

Impacts of plant invasions on tick-borne disease risk

S. Luke Flory^{1*}, Sadie J. Ryan^{2,3}, Yukti Taneja⁴, Maria Muñoz⁵,

Catherine A. Lippi^{2,3}, Brian F. Allan^{5,6}

¹ Agronomy Department, University of Florida, Gainesville, Florida 32611 USA

² Department of Geography, University of Florida, Gainesville, Florida 32611 USA

³ Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611 USA

⁴ School of Natural Resources and Environment, Gainesville, Florida 32611 USA

⁵ Program in Ecology, Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA

⁶ Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA

*Correspondence: S. Luke Flory, Agronomy Department, University of Florida, Gainesville, Florida 32611 USA. Email: flory@ufl.edu

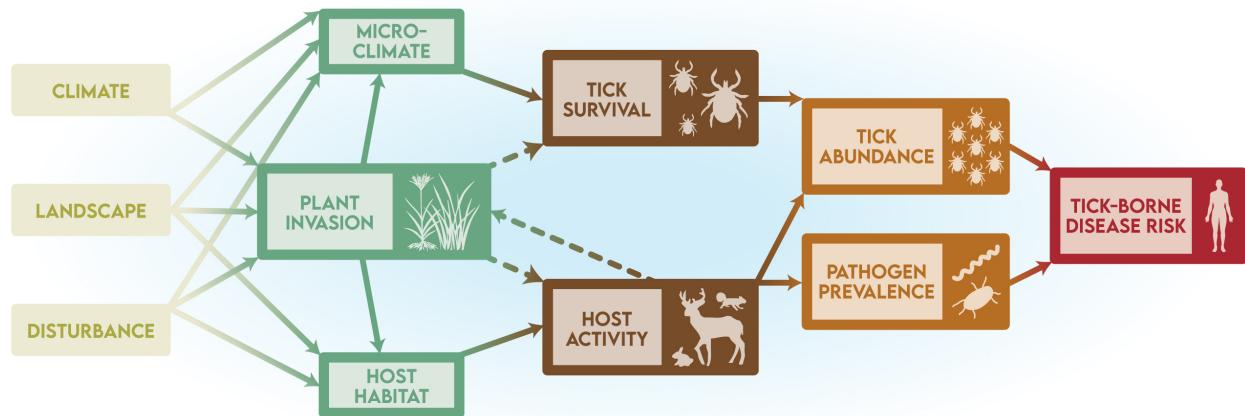
Open Research statement: Empirical data were not used for this research.

Key words: climate change, host habitat, microclimate, plant invasions, tick-borne disease

1 **Abstract**

2 Under global change, plant invasions may alter tick-borne disease (TBD) transmission. The
3 direction and magnitude of changes in TBD risk resulting from invasions remain poorly
4 understood because research has often been species-specific or insufficient to quantify
5 mechanisms. In this overview, we describe how invasive plant functional traits can mediate
6 microclimates, how tick survival and abundance vary under altered environmental conditions
7 created by invasive plants, and how invasive plants can impact blood meal host activity and
8 pathogen prevalence. These findings are synthesized within a One Health framework that
9 considers climate, landscape, and disturbance to ultimately predict TBD risk. Finally, we discuss
10 range expansion of ticks and pathogens, spatial and temporal research scales, and modeling
11 approaches for predicting TBD risk amidst global change. We highlight how plant invasions and
12 climate change can impact ticks, hosts, and pathogens, and we identify research needs to improve
13 models of TBDs in a changing world.

