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ARTICLE INFO ABSTRACT

Communicated by Dmitry Pelinovsky The recent 1/2-equation model of turbulence is a simplification of the standard Kolmogorov-Prandtl 1-equation
x = URANS model. In tests, the 1/2-equation model produced comparable velocity statistics to a full 1-equation
Ti}r':zlre n'ce model with lower computational complexity. There is little progress in the numerical analysis of URANS models
Eddy viscosity model due to the difficulties in treating the coupling between equations and the nonlinearities in highest-order terms.
1-equation model The numerical analysis herein on the 1/2-equation model has independent interest and is also a first numerical
Numerical analysis analysis step to address the couplings and nonlinearities in a full 1-equation model. This report develops a
FEM complete numerical analysis of the 1/2-equation model. Stability, convergence, and error estimates are proven

for a semi-discrete and fully discrete approximation. Finally, numerical tests are conducted to validate the
predictions of the convergence theory.

1. Introduction

Fluids transport and mix heat, chemical species, and contaminants. Numerical analysis, supporting accurate simulation of fluid velocities, of
laminar flows of incompressible, viscous fluids is increasingly understood. For flows at higher Reynolds numbers, simulations based on URANS
(Unsteady Reynolds Averaged Navier-Stokes) models are an essential, if not wholly understood or completely reliable, tool for prediction, design,
and control. Almost all fundamental issues are unresolved in the numerical analysis of URANS models.

In turbulence modeling, appending an ordinary differential equation (ODE) to determine eddy viscosity parameters in the momentum equation
is considered a 1/2-equation model, [1]. An added ODE can be used to increase accuracy without increasing complexity by allowing a parameter to
vary coherently. It can also be used to decrease complexity by replacing an appended partial differential equation (PDE) with an ODE representing
the aggregate behavior of its solution. A closed ODE in time for the space average of k(x,7), the turbulent kinetic energy, has been obtained in
[2]. It was found there that the resulting 1/2-equation model produced, at lower complexity, velocity statistics close to the full 1-equation model.
The question then arises as to the accuracy and reliability of numerical simulations of the 1/2-equation model. This report resolves that question,
giving a complete stability, convergence, and error analysis for the 1/2-equation URANS model

v, = V- (2v+ u(k@®r]Vv)+v-Vo+ Vg=f(x)and V-0 =0, (1.1)
d \/E -1 _ L s 2
Ek(t)-'— 57 k(1) = ] /Qy(y)k(t)er v(x,1)|“dx, (1.2)

where V*v = the symmetric part of the gradient, ¢ = model time-scale, y = wall normal distance to no-slip boundaries, L = diameter (), k(t) =
the space average of the 1-equation approximates turbulent kinetic energy and u(y) = 0.55 (y/ L)%

The challenge in the model’s numerical analysis is dealing with the non-monotone nonlinearity in the highest derivative, eddy viscosity terms
and with the cubic nonlinearity in the right-hand side (RHS) of the k(¢) -equation. These are all features shared by the full 1-equation model. While
the numerical analysis of the full 1-equation model remains intractable, the analysis herein may give new ideas for analyzing the model terms
beyond the laminar case of the Navier-Stokes equations (NSE). Traditional methods for non-monotone, higher than quadratic nonlinearities are
limited to small time or small data. Turbulence develops over long times and for large data. Thus, methods for the numerical analysis of the NSE
developed for laminar flows or for small time or small data, are inadequate. The only previous work on numerical analysis of URANS models occurs
in important papers [3-6], based on other model simplifications than herein.
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Error analysis of a model requires estimation of the deviation of the model solution from its discrete approximation. It thus builds on how
model uniqueness proofs estimate the deviation of model solutions. In Section 3, Theorem 3.1, we prove the uniqueness of strong solutions to the
model (1.1)-(1.2). The main new issue in the proof is dealing with the various nonlinearities and coupling. Section 4 proves stability, convergence,
and error estimates for a spatially discrete, continuous time approximation. This proof builds on the analysis of uniqueness in Section 3. Section 5
presents a fully discrete numerical analysis. Section 6 shows the numerical results. Since the model’s accuracy was studied in [2], the tests in
Section 6 focus on verifying the numerical accuracy predicted in the error analysis in Section 4 and Section 5.

For the 1/2 equation model, impose v (x,7) = 0 on the domain boundary and the initial condition v (x, 0) = v, (x). The k (r)-equation is typically
initialized after some start-up period. Thus, we impose the initial condition k (t*) = ko > 0 for k() at some ¢* (and consider k(1) = 0 at earlier
times). We impose the usual condition that the model pressure has a mean zero over the flow domain.

1.1. Related work

URANS models approximate time averages
t
v(x, 1) ~u(x,1) i= l/ u(x, t"ydt' (1.3)
T Ji-t

of solutions of the NSE. The most common URANS model begins with an eddy viscosity closure [7,8] of the time-averaged NSE with eddy
viscosity given by the Kolmogorov-Prandtl formula v; = uVkl with Kolmogorov’s choice, / = V2kz,  := a time scale (see also [9-11] for
recent developments). The variable k(x, ) satisfies an accepted equation modeling the turbulent kinetic energy evolution and /(x, ), the turbulent
length scale, has many different specifications of increasing complexity. We make Kolmogorov’s choice, / = V/2kz. For the full 1-equation model
[12-15], simulations require solving the two coupled nonlinear PDEs

v, = V-(2v+ pkr]Viv)+v-Vo+Vg= f(x), V-0 =0,

\/5

k, =V - (uktVk) +v- Vk + Tr_lk = ukt|Viu)*.

