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Abstract—We focus on exponential stability of stochastic
functional differential equations with delayed impulses.
One of the notable characteristics of this paper is the
dependence of both the given impulsive-free stochastic
differential equation and impulsive perturbations on the
past state of the system. Compared with the existing litera-
ture, we introduce new criteria for establishing exponential
stability in mean square and almost surely. We provide two
examples in this paper to showcase the effectiveness of our
criteria.

Index Terms—stochastic functional differential equation;
exponential stability; delayed impulse.

I. INTRODUCTION

In this paper, we focus on exponential stability, both
in the mean square and in the almost sure sense,
for stochastic functional differential equations (SFDEs)
when they are influenced by delayed impulses. Impulsive
systems have attracted significant interest over recent
years with a rich body of literature that spans impulsive
differential equations [6], [9], [15] and stochastic pro-
cesses [11], [12], [21]. An important consideration for
such systems is the stability. Stability has been the focus
of enormous research with thorough investigation; see
for example, Chapter 4 of [15]. The past effort showed a
breadth of studies on the exponential stability in various
forms of impulsive SFDEs [2], [7], [13], [14], and the
development of the numerical approximations for SFDEs
involving impulses [18], [19], [22].

In this paper, our study distinguishes with the existing
literature featuring the dynamics of system states and
impulsive effects are based on historical data from finite
past intervals. As a result, following an impulse at time
t, the state X(t) is influenced not only by the immediate
pre-impulse state X(t−) but also by states with historical
past within a set {X(t + u) : u ∈ [−r∗, 0)}, where r∗
is a positive constant. This approach provides a broader
perspective than previous studies [1], [16], [17], which
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limited their focus to the state’s immediate pre-impulse
conditions, thereby offering a more realistic stochastic
model. Note that SFDEs with delayed impulses have
been the subject of earlier consideration [3], [4], [5], [8],
[10], [20], where Lyapunov functions and Razumikhin
techniques were applied, alongside concepts like average
dwell-time [10] and average impulsive delays [5]. Nev-
ertheless, the stability criteria established through these
methods are characterized by complex conditions, and
that are difficult to verify for applications.

We propose an effective treatment in this paper for
addressing SFDEs impacted by delayed impulses, aiming
to establish new and easily verifiable criteria for their ex-
ponential stability. We summarize our main contributions
in this paper as follows. First, we study a broader class
of SFDEs influenced by past state-dependent impulses.
Second, we introduce an innovative method to assess
the exponential stability of SFDEs with delayed im-
pulses using a comparison procedure. Next, we establish
several new stability criteria. It should be highlighted
that the category of impulsive SFDEs being examined is
significantly complex and abstract, showcasing a range
of interactions between delays within the SFDEs them-
selves and those appeared in the impulses. The stability
criteria established in this paper, in particular Theorem
III.1, Corollary III.3, and Corollary III.4, have not been
documented in the existing literature to the best of our
knowledge.

We organize the rest of the paper as follows. Section
II begins with the problem formulation. Section III
presents the main results of the exponential stability of
impulsive SFDEs. Section IV provides two examples for
illustration. The paper is concluded with several remarks
in Section V.

II. FORMULATION

We first list the notation to be used in this paper.
Denote R+ = [0,∞) and let N be the set of positive
integers. Denote by c1 ∨ c2 = max{c1, c2} for two
real numbers c1, c2 ∈ R, and A> the transpose and
|A| =

√
tr(A>A) the trace norm of a matrix A ∈

Rd1×d2 with d1, d2 ∈ N. Denote by |x| =
(∑d

i=1 x
2
i

)1/2
the Euclidean norm of x = (x1, . . . , xd)

> ∈ Rd.
For r > 0, denote by PC([−r, 0],Rd) the space of
all piecewise continuous functions φ : [−r, 0] → Rd
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that are right continuous with left limits, endowed with
the norm ‖φ‖ = sups∈[−r,0] |φ(s)|. We work with a
complete filtered probability space (Ω,F ,P, {Ft}) with
{Ft} satisfying the usual condition in that it is right-
continuous and F0 contains all the null sets. Assume
that the m̃-dimensional standard Brownian motion w(·)
is defined on (Ω,F ,P, {Ft}), where m̃ ∈ N. For
each t ≥ 0, let L2

Ft
([−r, 0],Rd) be the family of Ft-

measurable PC([−r, 0],Rd)-valued random variables ξ
such that E‖ξ‖2 <∞.

