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A B S T R A C T

Data assimilation combines (imperfect) knowledge of a flow’s physical laws with (noisy, time-
lagged, and otherwise imperfect) observations to produce a more accurate prediction of flow
statistics. Assimilation by nudging (from 1964), while non-optimal, is easy to implement and
its analysis is clear and well-established. Nudging’s uniform in time accuracy has even been
established under conditions on the nudging parameter � and the density of observational
locations, H , Larios et al. (2019). One remaining issue is that nudging requires the user to
select a key parameter. The conditions required for this parameter, derived through á priori
(worst case) analysis are severe (Section 2.1 herein) and far beyond those found to be effective
in computational experience. One resolution, developed herein, is self-adaptive parameter
selection. This report develops, analyzes, tests, and compares two methods of self-adaptation of
nudging parameters. One combines analysis and response to local flow behavior. The other is
based only on response to flow behavior. The comparison finds both are easily implemented and
yields effective values of the nudging parameter much smaller than those of á priori analysis.

1. Introduction

Predictions of the future state of a flow, here internal 2D or 3D flow of an incompressible viscous fluid in a domain 
,

ut + u ç ∇u − � �u + ∇p = f (x), and ∇ ç u = 0, in 
 , 0 < t d T , (1.1)

u = 0 on ) 
 and u(x, 0) = u0(x), (1.2)

are improved, Kalnay [1], by incorporating / assimilating observations of the flow

uobs(x, t) for 0 < t d T .

The goal of data assimilation is to combine incomplete, sparse, noisy, and possibly time-delayed observations, uobs, with incomplete
and approximate knowledge of a flow’s dynamic laws to produce a more accurate prediction of flow statistics. Nudging-based
assimilation, from 1964 Luenberger [2], is amenable to both analysis, e.g. Biswas and Price [3], Azouani, Olson and Titi [4], Cao,
Giorgini, Jolly and Pakzad [5], Larios, Rebholz, and Zerfas [6] (among hundreds of papers), and straightforward implementation.
However, nudging is non-optimal since no criterion is minimized, Lakshmivarahan and Lewis [7]. Uniform in-time convergence has
even been proven [6] under parameter conditions reviewed in Section 2. A difficulty remaining is that users must select effective
nudging parameters and the analytical theory places parameter restrictions, see Section 2.1, far beyond ranges found effective
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in computational experience, summarized in Kalnay [1]. Since á priori analysis develops conditions from a series of worst-case
estimates, these restrictions may be pessimistic, and self-adaptive parameter selection, developed herein, is natural.

To develop adaptive-� methods, we adopt the simplest interesting setting. Let the true velocity be denoted u(x, t) and its observed
values uobs = IHu be an L2 projection of the true values on a finite-dimensional subspace (associated with a length-scale denoted
H). The continuum, nudged approximation v(x, t) satisfies

select parameter � , set v(x, 0) = v0(x) and solve

vt + v ç ∇v − � �v − � IH (u − v) + ∇q = f (x), ∇ ç v = 0, in 
 . (1.3)

The initial and boundary conditions are

u = 0 on ) 
 , v = 0 on ) 
 , u(x, 0) = u0(x), and v(x, 0) = v0(x).

To support the necessity for adapting � , in Section 2 we summarized error analysis (inspired by the analysis in [6]) showing that
for H small enough and � large enough nudging is accurate uniformly in time. Specifically, the conditions from this analysis are

H − condition: � − 2C2
1
H2� e 0, (1.4)

2D � − condition: � −
2

�

1

T +
T

0

‖∇u‖2d t e �0 > 0, (1.5)

3D � − condition: 2

[
� −

2048

19683
�−3

1

T +
T

0

‖∇u‖4d t
]
e �0 > 0. (1.6)

With explicit time discretization, the nudging term alters the CFL stability condition and a third parameter constraint emerges,
detailed in Farhat, Larios, Martinez, and Whitehead [8].

For high Reynolds number flows in 2D and 3D, in Section 2.1 we investigate what turbulence phenomenology suggests large
enough and small enough in (1.4)–(1.6) mean. There results

in 2D: � ≳ ý(Āe3∕2) and H ≲ ý(Āe−5∕4), (1.7)

in 3D: � ≳ ý(Āe5) and H ≲ ý(Āe−3). (1.8)

While sufficient (in theory), these are impractical (in practice). Extensive practical experience, Kalnay [1], shows that the nudging
parameter is best chosen for intermediate size, balancing data errors with model errors and numerical errors. Thus the parameter
requirements (1.4)–(1.6) are far beyond parameter values in problems where assimilation is used. The gap is likely because of
conditions (1.4)–(1.6) emerge from analysis through a series of worst-case estimates which may not occur simultaneously and (1.7),
(1.8) emerge from the assumption that the flow is fully developed turbulence. To address this issue, in Section 3 we present 2 low
complexity algorithms for self-adaptive parameter selection. These act to find a smaller effective � value in response to the local
flow behavior and are only slightly more expensive in operations and memory than á priori selection.

