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Abstract Vortex-induced vibrations are oscillatory
motions experienced by a body interacting with an
external flow. These vibrations can be harnessed for
energy harvesting purpose. A cantilever beam with a
cylinder attached at the free end represents the bluff-
body oscillator of interest here. Vortex-induced vibra-
tions of two adjacent bluff-body oscillators are studied
by varying the transverse spacing between the oscilla-
tors. A finite element model of the system is used to
numerically study the associated fluid–structure inter-
actions. For the case with two oscillators, the effect of
varying the oscillator spacing on the system response
is studied. Dynamic mode decomposition is used for
extracting coherent spatio-temporal structures in pres-
sure fields. The system spectral response for the single
oscillator and coupled oscillators cases are studied to
examine the system dynamics. The obtained numerical
results for the system dynamics are found to agree with
previously reported experimental results in the litera-
ture. The present work can form a basis for construct-
ing computational models of fluid coupled bluff-body
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oscillators and configuring arrays of bluff-body oscil-
lators for energy harvesting.
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List of symbols

A∗
m Mean nondimensional peak-to-peak ampli-

tude
D Diameter of the cylinder
fs Vortex shedding frequency
g∗ Nondimensional gap
St Strouhal number
U0 Flow speed
ALE Arbitrary Lagrangian Eulerian
CFL Courant–Friedrichs–Lewy
DMD Dynamic mode decomposition
FEM Finite element method
FSI Fluid–structure interaction
MSE Mean squared error
POD Proper orthogonal decomposition
PSD Power spectral density

1 Introduction

Vortex-induced vibrations (VIVs) are a common phe-
nomenon observed in nature. At external flow speeds
higher than a critical value, vortices are shed from the
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considered bluff body into the wake behind it. These
vortices are shed alternately from each side of the struc-
ture, forming a von Kármán vortex street. Vortex shed-
ding is dependent on theReynolds number (Re) and the
geometry and orientation of the bluff body. The shed-
ding frequency is related to a dimensionless number
called the Strouhal number (St), which is given by

St = fs L

U0
(1)

where fs is the frequency of vortex shedding, L is a
characteristic length, and U0 is the flow speed. These
vortices create fluctuations in the pressure distribution
along the surface of the structure, leading to the devel-
opment of lift forces, resulting in motions transverse to
the flow direction. Such fluctuating pressure can also
be observed on thin, flexible structures, such as a beam
placed in the wake of a cylindrical body, resulting in
vortex-induced vibrations of the structure.

Structures in flows can experience vortex-induced
vibrations and galloping vibrations. For galloping
vibrations, one representative work is that of Luongo
et al. [1].When subjected to vortex-induced vibrations,
structures can experience various types of responses,
including limit cycle oscillations, chaos, and quali-
tative changes in behavior due to bifurcations [2–6].
In many engineering applications, these vibrations are
undesirable. In civil and aerospace applications, vortex-
induced vibrations can lead to structural failures, exam-
ples of which include failures of bridges, offshore plat-
forms, and chimneys. On the other hand, these vibra-
tions can be used for energy harvesting purposes by
converting the associated mechanical energy into elec-
trical form by using suitable energy transductionmech-
anisms based on active materials such as the piezoelec-
tric materials.

Two circular cylinders placed side by side in a fluid
flow are known to experience rich dynamics. In this
regard, the reviews of Sumner [7] and Zhou and Alam
[8] are valuable references. The flowphysics is strongly
dependent on theReynolds number (Re) and transverse
gap-to-diameter ratio (g∗). For g∗ > 1, two distinct
vortex streets are produced [9]. For g∗ > 5, the two
vortex streets are virtually independent of each other.
In the regime 1 < g∗ < 5, these vortex streets are
coupled, have a single frequency [10], and a definite
phase relationship [11]. The vortex streets are synchro-
nized to be either in-phase or anti-phase [12]. By “in-

phase,” it is meant that these vortices are shed from the
corresponding sides of both cylinders simultaneously,
while by “anti-phase,” it is meant that these vortices
are shed from opposite sides of the cylinders at the
same time. Synchronization is predominantly found to
have an anti-phase character. The frequency of vor-
tex shedding is the same as that of a single isolated
cylinder. As the gap is decreased to intermediate val-
ues (0.2 < g∗ < 1), the interactions between thewakes
are found to get stronger. The gap flow is deflected,
may flip-flop in direction, and is bistable. Two wakes
are formed, one narrow and the other wide. The vor-
tex shedding frequency in the narrow wake is approx-
imately three times that of the wide wake [13,14]. For
g∗ < 0.2, vortices are shed only from the free-stream
sides of the two cylinders. The shed vortices form a
single vortex street. There is no vortex shedding in the
gap between the cylinders due to the near wall effect
[15].