For r > 0 and r∗ > 0, let f : PC([−r, 0],Rd) ×
R+ → Rd, g : PC([−r, 0],Rd) × R+ → Rd×m̃, and
Ik : PC([−r∗, 0],Rd) → Rd (k ∈ N) be Borel measur-
able functions. Let {tk}k∈N∪{0} be a strictly increasing
sequence of nonnegative numbers satisfying t0 = 0 and
limk→∞ tk =∞. Consider the impulsive SFDE

dX(t) = f
(
Xt, t

)
dt+ g

(
Xt, t

)
dw(t)

for t ≥ 0, t /∈ {tk}k,

X(tk) = Ik(X∗t ) for k ∈ N,

(II.1)

where Xt : [−r, 0]→ Rd is defined by Xt(u) = X(t+
u) for u ∈ [−r, 0) and Xt(0) = X(t−). Meanwhile,
X∗t : [−r∗, 0]→ Rd is defined by X∗t (u) = X(t+u) for
u ∈ [−r∗, 0) and X∗t (0) = X(t−). The initial condition
is ξ ∈ L2

F0
([−r, 0],Rd), i.e.,

X(u) = ξ(u) for any u ∈ [−r, 0]. (II.2)

Thus, for each k ∈ N,

X(t) = X(tk−1) +

∫ t

tk−1

f(Xs, s)ds

+

∫ t

tk−1

g(Xs, s)dw(s) for t ∈ [tk−1, tk),

X(tk) = Ik(X∗tk).

It can be seen that the impulses depend on a finite-
time segment of past states. Throughout this work, we
suppose the following assumption (H1) holds.

(H1) (a) For any t ≥ 0,

f(0, t) = 0 ∈ Rd, g(0, t) = 0 ∈ Rd×m̃.

(b) The functions f(·, t) and g(·, t) satisfy the local
Lipschitz condition; that is, for each n ∈ N, there
exists a constant K̃n > 0 such that

|f(φ1, t)− f(φ2, t)|+ |g(φ1, t)− g(φ2, t)|

≤ K̃n‖φ1 − φ2‖,
(II.3)

whenever t ≥ 0 and ‖φ1‖∨ ‖φ2‖ ≤ n. Also, f(·, ·)
and g(·, ·) satisfy the linear growth condition; that
is, there exists a constant K̃0 > 0 such that

|f(φ, t)|+ |g(φ, t)| ≤ K̃0

(
1 + ‖φ‖

)

for any (φ, t) ∈ PC([−r, 0],Rd)× R+.
(c) There exist a sequence of positive constants
{K̂k}k∈N such that∣∣Ik(φ)

∣∣ ≤ K̂k‖φ‖ (II.4)

for any (φ, k) ∈ PC([−r∗, 0],Rd)× N.

Remark II.1. Assumption (H1) (a) indicates that the
process X(t) ≡ 0 is a trivial solution of Eq. (II.1) (or
x = 0 is an equilibrium point). If Ik(φ) = φ(0) for any
(φ, k) ∈ PC([−r∗, 0],Rd) × N, Eq. (II.1) is simply a
SFDE studied in [11].

The existence and uniqueness theorem is given below.
The proof is routine. Hence, we omit it for brevity.

Theorem II.2. Assume (H1). Then for each ξ ∈
L2
F0

([−r, 0],Rd) ×M, Eq. (II.1) has a unique global
solution Xξ(·) satisfying (II.2). Moreover, for each k ∈
N, Xξ(·) has continuous sample paths on the interval
[tk−1, tk) almost surely and

E
(

sup
−r≤s≤T

|Xξ(s)|2
)
<∞ for any T > 0.

The definitions of the exponential stability in mean
square and almost sure exponential stability of impulsive
SFDEs are recalled below.

Definition II.3.
1) The equilibrium point x = 0 of Eq. (II.1) is

(a) exponentially stable in mean square if there
exist constants K > 0 and λ > 0 such that

E|Xξ(t)|2 ≤ Ke−λtE‖ξ‖2

for any ξ ∈ L2
F0

([−r, 0],Rd) and t ≥ 0;
(b) almost surely exponentially stable if there exists

a constant λ > 0 such that

lim sup
t→∞

1

t
ln |Xξ(t)| ≤ −λ almost surely

for each ξ ∈ L2
F0

([−r, 0],Rd).
2) Eq. (II.1) is said to be exponentially stable in mean

square (resp., almost surely) if its equilibrium point
x = 0 is exponentially stable in mean square (resp.
almost surely).