14


15 Introductions of species to non-native ranges have resulted in widespread biological invasions,
16 which are a key driver of global change (Trumbore et al. 2015, Paini et al. 2016). Accumulating
17 evidence demonstrates that invasive species can have direct effects on ecological communities by
18 altering, for example, biodiversity, nutrient cycling, and disturbance regimes (Pyšek et al. 2012).
19 However, invaders can also elicit indirect effects that may rival their direct effects, such as through
20 impacts on habitat structure and microclimates (Alba et al. 2017). An increasingly explored but
21 still understudied indirect effect of plant invaders is their impact on disease transmission (Goss et
22 al. 2020), including vector-borne diseases transmitted by ticks and other arthropods. This issue is
23 of critical importance given that the incidence of tick-borne diseases (TBDs) is increasing globally
24 (Rochlin and Toledo 2020), particularly in the northern hemisphere, due to expanding distributions
25 of tick species and their associated pathogens (Sonenshine 2018). In the U.S., from 2019-2022,
26 184,459 cases of TBDs were reported to the Centers for Disease Control and Prevention (CDC)
27 (2024). Even these high and increasing numbers are known to be underreported due to COVID-19
28 impacts to all disease surveillance records, under-recognition of TBDs, and point-of-care reporting
29 pipeline complexity for under-resourced health areas (Sambado and Ryan 2024). This increasing
30 problem may be further exacerbated by introductions of novel disease vectors. For example, the
31 newly introduced Asian longhorned tick (*Haemaphysalis longicornis*) is invading rapidly in the
32 eastern U.S., threatens human and animal health (Schappach et al. 2020, Yabsley and Thompson
33 2023), and is capable of using multiple native small and medium sized mammalian host species
34 for blood meals (Ferreira et al. 2023).

35 Global change, including shifts in climate and land use and changing disturbance regimes,
36 is contributing to plant invasion, with implications for both direct effects on native species and
37 ecosystem functions, but also significant potential for enhanced or altered TBD risk. The knock-

38 on effects of plant invasions in landscapes on potential tick hosts, including those also impacted
39 by invasive hosts (Cheeseman et al. 2018), may in turn be affected by management decisions aimed
40 at preserving imperiled native hosts or restoring ecosystem functions. Moreover, these
41 management efforts are occurring in landscapes with disturbance histories mediated by humans,
42 which speaks to the larger interconnected One Health framework needed to investigate the
43 interplay of multiple interacting drivers (see Figure 1).

44 Historically, effects of plant invasions have focused on measuring direct economic impacts
45 or potential threats to biodiversity conservation and maintenance of ecosystem functions (Duncan
46 et al. 2004, Holmes et al. 2009). However, invasions may also alter disease risk by changing habitat
47 structure and microclimate (Civitello et al. 2008). Change in TBD risk is defined here as any
48 change in probability of encountering an infected tick due to differences in tick density or pathogen
49 infection prevalence (Barbour and Fish 1993). Environmental tick abundance is influenced by tick
50 survival and availability of tick blood meal hosts (e.g., deer, rodents) for completion of the tick
51 life cycle (Ostfeld et al. 2006). Microclimate, specifically temperature and humidity, is the primary
52 determinant of off-host tick survival (Hiatt et al. 2024), which can be directly influenced by
53 climate, but also by landscape characteristics (e.g., slope, aspect, elevation, tree cover) and
54 disturbance (e.g., land use change, extreme weather) as well as the local-scale composition and
55 traits of vegetation (Diuk-Wasser et al. 2021, Mathisson et al. 2021). Host abundance and activity
56 are strongly affected by habitat structure, such as plant diversity and composition and relative
57 abundance of plant species, especially when species vary in functional traits. Altogether, TBD risk
58 is driven by complex species interactions involving ticks, hosts, plants, and their environment
59 (Ostfeld et al. 2018, Morand and Lajaunie 2021), all of which can be altered by plant invasions

60 through shifts in microclimate and host habitat structure across various environmental contexts
61 (Fig. 1).

62
63 **Figure 1. A One Health framework depicting the pathways by which plant invasions can be**
64 **influenced by climate, landscape characteristics, and disturbance, which can then affect**
65 **microclimate and host habitat, ticks and pathogens, and TBD risk.** Plant invasions can affect
66 microclimate and host habitat directly (solid lines), and each of these factors may directly or
67 indirectly (dashed lines) alter tick survival and host activity. Consequently, tick abundance can be
68 altered by tick survival or host activity and pathogen prevalence can change through host activity.
69 Ultimately, risk of exposure to TBDs for humans is determined by the abundance of ticks and the
70 pathogens they carry.