Adaptivity exploits �-sensitivity to improve approximations. It is based on 3 principles: localization (of the global criteria),
estimation (of the deviation from a desired state), and decision (of how to choose the next parameter value). The condition that
‖v(ç, t) − u(ç, t)‖ is decreasing is localized to decreasing every time step. The estimator is ‖IH (u − v)‖ and the decision tree is to
increase � for large estimates and decrease � for very small estimators. We compare two decision strategies based on derived
analytical criteria for decrease and simply asking if a reduction is observed.

Section 4 presents tests of the adaptive nudging methods for problems with model errors with both á priori and self-adaptive
parameter selections. We find both adaptive-� methods produce effective � values smaller than (1.7)–(1.8) and accurate velocities.
We also observe that an H-condition seems to be necessary for accurate, long-time approximations. Addressing the H-condition is
an open problem. In many applications, H depends on the density of sensors.

1.1. Related work

Nudging for data assimilation stems from the 1964 work of Luenberger [2] and has extensive tests in geophysical flow
simulations, e.g., [1,7,9–12]. Its form also arises under the terms various types of damping and time relaxation, e.g., [13], with
large numbers of papers for each realization. The analytical work on nudging is similarly enormous; we mention three that we (and
most others) build upon. Azouani, Olson, and Titi [4] gave an early and possibly even the first complete convergence analysis of
a nudging algorithm. Their analysis produced a similar H-condition as herein in Theorem 2.1 p. 254. Biswas and Price [3] gave a
remarkable analysis in 3D without assuming á priori strong solutions. Their analysis recovered similar conditions as herein on H

(their equation (3.27)) and � (their (3.8)). Biswas and Price [3] also provided an early algorithm for adaptation of � which retained
a Reynolds number dependent lower bound on � in their equation (4.4). In 2019 Larios, Rebholz, and Zerfas [6] proved uniform
in time error bounds in a way that narrowed the gap between analysis and computational tests. In Zerfas, Rebholz, Schneier, and
Iliescu [14], the nudging parameter (here �) is adapted when the nudged system’s kinetic energy is out of the bounds that the NSE
energy inequality imposes. See also García-Archilla and Novo [15] for discrete-time error analysis.

None of these papers sought an optimal � . Nudging emerged from Luenberger’s work on control theory was then developed
in independent directions. Along its path, several reconnected nudging to control and optimization, determining methods for
optimization of the nudging parameter. For work on this approach (not considered herein) involving solving the adjoint problem,
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see Hoke and Anthes [9], Stauffer and Bao [11], Zou, Navon, LeDimet [12] and Navon [10]. Carlson, Hudson, and Larios [16]
and Martinez [17] have studied recovering the unknown viscosity parameter for the 2D Navier–Stokes equations (NSE). Parameter
estimates for the Lorenz equation are studied in Carlson, Hudson, Larios, Martinez, Ng, and Whitehead [18]. Finally, after this
report’s submission, two interesting reports exploring other approaches to adapting � have become available on ArXiv, Carlson,
Farhat, Martinez, and Victor [19,20].

1.2. Preliminaries

The notation for the L2(
) norm and inner product is ‖ ç ‖ and (ç, ç), respectively. Using ‖ ç ‖Lp , we indicate the Lp(
) norm.
The numerical tests use a standard finite element discretization, see [21] for details. We also use the inequalities derived by
Ladyzhenskaya [22].

Theorem 1.1 (The Ladyzhenskaya Inequalities, See Ladyzhenskaya [22]). For any vector function u ∶ R
D

³ R
D with compact support

and with the indicated Lp norms finite,
‖u‖L4(R2) d 21∕4‖u‖1∕2

L2(R2)
‖∇u‖1∕2

L2(R2)
, (D = 2),

‖u‖L4(R3) d 4

3
√
3
‖u‖1∕4‖∇u‖3∕4, (D = 3),

‖u‖L6(R3) d 2√
3
‖∇u‖, (D = 3).