III. MAIN RESULTS

For the stability analysis in the rest of this paper, we
use the following conditions.

(H2) (a) There exist a sequence of positive numbers
{γk}k∈N such that

E|Ik(ζ)|2 ≤ γk sup
u∈[−r∗,0)

E|ζ(u)|2 (III.1)
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for any k ∈ N and ζ ∈ L2
Ftk

([−r∗, 0],Rd).
Moreover,

sup
s≥0

( ∑
s−r<tk≤s

∣∣ ln γk∣∣) <∞ and tk−1 < tk− r∗

for any k ∈ N.
(b) There exist real numbers λ1 ∈ R and λ2 ≥ 0
such that

E
(

2(ζ(0))>f(ζ, t) + |g(ζ, t)|2
)

≤ λ1E|ζ(0)|2 + λ2 sup
u∈[−r,0)

E|ζ(u)|2
(III.2)

for any t ≥ 0 and ζ ∈ L2
Ft

([−r, 0],Rd).
Under assumptions (H1) and (H2), we define ϕ : R×

R+ → R and ψ : R→ R by

ϕ(c, t) = ct+
∑
tm≤t

(ln γm + c−r∗),

ψ(c) = sup
s≥0, u∈[−r,0)

(
cu−

∑
s+u<tm≤s

(ln γm + c−r∗)
)
,

(III.3)
where c− = max{−c, 0}. We are now in a position to
state the main result of this paper.

Theorem III.1. Suppose that conditions (H1) and (H2)
are satisfied and that there exists a β ∈ R satisfying

λ1 + λ2e
ψ(β) ≤ β. (III.4)

Then we have the following results.
(a) There exists a K̃ > 0 such that

E|Xξ(t)|2 ≤ K̃E‖ξ‖2eϕ(β,t) (III.5)

for any ξ ∈ L2
F0

([−r, 0],Rd) and t ≥ 0.
(b) The mean square Lyapunov exponent of Eq.

(II.1) is not greater than lim sup
t→∞

ϕ(β, t)

t
. If

lim sup
t→∞

ϕ(β, t)

t
< 0, then Eq. (II.1) is exponentially

stable in mean square.

(c) If lim sup
t→∞

ϕ(β, t)

t
< 0 and there is a positive

constant K̂ such that

E
(
|f(ζ, t)|2 + |g(ζ, t)|2

)
≤ K̂ sup

u∈[−r,0]
E|ζ(u)|2

(III.6)
for any t ≥ 0 and ζ ∈ L2

Ft
([−r, 0],Rd), then Eq.

(II.1) is almost surely exponentially stable.

Proof. For notational simplicity, denote X(·) = Xξ(·).
Without loss of generality, suppose E‖ξ‖2 > 0. Using
standard arguments for SFDEs as discussed in [11, Chap-
ter 5], we can demonstrate that there exists a positive
constant K = K(K̃0, t1) independent of ξ such that

sup
t∈[0,t1)

[
e−ϕ(β,t)E|X(t)|2

]
< K1, (III.7)

where K1 = KE‖ξ‖2.
(a) We prove by induction that for any n ∈ N,

sup
t∈[0,tn)

[
e−ϕ(β,t)E|X(t)|2

]
< K1. (III.8)

In view of (III.7), (III.8) holds for n = 1. Now suppose
(III.8) holds for n ≤ k; that is,

sup
t∈[0,tk)

[
e−ϕ(β,t)E|X(t)|2

]
< K1. (III.9)

We proceed to show that (III.8) holds for n = k + 1.
Consider the real-valued function Φ(·) defined by

Φ(t) = e−ϕ(β,t)E|X(t)|2 for t ∈ [0, tk+1)

and Φ(tk+1) = e−ϕ(β,t
−
k+1)E|X(t−k+1)|2. By (III.9),

supt∈[0,tk) Φ(t) < K1. We also have

sup
u∈[−r∗,0)

E|X∗tk(u)|2

≤ eϕ(β,t
−
k )+β−r∗ sup

u∈[−r∗,0)

[
e−ϕ(β,tk+u)E|X∗tk(u)|2

]
= eϕ(β,t

−
k )+β−r∗ sup

u∈[−r∗,0)
Φ(tk + u)

< K1e
ϕ(β,t−k )+β−r∗ .