71

72 **Documented effects of plant invasions on tick survival and host habitat structure**

73 Invasive plants may affect disease risk by altering microclimates that affect off-host tick survival
74 or by modifying habitat conditions that affect host abundance or activity [Box 1]. Time between
75 blood meals comprises over 90% of an Ixodid tick's life, and a primary cause of off-host tick
76 mortality is desiccation (i.e., loss of water through the cuticle, (Needham and Teel 1991)). To
77 maintain water balance, ticks must be in microclimates that are at or above their critical equilibrium

78 humidity (e.g., 80-82% relative humidity for adult lone star ticks (*Amblyomma americanum*), (Hair
79 et al. 1975, Knülle and Rudolph 1982); temperatures greater than 35°C can also contribute to
80 desiccation and mortality, (Sauer and Hair 1971). Field studies demonstrating higher tick
81 abundances in areas invaded by barberry (*Berberis thunbergia*) and giant reed (*Arundo donax*)
82 attribute greater tick abundances to favorable microclimates that reduce off-host tick desiccation,
83 including lower temperatures and higher humidity (Williams and Ward 2010, Racelis et al. 2012).
84 Yet, the few published tick survival experiments in invaded habitats show no effect on tick survival
85 from Amur honeysuckle (*Lonicera maackii*) (Allan et al. 2010a) or lower tick survival with
86 stiltgrass (*Microstegium vimineum*) (Civitello et al. 2008) in invaded compared to native areas.
87 Conversely, a recent study demonstrated that invasive cogongrass (*Imperata cylindrica*) greatly
88 enhances plant cover, reduces temperatures, and increases humidity, which was associated with
89 greater longevity of lone star ticks (Hiatt et al. 2024).

90 Studies on tick wildlife hosts, which can include deer, small mammals, birds,
91 mesocarnivores, and other animals (Halsey et al. 2018), have shown that invasive shrubs, including
92 barberry and Amur honeysuckle, increased habitat use by white footed mice and/or white-tailed
93 deer, leading to greater abundances of ticks (Elias et al. 2006) and pathogen-infected ticks (Allan
94 et al. 2010a). When management strategies included removal of invasive shrubs, disease risk was
95 reduced to levels comparable to areas with only native vegetation (Allan et al. 2010a). While
96 pointing to potential directional impacts of plant invasions on the overall transmission chain for
97 TBDs, these studies fall short of identifying the precise mechanism underlying impacts of plant
98 invaders on tick survival and host habitat use, such as the role of plant functional traits in driving
99 microclimate differences (see Box 1 for expanded explanations and evidence). Building on the

100 evidentiary to evaluate generalizability of the effects of plant invasions on TBD risk is an important
101 next step.

Box 1: Documented mechanisms by which plant invasions have directly or indirectly impacted ticks and tick-borne pathogens (all images from Creative Commons).

Mechanism 1: Changes in Tick Survival

Plant invasions increase tick survival

Williams et al. (2009) found more black-legged (*Ixodes scapularis*) larval ticks on white-footed mice (*Peromyscus leucopus*) and adult ticks questing in barberry (*Berberis thunbergii*), and Williams & Ward (2010) showed that barberry plots had more infected black-legged ticks than when barberry was managed or absent. Intact barberry plots had higher humidity and lower vapor pressure deficit, potentially increasing tick survival. Linske et al. (2018) found more black-legged ticks per mouse in barberry but no difference in tick or mouse abundance, suggesting barberry provides better tick habitat. Racelis et al. (2012) found that cattle tick (*Rhipicephalus microplus*) survival increased in giant reed (*Arundo donax*) invasions due to lower temperatures than buffelgrass (*Pennisetum ciliare*) invaded pastures and closed canopy forests. Hiatt et al. (2024) showed that lone star tick (*Amblyomma americanum*) survival increased under cogongrass (*Imperata cylindrica*) invasion due to higher humidity and lower temperatures.

Berberis thunbergii

Arundo donax

Imperata cylindrica

Plant invasions decrease tick survival

Civitello et al. (2008) showed that lone star tick and American dog tick (*Dermacentor variabilis*) survival decreased with stiltgrass (*Microstegium vimineum*) invasion due to lower humidity and temperature. Malo et al. (2013) found lower castor bean tick (*Ixodes ricinus*) abundance in *Rhododendron ponticum* invasions despite higher wood mouse (*Apodemus sylvaticus*) abundance, possibly due to effects of polyphenols and cyanidin in leaf litter on tick survival. Adalsteinsson et al. (2016) identified lower black-legged tick abundance in forest fragments invaded by multiflora rose (*Rosa multiflora*) due to reduced leaf litter which decreased tick survival.