Bai et al. [16] used the Lattice Boltzmann method
for simulations and Dynamic Mode Decomposition
(DMD) to identify the spatiotemporal coherent struc-
tures present in the flow over two side-by-side cylin-
ders. DMD analysis was carried out for the vorticity
field. The authors identified a mean mode M0 cor-
responding to steady base flow, the vortex shedding
mode M1, and a secondary mode Ms that corresponds
to the gap flow. The corresponding nondimensional fre-
quencies are f ∗

0 , f ∗
1 , and f ∗

s , respectively. They also
observed tertiary modes with nondimensional frequen-
cies f ∗

1 ± f ∗
s . They concluded that the secondary mode

Ms contribution to the drag coefficient is much greater
than that of the vortex shedding mode M1, even though
the energy of mode M1 is two orders of magnitude
larger than that of mode Ms .

Interactions between the fluid motion and structural
motion can also affect the vortex shedding dynamics
[17]. These interactions may enable vortex shedding at
a Reynolds number smaller than the critical Reynolds
number for vortex shedding, as demonstrated in earlier
work [18,19] or may suppress this vortex shedding.
The flow-induced vibrations of a splitter plate or beam
in the wake of a circular cylinder are more complicated
than those of circular cylinders because the plate or a
beam structure is spatially continuous and has infinite
modes of vibration. Additionally, a sufficiently long
splitter plate attached to a bluff body such as a cylinder
can stabilize the wake and suppress vortex shedding,
as demonstrated by Roshko [20]. Kwon and Choi [21]
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conducted numerical studies on cylinderswith attached
splitter plates and concluded that with an increase in the
splitter plate length, there is a decrease in the Strouhal
number. Beyond a critical splitter plate length, no vor-
tex shedding was found to occur for a particular Re.

Akaydin et al. [22] designed and experimentally
studied the performance of an energy harvester, called
there-in as a linear eneregy harvester, consisting of
a piezoelectric cantilever beam vibrating in the wake
of a stationary cylindrical bluff body. However, the
harvester was found to exhibit large-amplitude oscil-
lations only in a narrow range of flow speeds. The
same authors designed an enhanced so-called nonlinear
energy harvester by attaching a cylindrical bluff body
to the tip of the cantilever beam [23]. This resulted in
large-amplitude oscillations over a much wider flow
speed range as well as an amplified response. Dai et al.
[24] developed a reduced-order model for the nonlin-
ear energy harvester design developed byAkaydin et al.
[23]. The fluctuating lift on the cylinder was modeled
as a van der Pol oscillator by using the wake oscillator
model developed by Facchinetti et al. [25]. The har-
vester was modeled as a forced Euler beam with a tip
mass, and a reduced-order model was obtained through
Galerkin projection of the governing equations on the
dominant linear eigenmodes. In a related recent work
by Bellei and Balachandran [26], the authors model
the harvester as a geometrically nonlinear piezoelas-
tic beam by using the finite element method and cou-
ple this system to a wake oscillator based model for
lift. The results have been compared with experimental
measurements in the lock-in region.

Azadeh-Ranjbar et al. [27] experimentally com-
pared the performance of the linear and nonlinear fluid
energy harvesters developed by Akaydin et al. [23],
as well as an array of two side-by-side nonlinear fluid
energy harvesters in a cross flow.The arraywith nonlin-
ear harvesters was found to have a significantly larger
power output and a wider operating speed range com-
pared to the other cases. This improved result is due to
the flow interactions based coupling between the two
oscillators. In the same study, Azadeh-Ranjbar et al.
presented experimentally obtained information on the
energy harvested in the two-oscillator case for different
values of the gap-to-diameter ratio g∗. For large g∗, the
oscillators behaved like independent harvesters. How-
ever, for a small g∗ ratio, the authors noticed an increase
in the operational speed range and a large maximum

power output (approximately ten times for g∗ ≈ 0)
compared to that of an isolated harvester.

For various configurations of the oscillators, one
will have different flow interactions. By varying the
inter-oscillator coupling, one canpossibly have ahigher
energy harvesting for optimal configurations. A robust
computational model can help one carry out a param-
eter optimization analysis. However, no such existing
model for a coupled bluff-body oscillator system has
been found in the literature. Even for the single oscil-
lator case, a model that is independent of experimental
data based parameter fitting is not available. In this
work, the authors address this research gap by present-
ing a finite element model (FEM) for fluid–structure
interactions. The computational model can be used to
study the responses of the single and coupled nonlin-
ear oscillator cases. The results obtained in the cur-
rent work are benchmarked by using the experimental
results presented by Azadeh-Ranjbar et al. [27].