2. Continuum nudging

To motivate the necessity of adaptivity, for completeness, we review the (now standard since [3,4,6]) proof that the error ³ 0

uniformly in T as � ³ @ and uniformly in � as T ³ @. The (direct) proof shows how conditions H small enough and � large enough
emerge organically for the structure of the NSE and it motivates one adaptive algorithm of Section 3. This conditions H small enough
and � large enough are interpreted under 2D and 3D turbulence phenomenology in Section 2.1 below, leading to (1.7). We assume
here that IH is an L2 projection and satisfies

‖(I − IH )w‖ d C1H‖∇w‖ for all w *
(
H1

0
(
)

)d
, D = 2 or 3. (2.1)

For the 3D case, we assume1 that ‖∇u‖4 * L1(0, T ). This assumption is not necessary (since the work of Biswas and Price [3]) but
shortens the analysis.

Proposition 2.1. Let e = u − v. Suppose IH is an L2 projection with the approximation property (2.1) above. In 2D let the parameter
conditions (1.4), (1.5) hold and in 3D (1.4), (1.6). Then, the error ³ 0 uniformly in T as � ³ @ and uniformly in � as T ³ @. In
particular,

‖e(T )‖ d exp
[
−�0T

]
‖e(0)‖.

Proof. The 2D case: By subtracting (1.3) from (1.1) and taking the inner product with e, there follows
1

2

d

d t
‖e‖2 + (u ç ∇u − v ç ∇v, e) + �‖∇e‖2 + �‖IHe‖2 = 0,

where ‖(u ç ∇u − v ç ∇v, e)‖ = |(e ç ∇u, e)| d ‖∇u‖‖e‖2
L4
, thanks to Hölder’s inequality.

Note that ‖e‖2 = ‖IHe‖2 +‖(I − IH )e‖2 d ‖IHe‖2+
(
C1H‖∇e‖

)2
. By the 2D Ladyzhenskaya and arithmetic–geometric mean

inequalities

|(e ç ∇u, e)| d √
2‖∇u‖‖e‖‖∇e‖ d �

2
‖∇e‖2 + 1

�
‖∇u‖2‖e‖2.

Thus,
d

d t
‖e‖2 +

[
� − 2C2

1
H2�

]
‖∇e‖2 +

[
� − 2�−1‖∇u‖2

]
‖e‖2 d 0

Provided the term in the first bracket is non-negative, the condition (1.4), we proceed as follows. Denote a(t) ∶= � − 2�−1‖∇u‖2 *

L1(0, T ), A(T ) = + T

0
a(s)d s, 0 d y(t) = ‖e‖2 then y2 + a(t)y d 0. Thus, y(T ) d exp [−A(T )] y(0). Thus, provided (1.5), i.e.,

1 One can assume a stronger condition, such as ‖∇u‖ * L@(0, T ), and obtain an estimate that superficially appears better behaved concerning the Reynolds
number or a weaker condition, such as Prodi–Serrin, and obtain an estimate that has a worse explicit Re dependence. This is because some dependence is
subsumed within the assumption.
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� −
2

�

1

T +
T

0

‖∇u‖2d t e �0 > 0,

it follows that exp [−A(T )] d exp
[
−�0T

]
and the error ³ 0 uniformly in T as � ³ @ and uniformly in � as T ³ @.

The 3D case: Starting at
1

2

d

d t
‖e‖2 + (e ç ∇u, e) +

[
� − 2C2

1
H2�

]
‖∇e‖2 + �‖e‖2 = 0.

By the 3D Ladyzhenskaya inequality and an arithmetic–geometric mean inequality(with exponents 4 and 4/3)2

|(e ç ∇u, e)| d ‖∇u‖‖e‖2
L4

d ‖∇u‖
(

4

3
√
3
‖e‖1∕4‖∇e‖3∕4

)2

d (
16

27
‖∇u‖‖e‖1∕2

) (
‖∇e‖3∕2

) d �

2
‖∇e‖2 +

(
2048

19683
�−3‖∇u‖4

)
‖e‖2.

Thus,
d

d t
‖e‖2 +

[
� − 2C2

1
H2�

]
‖∇e‖2 + 2

[
� −

2048

19683
�−3‖∇u‖4

]
‖e‖2 d 0.

Following the 2D case, the error satisfies ‖e(T )‖ d exp [−A(T )] ‖e(0)‖ where A(T ) = 2� −
2048

19683
�−3

2

T
+ T

0
‖∇u‖4d t. This implies

‖e(T )‖ d e−�0T ‖e(0)‖, provided � is large enough, (1.6), that

2

[
� −

2048

19683
�−3

1

T +
T

0

‖∇u‖4d t
]
e �0 > 0. ¦

2.1. Interpreting the conditions

In the analysis, conditions on H and � arise naturally for uniform in T convergence. The question we now investigate for higher
Reynolds number, turbulent flows is

How severe are these conditions for practical problems?
Let the large scale length and velocity be denoted L, U , e.g., L = |
|1∕D and U2 = lim supT³@

1

T
+ T

0
1

|
| +
 |u|2 d x d t. The Reynolds

number is Āe = LU∕�. The large-scale turnover time is T ∗ = L∕U . The constant C1 in (2.1) is dimensionless. H has units of length
and � of time−1.