Microstegium vimineum

Plant invasions have no effect on tick survival

Allan et al. (2010a) found no difference in nymph or adult lone star tick survival where Amur honeysuckle (*Lonicera maackii*) was intact versus eradicated.

Rhododendron ponticum

Mechanism 2: Changes in Host Activity/Abundance

Plant invasions increase host activity/abundance

Elias et al. (2006) found black-legged tick abundance was positively associated with white-tailed deer (*Odocoileus virginianus*) and white-footed mouse activity in habitats invaded by understory shrubs. Allan et al. (2010a) showed a positive correlation between white-tailed deer activity and abundance of *Ehrlichia*-infected lone star ticks in Amur honeysuckle invasion. Wei et al. (2020) found that tick infestations on rodents were higher in *Leucaena leucocephala* invaded habitats compared to agricultural

Rosa multiflora

Lonicera maackii

or residential habitats. Mandli et al. (2021) found that tick tubes treated with permethrin paired with removal of invasive Amur honeysuckle and buckthorn (*Rhamnus* spp.) decreased infestation of black-legged ticks on white-footed mice. Noden et al. (2021) found more *Ehrlichia*- and *Rickettsia*-infected lone star ticks in eastern red cedar (*Juniperus virginiana*) invaded plots where they are more likely to encounter hosts. D'Antonio et al. (2023) found more black-legged ticks and white-footed mice in barberry-invaded plots, which provide protection from predators and greater opportunities for questing ticks.

Leucaena leucocephala

Rhamnus cathartica

Plant invasions decrease host activity/abundance

Parker et al. (2017) found that as non-native shrubs increased, infestation of multiple tick species on migratory birds decreased, likely because invasive plant fruit were located out of tick questing range.

Plant invasions have no effect on host activity/abundance

Hiatt et al. (2024) found no relationship between cogongrass invasion and white-tailed deer activity on lone star tick abundance. Busala et al. (2024) found no difference in relative abundance of white-footed mice between forest patches invaded versus uninvaded by non-native shrubs, although mice were larger in patches with more invasive shrubs.

Mechanism 3: Cascading Indirect Effects

Swei et al. (2011) found a positive correlation between western black-legged (*Ixodes pacificus*) nymph densities and sudden oak death (caused by invasive fungus *Phytophthora ramorum*), possibly due to vertebrate host increase following oak death. Vaicekonyte & Keesing (2012) showed that

Alliaria petiolata

garlic mustard (*Alliaria petiolata*) removal promoted entomopathogenic soil fungi, potentially lowering black-legged tick survival.