The rest of the paper is organized as follows. In
the next section and Appendices A and B, the compu-
tational model developed for studying fluid–structure
interactions associated with cantilevers attached with
cylindrical bodies are developed. Details of the fluid
model, oscillator model, and the methodology used to
study fluid–structure interactions are provided in this
section along with those for the DMD and POD analy-
sis. The results obtained for the single and two oscilla-
tor cases are presented in Sect. 3 and discussed. These
results include spectral plots, vorticity contours, POD
modes, and DMD modes. In the two oscillator case,
the vertical spacing between the oscillators is used as a
control parameter and the resulting qualitative changes
are examined. Finally, closing remarks are included.

2 Computational modeling

2.1 Finite element model

As an extension of the authors’ prior work reported in
Wani et al. [28], theAbaqusfinite element software [29]
is used to model and simulate the fluid–structure inter-
actions associated with the system. The FSI method-
ology is explained in Appendix A. Alternatives to the
FSI methodology presented here include those based
on co-simulators (e.g., Roccia et al. [30]).
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Fig. 1 System schematic

2.1.1 Oscillator model

Each oscillator, shown in Fig. 1a, consists of a can-
tilever beam made of aluminum with a rigid cylinder
attached to the beam’s free end.

The beam material is modeled as a Saint Venant-
Kirchoff material with the constitutive relation:

S = λ tr(E)I + 2μE (2)

where S is the second Piola-Kirchoff stress tensor, E
is the Green-Lagrange strain tensor, λ and μ are Lamé
constants and I is the second-order unit tensor. A two-
dimensional approximation is used here, and the oscil-
lator is restricted to vibrate in the x − y plane. The
parameters of the oscillator model are given in Table
1. The structure is modeled by using C3D8R elements
in Abaqus, which are linear hexahedral elements with
reduced integration (one integration point). The finite
element mesh details are discussed in Appendix B. It
is noted that structural models can also be constructed
by using other means, for example, see the work of
Luongo and Zulli [31].

2.1.2 Fluid domain

The fluid (air) is assumed to be incompressible. The
fluid domain, which is shown in Fig. 1b, is rectangular
and extends from−15D to 50D in the x−direction and
−19D to 19D in the y−direction. The boundaries are
at least 15D away from the fluid–structure interaction
(FSI) interface to avoid boundary effects. The centers
of the cylinders lie on the transverse axis (y-axis), and

Table 1 Model parameters [27]

Beam Cylinder

Length Lb, Lc 270.00 mm 32.00 mm

Width Wb 32.00 mm –

Thickness tb 0.635 mm –

Diameter D – 42.00 mm (outer),
40.00 mm (inner)

Mass Density ρb, ρc 2730.00 kgm−3 3640.00 kgm−3

Mass mb, mc 15.00 g 15.00 g

Young’s Modulus
Eb, Ec

73.00 GPa ∞

Polar Moment of
Inertia Jc

– 2.205 × 10−6 kgm2

are symmetrically arranged about the longitudinal axis
(x-axis). The fluid entry into the domain is along the
normal to the inlet boundary on the left and the fluid
discharge is done at zero pressure through the outlet
on the right. Symmetry boundary conditions, Uy = 0,
are enforced on the upper (y = 19D) and lower (y =
−19D) walls of the domain. To enforce the 2D approx-
imation, the out-of-plane components (i.e., the z com-
ponent) of displacement and velocity are constrained to
be zero. The fluid has a density ρ0 = 1.168 kgm−3 and
viscosityμ = 1.800×10−5 m2s−1. The fluid domain is
discretized by using F3D8Relements inAbaqus,which
are linear hexahedral elements with reduced integra-
tion. A fluid flow speed U0 = 0.10ms−1, which cor-
responds to Re ≈ 270, is used in the simulations.
The choice for a low Re is due to the fact that the
2D flow assumption is not valid at high Re [12]. The
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mesh details as well as the simulation parameters and
convergence study results are given in Appendix B.