The model studied herein (1.1)-(1.2) is obtained by space averaging the above k—equation. Specifically, defining the space averaging k(r) =
‘% fg k(x,t)dx and replacing k(x, ) in the 1-equation model by k(¢) in the eddy viscosity terms converts the full 1-equation model to 1/2-equation
model (1.1)—(1.2).

The main challenge herein arises from the nonlinearity in the eddy viscosity term and the RHS of (1.2). To our knowledge, the only previous
large data numerical analysis of fluids’ models with similar non-monotone, nonlinear eddy viscosity was in [3-5]. Their work studied the models
under various simplifying assumptions (different from the space averaging used to simplify herein). The model uniqueness proof in Section 3 uses
a regularity assumption to treat the NSE convection term. This necessity reflects the fact that the uniqueness of time averages (1.3) of solutions of
the NSE is as little understood as solution uniqueness. It allows our analysis to focus on the coupling and higher degree of nonlinearity introduced
by the turbulence model.

Finite time averaging and ensemble averaging are the two most common approaches to URANS modeling. The k-Eq. (1.2) studied herein was
derived in [2] by space averaging the standard k-equation derived independently by Prandtl [16] and Kolmogorov [17] (for more details see
[12-15,18,19]). It makes use of the following turbulence length scale / = \/ﬁr, proposed by Kolmogorov [17] and mentioned as an option by
Prandtl [16]. The idea of 1/2-equation modeling is from Johnson and King [20], see also Wilcox [1], Section 3.7. The idea is to take a calibration
parameter that must be pre-specified and allow it to be determined by local flow conditions through solving an ODE (considered as a ‘1/2 equation’
in turbulence modeling). In the pioneering paper, Johnson and King [20] posed the ODE in the streamwise variable x. In the derivation in [2] and
herein, the ODE is formulated in time.

2. Preliminaries

The common Sobolev spaces and Lebesgue spaces on £ will be denoted by W*»(Q2) and LP(2) respectively [21], equipped with the norms
Il 1lx, and || - | ». As for p =2, we adopt W¥(Q) equipped with the norm || - ||, to replace W*»(Q) for short. With respect to the L? (£2) space, (-, )

and || - || will indicate the inner product and norm. Next, we introduce the space L?(0,T; X) with the following norm
T 1/p
I llrce = (/0 I ||§dr) if 1<p<co,
I llpx) s=ess sup |-y if p=oco.
1€[0,T]
We define discrete time notations as follows. The time step is denoted by 4r > 0 and ¢, = ndt,n =0,1,...,N = %. Given a Banach space X, we

define the following norms:
N 1/p
- P .
ol lpx) = <A’ 224) ||U"||X> and | [|vll ljo(x) = Og"’g\] llo"llx-
s
Define the following spaces W and Q for velocity and pressure, respectively.
W o= HJ(2)" = {ue H'(Q) : ulyp =0},

0:=LQ)={pec LXQ): /Q(pdx =0},

Vi={ueW :(V-up =0,VpeQ}.
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We will employ the standard skew-symmetric trilinear form:

(w0, 10) = (@ V)00 + 2 (V0 0,0)
1 1 2.1)
= 5((u~V)U,w)— 5((u~V)w,U) Yu,v,w € W.
For the trilinear form, we have the following bounds [22,23]:
Cllull 2 Vul 2| Vel Voll,
b(u,v,w) < C||Vull[Vwl||[IVoll, (2.2)
ClIVullllwllzllvll.

The spatial discretization will use the classical finite element method. Suppose £2,, be a regular mesh of Q and 2 = u meq, M. The finite element
velocity and pressure spaces W, and Q,, are:

Wy, = {u, € WnCUQ? : uyly € P(M) VM € 2},
0, =P, €0ONCYUQ) : pylp € P_{(M),VM € 2},
where P,(M) denotes the kth order polynomial space on M and k > 2. We assume a quasi-uniform mesh. There hold [24,25] the following properties

for (W), 0,):
inf (|lu—upll + llu—uyll,} < CH**uly, Yue W n H1(Q),
up €Wy

- X X (2.3)
inf |lg - pyll <Ch%|ql, Vg€ H*(Q)NO,
PrEQ)
in which A =: maximum triangle diameter in ©,. Furthermore, we suppose that W), and Q,, satisfy the discrete inf-sup condition:
,V-u
inf  sup M > fy >0, 2.4
pn€0h uyew, 1Palllluglly
where f, is a constant. The discrete divergence-free space is:
Vi=A{u, e W, : (V-uy,,p,)=0,Vp, € Qp}. (2.5)

Note that the Taylor-Hood element satisfies all the above conditions with k = 2.
The following discrete Gronwall’s inequality from [26] will be used.

