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ABSTRACT:

Anticipatory coarticulation is a highly informative cue to upcoming linguistic information: listeners can identify that
the word is ben and not bed by hearing the vowel alone. The present study compares the relative performances of
human listeners and a self-supervised pre-trained speech model (wav2vec 2.0) in the use of nasal coarticulation to
classify vowels. Stimuli consisted of nasalized (from CVN words) and non-nasalized (from CVCs) American
English vowels produced by 60 humans and generated in 36 TTS voices. wav2vec 2.0 performance is similar to
human listener performance, in aggregate. Broken down by vowel type: both wav2vec 2.0 and listeners perform
higher for non-nasalized vowels produced naturally by humans. However, wav2vec 2.0 shows higher correct classifi-
cation performance for nasalized vowels, than for non-nasalized vowels, for TTS voices. Speaker-level patterns
reveal that listeners’ use of coarticulation is highly variable across talkers. wav2vec 2.0 also shows cross-talker vari-
ability in performance. Analyses also reveal differences in the use of multiple acoustic cues in nasalized vowel clas-
sifications across listeners and the wav2vec 2.0. Findings have implications for understanding how coarticulatory
variation is used in speech perception. Results also can provide insight into how neural systems learn to attend to the

unique acoustic features of coarticulation. © 2024 Acoustical Society of America.
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I. INTRODUCTION

There is an enormous amount of variation in speech.
One large source of variability is due to coarticulation, or
the acoustic effects of overlapping articulations from adja-
cent sounds in the speech signal. Coarticulation is a natural
and essential property of speech dynamics because it per-
mits speech to be produced in a fluid and intelligible manner
(e.g., Fowler and Saltzman, 1993). For instance, vowels
before nasal consonants are produced with some amount of
nasality since the velum-lowering gesture from the follow-
ing sound begins early and overlaps with the vowel. Since
coarticulation is a natural and systematic feature of speech,
human listeners are highly sensitive to its variation: they use
coarticulation to predict upcoming sounds in order to more
efficiently comprehend the speaker’s message (Fowler,
1984). For instance, looking at the example of anticipatory
coarticulatory nasality in English from the side of a per-
ceiver, listeners can identify that a word they are hearing is
bun, and not bud based on hearing nasal coarticulation on
the vowel only. This indicates that coarticulatory nasaliza-
tion provides cues to lexical identity even before the final
consonant is pronounced (Ali ez al., 1971; Ohala and Ohala,
1995; Beddor et al., 2013).
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Yet, there are many open questions about how the use
of anticipatory coarticulatory cues present on vowels to cat-
egorize speech might vary across different types of contexts,
speakers, and comprehenders. The current study asks to
what extent machine speech recognition systems use antici-
patory coarticulation present on vowels to make classifica-
tions of speech in ways similar to, or different from, human
listeners. We investigate this by testing classifications by a
widely used Self-Supervised Pretrained speech model
(wav2vec 2.0 [W2V2]) (Baevski et al., 2020) of American
English nasalized and non-nasalized vowels (spliced out of
context and presented in isolation) produced by 96 distinct
voices. Perceptual responses to these vowels by human lis-
teners are also examined, and we compare listener and
machine classification performance.

Since coarticulation is systematic and provides predic-
tive information, one hypothesis is that the machine recogni-
tion system will use nasal coarticulatory cues to accurately
classify vowels in ways similar to how human listeners per-
form. Alternatively, this speech model might outperform
humans in use of coarticulation to perform linguistic classi-
fications. More specifically, human listeners typically per-
ceive vowel nasalization in the context of a nasal consonant
and at least partially attribute the acoustic effects of coarti-
culation to its source (Beddor and Krakow, 1999; Zellou,
2017); so hearing vowels spliced from their appropriate
coda contexts might sound phonetically shifted or otherwise

© 2024 Acoustical Society of America 489


https://orcid.org/0000-0001-9167-0744
https://doi.org/10.1121/10.0027932
mailto:gzellou@ucdavis.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0027932&domain=pdf&date_stamp=2024-07-16

odd to listeners, leading to lower performance. Meanwhile,
the speech model is more likely to interpret coarticulatory-
acoustic cues as inherent to the vowel. Speech models, such
as W2V2, have been primarily designed to perform
automatic speech recognition (ASR) but it has also proved
efficient for other tasks (Kunze er al., 2017; Lian et al.,
2018). While global, human-level performance is the goal in
developing ASR systems, investigating whether there are
context-specific asymmetries in speech recognition system
performance is one step to achieving fine-grained sensitivi-
ties to speech variation that parallel human listeners.

Another open question is whether speech models handle
cross-speaker variation in the same ways that human listen-
ers do. Coarticulation has been shown to vary extensively
across individual speakers (Beddor and Krakow, 1999;
Zellou, 2017; Yu and Zellou, 2019). Therefore, we also
examine cross-speaker variation in the performance of
W2V2, relative to human listeners, in classifications of
nasal-coarticulated vowels. Investigating how speech mod-
els designed for ASR systems classify coarticulated speech
is practically important for understanding how deep learning
handles within- and across-speaker variation.

Finally, we also compare human vs machine perfor-
mance in classification of coarticulated vowels across
naturally produced speech and synthetic voices (i.e., text-to-
speech [TTS] generated from those openly available by
several companies). It is a new digital era: the number of
spoken language interactions between machines and humans
are common and increasing every day due to voice-
activated Al devices in the home (Ammari et al., 2019).
Thus, it is relevant and apt to ask how speech perception
might vary across human—human vs human—device (and,
even device—device) interactions.

A. Coarticulation in speech recognition

There is a growing body of work investigating how lis-
teners use coarticulation during speech perception.
Coarticulation is a natural and systematic property of
speech. Thus, it has been proposed that listeners attend to
coarticulatory details to make predictions about, or more
efficiently process, upcoming linguistic information (Lahiri
and Marslen-Wilson, 1991; Beddor, 2009; Beddor et al.,
2013; Scarborough and Zellou, 2013). Since vowel nasality
in English always and only occurs in the context of a nasal
consonant, the presence of nasalization provides reinforcing
evidence about the identity of an upcoming nasal coda.
Indeed, many past studies have shown that American
English listeners use coarticulatory information as soon as it
is available to identify a lexical item, supporting this
hypothesis (Beddor et al., 2013; Zellou, 2022; Zellou et al.,
2023).