2.2 DMD and POD analysis

Modal decomposition methods, Proper Orthogonal
Decomposition (POD), and Dynamic Mode Decom-
position (DMD) are considered to identify the flow’s
characteristic features. The Proper Orthogonal Decom-
position algorithm was introduced in fluid dynamics
by Lumley [32]. By carrying out the POD, one iden-
tifies the principal modes in the response of a dynam-
ical system that are optimal in terms of capturing the
total system energy. The response data can be obtained
by sampling and processing information such as the
velocity or vorticity fields in fluid mechanics. These
modes can be obtained as eigenfunctions of the covari-
ance matrix. These eigenfunctions can be efficiently
determined by carrying out the Singular Value Decom-
position (SVD) of the snapshot matrix, which is com-
piled from the response data. By using POD, one can
describe the response in terms of aminimumnumber of
modes determined from the response data. The modes
are orthogonal; that is, for any two modes φi and φ j ,
one has

〈
φi ,φ j

〉 ≡
∫

V
φi · φ j dV = δi j , i, j = 1, . . . , n (3)

The steps to determine the POD modes from the
fluid domain data are presented as Algorithm 1.

Algorithm 1 POD

Input: Snapshots {xk}Nk=1 where xk is the state of the system at
kth time instant

Output: PODmodes φ j with the corresponding eigenvalues λ j
1: Construct data matrix X from snapshots, where X =

[x1, x2, . . . , xN ]
2: Compute the mean snapshot x̄ and subtract it from all snap-

shots, creating a zero mean matrix X̃
3: Compute the Singular Value Decomposition (SVD) of X̃ ,

resulting in X̃ = U�V�
4: Truncate the SVD to rank r by selecting the first r columns

of U and first r rows of V and the top-left r × r submatrix of
�, yielding Ur , �r , and V r

5: The columns ofUr are the PODmodes arranged in decreasing
order of energy and the diagonal elements of the matrix �r
are the square roots of the eigenvalues λ j . The rows of V r
contain the time history information.

Dynamic Mode Decomposition (DMD) is used to
approximate the observed temporal evolution of a
dynamical system with a close approximation in the
form of an autonomous linear dynamical system. Ini-
tially proposed by Schmid [33], DMD is based on
the Koopman Operator theory. With the Koopman
Operator framework, a nonlinear dynamical system is
approximated by an infinite-dimensional linear system
described by an operator (Koopman Operator), based
on the observed data. From the spectral representation
of the Koopman Operator, one determines the eigen-
functions that correspond to spatially correlated struc-
tures exhibiting consistent temporal behavior. With
DMD, one approximates the Koopman decomposi-
tion, making it computationally feasible through the
use of Singular Value Decomposition (SVD). This pro-
cess enables one to decompose time-resolved data into
modes, where each mode is characterized by a specific
frequency and a growth or decay rate. In this study,
the Exact DMD algorithm proposed by Tu et al. [34]
is employed. With this algorithm, one refines the stan-
dard DMD approach to enhance accuracy and robust-
ness. The steps involved in the algorithm are presented
as Algorithm 2.

Algorithm 2 Exact DMD

Input: Snapshots {xk}Nk=1 where xk is the state of the system at
kth time instant

Output: DMD modes v j and discrete time eigenvalues μ j
1: Construct data matrices X and X ′ from snapshot pairs, where

X = [x1, x2, . . . , xN−1] and X ′ = [x2, x3 . . . , xN ].
2: Compute the Singular Value Decomposition (SVD) of X ,

resulting in X = U�V�
3: Optionally truncate the SVD to rank r by selecting the first r

columns of U and V and the top-left r × r submatrix of �,
yielding Ur , �r , and V r

4: Form the reduced approximation Ã of the dynamical system
by calculating Ã = U�

r X ′V r�
−1
r , which corresponds to the

projected dynamics in the lower-dimensional space
5: Solve the eigenvalue problem Ãṽ j = μ j ṽ j to find the dis-

crete time eigenvaluesμ j and the corresponding eigenvectors
ṽ j of Ã. Each eigenvalue μ j is associated with a particular
mode v j of the dynamical system.

6: Calculate the DMD modes v j in the original high-
dimensional space by projecting the eigenvectors ṽ j back,
using the relation v j = μ−1

j X ′V r�
−1
r ṽ j

In this work, the package pyDMD [35] is used for
computing the dynamic mode decomposition of the
pressure fields. The mode amplitudes αi are computed,
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Fig. 2 Response of a single oscillator

and the dominant modes are chosen. The frequencies
are computed from the eigenvalues μi .

3 Results

3.1 Nondimensionalization

The displacement and velocity responses are nondi-
mensionalized by dividing themwith D andU0, respec-
tively, where D is the diameter of the cylinder and U0

is the flow speed. The nondimensionalized frequency
f ∗ is defined as f ∗ = 1/T where T is the nondimen-
sionalized time given by T = T ′U0/D with T ′ being
the simulation time.