Lemma 2.1. Suppose that G, 4t, and d,, e,, a,, b, (for integer n > 0) be nonnegative numbers such that

N N-1 N
ey +AtY d, <A Y be,+4t Y a,+G,
=0 n=0 n=0

for VN > 1 and VAt > 0, then

N N-1 N
ey + 4ty d, < exp(At > b,,> <Arzan +G>.

n=0 n=0 n=0

3. Model uniqueness

In this section, we prove the uniqueness of strong solutions of the 1/2-equation model (1.1)-(1.2). A proof of model uniqueness gives insight
into critical terms in the model numerical analysis of Section 4 and Section 5. In particular, we assume that the 1/2-equation model has a solution
satisfying the classical condition of Ladyzhenskaya

r
/ IVo]|*dt < oo, (3.1)
0

which is sufficient to prove uniqueness to the NSE, [23], as well as (1.1)-(1.2), Theorem 3.1 below. Next, we use the following lemma from [2].

Lemma 3.1. With respect to the 1/2-equation model (1.1)-(1.2). Recall that k (t*) > 0. Then k(t) > 0 for all t > r*. For strong solutions, there holds
the following energy equality
V2

d [ 1 / 1 2 1 s 2 -1 1
— |—= =|v(x,t)|“dx + k(1) +—/ vIVio(x,0) |"dx+ —77k(t) = — fu(x,t)dx.
dt [IQI 2?2 12| Jao 2 2] Ja

The following uniform in T bounds on energy and dissipation rates hold:

T
2
L /llv(x,t)lzdeC, l/ L /V|VSU(X,t)|2dx+—\/—T_lk(t) dt < C,
12l Jo 2 T Jo 12l Jo 2

T
1 1 ) 1 1 )
= —_— v+vp) [Viu(x,1)] dx}dtSC, —/ —lv(x,t)|*dx+k(T) < C,
i {|9|/g( r) 1 Ja2

where the constant C < oo depends on f,v, (x),k(t*),v,T.

3.2)

We now present the main result of this section.

Theorem 3.1. Assume that (3.1) holds for a solution of (1.1)—(1.2). Then the solution is unique.
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Proof. Let (v}, k) and (v,, k,) be two different solutions of (1.1)-(1.2) with the same data. Set ¢ = v; — v, and e () = k; () — k, (). By subtraction,
there holds

%IIQSIIZ + V||V + /ﬂ ¢ Vo, - pdx + ;rr/g (k) Vivy = kyV0y) : Vipdx =0
V2

d _
Ee(t)+ 71’ 1e(t)=61(t)—£2(t),

1
2
(3.3)

where ¢, (f) = ﬁ Jo uk;| Vo, 2dx since 2| V*0||> = || Vol|? from V - v = 0.
Let the two key model terms be denoted by

A= ur/ (k Vo0, = kyVi0,) @ Vidx, B =g (1)=&, (1).
Q

By adding and subtracting [, k, Vv, : V¢dx, we have
A= ;41'/ (ky Vo0 — k1 Vo0y + ky Viuy — ko Vin,) @ Vighdx
Q

= ;41'/ K IV plIPdx + pr (k, —kz)/ Vv, @ Vipdx
Q Q

1 v ;4212 2
> mz/ ki lIVolI*dx — 5||VS¢||2 - 2—||st2||2 (ky = k)™ (@)
Q %

1 2 \% 2 ﬂZTZ 2 2
=nty |, ki lIVll~dx — Z”V¢H - T”VUZH (ky = k)™ ().

Substituting the above inequality into Eq. (3.3), it yields

1d 3 1
——||¢||2+—V||V¢||2+/ ¢-Vu, -¢dX+—MT/ ki IVol*dx

2.2
HT 2
< T”Vl’zﬂz (k) —ky)™ (0.
Note that the term on the RHS of (3.4) belongs to L' (0,T) since k(t) € L*(0,T) and ||Vv||> € L'(0,T). We now need an equation for
e = (k; — ky)” (). We have

1d V2
37 &)+~ 5 ' ()= (e, () —e,()) e (). (3.5

Adding (3.4) to (3.5) gives

1 2 _
2d L (12 + & () + V||V¢||2+—m/ ki |Vo|*dx + \/_r ! 2(;)+/¢4w1 - ¢dx
! 25 /o 2 o
(3.6)
Wt 2 2
< T”VUZH (k1 —ky) () + (61 () —£,(0) - e (@)
We now deal with the last term on the RHS of (3.6) in what follows.
(61 ) =& (D) -e(t) = Lme(r)/ (ki Vo, : Vo, =k Vo, @ Voy)dx
2|1Q2| Q
+ ﬁure(r)/ (kyVoy © Vo, —ky Vo @ Vo, + ky Vo @ Vo, —ky Vo, @ Vo) dx
Q

= ﬁ/n’e(l‘)/ (kyVoy @ Vo + (k; —ky) Voy @ Voy + ky Vo, @ V) dx
Q

Then
(61 =6, () e < 2|Q|e(l)\/m'/ ki IVo| dx\/ur/ ky|Vo,|dx
ZIQI’m @) \// Vo, dx\// Vo, |2dx + Zlglme(r)/ ki) + ki) Vo, 1 Vopdx 37
1 pr 2 1 Ht 2 2 1 2
<Le [ v (—/k Vo, dx)e )+ 5 e (0 V0, V0,
22 Jo 210P \ 2 LS 219 ! 2
1 1 ur 2 1 2 2
ur||VollllVo,|l) e (t)+—— k <m’/ ki|Vu,| dx)e ).
|2( al) 0+ 37 o 2101 o 7
Let