Moreover, people are now regularly talking with
machines and rely on them to accurately understand their
speech; thus, it is relevant to ask whether technological sys-
tems rely on acoustic features to classify words in the same
ways that human listeners do. Do ASR systems use
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coarticulatory information to classify speech similarly to
how human listeners use it? Neural networks are machine
learning tools that use high-dimensional spaces to perform
classifications. Speech recognition systems using artificial
neural networks have shown drastic improvements in recent
years, particularly when they are designed and trained to
take into account coarticulatory patterns (Kanthak and Ney,
2002; Ansary and Salehi, 2004; Mun et al., 2022). One
understudied aspect of ASR performance is coarticulatory
variation (Liu et al., 2020). While prior work has achieved
some success in synthesizing visual output, such as facial
animation (Deng et al., 2006) and videos of talking speakers
(Liu et al., 2020) by testing ASR performance on speech
coarticulation, many open questions remain. We ask
whether W2V2 uses coarticulatory cues to correctly identify
that a vowel is either nasalized or non-nasalized in ways that
parallel how human listeners perform classifying the same
set of stimuli (i.e., analogous to a human identifying the
word is bent from the vowel alone in Beddor et al., 2013).

More specifically, we ask whether there are the same
patterns of linguistic classifications across nasalized and
non-nasalized vowel types for a machine speech recognition
model and human perceivers. Overall comparison with
human-level accuracy is the gold standard of evaluating the
performance of artificial models. However, such global
comparisons might be masking underlying differences in
how human perceivers and neural networks categorize dif-
ferent types of speech sounds. Most broadly, understanding
what specific types of sound patterns that are difficult for
machine recognizers can be informative to improve their
performance with further fine-tuning.

The current study focuses specifically on coarticulatory
vowel nasality. For instance, while coarticulation is useful
for listeners, there is also evidence that orality (or, the
absence of nasalization) is a strong cue that listeners use to
identify that the upcoming sound is unequivocally not a
nasal consonant. Moreover, studies of English, Korean, and
Mandarin show that there is a huge amount of variation
across and within languages in degree of nasal coarticulation
(Scarborough and Zellou, 2013; Cho et al., 2017; Jang et al.,
2018; Li et al., 2020). Since nasal coarticulation varies so
much, listeners might be sensitive to the fact that orality is a
more reliable cue than nasality in a language where vowel
nasality occurs only contextually (i.e., due to coarticulation
from nasal consonants). Indeed, there is already some evi-
dence that listeners more systematically use orality as a cue,
compared to nasality, in classifying isolated vowels. For
instance, Zellou (2022) investigated listeners’ perception of
coarticulatory variation across a range of speakers, using a
coda-completion task, the same perception task we use in
the current study. Overall, that study found that listeners
were above chance at identifying nasal vs oral codas from
hearing the vowel alone. However, there is an asymmetry in
performance for oral vs nasalized vowels: correct identifica-
tion of the coda was lower for nasal-coarticulated vowels,
compared to oral vowels. Also, relative to oral vowels,
nasalized vowels in English are more ambiguous, more
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likely to be misperceived in isolation, and less likely to be
accurately discriminated (Wright, 1986; Beddor, 1993;
Zellou, 2017). Therefore, together, the empirical evidence
suggests that listeners can use nasal coarticulation to predict
that an upcoming sound is a nasal coda, yet oral vowels pro-
vide more reliable cues to coda identity in English. The use
of coarticulation supports models of speech perception
where listeners use available systematic details in the acous-
tic signal to efficiently process speech (Beddor, 2009). Yet,
the asymmetry between oral and nasalized vowels is also
informative. There are two possible explanations for this
pattern. For one, it could be because English listeners’ expe-
rience with nasality as only a coarticulatory cue (i.e., it only
occurs in the presence of a nasal consonant) means they are
just more sensitive to orality. Another possibility is that
coarticulation is just acoustically more variable across
words and speakers, since it is non-contrastive. For instance,
recent work has found cross-speaker variation in the weight-
ing of multiple acoustic features associated with coarticula-
tory nasality (Zellou and Cohn, 2024). This might mean that
nasalization is a slightly less robust cue than orality for
listeners.

Comparing human and machine classifications of nasal-
ized and non-nasalized vowels in American English can
tease apart these possibilities. We investigate whether neural
network speech classifiers show the same classification pat-
terns as human listeners. On the one hand, if neural net-
works are trained on natural American English speech input,
we might predict that it will mimic the patterns of categori-
zations displayed by human listeners: it will use coarticula-
tion to categorize vowels as nasalized, but overall
performance will be highest for oral vowels. On the other
hand, since coarticulation is a systematic property of vowels
and the neural network could attend to this type of variation
differently than humans, the W2V2 model might show sen-
sitivity to coarticulatory details to a greater extent than
human listeners. In either outcome, comparison of W2V2’s
and listeners’ classification of nasalized and non-nasalized
vowels can provide insight into the role of coarticulation in
speech perception, either as a universal acoustic clue or
something that perceivers are sensitive to based on their
language-specific experience.

B. Cross-speaker coarticulatory variation

Another question addressed in the current study is
whether across-speaker patterns of nasalized vowel classifi-
cations are similar for the W2V2 speech model as it is for
human listeners. There is a great deal of variation within
and across speakers in its realization. For instance, the
degree of nasal coarticulation (realized as vowel nasality
produced in words with CVN structure) varies greatly across
American English speakers (Zellou, 2017, 2022). An exami-
nation of the cross-speaker differences in Zellou (2022)
revealed a large amount of variability in how individual
talkers implement coarticulatory vowel nasalization and
thus how their coarticulated vowels provided predictive
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cues. For instance, some talkers produce coarticulated vow-
els that were systematically identified as originating from
CVN words, while other speakers produced coarticulated
vowels that provided little cues to coda nasalization since
they were exclusively categorized as coming from CVC
items. Oral vowels, on the other hand, provided consistent
cues for listeners to coda orality across speakers.

Do machine recognition systems show the same cross-
talker variability in speech classifications as human listen-
ers? On the one hand, a major goal in the development of
speech recognition technology is a neural network that dis-
plays minimal cross-speaker variation (e.g., Huang, 1992).
Thus, investigating whether an artificial neural network can
achieve talker-independent ability to use coarticulation in
speech classification would be one step toward this practical
goal. On the other hand, talker-independence is not the real-
ity for speech perception by human listeners. For instance,
some speakers are just more intelligible than other speakers,
in ways that are systematic (e.g., by dialect in Clopper and
Bradlow, 2008) or idiosyncratic (Bradlow et al., 1996).
Thus, if W2V2 displays talker-dependent classification of
vowels, it would be useful to know if these patterns mirror
those displayed by human listeners, or whether they vary in
some systematic, but meaningful, way.

1. Comparing naturally produced vs TTS voices

As mentioned above, understanding how speech per-
ception varies across naturally produced speech and TTS is
relevant in an era where human-machine conversational
interactions are a daily occurrence. Furthermore, ASR sys-
tems are increasingly being trained on TTS speech, as well
(Fazel et al., 2021). Hence, the design approach of the cur-
rent study is 2 x 2: comparing the use of coarticulation for
classification in naturally produced speech vs TTS by
human listeners and a machine speech recognizer.

