low accuracy for non-

nasalized vowels. That W2V2 is highly accurate at classify-

ing nasalized vowels in TTS suggests that the acoustic prop-

erties of vowel nasalization present in synthesized voices

are not ambiguous for W2V2 as they are for human listen-

ers. This does not support a claim that vowel nasalization in

synthetic speech results in greater acoustic ambiguity, rather

that vowel nasalization in TTS is ambiguous particularly for

human (American English-speaking) listeners.

We also examined whether the W2V2 model’s behavior

parallels human perception patterns with respect to variation

across speakers. We found a great deal of cross-speaker var-

iation in listeners’ ability to identify the coda from the

vowel information alone, yet this variation is largest for

nasalized vowels compared to non-nasalized vowels for

both human and TTS voices. This is consistent with past

work that American English speakers vary greatly in their

coarticulatory cues and that listeners are sensitive to this

variation (Zellou, 2017). W2V2 correct classifications are

also highly speaker-dependent. However, again, the

speaker-dependent patterns for the TTS voices are different

from those displayed by the real listeners. W2V2 showed

the largest variation in identifying non-nasalized vowels

across TTS voices.

B. Acoustic cues to nasalized vowel categorization

We also examined how the multidimensional acoustic

properties of vowel nasalization are used by real listeners

and a speech model designed primarily for ASR in making

nasal categorizations of coarticulated vowels. Those analy-

ses also reveal differences across listeners and W2V2 in use

of acoustic cues. As expected, the listeners rely on several

of the unique acoustic features that have been found to dis-

tinguish a nasalized vowel from a non-nasalized vowel

when determining whether there is an upcoming nasal coda,

such as a spectral measure of relative prominence of nasal

formants and the frequency of F1. This confirms that listen-

ers are highly sensitive to the unique coarticulatory features

in the acoustic signal when making linguistic decisions. One

surprising observation is that listeners did not show the

expected pattern for F1 bandwidth: smaller F1 bandwidth

values correlated with more nasal identifications, which is

opposite from what is found in production. One possible

explanation comes from recent work that has shown a

changeover apparent time in California listeners’ use of

acoustic cues; specifically, younger listeners (of the same

age group of listeners used in the present study) rely less on

F1 bandwidth as a cue for nasal coda identifications than

older adults (Zellou and Cohn, 2024). Thus, the reversal

from the expected pattern could be part of a trend of chang-

ing cue weights in a speech community over time. We also

acknowledge that it is possible that our formant bandwidth

measurements had greater measurement error, since formant

bandwidths are often underestimated when using linear
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prediction coding analysis, particularly when fundamental

frequency is high (e.g., Atal, 1975).

W2V2’s performance also correlates with a well-known

acoustic feature: spectral tilt. Prior work has been successful

in training a Support Vector Machine classifier to use the

acoustic features of vowel nasalization to accurately classify

nasalized vowels (Pruthi and Espy-Wilson, 2007). Here, we

find that W2V2 uses acoustic cues that are correlated with

vowel nasality, but in different ways from human listeners.

Investigating why W2V2 uses this particular acoustic cue to

nasalization over others is a question for future work.

Coarticulation results in multidimensional phonetic varia-

tion. This yields a robust and richly informative acoustic signal

where there are multiple cues to segment identities distributed

over time. The different patterns of variation in coda identifica-

tions within and across humans and machines also has implica-

tions for models of speech perception. Just as it is observed

that human listeners vary in their attention and use of the mul-

tiple coarticulatory cues, we find that machines show distinct

patterns as well. More specifically, there is information in the

signal that humans attend to that machines do not, and vice

versa. Thus, learning how to map a given acoustic signal to a

linguistic message can take many different pathways.

This observation that W2V2 is using acoustic cues to

nasalization in American English differently than human lis-

teners has implications for the wider use of natural language

understanding and ASR systems, in particular during

human–computer interactions. One possible way to think

about the differences in acoustic properties is that they

reflect a “misalignment” in the use of the phonetic cues dur-

ing speech recognition across listeners and W2V2. In

human–human interactions, systematic differences in “cue

weighting” of acoustic features during speech perception

can result in greater misunderstandings during communica-

tion. One example of the comes from work on L1 vs L2

speech perception: learners of English, for instance, show

different use of acoustic cues during speech perception than

native speakers (e.g., Escudero et al., 2009), which can

affect how phonemes are perceived (Kong and Yoon, 2013).