1 ) 1 1 )
t — [ k|Vu|["dx + ||V Vol + —=IVolllIVu Il + — [ k(|Vv,|°d
a) = 5k <2|9|/Q V0Pt V0 IVl + IVl + oo [ talVes) x)

2.2
uz 2
+ — ||V, ||~
Vel

Note that a(t) € L' (0,T) by Lemma 3.1.
There remains the standard NSE term which is bounded in a standard way as in [22,23]:

/ ¢ - Vo, - ¢dx < CllglI' VI Vo, || < ;l:nwan2 +ClIVo I*llgll. (3.8)
Q

4
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Substituting (3.7) and (3.8) into (3.6), it yields

\/5

4 24 .2 v 2, HT 2 V2 12
dt(”¢” +e (l))+2||V¢|| +3 /Qk1|V¢| dx + ST ® (3.9)

< (ClIVol* +a®) (I81* +€* @) .

N —

From (3.1) we have (C||Vv,||* + a(t)) € L' (0,T). Uniqueness follows from Gronwall’s inequality. []

4. The semi-discrete approximation

The semi-discretization scheme is as follows. Suppose vy, (x,0) is the given approximation of initial condition v (x). Find v;, : [0,T] - W), and
qy : [0,T] = Q, for Yw, € W,,,Vp, € Q, satisfying

Ju
<6_th’wh> + (2v+ utky, ) (V. Viwy,) + b (v, v, w,) = (V- wpap) = (f,wy), 41
(V- vp.p4) =0.
As for the k-equation, now we have
dk, ) V2 1 2
——t —7 k() = — k, () |V dx. .2
T n (@) 2|Q|/Q”T n (@ Vo~ dx (4.2)

Next, let e := v—v, =n—¢,, where n :=v—V and ¢, := v, =V, V € {w;, € W,| (V- wy.p;) =0,Vp, € Q), }. We begin by presenting the stability
of the semi-discrete approximation as follows.

Theorem 4.1. Under the same assumption as in Lemma 3.1, then the energy equality holds

V2

d 1 Y _
= {—llvh 112+ ky, (t)} + 5 1Von ) >+ 5 Ve (1)

dt | 2|Q| (4.3)
1
== ([ (0,0, (x,D).
Furthermore, there holds the following uniform in T bounds on the energy and dissipation rate:
Moy TP <€ < oo,
T
1 1
= /0 (v + Sty (r)) Vo, (x, 1) [1Pdt < C < o,
1 5 “4.9
EIIU;, T I7 + 121k, (T) £ C < o0,
T 2
%/0 <§||Vuh Nl + \/T—T_I|Q|kh ) )di < C < .
Proof. Taking w;, = v;, in (4.1) and using the skew-symmetric property of the trilinear term lead to:
d 1 1
S lon e I+ (v Stk ) 190, G0 1P = (f (1) 0y (1)
dt2 2 (4.5)
v 2, 1 2 .
< §||VUh 0"+ Z”f(x,f) IIZ,-
Note that k, (¢) is always nonnegative. Then a differential inequality implies that
oy IP <€ < oo,
1" 1 ) (4.6)
= /0 (v + Suh, (z)) Vo, (x.1) |2dt < C < co.
Furthermore, taking w,;, = v, in (4.1) and multiplying by |£| on both sides of (4.2), then adding the two equations, it will yield:
d (1 \/E -
= {§||vh D117 + 21k, (r)} +VI[Vo, (e, |17 + =T HQlky, @) 4.7
1
= (/0,05 (60) < S0, G0 I + 17 o) 12,
Once again, a standard differential inequality leads to
oy () I + 121k, (T) < € < o0,
O (4.8)

T

T
2
l/ <§||Vuh(x,t)||2+—\£_rl|.(2|kh(t)>dt§C<oo.
0

To prove an error estimate, the next theorem requires a strong solution, (3.1) and v € L*(0,T; L*(2)),v, € L*(0,T; H~'(2)). To extract the
convergence rate from the interpolation errors on the RHS requires further smoothness as follows:
ve L0, T;W nH Y n L* (0,T; H*);

(4.9)
v, € L}0,T; HY), qe L*0,T;:0nH*); k{)eL®©0,T).
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Theorem 4.2. Assume (v, q, k (1)) are solutions of the 1/2-equation model satisfying the regularity (4.9). Then the following error estimate holds

T
(k@) =k ) + V/O Vo = Vo,|2dt

sup |lv— Uh||2 + sup
1€[0,T'] t€[0,T]

2
<€ (llog = on @17 + (k0 = k5 ©)°)
. 2 2
+C inf (nv (0= 100) 7,12y + 582 llo= oy )

T
+ C inf - 2il(v-w 2 4 IVo=Vuw,|? dt,
el [ =yl (0= ), 12, 190 = Vit )

in which C is a positive constant depending on vy, v, f,T, fOT [IVo||*dt.