There is some prior work investigating acoustic proper-
ties of coarticulation in industry-generated TTS and its
effect on listener perception. For instance, Ferenc Segedin
et al. (2019) found that acoustic nasality for TTS voices
generated for Amazon’s Alexa devices was more phoneti-
cally ambiguous than naturally produced human speech.
Zellou et al. (2021) compared acoustic nasality in CVN con-
texts across different types of TTS and found a larger differ-
ence in acoustic nasality between oral and nasalized vowels
in concatenative TTS than neural TTS. They also found that
TTS voices containing larger differences in coarticulatory
nasalization between oral and nasalized vowels (as in the
concatenative TTS voices) correlated with higher listener
discrimination. These studies suggest that TTS contains
more ambiguous coarticulatory cues but, at the same time,
like for naturally produced speech, there is variation across
TTS voices and that listeners track and use the patterns of
coarticulation in synthesized speech to comprehend the
speech signal. There is no prior work, to our knowledge,
comparing use of coarticulation for machine classification
of naturally produced speech vs TTS speech.
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C. Acoustic cue use in perception of vowel
nasalization

Does an ASR system use the multiple cues for coarti-
culatory information in the acoustic signal to categorize
speech in the same way as human listeners? There are mul-
tiple acoustic properties associated with vowel nasaliza-
tion. Vowel nasalization manifests itself acoustically as
dampening of the amplitude of the first formant spectral
peak (Al) and the introduction of a low-frequency nasal
resonance, which increases in amplitude as degree of nasal-
ization increases (P0). One acoustic measure for nasaliza-
tion is quantified by subtracting one measure from the
other, A1-PO (Chen, 1997; Styler, 2017). There are addi-
tional acoustic differences across nasalized and non-
nasalized vowels. The frequency of F1, which is typically
modulated by tongue height, has been shown to be different
across nasalized and non-nasalized vowel counterparts
(Carignan, 2017). Nasalized vowels also display wider F1
bandwidths than oral vowels (Hawkins and Stevens, 1985;
Stevens, 2000; Styler, 2017). Voice quality can also differ
across nasalized vowels, with nasalization correlating with
more breathy phonation metrics (Garellek ef al., 2016) and
smaller spectral tilt values (e.g., measured as A3-PO in
Styler, 2017). Much prior work has shown that listeners use
these acoustic features to some extent when perceiving
vowel nasalization (Beddor et al., 1986; Krakow et al.,
1988; Wright, 1986).

Thus, another research question addressed in the cur-
rent study is whether similar acoustic features are used
(and, used to the same extent) by listeners and artificial
learning models in correct categorizations of nasal-
coarticulated vowels. While comparing overall perception
patterns across human perceivers and W2V2 can reveal
fundamental similarities or differences in how they catego-
rize coarticulated speech, we can also examine whether
there are differences in the use of specific acoustic features
in making these classifications across people and machine
learning models.

Pruthi and Espy-Wilson (2007) trained a support vector
machine classifier on multiple acoustic cues to vowel nasali-
zation, including F1 frequency, F1 bandwidth, A1-P0O, and
spectral tilt and found high levels of accuracy in categoriza-
tions of vowels extracted from natural speech corpora.
However, no prior work, to our knowledge, has compared
relative acoustic cue weightings across human listeners and
W2V2 models trained on speech. We ask whether there are
differences in phonetic cue weighting across human listen-
ers and W2V2 by relating categorization patterns to a set of
acoustic features. If W2V2 uses the same acoustic features
as human listeners to classify nasalized vowels, there will be
no difference in relative cue weightings of these properties
across perception and classification data for nasalized vow-
els. On the other hand, differences in how these acoustic
properties predict human and machine classifications of
nasalized vowels will indicate that the neural network uses
spectral features of vowel nasalization differently than
listeners.
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D. Current study

In the current study, we investigate the role of nasal
coarticulation by two different types of comprehenders
(human listeners and a W2V2 pre-trained speech model for
ASR) in two different types of voices (human speakers and
TTS voices). First, we elicited CVN and CVC words by 60
human speakers and generated the same set of words from
36 distinct TTS voices. Next, we played the spliced CV por-
tions of the words to listeners who performed a word com-
pletion task (i.e., “is the word ben or bed?”). Then, we
extracted the acoustic features of each stimulus using a
W2V2-large model and ran a deep neural network to clas-
sify nasalized and non-nasalized vowels. The aim of this
work is to address three basic research questions. (1) How
do classification patterns of nasal-coarticulated and non-
nasalized vowels vary across human listeners and automatic
speech classifiers. (2) Do cross-speaker classification pat-
terns, across a range of different talkers including naturally
produced human speech and TTS voices, vary in similar
ways across listeners and W2V2? (3) Do human listeners
and W2V2 use the multiple acoustic features of nasalized
vowels in similar ways to classify coarticulated vowels?

We compare human listeners and a state-of-the art
speech recognition model on use of coarticulation in linguis-
tic classification. Coarticulation is an important acoustic fea-
ture that is quite variable across speakers and contexts.
Thus, we ask how good speech models are at using this fea-
ture to recognize language (i.e., compared to the standard
reference, which is human listener performance). We
selected W2V2 because it is a state-of-the art speech model
that is used by lots of researchers and language technology
engineers. Our findings can be informative about how the
most advanced speech recognition models handle variation
in coarticulatory cues. They can also shed light on how
speech recognition models work (e.g., how it weighs various
acoustic cues).

Il. EXPERIMENT 1: PERCEPTION OF HUMAN
SPEAKERS AND TTS VOICES

A. Methods
1. Target words

Target words included 5 sets of CVC and CVN minimal
pairs containing non-high vowels (/a/, /&/, /A/, /€], low/):
bod, bon, bad, ban, bud, bun, bed, ben, bode, bone. We
focus on non-high vowels following prior work on nasal
coarticulatory patterns in American English (Beddor and
Krakow, 1999; Zellou, 2022.)

113

Each target word was placed in a carrier phrase: “__,
the wordis __.”

2. Human speakers

The speakers were 60 native speakers of American
English (49 female, 11 male, age range = 18-33 years old,
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average age = 19.6 years old; all reported to be born and
raised in California), recruited through the University of
California-Davis subject pool. Participants received course
credit for their participation. The elicitation was conducted
over a single session, lasting approximately 30 min, in a
sound-attenuating booth at the University of California-
Davis Phonetics Lab. Recordings were made using a Shure
WH20 XLR head-mounted microphone and digitally sam-
pled at a 44.1-kHz sampling rate.