3.2 Single oscillator

In Fig. 2, the displacement response of the cylinder end
of the oscillator obtained from the finite element sim-
ulations has been plotted. In a previous work of the
authors [28], this response was compared with results
obtained from the reduced-order model proposed by
Dai et al. [24], and a good match was noted. The vortex
shedding frequency is determined by taking the PSD
of the vorticity magnitude at multiple nodes in the near
wake. The vortex shedding frequency is measured to be
f ∗
vs = 0.0755. The natural frequency of the oscillator

is 18.41 rad s−1. This value corresponds to f ∗ = 1.23
obtained through modal analysis with the finite ele-
ment model and is found to match the experimentally
determined frequency [27]. Hence, the system is oper-
ating away from the lock-in region. By analyzing the
frequency response as shown in Fig. 2c, it can be seen
that the response consists of a fundamental frequency

Fig. 3 Variation of the mean peak-to-peak amplitude with g∗

f ∗
1 = 0.0755 and odd harmonics of the fundamental

frequency f ∗
2 = 3 f ∗

1 and f ∗
3 = 5 f ∗

1 .

3.3 Two coupled oscillators

Finite element simulations of the two-oscillator sys-
tem were carried out for the same flow and bound-
ary conditions as for the single oscillator system. The
system was simulated for g∗ = 0.10, 0.25, 0.50, 1.00,
2.00, and 3.00, so that the cases from close spacing to
large spacing are covered.

3.3.1 Oscillator response

The effect of g∗ on the response of the oscillator is
shown in Fig. 3. The mean peak-to-peak amplitude of
the displacement response A∗

m is plotted against g∗. For
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Fig. 4 Time histories for g∗ = 0.10, g∗ = 0.25, g∗ = 0.50, g∗ = 1.00 and g∗ = 2.00 in (a), (c), (e), (g), and (i), respectively, and
corresponding Lissajous plots in (b), (d), (f), (h), and (j)

123



K. Z. Wani et al.

Fig. 5 Pressure contours at the instant of maximum response for various g∗ values: a, b for g∗ = 0.10; c, d for g∗ = 0.25; e, f for
g∗ = 0.50; g, h for g∗ = 1.00; and i, j for g∗ = 2.00
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g∗ > 2.00, the amplitude of the response approaches
the corresponding response for an isolated oscillator.
In the range 0.25 < g∗ < 2.00, the two-oscillator
system is found to have a lower response amplitude
compared to that of an isolated single oscillator. The
minimum amplitude is observed for g∗ = 1.00. For
very small g∗, that is, g∗ ≤ 0.25, an amplified response
is obtained. These results align with the experimental
findings of Azadeh-Ranjbar et al. [27], demonstrating
that the oscillator power output, which is dependent
on oscillation amplitude, initially decreases and then
increases as g∗ decreases.

The time histories and phase plane plots for the
responses obtained for various g∗ are plotted in Fig. 4.
For g∗ > 2.00, the response is out of phase as the
configuration space plot is nearly a straight line with a
negative slope. As g∗ is reduced, the response becomes
asymmetric, and for g∗ = 0.10, the response is aperi-
odic and a beating charateristic is noted. In all cases, the
two oscillators vibrate over a nonzero mean value. The
pressure contours at the instant of maximal response
for various g∗ values are shown in Fig. 5.

From the PSD plots shown in Fig. 6, it can be con-
cluded that for g∗ = 0.10, there is a fundamental fre-
quency f ∗

1 = 0.08 and the higher harmonics f ∗
2 = 2 f ∗

1
and f ∗

3 = 3 f ∗
1 . There is also another secondary fre-

quency f ∗
s = 0.017. There are tertiary frequencies that

arise out of interaction between the higher harmonics
and mode s. These tertiary modes have the frequen-
cies f ∗

n ± f ∗
s . The fundamental frequencies for various

g∗ are given in Table 2. For g∗ = 0.25, g∗ = 0.50,
g∗ = 1.00, and g∗ = 2.00, only the higher harmonics
are present. The algorithm from Eckmann et al. [36]
was used to compute the Lyapunov exponents for the
displacement response time series by using the nolds
python package. For g∗ = 0.1, the determined Lya-
punov exponents were small but positive, suggesting a
chaotic nature of the oscillations.