Proof. A variational formulation of strong solution of the 1/2-equation model is

(v, wp,) + Qv+ prk ) (Vo0, Viw,) + b (v,0,wp,) = (V- wy, q) = (fwy,)  Vwy, €W,

Subtracting (4.1) from the above and choosing w;, € {w;, € W;| (V - wy,.p;) =0,Vp, € Q,} yield

a
<%, wh> +2v (Vi Viwy) = (n, wy,) + v (Vi, Vwy,) + utk (1) (Vo, Viwy,)

— ptky, (1) (Vo Viwy,) + b (v,0,wy,) = b (v, v, w0) = (V- wh.q) .

After arranging the above equation and taking w;, = ¢,, we have
1d 1
§E||¢h||2 +vIVe, I + Ellfk ONIVl* = (n. b)) +v (Vi V)
- (V : ¢h,q) +b (’Ya U7¢h) -b ((ﬁhv U7¢h) +b (Uharl’ d’h)

8

+ ek () (V' Vo) + pr (k () = ki, () (Vo0 Vigy) = DT,
i=1

where we subtract and add the term utk (1) (VSv,, Vi¢,).

(4.10)

(4.11)

Next, we will bound each term of the RHS of (4.11). With the help of the Cauchy Schwarz and Young’s inequality, we have

v C
T, = (1. dp) < ﬁllwhll2 + Vllmllil,

2
T, =v(Vn,Vey) < ﬁIIVthIIz +Cv|val3,

v 1
Ty=(V-$p.q)= (V- dp.a—py) < ﬁIIVrln.IIZ +C;||q—p;,||2 Vpj, € Q.

As for those trilinear terms, we obtain
T, =b(n.v.¢;) < CIVAIIVOII VI
v 2, C 2 2

< —|V —||V \% s

< IVl + ZIVnlP Vel
Ts = b (dp. v, ¢;) < Cligpll 21V, 117211 V0l

%
< IVl + C O IVolt iy,

Ty = b (0411, 1) < Cllog IV IV0, 12 1VAIIV I

v 1
< IVGIP + C S loallIVo, VIR,

We bound those nonlinear eddy viscosity terms as follows:
T 1
Ty = k(1) (V'n. V') < Bk @ IVG,I° + Surk ) V],

C 2.2
Ty = e (k@) = ky ) (V005 Vb)) < IV + == IV, (k (1) = K, @)

Substituting (4.12)-(4.18) into (4.11), then we obtain

Ly Y v P+ :
3 g 10uI + SV + =5k (0 1V

C
<CWIVOI NI + Tlnl2, +C v+ urk ) V]
C C C
+ Slla=pall + SUVOIR VIR + S oplIVo, vl

Cu?r?
%

+

IVoI12 (k (1) = Ky, ().

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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To deal with the last term in the above equation, we need to introduce the k-equation. Subtracting (4.2) from (1.2) and multiplying by
e (1) = (k (1) — ky, (1)), it will obtain:

1d 2, V2 2
2dlek(t) + 2 T e (1)
= 2|Q|,mk ®) [(k (1) Vv, Vo) = (kj, (0) Vg, Vg, )|
(4.20)
= 2|Q|/,¢1:ek ® [(k @) Vo, Vv =Vu,) + (e ®) Vv, Vo) + (Vo = Vo, k; (1) Vo, )|
= ZTI"
i=9
where we add and subtract the term (k () Vv, Vuy,) and (kj, (t) Vo, Vuy,).
We will bound the three terms 7}, where i = 9 10 and 11 as follows. As for the first term Ty, we have
Ty = 2|Q|;nek ®) (k) Vo,Vo=Vu,) = 2|Q|/41ek ®) (k (1) Vo,V = Vy,)
= mlurek ) (k (1) Vo, Vi) = mlmek ®) (k) Vo, V)
< Y2 ite 02 4 -0k 0 VORIV + = ek 0 () VoIV | @20
-4 |2 ZI-QI
2 _ C Tk (t C
€ L1, + Sk IV + A g 4 AR
Similarly, we have
Ty = 2|Q| ——pre; (1) (e, (1) Vo, Vuy) < 2|Q| —— ut||Voll| Vo, lle, ()2 (4.22)
and
1
Ty, = 2|Q| ——pre, (1) (Vo= Vo, k;, () Vo) = 2|Q| ——uze, (1) (Vo= Vo, (k(t) — e, (1)) Vuy,)
= ZIQI ——pre, () [k () (Vn, Vo,) = k() (V. Vo) — e O (Vin, Vo) + e (1) (Vb Vo, )|
(4.23)
1 2, (2 4+ L 2 2, HTk() 2
< \% k@2 ||V v
< 2|lell vpllZe, (0 + T O7VAI" + ==V,
C 2 2 1 2
+ Htk () IV, llI7e, 07 + ur (IIVoll + IVoll) IVoslle, 7.
e nll" €k 210 ( h ) nll€k
Substituting (4.21)—(4.23) into (4.20) and adding (4.19), then we obtain
ut V2
2dt||¢>h||2+5d—ek @’ +—||V¢h||2 TROIVGI + = e (1)
Cu?
<CWv) ||VU||4||¢h||2+< EL ||th||2+C(|Q|>m<1+k<t>>(||w||2+||Vuh|| ))ek<r>2
(4.24)
C
+ Sl + ot utk@ 1V + Slig = pyl + SNVl I9al?
C C 1
+ = lopllIVo,lIVAll? + — 7 w2k @ VoIV + = urk@* VAl
v 12| 2|Q|
Let b (1) = max {C(v) IVoll4, (C%zfznwhnz +C(QDur (1 + k@) (IVol]? + ||VU,,||2)) } Since ||[Voll € L* (0, T), we know b (1) € L' (0,T), then
t
B(1) :=/ b(1)di' < oo.
0
Multiplying by the integrating factor e~ 830 gives
d _
2 [P0 (Ugnll” + e 07)] + e POVIV, 12
< CeBO (i), + llg = pyll? + (v -+ pek @) + [ V0]2) V71 (4.25)
+ Ce PO (Yo Vo)l + 2 w2k 0 IVOll* + prk@)* } 1Vl
Integrating over the time interval [0, 7] and multiplying by ¢#®, it yields
T
iy (T) 11> + € (T)* +v / IV@ullPdr < C (T, v) Il O) 17
0 (4.26)