3. TTS voices

The same set of target words in carrier sentences was
generated in 36 American English TTS voices available
through three different platforms. Nine Siri voices’ produc-
tions were generated using the command line on an Apple
computer (OSX 10.13.6) and changing the Siri voice setting
in system preferences (7 female: Agnes, Allison, Ava,
Princess, Samantha, Susan, Victoria; 2 male: Alex, Fred).
Six Amazon Polly voices’ productions were generated using
the AWS Polly online console (4 female: Joanna, Kendra,
Kimberly, Salli; 2 male: Joey, Matthew). While the Amazon
Polly voices are only available in 6 adult speakers, we gen-
erated all items in the two different TTS generation techni-
ques: neural (generated via neural speech synthesis, the
most naturalistic) and “standard” (generation via parametric
speech synthesis, the more robotic type), resulting in 12 dis-
tinct voices. We also generated the productions in 15 voices
available through the Microsoft Azure online console (9
female: Amber, Aria, Ashley, Cora, Elizabeth, Jenny,
Michelle, Monica, Sara; 6 male: Brandon, Christopher,
Davis, Eric, Guy, Jacob), all generated in the default
“general” speaking style and with the speaking speed and
pitch values at their default settings. The Microsoft Azure
voices are generated via Neural TTS speech synthesis.
Apple announced in 2019 that the original version of Siri
(i.e., the “Samantha” voice) was originally generated using
concatenative speech synthesis via unit selection, but the
new version will be generated using Neural TTS.
Information about the TTS method used to synthesize the
other Apple voices was not publicly available.

4. Stimulus preparation

The words were extracted from the carrier phrases and
prepped for presentation in the perception experiment.
Stimuli for the perception experiment consisted of CV sylla-
bles spliced from the CVC and CVN word productions by
the 60 human speakers and the 39 TTS voices. Following
the method used by Ohala and Ohala (1995), the syllables
were then gated into white noise, at a level 5dB less than
the peak intensity of the vowel. In other words, the last 5 ms
of the vowel overlapped with noise, which then continued
for 150 ms after the vowel ended; the purpose of this was to
avoid a stop-bias that might occur with the syllables
abruptly ending in silence.
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5. Participants

Participants were 166 native American English speakers
(mean age: 19.4 years old), recruited from the University of
California-Davis Psychology Subject Pool. They received
course credit for participation. None of the participants
reported any speech or hearing impairments. This study was
approved by the University of California-Davis Institutional
Review Board, and all participants completed informed
consent.

6. Procedure

The experiment, conducted online using Qualtrics,
began with a sound calibration procedure: participants heard
one sentence produced by each speaker (not used in experi-
mental trials), presented in silence at 60 dB, and were asked
to identify the sentence from three multiple choice options,
each containing a phonologically close target word (e.g.,
they hear “Bill asked about the host” and are given options
for sentences ending in host, toast, coast). After, they were
instructed to not adjust their sound levels again during the
experiment. Participants completed a word completion task.
The task was designed following the paradigm used by
Ohala and Ohala (1995). On a given trial, listeners heard
one of the speakers produce either a CV syllable (truncated
from a CVC word) or a CV syllable (truncated from a CVN
word) gated into noise. Then, listeners select which one of
two minimal pair choices (either a CVC or CVN word, cor-
responding to the minimal pair option for that syllable) the
syllable was originally taken from.

Eight experimental lists were generated containing all
of the stimulus items from 12 talkers (randomly selected).
Each list contained only one type of speaker: 5 lists con-
tained only human speakers, 3 lists contained only TTS
speakers. Participants were randomly assigned to one of the
lists, in either the human speaker condition (n =94 partici-
pants) or the TTS voices condition (n="72 participants).
[Note: The perception data on the human speaker stimuli
was previously analyzed in Zellou (2022). The present study
includes this subset along with novel data from the percep-
tion of the TTS voices.]

In order to keep the experiment a reasonable length,
only the first production of each word from the frame sen-
tence was used in the perception study.

B. Results

Word identification accuracy on each trial was coded
binomially (1 =correct intended word identification,
0 =1incorrect). Listeners’ global mean performance in iden-
tifying the coda correctly based on the vowel information
alone is 78.5%. Figure 1 displays the aggregated word iden-
tification accuracy results by vowel type and speaker type.
For the human speakers, aggregated lexical identification of
items across speakers is above chance performance for both
non-nasalized (93.1%) and nasalized (71.7%) vowels, with
an overall accuracy rate of 82.4%. For the TTS voices, per-
formance is very high for the non-nasalized vowels (91.5%)
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FIG. 1. Accurate word identification rates by listeners for nasalized and
non-nasalized vowels for naturally produced stimuli (human speakers) and
TTS stimuli.

but close to chance for the nasalized vowels (47.6%). The
overall correct identification for TTS voices was 69.9%.

The accuracy data were modeled using a mixed-effects
logistic regression with /me4 R package (Bates et al., 2015).
Estimates for p values were computed using the /merTest
package (Kuznetsova et al., 2015). Fixed effects included
vowel type (nasalized vs non-nasalized), speaker type (TTS
vs human), and the two-way interaction. Random effects
included by-listener and by-speaker random intercepts as
well as by-listener random slopes for vowel type and by-
speaker random slopes for vowel type. Contrasts were sum-
coded.

Table I provides the summary statistics for the model.
There was an effect of vowel type: overall, listeners are less
accurate identifying the original lexical item for nasalized
vowels compared to oral vowels. There was an effect of
speaker type indicating that listeners are more accurate at
coda-identifications from the vowel when produced by
human voices than TTS voices. There was also an interac-
tion between vowel type and speaker type. As seen in Fig. 1,
the difference in accuracy across TTS and human voices for
nasalized vowels is large, relative to that for oral vowels:

TABLE 1. Summary statistics from the logistic mixed effects model run on
word identification accuracy.

Coefficient SE z value p value
Intercept 1.78 0.07 242 <0.001
Vowel type (nasalized) -1.24 0.08 —-14.73 <0.001
Speaker type (human) 0.39 0.07 542 <0.001
Vowel type x speaker type 0.25 0.08 2.96 <0.01
Random effects Variance SD
Listener (intercept) 0.28 0.53
Vowel type 0.38 0.61
Speaker (intercept) 0.27 0.52
Vowel type 0.37 0.60

Number of observations (n =27 440), listeners (n = 166), speakers (n = 96).
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FIG. 2. Mean accurate word identification rates (and standard errors) by lis-
teners for nasalized and non-nasalized vowels for each of the human
speakers.

listeners perform better at word identifications for nasalized
vowels for human voices than for TTS voices, while the dif-
ferences across voice types for non-nasalized vowels were
similar.