This together with (III.1) implies

e−ϕ(β,tk)E|X(tk)|2

= e−ϕ(β,tk)E|Ik(X∗tk)|2

≤ γke−ϕ(β,tk) sup
u∈[−r∗,0)

E|X∗tk(u)|2

< γke
−ϕ(β,tk)K1e

ϕ(β,t−k )+β−r∗

= K1;

(III.10)

that is, Φ(tk) < K1. To show that (III.8) holds for n =
k + 1, it is sufficient to verify that

sup
t∈(tk,tk+1]

Φ(t) < K1. (III.11)

If this statement were false, by the continuity of the
function Φ(·) on [tk, tk+1], there would exist a number
t∗ ∈ (tk, tk+1] such that

Φ(t) < K1 for t ∈ [tk, t∗), Φ(t∗) = K1. (III.12)

We assume t∗ ∈ (tk, tk+1). The case t∗ = tk+1 can be
treated similarly. Fix λ > |λ1|. By the Dynkin formula,

eλt∗E|X(t∗)|2

= eλtkE|X(tk)|2 + E
∫ t∗

tk

eλs
(
λ|X(s)|2

+2(X(s))>f(Xs, s) + |g(Xs, s)|2
)
ds.

(III.13)
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By (III.2),

E
∫ t∗

tk

eλs(λ|X(s)|2 + 2(X(s))>f(Xs, s)

+|g(Xs, s)|2)ds

≤
∫ t∗

tk

eλs
(

(λ+ λ1)E|X(s)|2

+λ2 sup
u∈[−r,0)

E|X(s+ u)|2
)
ds.

(III.14)

In view of (III.12), we have

E|X(s)|2 < K1e
ϕ(β,s) for any s ∈ [tk, t∗). (III.15)

For s ∈ [tk, t∗) and u ∈ [−r, 0), we have

ϕ(β, s+ u)− ϕ(β, s)

= βu−
∑

s+u<tm≤s

(ln γm + β−r∗)

≤ sup
s≥0, v∈[−r,0)

(
βv −

∑
s+v<tm≤s

(ln γm + β−r∗)
)

= ψ(β).

Consequently,

E|X(s+ u)|2 < K1e
ϕ(β,s+u)

= K1e
ϕ(β,s+u)−ϕ(β,s)eϕ(β,s)

≤ K1e
ψ(β)eϕ(β,s) for any s ∈ [tk, t∗).

(III.16)
Putting the estimates in (III.14)-(III.16) together yields

E
∫ t∗

tk

eλs
(
λ|X(s)|2 + 2(X(s))>f(Xs, s)

+|g(Xs, s)|2
)
ds

< K1

∫ t∗

tk

eλs+ϕ(β,s)
(
λ+ λ1 + λ2e

ψ(β)
)
ds

= K1e
∑

tm≤tk
(ln γm+β−r∗)

∫ t∗

tk

e(λ+β)s(λ+ β)ds

= K1e
∑

tm≤tk
(ln γm+β−r∗)

(
e(λ+β)t∗ − e(λ+β)tk

)
.

(III.17)
It follows from (III.10), (III.13), and (III.17) that

eλt∗E|X(t∗)|2

< K1e
λtk+ϕ(β,tk)

+K1e
∑

tm≤tk
(ln γm+β−r∗)

(
e(λ+β)t∗ − e(λ+β)tk

)
= K1e

∑
tm≤tk

(ln γm+β−r∗)e(λ+β)t∗ .

Hence

E|X(t∗)|2 < K1e
βt∗+

∑
tm≤tk

(ln γm+β−r∗) = K1e
ϕ(β,t∗).

That is, Φ(tk) < K1, which contradicts the second state-
ment in (III.12). As a result, (III.11) holds. Consequently,

e−ϕ(β,t)E|X(t)|2 < K1 for any t ≥ 0,

which implies (III.5).
(b) By (III.5),

lim sup
t→∞

1

t
ln
(
E|Xξ(t)|2

)
≤ lim sup

t→∞

ϕ(β, t)

t
.

Hence, the mean square Lyapunov exponent of Eq. (II.1)
is not greater than lim supt→∞

ϕ(β,t)
t . It can be seen

from (III.5) that if lim supt→∞
ϕ(β,t)
t < 0, Eq. (II.1) is

exponentially stable in mean square.
(c) The proof of this part is a slight modification of

that of [1, Theorem 3.2]. We omit the verbatim detailed
proof for brevity. �

Remark III.2. Let β be a constant satisfying (III.4).
Define

θ = lim sup
t→∞

1

t

∑
tm≤t

ln γm, θ∗ = lim sup
t→∞

1

t

∑
tm≤t

(β−r∗).