In 2D, the conditions are

� − 2C2
1
H2� e 0 and � −

2

�

1

T +
T

0

‖∇u‖2d t e �0 > 0.

For fully developed turbulent flows in 2D with periodic boundary conditions, Alexakis and Doering [23] have proven the following,
consistent with phenomenology,

lim sup
T³@

1

T +
T

0

�

L2
‖∇v‖2d t d kfU

3Āe
−1∕2

f
where Āef =

U

� kf
and

kf = average energy-input wave number, Āef =
U

� kf
= Āe(Lkf )

−1.

In 2D, phenomenology interprets the �−condition to mean

� > 2

�

1

T +
T

0

‖∇u‖2d t C 2L2

�2
kfU

3

(
U

� kf

)−1∕2

C 2kfU (Lkf )
+1∕2Āe+3∕2

� T ∗ ≳ 2(Lkf )
+3∕2Āe+3∕2 ≫ 1.

The H−condition, � − 2C2
1
H2� e 0, can be rearranged to read

(
H

L

)2 d (
2C2

1

)−1 Āe−1
(
� T ∗

)−1
.

Since � ≳ ý(Āe3∕2) the H−condition becomes (H∕L)2 d ý(Āe−5∕2). These conditions on H and � are severe.
In 3D, the scaling becomes worse. For fully developed turbulent flows in 3D with periodic boundary conditions, the following

has been proved by Doering and Foias [24], again consistent with turbulent phenomenology in the large T limit

1

T +
T

0

�

L3
‖∇v‖2d t C U3∕L.

Under the (often called a spherical cow assumption) condition that

2 The equality (u ç ∇u − v ç ∇v, e) = (e ç ∇u, e) requires skew symmetry of the trilinear form (u ç ∇v, w). After space discretization, an analogous equality holds
with explicitly skew symmetrized trilinear forms or when divergence-free elements are used.
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4

√
1

T +
T

0

‖∇u‖4d t C 2

√
1

T +
T

0

‖∇u‖2d t

we then estimate

1

T +
T

0

‖∇u‖4d t C
(
L3�−1

1

T +
T

0

�

L3
‖∇u‖2d t

)2

C

(
L3�−1

U3

L

)2

.

The condition (1.6), � big enough, has the interpretation

� T ∗ ≳
L

U
0.1�−5L6 U

6

L2
= 0.1Āe5.

The H small enough condition then becomes
(
H

L

)2 d (
2C2

1

)−1 Āe−1
(
� T ∗

)−1
≲ ý(Āe−6).

The 3D condition � T ∗ ≳ ý(Āe5) and H∕L ≲ ý(Āe−3) are severe restrictions.
For problems with smooth solutions (e.g., test problems constructed by the method of manufactured solutions) the H−condition

can be altered as follows. For a vector function w(x) define �T (w) as

�T (w) ∶= ‖w‖
‖∇w‖ , D = 2 or 3.

Here �T represents an average length-scale of the solution, analogous to the Taylor micro-scale (which would also involve time
averaging). Then ‖∇e‖ d �−1

T
‖e‖. The term that gives rise to the H-condition is now estimated by

�‖(I − IH )e‖2 d �
(
C1H‖∇e‖

)2 d � C2
1
H2�−2

T
‖e‖2.

It can now be subsumed into the �-condition (in 3D here). This gives long time estimates when H is small with respect to �T (e)

(rather than Āe) from the inequality.

d

d t
‖e‖2 + �‖∇e‖2 + 2

[
�

(
1 − C2

1

(
H

�T (e)

)2
)

−
2048

19683
�−3‖∇u‖4

]
‖e‖2 d 0.

3. Self-adaptive parameter selection

The severe constraints, in 2D � ≳ ý(Āe3∕2) and � ≳ ý(Āe5) in 3D can possibly be improved since analysis gives a sufficient (but
possibly not sharp), worst-case lower bound. It is therefore interesting to develop methods for self-adaptive parameter selection that
respond to the local state of the flow. The condition on H is linked to the condition on � ; improving the latter improves the former.
Further, changing H requires changing observation locations rather than just picking a new user-defined parameter. We thus focus
on adapting � . Reformulating nudging to improve the H-condition is an open problem.