Table I also reports the variance and standard deviation
for the random effects of the model. Notably, there is a large
amount of variation in listeners’ ability to correctly identify
words across vowel types for individual speakers as there is
for speaker types (human vs TTS). To further investigate
this, Fig. 2 (for human speakers) and Fig. 3 (for TTS voices)
plot mean correct listener identifications by vowel type for
each speaker. As seen, there is variation in accurate word
identification across speakers for both human and TTS voi-
ces. However, as seen in both figures, the cross-speaker vari-
ation is largest for nasalized vowels. In other words, correct
identification of the word for nasalized vowels, specifically,
is highly speaker-dependent.
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FIG. 3. Mean accurate word identification rates (and standard errors) by lis-
teners for nasalized and non-nasalized vowels for each of the TTS voices.
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lll. EXPERIMENT 2: W2V2 CLASSIFICATION OF
HUMAN AND TTS VOICES

A. Methods: W2V2

An attention mechanism is integrated into the W2V2
model, which is primarily utilized for speech recognition
tasks (Hinton et al., 2012). Its architecture comprises three
key components: a convolutional encoder for processing
raw audio signals and extracting speech representations, a
quantization module for discretizing these latent representa-
tions, and an attention mechanism known as Transformer
(Vaswani et al., 2017). The latter allows the extraction of
context vectors by capturing information across the entire
audio sequence, thereby facilitating interactions among vari-
ous latent representations. As a self-supervised training
model, W2V2 does not require a large volume of manually
annotated data to perform a task, unlike other deep learning
models (Lee et al., 2021; Radford et al., 2023). It undergoes
pre-training on a substantial corpus of unannotated audio
(53000h) and can subsequently be fine-tuned with less
labeled data for specific tasks (Baevski et al., 2020). Our uti-
lization of the W2V2 model follows the “feature probing”
approach (Guillaume et al., 2023; Triantafyllopoulos et al.,
2022; Shah et al., 2021; Ma et al., 2021), whereby it serves
as a feature extractor from audio data, without fine-tuning
the model on annotated data. The encoded audio was then
used as input to a multi-layer perceptron classifier to evalu-
ate the presence of nasal coarticulation in speech.

The model was first trained on three English corpora:
the Buckeye corpus of conversational American English
speech (Pitt et al., 2005), the Timit corpus (Garofolo, 1993),
and the UCLA corpus (Keating et al., 2021). Two categories
were considered: “nasal” with one of the five vowels (/a/, /&/,
/Al [€l, Jow/; target words provided in II.A.1) followed by a
nasal consonant (/m/ or /n/) vs “non-nasal” with one of the
five vowels not followed by a nasal consonant. A total of
54232 occurrences (27 116 nasal and 27 116 non-nasal)
were used for training. For the training to take place, CVN
and CVC sequences were extracted from natural speech
with a Praat script with a rectangular window in order to
include phonetic contexts. The extracted raw waveforms
were encoded using the open-source pre-trained model
W2V2-large. This feature extractor allows the construction
of a 1024-dimensional vector for the entire provided audio
signal. Pasad et al. (2021) looked for linguistic and acoustic
information present in the different transformer layers of the
W2V2 model and compared this information between
layers. They found that phonetic identity is most represented
in the 11th, 18th, and 19th layers of the W2V2-large model,
hence our choice of the 18th layer in this work. Our multi-
layer perceptron classifier consisted of 12 fully connected
layers (with respectively 1024, 1024, 512, 512, 256, 256,
128, 128, 64, 64, 32, and 16 neurons) followed by a dropout
layer to avoid overfitting, and a ReLu activation function
was applied in each layer. At the end of the classifier, the
classification layer was initialized with a sigmoid activation
with a binary cross-entropy loss function. The classification
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algorithm classifies into two distinct categories: nasalized
and non-nasalized.

To implement and train a network, we used Keras neu-
ral network library. AdamW optimization was applied as a
stochastic gradient descent method with a learning rate of
0.000125 and a decay of 0.01. The batch size was 128, and
the number of epochs was fixed to 150 with early stopping
strategy.

The model was tested using the same stimuli described
in Sec. I A. It is important to note that the model was
trained on CVC or CVN structures and then evaluated on
CV stimuli extracted from CVC/CVN items (without the
noise added at the end, as described in Sec. Il A4). The vec-
tor representations of these stimuli were generated using the
same procedure as the training set, utilizing a W2V2-large
model. The evaluation of the classifier was conducted using
the same words that were perceived by the participants in
the perception test, totaling 600 stimuli (300 nasalized and
300 oral) produced by human voices and 320 stimuli (180
nasalized and 180 oral) generated by TTS voices.

B. Results

We coded each token as classified as the nasal or non-
nasal category based on the assigned probability value by
W2V2: a probability greater than 0.5 of belonging to the
nasal category is coded as a nasal classification; otherwise,
the vowel is classified as non-nasal. Classifications for each
item were coded binomially for being correct (=1) or incor-
rect (=0).

The overall performance of the W2V2 in correctly clas-
sifying the identity of the coda based on the vowel informa-
tion alone was 80.8%. The mean percentage correct
classification rates for nasal-coarticulated and non-nasal
vowels across human and TTS voices are provided in Fig. 4.
The overall result for the human voices was 87% accuracy.
For the human voices, W2V2 correctly classified 80.7% of
nasalized vowels and 93.3% of non-nasalized vowels. The
overall result for TTS voices was 70.5%; 89.4% correct

0.75

0.50 I

non-nasalized
B nasalized

0.25

Proportion Correct Classification

human TTS
Voice Type

FIG. 4. Correct classification rates by W2V2 for nasalized and non-
nasalized vowels for naturally produced stimuli (human speakers) and TTS
stimuli.
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TABLE II. Summary statistics from the logistic mixed effects model output
for correct classification rates by W2V2.

Coefficient SE z value p value

Intercept 2.11 0.20 10.30 <0.001
Vowel type (nasalized) 0.65 0.21 3.05 <0.01
Speaker type (human) 0.44 0.16 2.74 <0.01
Vowel type x speaker type -0.94 0.17 -5.55 <0.001
Random effects Variance SD
Speaker (intercept) 0.83 0.91

Vowel type 1.12 1.06
Number of observations (n = 960), speakers (n =96).
classification of nasalized vowels and 51.7% of non-

nasalized vowels.

The correct classifications data were modeled using a
mixed-effects logistic regression with /me4. Fixed effects
included vowel type (nasalized vs non-nasalized), speaker
type (TTS vs human), and their interaction. Random effects
structure consisted of by-speaker random intercepts and by-
speaker random slopes for vowel type. Contrasts were sum-
coded.