There is potential for the same type of misalignment across

human users and ASR systems to lead to misunderstanding

(although, of course, the sources of the misalignment in use

of cues across humans and machines are very different). For

instance, in cases where the ASR misunderstands a human

user, the user might adapt their speech patterns and produce

“clear speech” adjustments to try to be better understood,

and hyperarticulate the phonetic cues they use themselves to

better understand speech (e.g., Buz et al., 2016). If machine

classifiers have different acoustic weightings of cues to per-

form word identification than speakers assume based on

human–human interaction, this can lead to even greater mis-

understandings (e.g., “spiraling errors”) (Oviatt et al., 1998).
This is another line for future work to investigate. Fine-

tuning ASR systems to match the cue weightings of human

listeners can be one way to lead to better alignment between

how users adapt their speech when talking to machines and

what the machines rely on to understand speech.

C. Limitations and future directions

There were several limitations of the present study

which open even more avenues for future research. For one,

while the present study only focused on comparing nasal-

ized and non-nasalized vowels, looking at other types of

word structures and coarticulatory patterns presents interest-

ing directions for future research. For instance, next steps

could be to compare human listener and W2V2 performance

on use of anticipatory labial, liquid, or vowel-to-vowel coar-

ticulation in predicting upcoming linguistic information,

since each of these properties has been shown to be used in

speech perception (e.g., Krueger and Noiray, 2022; Redford

et al., 2018; West, 1999). We also acknowledge that coarti-

culation can vary in vowel-specific ways (e.g., Zellou and

Scarborough, 2019). Investigating vowel-based asymmetries

in the use of coarticulatory cues across human listener and

machine classifiers is a ripe avenue for future research. The

current study also used commercially available TTS voices;

future work can explore machine and human classification

of parametrically synthesized speech where acoustic cues

are systematically varied.

Another approach for future work is to compare human

and automatic machine classifications of coarticulation

across different languages. Specifically, there is a large

amount of work demonstrating that patterns of coarticula-

tion are language-specific (e.g., Beddor et al., 2002; Keating
and Cohn, 1988) and even dialect-specific (Zellou and

Tamminga, 2014; Bongiovanni, 2021). Examining whether

perception and neural network classifications are more or

less similar in languages or dialects that vary in their coarti-

culatory patterns could be both revealing to understanding

the practical consequences of cross-language phonetic varia-

tion and also important for developing accurate natural lan-

guage understanding methods for many different languages.

For instance, a recent study used a similar approach to that

in the current paper to develop a classifier for vowel nasality

in French, where vowel nasality is lexically contrastive

(Elmerich et al., 2023). In that study, the testing data

involved recordings made with an aerodynamic mask to

measure nasal airflow. Their study compared the results

obtained with a spectrogram-based convolutional neural net-

work model to the aerodynamic measurements, specifically

the nasal airflow. The findings demonstrated that the NN

model achieved better nasality detection for French nasal

vowels compared to the current results for English, achiev-

ing an overall performance of 88% accurate nasal vowel

detection. The predictions made by the NN model were

found to be correlated with nasal airflow, and with varia-

tions observed across vowels and speakers, thereby validat-

ing the use of convolutional neural network in this context

(Elmerich et al., 2023). Thus, it appears that neural networks
are sensitive to language-specific patterns of vowel nasaliza-

tion. Investigating this question further is a ripe direction for

future work.

Another direction for future work is to create a deep

learning system that attends to acoustic cues in the same
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ways as human listeners. The current study found differ-

ences in the use of some acoustic features. Examining

context-specific asymmetries in speech recognition system

performance and adjusting the weighting of acoustic fea-

tures, such as those used by listeners, might lead to a more

“fine-tuned” deep learning system that can mimic human

perceptual patterns (see also Gu et al., 2018, who discuss

this as a future approach in neural network research) and

provide insight into how neural systems learn to attend to

the unique acoustic features of coarticulation. Future work

examining the use of coarticulatory cues by different types

of listeners (for instance, human learners of English) can

also be used to understand language acquisition. It is also

worth noting that there are lots of other cues that are used by

listeners during spoken language comprehension that are not

used by speech recognition systems, such as visual cues

from the speaker, socio-pragmatic information, and much

more. This is another explanation for why human and

machine comprehenders perform speech recognition differ-

ently during spontaneous spoken language interactions.

VI. CONCLUSION

Overall, the current study provides insight into how coar-

ticulatory variation in vowels produced before nasal codas in

American English are categorized by human listeners and

artificial neural networks. The deep learning model yields

global correct classification rates of vowels close to human-

level accuracy. There are also systematic similarities in the

patterns of classifications of nasalized vs non-nasalized vow-

els for natural human voices (but not for synthetic voices).

Acoustic analyses reveal differences in how the deep learning

model uses acoustic cues for nasal coarticulation to classify

vowels from human perceivers. More broadly, these results

demonstrate that comparing listener speech perception and

deep learning-based classifications of phonetic variation is

one approach that can inform how the models perform like,

or differ from, the human perceptual system.
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