The first algorithm is not grounded in the á priori analysis other than the result that a decrease of ‖e‖ is possible and
‖IH (e)‖ d ‖e‖. It uses the fact that ‖IHe‖ is computable in a reasonable but heuristic way as follows.

Algorithm 1
Choose �0 > 0. Set upper safety factor, Factor e 1, and lower tolerance, T ol < 1. Given �n such that ‖IHe(tn)‖ < ‖IHe(tn−1)‖
Pick �n+1 = �n and calculate v(t) for tn < t d tn+1.

[Acceptable � value] Proceed to next step with �n+2 = �n+1 if ‖IHe(tn+1)‖ < ‖IHe(tn)‖
[Too small � value] If ‖IHe(tn+1)‖ e Factor ‖IHe(tn)‖, set �n+1 = 2.0�n and repeat step.
[Too large � value] If ‖IHe(tn+1)‖ d Tol ‖IHe(tn)‖, set �n+2 = 0.5�n+1 and next step.

The second algorithm is grounded in the á priori analysis that led to conditions (1.5), (1.6). We first develop it in 2D. Changing
the parameter values at each time step means the nudging term is no longer autonomous. Thus we set � = �(t). Since we are not
addressing the H-condition the analysis is shortened by setting IH = I . Alternatively, the analysis below could proceed (with more
terms) with the H-condition present and assumed satisfied. For the tests in Section 4, IH � I . We begin with

1

2

d

d t
‖e‖2 + (u ç ∇u − v ç ∇v, e) + �‖∇e‖2 + �(t)‖e‖2 = 0.

For the nonlinear term we rearrange and decompose on (u ç ∇u − v ç ∇v, e) = (e ç ∇v, e) rather than (e ç ∇u, e) since v is computed.
Following the subsequent steps (making this one change) we obtain

d

d t
‖e‖2 + �‖∇e‖2 +

[
2�(t) − �−1‖∇v‖2

]
‖e‖2 d 0.

Denote a(t) ∶= 2�(t) − �−1‖∇v‖2, 0 d y(t) = ‖e‖2 then y2 + a(t)y d 0. Thus, the error at time T satisfies

‖e(T )‖ d exp

[
−

(
1

T +
T

0

�(t)d t − 2

�

1

T +
T

0

‖∇v‖2d t
)
T

]
‖e(0)‖
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and the contribution to the evolution of the error of one-time step of size � satisfies

‖e(t + �)‖ d exp

[
−

(
1

� +
t+�

t

�(s)d s − 2

�

1

� +
t+�

t

‖∇v(s)‖2d s
)
�

]
‖e(t)‖

This suggests the following algorithm with piecewise constant � .

Algorithm 2
Choose �0 > 0. Given �n such that

�n −
2

�

1

� +
tn

tn−1

‖∇v(s)‖2d s e �0 > 0.

Pick �n+1 = �n and calculate v(t) for tn < t d tn+1.

[Acceptable � value] Proceed to next step with �n+2 = �n+1 if

2�0 e �n+1 −
2

�

1

� +
tn+1

tn

‖∇v(s)‖2d s e �0 > 0.

[Too large � value] If

�n+1 −
2

�

1

� +
tn+1

tn

‖∇v(s)‖2d s > 2�0

Proceed to the next step after resetting

�n+2 = 1.1�0 +
2

�

1

� +
tn+1

tn

‖∇v(s)‖2d s.

[Too small � value] If

�0 > �n+1 −
2

�

1

� +
tn+1

tn

‖∇v(s)‖2d s

Repeat step after resetting

�n+1 = 1.1�0 +
2

�

1

� +
tn+1

tn

‖∇v(s)‖2d s.

In 3D the only change is to replace
2

�

1

� +
tn+1

tn

‖∇v(s)‖2d s by 2048

19683
�−3

1

� +
tn+1

tn

‖∇u‖4d t.

In both cases, the integrals over tn < t < tn+1 are evaluated by quadrature using a rule with accuracy compatible with the time
discretization employed. In our tests the trapezoidal approximation is used with the approximate velocities at tn, tn+1. The 3D
multiplier �−3 reflects the greater complexity of 3D turbulence, Section 2.1. Users can define a maximum number of retries, denoted
as maxT ry, for both algorithms. In our tests in Section 4, we set maxT ry = 5.

4. Numerical tests

In this section, we conduct three tests to validate the adaptive algorithms. In the first test, we calculate the rate of convergence
with a test with exact solutions. Then we test the adaptive algorithms with a complex flow between offset cylinders from [25]
with a higher Reynolds number. In the third test, we use the test case from [26], which involves flows past a flat plate with a Re

of 50.
We note that the two adaptive strategies have similar but different aims. The first aims to enforce ‖IH (e(t + �))‖ d ‖IH (e(t))‖.