Table II provides the summary statistics from the
W2V2 classifications logistic model. There was an effect of
vowel type: overall, W2V2 is better at classifying the nasal-
ized vowels, compared to the non-nasalized vowels. There
was an effect of speaker type: W2V2 performs better for
human voices than for TTS voices. There was also an
interaction between vowel type and speaker type, which is
illustrated in Fig. 4: while W2V2 performs higher for non-
nasalized vowels than nasalized vowels in human voices,
the lowest rate of correct classifications is for the non-
nasalized vowels produced by the TTS voices.

Similar to what was observed for the perception data,
the random effects for W2V2 data’s model reveal large vari-
ance for the by-speaker random slope for vowel type.
Figures 5 and 6 display mean correct classifications by
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FIG. 5. Mean correct classification rates by W2V2 for nasalized and non-
nasalized vowels for each of the human speakers.
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FIG. 6. Mean correct classification rates by W2V2 for nasalized and non-
nasalized vowels for each of the TTS voices.

W2V2 for each of the human speakers and each of the TTS
voices, respectively. As seen, there is wide variation in over-
all classification accuracy across speakers. For human
speakers, like that seen for human listeners, the variation is
largest for the nasalized vowels; yet, in contrast, the varia-
tion for the TTS voices varies greatly across the non-
nasalized vowels.

IV. INVESTIGATING USE OF ACOUSTIC CUES BY
LISTENERS AND W2V2

Our final research question is whether human listeners
and W2V2 use acoustic features of nasalized vowels in simi-
lar ways when making linguistic classifications. We focus
on nasalized vowels only in this analysis since we are inter-
ested in the phonetic features associated with vowel nasal-
ity, in particular.

In order to assess differences in use of acoustic cues in
correctly categorizing nasalized vowels, we measured sev-
eral acoustic properties of the vowels used in the perception
and classification studies (non—noise-masked). First, words
and phonemes were segmented using the Montreal Forced
Aligner (McAuliffe et al., 2017). Following automatic
force-alignment, all of the phoneme boundaries in the target
words were hand verified, and corrected where necessary by
phonetically trained researchers.

For the nasalized vowels only, we then measured Al-
PO (Chen, 1997): this is a spectral measure of vowel nasali-
zation reflecting the difference between the amplitude of the
low-frequency nasal peak, PO (found around 250 Hz) whose
amplitude increases with increased nasality, and the ampli-
tude of the first formant peak, Al, whose amplitude
decreases with increased nasality. A smaller A1-PO value
indicates greater acoustic nasality. Since all of the target
words used in the present study contained non-high vowels,
A1-PO is an appropriate measure. We measured A1-PO at
8 equidistant points across each nasalized vowel, and the
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average value across points for each vowel was used as our
acoustic nasality value for each item. Also, following prior
work indicating that F1 frequency, F1 bandwidth, and spec-
tral tilt (measured as A3-PO0 in Styler, 2017) are also spectral
features that correlate with vowel nasalization, we took
these acoustic measurements at 8 equidistant points across
each nasalized vowel and the average value across points
for each vowel was used. Finally, vowel duration is a feature
of stimuli that will likely influence the ability of any human
perceiver to correctly classify vowels, especially for the
non-high vowels used in the current study (Hillenbrand
et al., 2000). Therefore, vowel duration was also measured.

We ran two separate mixed effects logistic regressions:
one on the perception study coda identification data and one
on the W2V2 classification data. Only the responses for the
nasalized vowels were run in each model, again since we
are interested in the effect of acoustic features systemati-
cally associated with nasalized vowels in the identification
of nasality. The fixed effects structure for both models con-
sisted of main effects of F1 frequency, F1 bandwidth, Al-
PO, and spectral tilt. The model run on listener perception
responses included vowel duration; since the classifier is run
on time-normalized information, we did not include duration
in the W2V2 model. F1 frequency and vowel duration were
logged. All variables were centered and scaled. The model
runs on the perception responses included by-listener and
by-speaker random intercepts. The W2V2 model included
by-speaker random intercepts.

Since our analysis examines multiple acoustic cues asso-
ciated with nasalization (particularly A1-PO and the features
of F1, bandwidth, and spectral tilt), collinearity of factors is a
potential problem since it violates the assumption of orthogo-
nality of predictors. However, collinearity between variables
can be handled by orthogonalizing predictor variables through
residualization (Gorman, 2010; Zellou and Tamminga, 2014;
Wurm and Fisicaro, 2014). In this method, one member of a
pair of collinear predictors is taken as a baseline (here, A1-P0)
and the other predictor (e.g., F1) is regressed linearly on the
values of the baseline. The values of the second predictor are
then replaced in the model by the residuals of this regression,
which are by definition strictly orthogonal to the baseline pre-
dictor values. Therefore, we regressed F1, F1 bandwidth, and
spectral tilt each individually by A1-PO and included the resid-
uals of those models as the predictors for F1, F1 bandwidth,
and spectral tilt in each model.

The summary statistics for the perception model are
provided in Table III. All of the fixed effects of the model
were significant, except for spectral tilt, indicating that
human listeners showed use of multiple acoustic cues shown
to be reliably present on nasalized vowels in making coda
identifications. A lower A1-P0 value on the vowel increased
the likelihood of nasal coda identifications, in line with
work showing that listeners are more likely to identify a
vowel as nasalized in stimuli where A1-PO decreases
(Scarborough and Zellou, 2013; Zellou and Dahan, 2019). A
negative coefficient for F1 indicates that listeners are more
likely to identify a nasalized vowel as indicating an
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TABLE III. Logistic mixed effects model output on acoustic features for
correct identifications of nasalized vowels by human listeners.

Coefficient SE z value p value
Intercept 0.66 0.20 34 <0.001
Al1-PO -0.86 0.08 -11.28 <0.001
F1 frequency —0.40 0.04 -9.22 <0.001
F1 bandwidth -0.14 0.04 -3.75 <0.001
Spectral tilt -0.04 0.04 -0.94 0.35
Vowel duration 0.67 0.03 22.78 <0.001
Random effects Variance SD
Speaker (intercept) 3.37 1.84
Listener (intercept) 0.44 0.67

Number of observations (n = 13 670), speakers (n = 96), listeners (n = 166).

upcoming nasal coda as the first formant frequency
decreases, consistent with prior work that the perceptual
effect of vowel nasalization is a raising of the vowel quality
(e.g., Beddor et al., 1986). The model reported that smaller
F1 bandwidth values increased nasal coda identifications,
but spectral tilt does not predict listener responses. Finally,
longer nasalized vowels increased the likelihood of correct
coda identifications. Note that pre-nasal vowels are shorter
in duration than vowels before oral codas (Peterson and
Lehiste, 1960; Zellou and Scarborough, 2019), so the posi-
tive relationship between vowel duration and response accu-
racy within nasalized vowels cannot be related to use of the
temporal property as a feature signaling greater likelihood
of a nasal coda. Rather, this indicates that more acoustic
information helps listeners make linguistic decisions.