T
+ C(T,v, |:2|>/O {12, + llg = pul* + IVOIPIVAI? + Mo, Vo, VAl + 1Vl } dt.

In particular, when dealing with those terms of the RHS of (4.26), we need to pay attention to the terms containing V. For example,

T T 1/2 T 1/2
||VU||2||Vn||2drs< / ||VU||4dt> ( / ||Vn||4dr>
/0 0 0 (4.27)

< ||VU||L4(O,T;L2)“Vn”i“(O,T;LZ)'
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From Theorem 4.1, we have ||v,|| uniformly bounded in time by data. Thus we can bound the term fOT lop Vo, 1 Val12dt as follows:

T T
/ lon Vo, lIValPdr < C/ Vo, llIVAlPdt
0 0 (4.28)

< IVl 2o IV 7.2y

Finally, combining the triangle inequality with (4.26)—(4.28) gives the final result. []

5. The fully discrete approximation

We analyze the following full discretization scheme which employs the backward Euler (BE) method to discrete the time interval. We
chose the simple BE time discretization for the analysis so we can focus the analysis on the new terms in the model. Given v}, k}, finding
Ut e Wy, qit! € Q. ki*! satisfies for Vi, € W, Vp, € O,

h
Un+l —
<—h m h wh> + (2v + urk}) (VSUZ“, Viwy) +b (0], vZ*'l, wy) = (V- wh,qZ“)
_ n+1
= (f , wh) > (5.1)
(V.o py) =0,
kn+1 — k"
% + \/751—%;“ = ﬁ /ka;wu;“fdx.

The main challenge of the numerical analysis is dealing with the non-monotone nonlinearity in the eddy viscosity and the RHS of the k-equation.
To streamline the analysis, we assume that the k-equation (a linear constant coefficient ODE) is solved exactly. However, it still contains errors
since its RHS depends on the highly nonlinear energy dissipation rate and the approximation velocity. Further, k, () is evaluated at ¢, not ¢, in
vr. Based on this assumption, we can obtain

—U

Un+1 n
(hA_th, wh> + (2v+ prky, (1,)) (VSO Viwy,) + b (), 05t wy) 5.2)

—(V- Wh"IZH) _ (f"H’Wh) )
Taking t =t,,, in (1.1) yields

ot — g s n+l s n+l  n+l
<T,wh>+(2v+yrk(tn+l))(VU Viwg) + b (0 ot wy,) 5.3)
_ (V . wh,qn+l) — (fn+1=wh) + (Rﬁ“,wh) ,

ntl _ 1 m+l
where RiM = —— [l (1 =1,4,) v,d1.

Before presenting the error estimates, we first show that the numerical scheme (5.2) is unconditionally stable.

Theorem 5.1. The scheme (5.1) is unconditionally stable:

N-1 N-1
oM P + 2120k + 3 1o = oI+ 4y, (V||VUZ+1 12 + V2! |.Q|k;+‘)
n=0 N_1n=0 (54)
<NhI2 + 21065 + Y, Ccarll 2,
n=0

Proof. First, taking w;, = 2Atv;’l+1 in the first equation of (5.1), it yields
IR = O + o = o2 + 2 (v n %mk;) MIVOHP = 241 (£, 00 (5.5)
Then multiply both sides of the third equation of (5.1) by 2|Q|4t, we will have
20Q0 (K = k1) + V2r @Ikl = Akl | Vo2, (5.6)
Adding (5.5) and (5.6) and using the Young’s inequality give
Nop 1P = ORI + o+ = op 12 + 212 (K — k) + \/51'_1|~Q|A”’€ZJrl (5.7)
+ var| Vot I? < Canfl
Summing up from n =0 to N — 1, we get the final result. []
We assume the following regularity:
v € L¥O,T;W n H*Yn L (0,T; H¥') n1#(0,T; H*;
v, € L*0,T; H)n L*0,T; H*Y; v, € L*(0,T; H') (5.8)
g€ L*0,T;0n HYn %0, T; HY); k(@) € L 0,T)n W"'0,T).
Before performing the derivation, we introduce some notations:
et = Ll g+l gl where

nti= (v —U,) ot = (0t - U,). and U, €V,
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Theorem 5.2. Suppose that the solutions of 1/2-equation model are sufficiently smooth and satisfy the regularity requirements (5.8). Then there exists a
positive constant C (v, q, k, v, T) such that