The second aims to enforce ‖e(t + �)‖ d ‖e(t)‖. Since ‖IH (e)‖ d ‖e‖ we expect the first to yield smaller �-values than the second.

4.1. Test of accuracy

In the numerical example, we verify the theoretical temporal convergence results with the BDF2 (second-order backward
differentiation formula) time discretization described and analyzed in Section 3 of Larios, Rebholz, and Zerfas, [6]. The following
exact solution for the NSE is considered in the domain 
 = (0, 1) × (0, 1). The velocity and the pressure are as follows:

u(x, y, t) = et(cos y, sin x), and p(x, y, t) = (x − y)(1 + t).

We insert these in the NSE to calculate the body force f (x, t). We choose Re = 1. We create a fine mesh resolution that consists
of 55554 degrees of freedom (dof) to isolate the convergence rates for �t of the errors by making the spacial errors small. We
run the code in the time interval [0, 2]. We use a Scott-Vogelius finite element pair with a barycenter refined mesh. We observed
similar results with Taylor-Hood elements and a skew-symmetrized nonlinearity. The measurements were made by L2(
) norm. In
Algorithm 1, we set a safety factor and a lower Tolerance as follows. The factor is user-defined to avoid � growing too big when
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Table 1
Errors, rates of convergence, and values of the maximum value of � through adaptation for Algorithms 1 and
2. We obtain the second-order error rates in time.
(a) Algorithm 1. (b) Algorithm 2.

�t ‖u − v‖ rate �max �t ‖u − v‖ rate �max

1 0.0052 – 1 1 0.0026 – 21
1/2 0.0013 2.01 1 1/2 0.00061 2.12 23
1/4 0.00026 2.32 32 1/4 0.00016 1.93 25
1/8 5.4e−5 2.26 64 1/8 4.3e−5 1.93 26
1/16 1.4e−5 1.94 64 1/16 1.1e−5 2.0 27
1/32 1.8e−6 2.92 256 1/32 2.9e−6 1.87 27

Fig. 1. Relative errors. In a longer time, Algorithm 2 gives smaller errors.

the projection error grows slightly.

Doubling when ‖IH (e(t + �))‖ > Factor ‖IH (e(t))‖.

We set Factor = 1.3.

Halving when ‖IH (e(t + �))‖ < Tol‖IH (e(t))‖,

where Tol is also defined by the user and Tol = 0.2 in this test.
In Table 1, we observe second-order convergence in �t for velocity. This is an optimal rate and is evidence that the

implementation is correct. We also present the values of the maximum value of � through adaptation to understand how large
the generated � values become. The small � values seem to be in response to the solution’s smaller �T . According to the results of
this accuracy test, theoretical expectations are compatible with numerical results, except that, oddly, the �-values of Algorithm 1
are larger than Algorithm 2. This effect reverses over a longer time. Due to this reversal of the expected � values, we monitor the
behavior of the relative errors and � values for a longer time, final time T = 10, see Figs. 1 and 2. The relative errors are ý(10−6) for a
long time. Then they start growing, but the growth speed is slowing down and the errors appear to be saturating around 10−6 similar
to logistic growth. Logistic growth is a long-accepted model of error growth in fluid dynamics, e.g., Lorenz [27]. For Algorithm 1,
the adapted � value is less than 50, and for Algorithm 2, � is growing until it reaches the maximum value 106. Algorithm 1 provided
smaller �-values is consistent with expectations, based on ‖IH (e)‖ d ‖e‖.

4.2. Flow between offset cylinders

In this example, we are testing the adaptive nudging algorithms with a higher Re flow with complex features and without exact
solutions. The domain is a disk with a smaller off-center obstacle inside. Let the outer circle radius r1 = 1 and the inner circle radius
r2 = 0.5, with centers c = (c1, c2) = (

1

2
, 0). The domain is


 = {(x, y) ∶ x2 + y2 d r2
1
and (x − c1)

2 + (y − c2)
2 e r2

2
}.

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117526 

7 



A. Çıbık et al.

Fig. 2. � in long time. � values in Algorithm 2 reach the maximum value.

Fig. 3. Triangulated computational domain with 75 mesh points on the outer circle and 60 mesh points on the inner circle.