Table IV provides the output of the model run on
W2V2 categorizations for nasalized vowels. The only fea-
ture that was significant in the model was spectral tilt:
higher values correlated with more accurate nasal classifica-
tions. While our human listeners did not show sensitivity to
spectral tilt, Styler (2017) showed that nasalized vowels
contain higher spectral tilt values than non-nasal vowels.

V. DISCUSSION

The current study compared how human listeners and a
state-of-the-art speech model (W2V2) use nasal coarticulatory

TABLE 1V. Logistic mixed effects model output on acoustic features for
correct classification rates of nasalized vowels by W2V2.

Coefficient SE z value p value
Intercept 2.71 0.36 7.44 <0.001
Al1-PO -0.36 0.25 —-1.45 0.15
F1 frequency -0.41 0.26 -1.61 0.11
F1 bandwidth 0.25 0.26 0.94 0.35
Spectral tilt 0.92 0.28 3.32 <0.001
Random effects Variance SD
Speaker (intercept) 3.31 1.82

Number of observations (n =480), speakers (n = 96).
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cues in speech to classify vowels as either nasalized or
non-nasalized. Our stimuli were produced by 60 human
talkers and generated by 36 TTS voices (96 total voices).
Half of the vowels were extracted from pre-nasal contexts
(i.e., from words with CVN structure), which contain
nasalization due to coarticulation with the final nasal coda.
The other half of the vowels were taken from an oral coda
context (i.e., CVC words), and thus were non-nasal coarti-
culated. Human listeners completed a coda identification
task, deciding whether each vowel was extracted from a
word ending in a nasal or oral coda. We had a W2V2 per-
form classifications of vowels as either nasalized or non-
nasalized.

A. Listener and W2V2 categorization of nasalized and
non-nasalized vowels

Our first aim was to investigate how the patterns of
W2V2 and human listener classifications differ. Overall, lis-
teners and W2V2 both show similarly overall high perfor-
mance in classifying vowels (78.5% accuracy for listeners
vs 80.8% correct classifications by W2V2). This demon-
strates that acoustic information from coarticulation is suffi-
cient for the W2V2 speech model to categorize English
vowels as either nasalized or non-nasalized when perform-
ing this restricted vowel classification task. Another similar-
ity is that both listeners and W2V2 perform better for the
natural human voices compared to the TTS voices overall.
Although TTS voices have become increasingly naturalistic
in recent years (e.g., van den Oord et al., 2016), even the
most advanced TTS speech (such as those used for Alexa-
or Siri-enabled devices) is less intelligible than naturally
produced speech (e.g., Simantiraki et al., 2018; Aoki et al.,
2022).

We also find that listeners hearing nasalized vowels in
natural voices do perform well at identifying the originally
intended nasal coda. This replicates prior work demonstrat-
ing that listeners use coarticulatory cues to predict upcoming
linguistic information (Ohala and Ohala, 1995; Beddor
et al., 2013). However, listeners’ coda identification accu-
racy is higher for non-nasalized vowels, than for nasalized
vowels. Moreover, nasalized vowels generated by TTS
speech are the most difficult for listeners to correctly catego-
rize (performance was at-chance level). Thus, listeners’
reduced intelligibility for TTS speech only applied to nasal-
ized vowels (oral vowels are identified equally well across
human and TTS voices). This is consistent with prior work
which found that acoustic nasality for TTS voices was more
phonetically ambiguous than nasalized vowels in naturally
produced human speech (Ferenc Segedin et al., 2019). From
a practical perspective, these results, and future work exam-
ining asymmetries in intelligibility across word contexts,
can be used to inform TTS synthesis techniques in order to
improve speech comprehension of generated speech.

We also found systematic differences in W2V2 classifi-
cation across vowel and speaker type. For the human voices,
W2V2 displays patterns of performance across vowel types
that parallel human listener performance (i.e., non-nasalized
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> nasalized). Yet, W2V2 shows the reverse pattern of clas-
sification accuracy for TTS voices: higher correct classifica-
tion rates for nasalized vowels and low accuracy for non-
nasalized vowels. That W2V2 is highly accurate at classify-
ing nasalized vowels in TTS suggests that the acoustic prop-
erties of vowel nasalization present in synthesized voices
are not ambiguous for W2V2 as they are for human listen-
ers. This does not support a claim that vowel nasalization in
synthetic speech results in greater acoustic ambiguity, rather
that vowel nasalization in TTS is ambiguous particularly for
human (American English-speaking) listeners.

We also examined whether the W2V2 model’s behavior
parallels human perception patterns with respect to variation
across speakers. We found a great deal of cross-speaker var-
iation in listeners’ ability to identify the coda from the
vowel information alone, yet this variation is largest for
nasalized vowels compared to non-nasalized vowels for
both human and TTS voices. This is consistent with past
work that American English speakers vary greatly in their
coarticulatory cues and that listeners are sensitive to this
variation (Zellou, 2017). W2V2 correct classifications are
also highly speaker-dependent. However, again, the
speaker-dependent patterns for the TTS voices are different
from those displayed by the real listeners. W2V2 showed
the largest variation in identifying non-nasalized vowels
across TTS voices.

B. Acoustic cues to nasalized vowel categorization

We also examined how the multidimensional acoustic
properties of vowel nasalization are used by real listeners
and a speech model designed primarily for ASR in making
nasal categorizations of coarticulated vowels. Those analy-
ses also reveal differences across listeners and W2V2 in use
of acoustic cues. As expected, the listeners rely on several
of the unique acoustic features that have been found to dis-
tinguish a nasalized vowel from a non-nasalized vowel
when determining whether there is an upcoming nasal coda,
such as a spectral measure of relative prominence of nasal
formants and the frequency of F1. This confirms that listen-
ers are highly sensitive to the unique coarticulatory features
in the acoustic signal when making linguistic decisions. One
surprising observation is that listeners did not show the
expected pattern for F1 bandwidth: smaller F1 bandwidth
values correlated with more nasal identifications, which is
opposite from what is found in production. One possible
explanation comes from recent work that has shown a
changeover apparent time in California listeners’ use of
acoustic cues; specifically, younger listeners (of the same
age group of listeners used in the present study) rely less on
F1 bandwidth as a cue for nasal coda identifications than
older adults (Zellou and Cohn, 2024). Thus, the reversal
from the expected pattern could be part of a trend of chang-
ing cue weights in a speech community over time. We also
acknowledge that it is possible that our formant bandwidth
measurements had greater measurement error, since formant
bandwidths are often underestimated when using linear
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prediction coding analysis, particularly when fundamental
frequency is high (e.g., Atal, 1975).