N-1
o™ = o IP + var 37 IV (0! = vt |2
n=0
N-1
< At 12 inf ( >
_Cexp< Z:,)uv I3 ) (ginf, TIV (0= U iy (HIT 2 gy + TIVON TR 2

it (I (0= Up) I )+ 1 (0= ), By )

4 CloA gy, int (0= 2al2a g+ 1 (0= V), B2y + V0= VUL, o))

(5.9

+ C| ||Uh|||12(L2)Umf <||v( Uh)||L4(ou2)+,§[‘(’)PT]””‘U"”2>
2 .
+ Cllloll |,22(L2)(||v0—u,,<0> I + (k (0) = Kk, (0)) )+ lgfh|||q—p,,|||,€(Lz)

2
+Car (1Yl [y o)+ Wil gy + 1V0 I o) + Nl ) ) -

Proof. The analysis requires bounding several terms common to the NSE and several new terms, the analytical contribution here. The eddy
viscosity terms are treated in (5.15) to (5.17). The terms corresponding to the energy dissipation rate errors (the RHS of the k-equation) are in
(5.17). Subtracting (5.2) from (5.3) and taking w, € V,,, it yields

1 _
<E+Te w,,> +2v (Ve Viwy) + prk (t,4) (VSO Vowy) — prky, (1,) (VU5 Viwy,)
+ b (v"“,v”“, wy) = b (v;, vzﬂ,wh) - (v- wh,q"“) = (Rz“, wy) .

By adding and subtracting utk (1,) (Vo"™*!, Vawy,), b (0", 0™, wy), b (v}, "', w,), and taking w), = ¢}*! in the above equation, we have

[
¢ﬂ+1 ¢n 7’]"+1 1’]
( yr h v¢;’,+l +v (V¢Z+lv V¢Z+l) (Rn+l ¢n+1) < ¢n+l>
+ 2v (Vsﬂn+l,vx¢;‘l+l) _ (V . ¢rl+l Vl+1) +ut (k (tn+l) —k (tn)) (VSUVI+1’VS¢Z+1) (5 10)
+ M‘L'k (tn) (V: (Un+l n+l) VS ¢n+l) +ur (k (ln) _ kh (tn)) (VSU;',+17VS¢Z+1) :
+ b (Un+l -, U"+1,¢Z+1) +b (’1 ,U"+l,¢;”+1)
_ b( n n+l,¢;tl+l) +b(l)2,l’]"+l,¢2+l) .
Next, we will bound each term of the RHS of (5.10). As for the first three terms, we bound these terms as follows:
(RIFL @) < IR IV < evIVH 1P + CIREFZ,, (5.11)
nn+| nn+] _nn
(— ¢"“) < IV Il
o (5.12)
<alvg I+ S [ e
t Jm
2v (Vi VEgRt) <2v|| VIV < eV V@R + Cl IV, (5.13)
(V- g™ = (V- i g™ = py) < CIVEE llg"™ = pyll (5.14)
< evlIVe 2 + Cllg™! = pyl1%. '
Furthermore, we will deal with the three terms originating from the nonlinear eddy viscosity terms, which makes it new. We have
e Gk (1y01) = (1)) (V041,941
1
< SuT (k (tnar) = K (1)) NV IV
< VIV + CIVO I (k (t1) = (1))
Tnyl (515)
< eV VeI |12 + Carl| Vot ||2/ (k,)* dr
tn
Tntl
< V|V 1% + CAR Vot + cm/ (k,)* a1,
rﬂ
ﬂTk (l") (Vs (UnJrl n+l) ¢n+l)
— /u'k (tn) (V‘YV]”H,V ¢Z+I) — utk (tn) (VS¢Z+1’VS¢Z+I) (5.16)
utk (t ) 1
< — IV + Cuek (1) V0™ 12 = S peek (1) IV I,
ur (k(z,) — kh t VS n+1 Va¢n+l
(k) = (1) ) 1

<ev|[Vgrt 2 + Cuzrzuwz“ I (k () =k (1))
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As for those trilinear terms, we can obtain
b (Un+l _ U", Un+l’¢r};+l) < C”V (Un+l _ Un) ” ||an+l ” ||V¢Z+l ”
< e[V P + CIV (0 = o) [PV

OFS|
<ev|[VeI |12 + Ca | vot! ||2/ Vo, I dt (5.18)