The computational domain with its triangulation is presented in Fig. 3. A counterclockwise rotation drives the flow with the body
force given below:

f (x, y, t) = (−4ymin(1, t) (1 − x2 − y2), 4xmin(1, t) (1 − x2 − y2))⊤,

with no-slip boundary conditions. The outer circle remains stationary. The Delaunay algorithm generates the mesh with 75 mesh
points on the outer circle and 60 mesh points on the inner circle. The final time T = 10, time step size �t = 0.01, � = 10−3,
L = 1, U = 1, and Re =

U L
�
. Initial condition u(x, y, 0) = 0 and the Dirichlet boundary condition u = 0 on ) 
.
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Fig. 4. The relative error with the approximate true solution from DNS. The adaptive algorithms are effective for a shorter time. When the flow becomes more
complex, the errors grow big and saturate at ý(1).

We use BDF2 for the time discretization and Taylor-Hood (P 2 − P1) for the velocity and pressure spaces. We apply the
second-order linear extrapolation to the explicitly skew symmetrized nonlinear term b∗(v∗, vn+1, vℎ), where

b∗(u, v, w) = 1

2
(u ç ∇v, w) − 1

2
(u ç ∇w, v) and v∗ = 2vn − vn−1.

In this test, we approximate the true solution uobs for nudging using two methods: Direct Numerical Simulation (DNS) and an
Unsteady Reynolds-Averaged Navier–Stokes (URANS) model of turbulence from [28,29].

We compare the adaptive Algorithms 1, 2, and constant � = 104. The initial nudging parameter for the adaptive algorithms is
�(0) = 1. The upper bound for � is �max = 106. In Algorithm 1, we set Factor = 1.1 and T ol = 0.3.

4.2.1. DNS
The well-resolved NSE solution is calculated on a finer mesh with 120 mesh points on the outer circle and 96 mesh points on

the inner circle. The relative error is defined as ‖uD N S−v‖
‖uD N S‖ . In Fig. 4, we can see the adaptive algorithms and the constant nudging

effectively decrease the relative error from t = 0 to t = 2. After t = 2, the relative error grows until it saturates at ý(1). The behavior
indicates that an H-condition like (1.4) for long-time convergence is necessary and not satisfied here. In Fig. 5, the � values of
Algorithms 1 and 2 grow with time until they reach the maximum value. We observe that the � of Algorithm 1 grows fast at first
then the growth rate gets smaller. Algorithm 1 gives a slightly better approximation from t = 0 to t = 2. � for Algorithm 2 grows at
first then barely changes, then grows big due to the growth of more complex flow structures and in response to the (we conjecture)
non-satisfaction of the H-condition.

4.2.2. URANS
We use a 1/2-equation model of URANS from [28,29] to approximate the exact velocity u. We denote it as uU RAN S . The

1/2-equation model produces velocity statistics comparable to the full 1-equation model, [28]. The 1/2-equation URANS model
is

) u
) t

+ u ç ∇u − ∇ ç ([2� + �T ]∇
su) + ∇q =

1

� +
t

t−�

f (x, t2) d t2 and ∇ ç u = 0,

) k(t)
) t

+

√
2

2
�−1k(t) = 1

|
| +
 �t|∇sv|2 d x,
(4.1)

where �t =
√
2� k(t)(� y

L
)2� for no-slip and shear boundaries. Here, y is the wall-normal distance. We choose the calibration constant

� = 0.55, the time window � = 0.1, and the von Karman constant � = 0.41. We turn on the k-equation at t⋆ = 1. We initialize the
1/2-equation model with values from Wilcox [30], also see Kean, Layton, and Schneier [31]:

k(1) = 1

|
| 1.5 I2 +
 |v(x, 1)|2 d x, and I = turbulence intensity H 0.16Re−1∕8.
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Fig. 5. The plot of the nudging parameter � values in time. Both Algorithms 1 and 2 reach the maximum � value in a longer time.

Fig. 6. The relative error with the approximate true solution from a URANS model. When the flow becomes more complex, the errors grow big and saturate
at ý(1).

The relative error is defined as ‖uU RAN S−v‖
‖uU RAN S‖ starting at t∗ = 1. In Fig. 6, we can see the adaptive algorithms and the constant nudging

effectively decrease the relative error from t = 1 to t = 2. After t = 2, the relative error grows fast until it reaches ý(1) as in the
previous test, again suggesting H-condition violation. In Fig. 7, the � values of Algorithms 1 and 2 grow with time until they reach
the maximum value. We observe that the � of Algorithm 1 grows fast at first, then the growth rate gets smaller, and � for Algorithm
2 at the beginning barely changes and sharply grows after t = 2. These two tests suggest that both a �-condition and an H-condition
are essential for long-time convergence. This test also suggests that data from a turbulence model does not alleviate non-satisfaction
of nudging’s H-condition.
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Fig. 7. The plot of the nudging parameter � values in time. Both Algorithms 1 and 2 reach the maximum � value by time = 2.5.