W2V2’s performance also correlates with a well-known
acoustic feature: spectral tilt. Prior work has been successful
in training a Support Vector Machine classifier to use the
acoustic features of vowel nasalization to accurately classify
nasalized vowels (Pruthi and Espy-Wilson, 2007). Here, we
find that W2V2 uses acoustic cues that are correlated with
vowel nasality, but in different ways from human listeners.
Investigating why W2V2 uses this particular acoustic cue to
nasalization over others is a question for future work.

Coarticulation results in multidimensional phonetic varia-
tion. This yields a robust and richly informative acoustic signal
where there are multiple cues to segment identities distributed
over time. The different patterns of variation in coda identifica-
tions within and across humans and machines also has implica-
tions for models of speech perception. Just as it is observed
that human listeners vary in their attention and use of the mul-
tiple coarticulatory cues, we find that machines show distinct
patterns as well. More specifically, there is information in the
signal that humans attend to that machines do not, and vice
versa. Thus, learning how to map a given acoustic signal to a
linguistic message can take many different pathways.

This observation that W2V2 is using acoustic cues to
nasalization in American English differently than human lis-
teners has implications for the wider use of natural language
understanding and ASR systems, in particular during
human—computer interactions. One possible way to think
about the differences in acoustic properties is that they
reflect a “misalignment” in the use of the phonetic cues dur-
ing speech recognition across listeners and W2V2. In
human—human interactions, systematic differences in “cue
weighting” of acoustic features during speech perception
can result in greater misunderstandings during communica-
tion. One example of the comes from work on L1 vs L2
speech perception: learners of English, for instance, show
different use of acoustic cues during speech perception than
native speakers (e.g., Escudero et al., 2009), which can
affect how phonemes are perceived (Kong and Yoon, 2013).
There is potential for the same type of misalignment across
human users and ASR systems to lead to misunderstanding
(although, of course, the sources of the misalignment in use
of cues across humans and machines are very different). For
instance, in cases where the ASR misunderstands a human
user, the user might adapt their speech patterns and produce
“clear speech” adjustments to try to be better understood,
and hyperarticulate the phonetic cues they use themselves to
better understand speech (e.g., Buz et al., 2016). If machine
classifiers have different acoustic weightings of cues to per-
form word identification than speakers assume based on
human—human interaction, this can lead to even greater mis-
understandings (e.g., “spiraling errors”) (Oviatt et al., 1998).
This is another line for future work to investigate. Fine-
tuning ASR systems to match the cue weightings of human
listeners can be one way to lead to better alignment between
how users adapt their speech when talking to machines and
what the machines rely on to understand speech.
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C. Limitations and future directions

There were several limitations of the present study
which open even more avenues for future research. For one,
while the present study only focused on comparing nasal-
ized and non-nasalized vowels, looking at other types of
word structures and coarticulatory patterns presents interest-
ing directions for future research. For instance, next steps
could be to compare human listener and W2V2 performance
on use of anticipatory labial, liquid, or vowel-to-vowel coar-
ticulation in predicting upcoming linguistic information,
since each of these properties has been shown to be used in
speech perception (e.g., Krueger and Noiray, 2022; Redford
et al., 2018; West, 1999). We also acknowledge that coarti-
culation can vary in vowel-specific ways (e.g., Zellou and
Scarborough, 2019). Investigating vowel-based asymmetries
in the use of coarticulatory cues across human listener and
machine classifiers is a ripe avenue for future research. The
current study also used commercially available TTS voices;
future work can explore machine and human classification
of parametrically synthesized speech where acoustic cues
are systematically varied.

Another approach for future work is to compare human
and automatic machine classifications of coarticulation
across different languages. Specifically, there is a large
amount of work demonstrating that patterns of coarticula-
tion are language-specific (e.g., Beddor et al., 2002; Keating
and Cohn, 1988) and even dialect-specific (Zellou and
Tamminga, 2014; Bongiovanni, 2021). Examining whether
perception and neural network classifications are more or
less similar in languages or dialects that vary in their coarti-
culatory patterns could be both revealing to understanding
the practical consequences of cross-language phonetic varia-
tion and also important for developing accurate natural lan-
guage understanding methods for many different languages.
For instance, a recent study used a similar approach to that
in the current paper to develop a classifier for vowel nasality
in French, where vowel nasality is lexically contrastive
(Elmerich et al., 2023). In that study, the testing data
involved recordings made with an aerodynamic mask to
measure nasal airflow. Their study compared the results
obtained with a spectrogram-based convolutional neural net-
work model to the aerodynamic measurements, specifically
the nasal airflow. The findings demonstrated that the NN
model achieved better nasality detection for French nasal
vowels compared to the current results for English, achiev-
ing an overall performance of 88% accurate nasal vowel
detection. The predictions made by the NN model were
found to be correlated with nasal airflow, and with varia-
tions observed across vowels and speakers, thereby validat-
ing the use of convolutional neural network in this context
(Elmerich et al., 2023). Thus, it appears that neural networks
are sensitive to language-specific patterns of vowel nasaliza-
tion. Investigating this question further is a ripe direction for
future work.

Another direction for future work is to create a deep
learning system that attends to acoustic cues in the same
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ways as human listeners. The current study found differ-
ences in the use of some acoustic features. Examining
context-specific asymmetries in speech recognition system
performance and adjusting the weighting of acoustic fea-
tures, such as those used by listeners, might lead to a more
“fine-tuned” deep learning system that can mimic human
perceptual patterns (see also Gu et al., 2018, who discuss
this as a future approach in neural network research) and
provide insight into how neural systems learn to attend to
the unique acoustic features of coarticulation. Future work
examining the use of coarticulatory cues by different types
of listeners (for instance, human learners of English) can
also be used to understand language acquisition. It is also
worth noting that there are lots of other cues that are used by
listeners during spoken language comprehension that are not
used by speech recognition systems, such as visual cues
from the speaker, socio-pragmatic information, and much
more. This is another explanation for why human and
machine comprehenders perform speech recognition differ-
ently during spontaneous spoken language interactions.

VI. CONCLUSION

Overall, the current study provides insight into how coar-
ticulatory variation in vowels produced before nasal codas in
American English are categorized by human listeners and
artificial neural networks. The deep learning model yields
global correct classification rates of vowels close to human-
level accuracy. There are also systematic similarities in the
patterns of classifications of nasalized vs non-nasalized vow-
els for natural human voices (but not for synthetic voices).
Acoustic analyses reveal differences in how the deep learning
model uses acoustic cues for nasal coarticulation to classify
vowels from human perceivers. More broadly, these results
demonstrate that comparing listener speech perception and
deep learning-based classifications of phonetic variation is
one approach that can inform how the models perform like,
or differ from, the human perceptual system.
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