It follows from (III.3) that

lim sup
t→∞

ϕ(β, t)

t
≤ β + θ + θ∗.

By virtue of Theorem III.1, β + θ + θ∗ is an upper
bound of the mean square Lyapunov exponent of Eq.
(II.1). The value of θ can be regarded as a constant,
which describes the contribution of the impulses to
the exponential stability in mean square of Eq. (II.1).
Meanwhile, θ∗ describes the additional contribution of
the delayed impulses. If r∗ = 0, the impulses do not
depend on the past states of the given system. In such a
case, θ∗ = 0 and

lim sup
t→∞

ϕ(β, t)

t
≤ β + θ.

We refer to [17] for a similar estimate for SFDEs with
Markovian switching and impulsive perturbations.

Corollary III.3. Suppose that (H1) and (H2) hold and
that

H(c) = λ1 + λ2e
ψ(c) − c for c ∈ R. (III.18)

Furthermore, assume

θ = lim sup
t→∞

1

t

∑
tm≤t

ln γm < 0 and H(−θ) < 0.

(III.19)
Then the following assertions hold.
(a) Eq. (II.1) is exponentially stable in mean square.
(b) If condition (III.6) is satisfied, then Eq. (II.1) is

almost surely exponentially stable.

Proof. (a) We first observe that for c ∈ (0,−θ), we have
c− = 0 and

ψ(c) = sup
s≥0, u∈[−r,0)

(
cu−

∑
s+u<tm≤s

ln γm

)
.
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Hence, the function ψ(·) is decreasing and continuous
on (0,−θ]. Consequently, the function H(·) is strictly
decreasing and continuous on (0,−θ]. Since H(−θ) <
0, there exists a constant β ∈ (0,−θ) such as H(β) ≤
0. That is, β satisfies condition (III.4). Moreover, since
β ∈ (0,−θ), then

lim sup
t→∞

ϕ(β, t)

t
= lim sup

t→∞

1

t

(
βt+

∑
tm≤t

ln γm

)
= β + θ < 0.

By Theorem III.1, Eq. (II.1) is exponentially stable in
mean square.

(b) follows from the result in part (a) and Theorem
III.1. This completes the proof. �

Corollary III.4. Suppose that (H1), (III.1), (III.2) hold,
and that there exists a constant β ∈ R satisfying

λ1 + λ2e
ψ(β) ≤ β.

Moreover, suppose that there exist positive constants ε
and γ satisfying

tk = kε and γk = γ for any k ∈ N. (III.20)

Then the following assertions hold.
(a) The mean square Lyapunov exponent of Eq. (II.1)

is not greater than

β +
ln γ

ε
+
β−r∗
ε

.

(b) If

β +
ln γ

ε
+
β−r∗
ε

< 0,

then Eq. (II.1) is exponentially stable in mean
square.

(c) If

β +
ln γ

ε
+
β−r∗
ε

< 0

and condition (III.6) is satisfied, then Eq. (II.1) is
almost surely exponentially stable.

Proof. By using (III.20), it is readily seen that

lim sup
t→∞

ϕ(β, t)

t
= β +

ln γ

ε
+
β−r∗
ε

.

Thus, the conclusion follows from Theorem III.1. �

IV. EXAMPLES

Example IV.1. We consider a scalar impulsive SFDE

dX(t) = f
(
Xt, t

)
dt+ g

(
Xt, t

)
dw(t)

for t ≥ 0, t /∈ {tk}k,

X(tk) = Ik(X∗t ) for k ∈ N,

(IV.1)

where r = 0.3, r∗ = 0.2, tk = εk with ε = 0.5,

f(φ, t) = −1.4φ(0) + 0.5φ(0) sinφ(0) + 0.6φ(−0.3),

g(φ, t) = 0.8φ(0) cosφ(−0.2)

for any (φ, t) ∈ PC([−0.3, 0],R) × R+, and Ik(φ) =
√

20

∫ 0

−0.2
φ(s)ds for any φ ∈ PC([−0.2, 0],R). We

investigate the exponential stability in mean square of
Eq. (IV.1). It is readily seen that assumption (H1) is
satisfied. Moreover,

2φ(0)f(φ, t) + |g(φ, t)|2

= 2φ(0)
(
− 1.4φ(0) + 0.5φ(0) sinφ(0) + 0.6φ(−0.3)

)
+0.82|φ(0)|2 cos2 φ(−0.2)