Fig. 8. Finer mesh. The total dof for fine mesh is 27373 and for the coarse mesh is 15037.

4.3. Flow over a flat obstacle

We adopt this test from [26]. The computational domain is a [−7, 20] × [0, 20] rectangular channel with 0.125 × 1 flat plate obstacle
so that |
| H 540. The statistics are relative to solution size which also makes them area independent. The inflow velocity is set with
uin = ï1, 0ðT and no force is applied. No-slip boundary conditions are applied on walls and the plate whereas a weak zero-traction
boundary condition is enforced on the outflow boundary as in [26]. We choose Āe = 50, � =

1

Āe
, �t = 0.02 and the final time T = 81,

three times turnover time. The flow is at rest at t = 0. We approximate the exact velocity u via finer mesh as seen in Fig. 8 and
solve the v equation with coarser mesh. The total dof for the fine mesh is 27373 and for coarse mesh is 15037. Since this test is a
through-flow problem, it interrogates errors over 1 through-flow time, not over longer times. Still, it is a complex flow with many
interesting features and an accepted test problem.

We compare Algorithms 1, 2 and the constant � with different initial � values, where � = 1, 10, 100, and 1000. We set Factor = 1
and T ol = 0.2, and the maximum of � = 106. We define the relative error ‖u−v‖

‖u‖ , and relative projection error ‖IH (u−v)‖
‖u‖ . In Figs. 10–16,

both the relative error and the relative projection error decrease with larger � values for Algorithm 1 and the constant � . Algorithm
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Fig. 9. Evolution of � values for Algorithm 1. In the first turnover time, from t = 0 to t = 27, Algorithm 1 increases the � values for smaller initial � until it
reaches the maximum value of �max = 106.

Fig. 10. Algorithm 1: the relative error is dependent on the initial � values in the first turnover time. After � reaches the maximum value, the relative error
is not sensitive to the initial � values.

1 performs better when the initial � value is small because it effectively adapts � to reduce the projection error. On the other hand,
Algorithm 2 is robust to initial � values, adjusting � to obtain the optimal value for smaller errors at each time step. We observe
that the projection error is smaller than the error. Furthermore, the � value for Algorithm 1 is smaller than Algorithm 2 in the first
turnover time, and it is bigger than Algorithm 2 in long times (see Fig. 9). We obtain smaller relative error and projection errors for
Algorithm 2 than for Algorithm 1 and the constant � . We would like to point out here that if u and v are solved on the same mesh
(as in, e.g., [26]) instead of fine mesh coarse mesh convention as has been done here, the error is negligible, ý(machine epsilon).
5. Conclusion

Two adaptive-� strategies were derived and tested: enforcing a decrease in the observed error, ‖IH (u − v)‖, and enforcing a
computable sufficient condition for the full error, ‖u − v‖, decrease. The second, based on a stronger condition, generally yielded
larger � values. The tests at high Āe have the adaptive algorithm steadily increasing � . This means the large � error analysis in
Diegel, Li, and Rebholz [32] is of special interest. In one test (see Fig. 6) the second responded more quickly to transient behavior and

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117526 

12 



A. Çıbık et al.

Fig. 11. Algorithm 1: the projection error is dependent on the initial � values in the first turnover time. The projection errors are monotone decreasing since
the algorithm enforces ‖IH (e(t + �))‖ d ‖IH (e(t))‖. After � reaches the maximum value, the relative error is not sensitive to the initial � values.

Fig. 12. Evolution of � values for Algorithm 2. � values are adjusted quickly, and reach approximately 5 × 104 then drop out a bit and reach a steady state.

resulted in significantly smaller errors. Adaptive selection of the nudging parameter � improves performance. It does not, however,
eliminate the necessity of the H-condition related to the density of observations. This means revising the standard formulation of
nudging to improve the H-condition is an important open problem. Other critical open problems include the effect of time delays
in the nudging control term and the effectiveness of nudging for correction of model errors. The precise realization of Algorithm 2
and its supporting discrete-time analysis is also an open problem for higher-order linear multi-step methods.
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Fig. 13. Algorithm 2: the relative errors are insensitive to initial � . It adapts � value effectively to obtain smaller errors.

Fig. 14. Algorithm 2: the projection errors are insensitive to the initial � values.
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Fig. 15. Constant � : relative errors decrease with larger � values.

Fig. 16. Constant � : projection errors decrease with larger � values.
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