tn

Tyl
<ev||Veit |12 + A || Vot 1t + CAt/ (Vo ||* dt,
tn

b(n" 0™ gty < CUVA Ve Vet

(5.19)
<ev|[VeIH 12 + ClI VA [PV,
b (. 0™ @) < Cligh o™ Vet (5.20)
<ev[Ver IR + Cllv™ 311 1%,
b (vh ™t @ty < CllOE ANV 2 IV Vet 5.21)
<ev||Vei 12 + Cllop VORIV 2.
Substituting (5.11)—(5.21) into (5.10) and taking ¢ = %, then it yields
1 n+12 1 ny2 1 n+1 n o2 v n+112 ”Tk (l") n+12
— -— + — - + IV + ——=|V
SR IP = S UGG + S I = g7 + 1V S IV
2
< Clo™ 3L + CH2 IV 12 (K (t,) = Ky (2,)
+ CIIRIMZ, + CIVA™ 1P + Cllg™" = pull® + Cprk (1,) V™12 5.2
Tnyl 4 .
+ CAZ ||V +cm</ (k)" + ||VU,||4dr)
tn
C ,n+l
+ CIVA" PV P +CloG NIV, VA" P + E/ 12, .
,n
Sum from n =0 to N — 1 and multiply 24¢, we have
N-1 N-1
Iy 112 = gl + Y Nl — dlI> + ar Y, (VIIV I + prk (1,) IV 112)
n=0 n=0
N-1 N-1
<car Y B + Car Y { llg"*" = pull> + V7" 17
= 1 2n=0 2 12 (5.23)
+urk () V7" + VA" 2V
2
Hp VORIV 1 + VO (k (1) = ka (1) }
2 4 4 4 2 2
+C At (| IV O g2+ el + IV ORIy + ||v,,||L2(H,,)) #1135 gy
Further, by using the discrete Gronwall’s inequality, then it follows
N-1 N-1
lpp 112+ D Nt = gl + 4t D (VIVGEH |12 + ek (1,) IV I17)
n=0 n=0
N-1
<Cexp (At 20 0! ||§) { (VI g+ IV oy (190N oy + 11901 By ) 5.24)
=
2 2 2
FCH0AN L 2y max, (k (1) =k (1)) + Hlla = palll )
+CAP (| VOl g2y + WKl gy + IV0N G 2 + ||u,,||§2(H,,)) #0551y + 1R } :

By using triangle inequality and Theorem 4.2, it can obtain the final result. []

6. Numerical tests

To test the convergence rates of the numerical schemes, we use a test problem from [27], which describes the fluid flow between offset circles.
Due to not knowing the analytical solution, we will use the numerical results on the finer mesh as the reference solution to compute the convergence
rates. Herein, we define the following computational domain:

Q= {(x1,x,) : x% +x§ < r% Ny — cl)2 +(xy — c2)2 > r%},
in which ¢ = (¢j,¢) = (%,0),;‘1 = 1,r, = 0.1. In addition, the counterclockwise force drives the flow f(x,x,,#) = (4x; min(z,1)(1 — xf -
x%), —4x, min (1, 1) (1 — x% - x%)). The no-slip boundary conditions will be enforced on both the inner and outer circles. Herein we set = = 0.1,

u=055v=10% L=1,U=1andRe= U—VL We simulate the NSE before turning on the 1/2-equation model at * = 1.
Initial and boundary conditions. The following initialization strategy from [11] is used:

.
kD=5 @),

10
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Table 1

Errors and convergence rates in time.
dt max, [lu =l Rate S IVu =V, |2, Rate
8e—-3 0.01187 - 23.53 -
6e —3 0.00897 0.97 18.50 0.92
4e -3 0.00578 1.08 11.95 1.03
2e -3 0.00213 1.43 3.43 1.40

Table 2

Errors and convergence rates for velocity in space.

T

h max, [luy = u3/45l20 Rate Jo IVuy, - V”3/4.h”§,g Rate
1/60 0.045145 - 2725.76 -
(%)1 -1/60 0.028904 1.55 1922.15 0.61
(%)Z - 1/60 0.011953 3.07 648.01 1.89
(%)3 - 1/60 0.006583 2.07 230.90 1.79

in which we choose I (x) = min {0.41y,0.082Re~!/2} and y is the wall-normal distance. According to the derivation of the 1/2-equation model, we
choose:
k1= L / 1(x)? dx.
2] 222 /o

The turbulent viscosity vy is zero for <1 and ¢ > 1 is:
vr = V2uk(t)(ky/L)*t, & =041,

We adopt the BE scheme to discrete the momentum equation in time. The famous Taylor-Hood element (P2 — P1) will be used to approximate the
pressure and velocity field. We generate the unstructured meshes using GMSH [28].

Order of accuracy in time. We set target mesh size /c = 1/36. Choose a very small dr = 0.001 to provide an approximation taken to be the
true solution. The successive time steps are dr = 0.002, 0.004,0.006, and 0.008. We calculate the rate with the data from ¢ = 1 to r = 1.3. The rates
fluctuate about 1 suggesting these time step values are not yet in the asymptotic regime (see Table 1).

Order of accuracy in space. We look at the ratios of differences between #;, computed for different . We compare the solutions for the grid
sizes, e.g. h, ah,a’h gives
Zh T ek _ P 4 O(h).

Ugp = Ug2p

where p is the order of the method [29]. In our test, we take a = 3/4. We set dt = 0.005 for all simulations, 4 = 1/60,1/60 - (3/4), /60 - (3/4),1/60 -
(3/4)3,1/60 - (3/4)*. We calculate the rates with the data from ¢ = 1 to ¢ = 1.5. The rates in Table 2 fluctuate about 2. Qur heuristic idea is the
fluctuation in rates is related to solution complexity. From the above two tables, we observe the first order of accuracy in time and on average
second order in space, which verifies our theoretical results.
7. Conclusions

Limited computation evidence in [2] indicates that volume averaged statistics predicted by 1-equation URANS models can be well approximated
from the 1/2 equation model. This reduces computational costs provided the coupled system can be reliably and accurately approximated. We show
herein that this is possible by giving a complete convergence analysis of a fundamental method and delineating how to treat the eddy viscosity
nonlinearity in the numerical analysis.
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