3.3.2 Vorticity contours

The vorticity contours for the two-oscillator case are
shown in Fig. 7. There is no vortex shedding from the
sides facing each other for the g∗ = 0.10 case due to the
near wall effect [15]. Collectively, the two oscillators
behave like a single bluff body. The gap flow is paral-
lel to the direction of the flow. Vorticity contours also
suggest that there is a bias in the flow direction in the
two-oscillator case for intermediate spacing, as shown

Fig. 6 PSDs of the oscillator displacement responses for various
g∗: a g∗ = 0.10, b g∗ = 0.25, c g∗ = 0.50, d g∗ = 0.1, and e
g∗ = 2.00. Peaks at harmonics of vortex shedding frequencies
( f ∗

n ) as well as the sidebands, corresponding to tertiary modes
( f ∗

n ± f ∗
s ) are marked in the inset
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Table 2 Frequencies of oscillation for various g∗

g∗ f ∗
1 f ∗

2 f ∗
3

0.10 0.080 0.160 0.241

0.25 0.081 0.160 0.239

0.50 0.079 0.159 0.239

1.00 0.077 0.155 0.231

2.00 0.084 0.168 0.252

in Figs. 7b, c, d. This is due to the fact that the oscilla-
tors are in the biased flow regime as described in earlier
work [37]. The asymmetrical flow gap is characterized
by a gap flow biased towards one of the cylinders. The
cylinder towards which the flow is biased has a nar-
row near wake, a higher vortex shedding frequency,
and a higher drag coefficient in contrast to the other
cylinder, which has a wider near wake, a lower vortex
shedding frequency, and a lower drag coefficient [10].
For g∗ = 2.00 and higher, the vorticity contours are
antisymmetric mirror reflections of each other about
the x-axis.

3.3.3 Proper orthogonal decomposition and dynamic
mode decomposition of pressure fields

Proper Orthogonal Decomposition has been used to
get the pressure PODmodes for g∗ = 0.10, g∗ = 1.00,
and g∗ = 2.00. From the POD algorithm, the dom-
inant modes are obtained based on energy contribu-
tions. The PODmodes and the mode spectra are shown
in Figs. 8, 9, and 10. The power spectra of the POD
modes involve multiple peaks, revealing contributions
from other uncorrelated modes. Multiple modes for the
same dominant frequency are obtained. As the spacing
is varied, one can note that the different POD modes
have a symmetric character in the transverse direction
for the large spacing case, and this symmetric charac-
ter is lost as one moves to the closest spacing case. In
addition, one can also see how the spectral character
changes across the different modes for a given spacing
as well as how this character changes with respect to
the spacing. For the large spacing cases, the spectral
characteristics for a particular mode are found to have
qualitative similarities.

Dynamic Mode Decomposition is used to get the
DMDmodes for the pressure field for g∗ = 0.10, 1.00,
and 2.00. The results can be used to examine the spa-

Fig. 7 Vorticity contours: a g∗ = 0.10, b g∗ = 0.25, c g∗ =
0.50, d g∗ = 1.00, and e g∗ = 2.00. In this plot and similar plots
that follow, the positive values correspond to counterclockwise
rotation and the negative values correspond to clockwise rotation
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Fig. 8 Pressure POD modes and mode spectra for g∗ = 0.10

123



K. Z. Wani et al.

Fig. 9 Pressure POD modes and mode spectra for g∗ = 1.00
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Fig. 10 Pressure POD modes and mode spectra for g∗ = 2.00
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Table 3 Frequencies of DMD modes of the pressure field for
various g∗

g∗ f DMD
1 f DMD

2 f DMD
3 f DMD

4

0.10 0.0799 0.1598 0.0170 0.0969

1.00 0.0776 0.1553 0.2329 0.3106

2.00 0.0839 0.1678 0.2518 0.3357

tiotemporally coherent modes of the fluid system. The
frequencies of various modes obtained from the DMD
analysis are arranged in decreasing order of modal
amplitude and presented in Table 3. The mean mode
with zero frequency is excluded here. From the modes,
a strong connection between the DMD modes and the
peaks in thePSDof the oscillator response canbenoted.
The pressure DMD modes for g∗ = 0.10, g∗ = 1.00,
and g∗ = 2.00 are shown in Figs. 11, 12, and 13,

respectively. For g∗ = 1.00 and g∗ = 2.00, the DMD
modes correspond to the fundamental frequency f ∗

1
and the higher harmonics. However, for g∗ = 0.10, a
low-frequency secondary mode, corresponding to the
frequency f ∗

s , is found to emerge. This frequency cor-
responds to the beating phenomenon observed in the
oscillator response for g∗ = 0.10. The tertiary modes
again have the frequencies f ∗

n ± f ∗
s . For the largest

transverse spacing, the higher DMD modes have a
symmetric character in the transverse direction. This
symmetric character is lost as the transverse spacing is
decreased. This is influenced by the coupling between
the wakes shed from the oscillating bodies.