≤ −0.56|φ(0)|2 + 0.6|φ(−0.3)|2

for any (φ, t) ∈ PC([−0.3, 0],R) × R+. In addi-
tion, |Ik(φ)|2 ≤ 4

∫ 0

−0.2 |φ(s)|2ds for any (φ, t) ∈
PC([−0.2, 0],R)×R+. Thus, assumptions (H1) and (H2)
are satisfied with λ1 = −0.56, λ2 = 0.6, γk = γ = 0.8
for any k ∈ N. In view of (III.3), we have

ψ(c) = sup
s≥0, u∈[−r,0)

(
cu−

∑
s+u<tm≤s

(ln γm + c−r∗)
)

= sup
s≥0, u∈[−0.3,0)

(
cu−

∑
s+u<tm≤s

(ln 0.8 + 0.2c−)
)

≤ 0.3c− + (ln 0.8 + 0.2c−)−.

We can check that β = 0.3 satisfies λ1 + λ2e
ψ(β) ≤ β

and

β +
ln γ

ε
+
β−r∗
ε

= 0.3 +
ln 0.8

0.5
< 0.

Hence, by Corollary III.4, Eq. (IV.1) is exponentially
stable in mean square. Since condition (III.6) is satisfied,
Eq. (IV.1) is also almost surely exponentially stable.

Example IV.2. We consider another scalar impulsive
SFDE

dX(t) = f(Xt, t)dt+ g(Xt, t)dw(t), t ≥ 0, t /∈ {tk}k,

X(tk) = Ik(X∗tk) for k ∈ N,
(IV.2)

where r = 1, r∗ = 0.3,

f(φ, t) = −1.55φ(0) + φ(−1) sin t+ 0.3

∫ 0

−1
u2φ(u)du,

g(φ, t) = 0.9φ(0) sinφ(0)

for any (φ, t) ∈ PC([−1, 0],R) × R+. Moreover, tk =
0.5k for any k ∈ N and

Ik(φ) =
√

0.25e−0.1φ(−0.3) + 2e−0.1
∫ 0

−0.25
φ(s)ds
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for any (k, φ) ∈ N× PC([−0.3, 0],R). We have

2φ(0)f(φ, t) + |g(φ, t)|2

≤ −3.1φ2(0) + 2φ(0)φ(−1) sin t

+0.6

∫ 0

−1
u2φ(0)φ(u)du+ 0.81φ2(0)

≤ −1.29φ2(0) + φ2(−1)

+0.3

∫ 0

−1
u2φ2(0)du+ 0.3

∫ 0

−1
u2φ2(u)du

= −1.19φ2(0) + φ2(−1) + 0.3

∫ 0

−1
u2φ2(u)du

(IV.3)
for any (φ, t) ∈ PC([−1, 0],R)×R+. Thus, λ1 = −1.19

and λ2 = 1 + 0.3

∫ 0

−1
u2du = 1.1. In addition, it can be

verified that

|Ik(φ)|2 ≤ 0.5e−0.2|φ(−0.3)|2+2e−0.2
∫ 0

−0.25
|φ(s)|2ds

for any (k, φ) ∈ N × PC([−0.3, 0],R). That is, γk =
e−0.2 for any k ∈ N. Consequently,

θ = lim sup
t→∞

∑
tm≤t ln γm

t
=

ln γ1
t1

= −0.4.

We also have

ψ(−θ) = sup
s≥0, u∈[−1,0)

(
− θu−

∑
s+u<tm≤s

ln γm

)
= sup
s≥0, u∈[−1,0)

(
0.4u+

∑
s+u<tm≤s

0.2
)

≤ 0.2.

In view of (III.18), let

H(c) = −1.19 + 1.1eψ(c) − c for c ∈ R.

Then H(−θ) = H(0.4) = −1.19 + 1.1e0.2 − 0.4 < 0.
Hence, by Corollary III.3, Eq. (IV.2) is exponentially
stable in mean square. Since condition (III.6) is satisfied,
Eq. (IV.2) is also almost surely exponentially stable.

V. CONCLUDING REMARKS

We have focused on examining exponential stability
in mean square and in the almost sure sense of a class
of SFDEs with delayed impulses. By a comparison
procedure involving a contradiction argument, we have
established new criteria for proving the exponential
stability. It is worth noting that in the models of interest,
the impulses are predicated on a finite historical period
of system development. It is conceivable that the results
and approach can be extended to hybrid SFDEs involving
a Markovian switching. This together with developing
numerical approximations and stabilization problems for
impulsive SFDEs are potential areas of exploration for
future research.
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