3.3.4 Effect of splitter plate addition

To analyze the effect of the addition of splitter plates
at the Reynolds number used for the study, the flow
over stationary side-by-side cylinders was simulated

Fig. 11 Pressure DMD modes for g∗ = 0.10
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Fig. 12 Pressure DMD modes for g∗ = 1.00

Fig. 13 Pressure DMD modes for g∗ = 2.00

for g∗ = 0.10, 1.00, and 2.00. The vorticity contours
are shown in Fig. 14. For g∗ = 2.00, the dominant
vortex shedding frequency is f ∗

vs = 0.20, which is
close to the vortex shedding frequency of an isolated
cylinder. The vortex shedding is anti-symmetric. For
g∗ = 1.00, f ∗

vs = 0.20, and flip-flopping is observed.
For g∗ = 0.10, the two cylinders collectively behave

like a single bluff body with a vortex shedding fre-
quency f ∗

vs = 0.11, which is half of the vortex shed-
ding frequency obtained for an isolated cylinder. Since
for a particular Strouhal number, the vortex shedding
frequency is inversely proportional to the diameter of
the cylinder, for a bluff body with twice the charac-
teristic length of a reference bluff body, vortices will
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Fig. 14 Vorticity contours for cylinders without beams: a g∗ =
0.10, b g∗ = 1.00, and c g∗ = 2.00

be shed at half the frequency of that for the reference
bluff body. Hence, it can be concluded that for two
cylinders in close proximity, vortices are shed like that
for a single bluff body with twice the diameter of the
original bluff body. Additionally, the flow over the two-
oscillator system with rigid beams was simulated for
g∗ = 0.10. DMD was used to obtain the modes and
modal frequencies, which were found to be identical to
those of the system with elastic beams, suggesting that
the fluid dynamics is dominant in the system response

in both cases. The addition of splitter plates is found to
reduce the vortex shedding frequency.

4 Concluding remarks

In this work, the authors have considered bluff-body
oscillators in the form of a cylinder attached to a can-
tilever and created a finite element model for a single
bluff-body oscillator and coupled bluff-body oscilla-
tors. These computational models have been used to
study the associated fluid–structure interactions. For
the case of two bluff-body oscillators, the variation in
the system responsewith respect to the transverse spac-
ing (g∗) has been examined, and it is found that with a
decrease in g∗, the mean amplitude of the oscillations
is found to first decrease and then increase as g∗ tends
to zero. This is the first computational confirmation of
the experimental trend observed in earlier work [27].

Dynamic mode decomposition has been used to
extract spatiotemporal coherent modes from the pres-
sure field. These modes corresponded to the peaks in
the power spectrum of the oscillator response. Apart
from dynamic mode decomposition, proper orthogonal
decomposition has also been used to study the system
response characteristics. For close transverse spacing,
it is found the oscillator response can be aperiodic. As
the spacing is increased, for the largest spacing, the
determined modes are found to have spatial symmetry
in the transverse direction. These studies help to under-
stand how the transverse spacing between the cylinder-
cantilever bluff-body oscillators influences the vorti-
cal structures and the resulting vortex-induced oscil-
lations. Additionally, insights have been gained into
specific spatial modes that dominate the dynamics and
how the mode participation changes with respect to
different parameters. The findings of this research pro-
vide a computational foundation for building models
of coupled bluff-body oscillators and optimizing con-
figurations of arrays of these oscillators for enhanced
energy harvesting efficiency.
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Appendix A FSI methodology

Due to the strong coupling between fluid and struc-
tural motions, especially, in the case of multiple oscil-
lators, a fully coupled fluid–structure interaction (FSI)
modeling scheme is employed. The FSI problem is
implemented by using the Finite Element package
Abaqus [29]. The model involves an incompressible
Newtonian fluid flow interacting with an elastic solid
undergoing large deformations.

In Abaqus, a sequentially coupled scheme is uti-
lized with non-overlapping computational domains for
the fluid (� f ) and structural (�s) regions. A conform-
ing interface (�I) is utilized to maintain continuity
and facilitate interaction between the fluid and struc-
tural domains, as illustrated in Fig. 15. The structural
solver is used to determine the motions of the struc-
ture, track the movement of the fluid boundary, and
enforce velocity boundary conditions to facilitate the
interaction between the fluid and structural domains.
The fluid solver is used to calculate the velocity and
pressure fields in the fluid domain. The resulting force
on the boundary is transferred as an external force to
the structural domain in the subsequent time step. A
body-fixed Lagrangian mesh is chosen for the struc-
ture to accurately capture the structure’s deformation,
whereas a space-fixed Eulerian mesh is used for fluid
modeling due to the associated ability for effectively
handling large deformations. The motions of the struc-
ture induce changes in the interface (�I), leading to
distortions in the fluid boundary mesh as a result of
the dynamic interactions between the fluid and solid
domains. In Abaqus, the Arbitrary Lagrangian Eule-
rian (ALE) approach is utilized to dynamically remesh
the fluid domain, enabling the solution of governing
equations on a moving mesh to accurately capture the
fluid–structure interaction dynamics.

The material point displacement us in the structure
is derived from the momentum equation expressed in

the Lagrangian description as follows:

ρs üs − ∇ · (Jσ s F−�) + bs = 0 in �s (A1)

Here, σ s is the Cauchy stress, F = I + ∇us is the
deformation gradient tensor, and J is the determinant
of F .

Linear elastic material behavior and geometrically
nonlinear deformation are captured by using the St.
Venant-Kirchhoff constitutive law:

σ s = 1

J
F(λs tr(E)I + 2μs E)F� (A2)

where E = 1
2 (F

�F − I ), and λs and μs are the Lamé
constants.

The velocity field v f in the fluid domain is obtained
by using the Navier–Stokes equation, written in the
Eulerian description as follows:

ρ f ∂v f

∂t
+ v f · ∇v f − ∇ · σ f + b f = 0 in � f (A3)

Here, ρ f is the fluid density, b f is the body force, and
σ f is the fluid stress.

The fluid is considered to exhibit Newtonian behav-
ior, which results in the equation

σ f = −pI + η(∇v f + ∇v f �) (A4)

where p is the thermodynamic pressure and η is the
dynamic viscosity.

The fluid is considered to be incompressible, and
hence, the Pressure-Poisson equation is used to deter-
mine the pressure from the velocity field by using

∇2 p = −∇v f : ∇v f (A5)

Displacement and traction continuity at the interface
are maintained by using the following conditions:

v f
∣∣∣∣
� f

= dus

dt

∣∣∣∣
�s

σ f : n
∣∣∣∣
� f

= σ s : n
∣∣∣∣
�s

(A6)
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Fig. 15 Sequential coupled
FSI approach

Appendix B Simulation and mesh parameters

Simulation parameters

Implicit dynamic simulation is conducted until a steady
state is achieved. In order to solve the nonlinear equa-
tions for the structural response, the full Newton solu-
tion technique is used. Automatic time stepping is used,
and the maximum CFL number is set to 0.5. The diver-
gence tolerance is set to 1 × 10−10. The Trapezoidal
method is used for time integration of the fluid equa-
tions. This method is second-order accurate and A-
stable.

Mesh and mesh convergence

A structured mesh is used for the oscillator. For the
fluid domain, a hybridmeshwith an unstructured part in
the vicinity of the oscillator and a remaining structured
part was created and used for all the models. The mesh
was very fine, with an element size of 0.02 nondimen-
sional length units in the proximity of the FSI inter-
face. This mesh was gradually made coarser towards
the domain boundaries, as shown in Fig. 17a. Mesh
convergence andmesh independence studies were con-
ducted to determine the optimal mesh size in the fluid

Fig. 16 Mean squared error in oscillator velocity response ver-
sus number of elements in the fluid domain

domain. The system was simulated for a total of 15.00
s, and the finest mesh solution was assumed to be cor-
rect. The mean squared error in the velocity response is
plotted against the number of elements in Fig. 16. The
coarsest mesh that yielded acceptable results was iden-
tified from this plot. Further refinement beyond this
point resulted in diminishing returns with a negligi-
ble improvement in accuracy. The mesh, which was
depicted in Fig. 17a, was chosen as the optimal balance
between computational efficiency and solution fidelity.
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Fig. 17 Meshes used for
simulation

To capture the variation in the bending stress accurately,
the beamhad four elements through the thickness of the
cantilever, as shown in Fig. 17b. Arbitrary Lagrangian
Eulerian (ALE) based adaptivemeshing is employed to
remesh the fluid domain at each time step. This enables
themesh nodes to bemovedwithout changing themesh
topology. To successfully study fluid–structure interac-
tions, the FSI boundary of the fluid and structure should
match exactly. Since a 2D approximation is used, the
model has a cylinder and beam of equal width. The 2D
model of the oscillator necessitates having the cylinder
length to be equal to the beam width. Hence, the mass
of the cylinder is artificially increased in order to keep
the oscillation frequency the same as in the original
system. The 2D approximation also results in a flow
field that is representative of the flow field over an infi-
nite cylinder with a splitter plate attached throughout
its length.
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