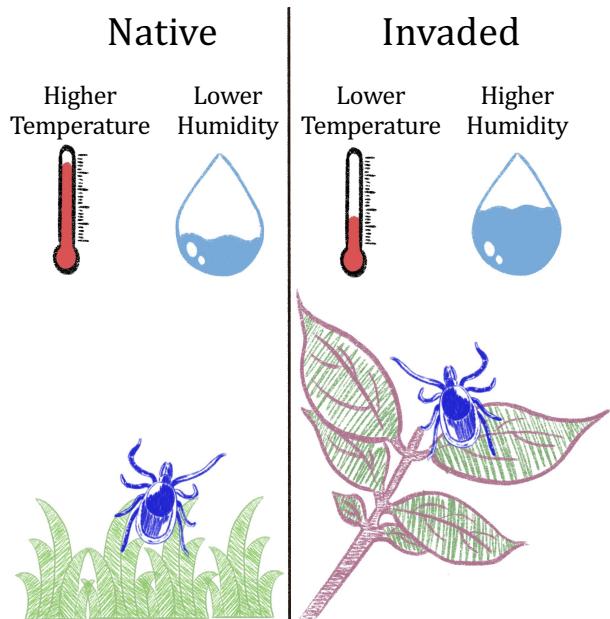
102

103 **Framework to integrate plant invasion effects on TBD risk**

104 It is evident that non-native plant invasions can affect tick survival and host habitat, with potential
105 to facilitate or inhibit infectious disease risk for humans (Allan et al. 2010a, Mack and Smith 2011,
106 Stewart et al. 2021). However, the extent of current knowledge on plant invasions and TBD risk
107 is limited and seemingly inconsistent, in part because studies are typically focused on one or a few
108 invasive plant and tick species combinations and on individual mechanisms. The range of evidence
109 on abiotic versus biotic mechanisms underlying invasive plant effects on TBDs (Civitello et al.
110 2008, Allan et al. 2010b, Williams and Ward 2010, Mack and Smith 2011, Racelis et al. 2012)
111 may be explained by differences in invasive plant functional traits, landscape characteristics,
112 seasonality, or climate. While there has been research on how different pathways may individually
113 affect tick abundance or survival, studies that simultaneously address multiple pathways are
114 lacking but urgently needed to improve TBD risk predictions and mitigation.

115 Here, we present an integrative One Health framework for predicting invasive plant
116 impacts on TBD risk under an overarching hypothesis that invasions affect microclimate and host
117 habitat, which, in turn, alter tick survival and encounters with wildlife hosts. As a result, these
118 factors may change tick abundance or pathogen prevalence, ultimately determining human TBD
119 risk (Fig. 1). We expect that these interconnected drivers are subject to contextual factors including
120 climate, landscape cover and configuration, and disturbance history, resulting in variations in TBD
121 risk across landscapes, which may be further compounded by the dynamics of a changing climate.

122 Each arrow in Figure 1 represents a unique hypothesis explaining the interactions between
123 invasive species and factors that affect TBD risk. We expound on these hypotheses by delineating
124 important research needs that would enhance our understanding of the multifaceted interactions
125 between invasion and TBD risk. We characterize how functional traits of invasive plants affect
126 microclimates, describe evidence for tick survival and abundance under plant invasion altered
127 microclimates, and review effects of invasive plants on blood meal host activity and pathogen
128 prevalence. This framework spans local microclimates to regional scales, provides a roadmap to
129 investigate how climate, landscape characteristics, invasive plants, and their interactions under
130 global change influence TBD risk, and provides essential research directions for addressing this
131 critical ecological and public health issue.


132

133 **A. Impacts of invasive plant functional traits on microclimates**

134 We predict that invasive plants have measurable and unique effects on microclimate compared
135 to native species, and that these effects can be predicted by invader functional traits. Plant traits
136 can influence microclimate by altering solar radiation absorption, transpiration and
137 evaporation rates, quantity and structure of the litter layer, and air circulation, among other
138 factors (Chapin 2003, Ehrmann et al. 2017). Potentially important plant traits in this context
139 include biomass, height, stem density, basal area, leaf mass per unit leaf area (LMA), and leaf
140 mass ratio (LMR). Invasive species frequently exhibit distinct and novel traits compared to
141 native species in a community (van Kleunen et al. 2010, Mathakutha et al. 2019) such as
142 exceptionally dense growth, taller stature, or greater leafiness, all of which might alter
143 microclimate (Fig. 2). Community species composition, which can be altered by highly
144 abundant, dense, and dominant invasive plant species can also significantly influence

145 microclimate (Chapin, 2003). Moreover, invaders can have unique growth forms compared to
146 most native species in an ecosystem. For example, stiltgrass is a highly shade tolerant warm
147 season annual grass that creates dense and widespread invasions in forest understories
148 throughout the eastern U.S. (Warren et al. 2010) where there are no native warm season annual
149 grass species. Likewise, cogongrass is a perennial rhizomatous grass that invades pine forests
150 in the southeastern U.S. where most native grass species are bunchgrasses that provide much
151 less ground cover at lower density (Hiatt et al. 2024). Consequently, the unique functional
152 traits and forms of plant invaders may exert a disproportionate influence on microclimate
153 conditions compared to native plant species.

154 A limitation of current research on plant invasion impacts on ticks lies in contrasting
155 and non-generalizable inferences derived from individual invasive plant species. Functional
156 traits may provide a common currency to quantify and predict effects of invasive plants (and
157 co-occurring dominant native species) on microclimates. Certain functional traits could be
158 quantified across native and invasive species per unit individual or per unit area depending on
159 growth form. We expect that functional traits of invaders such as relatively high stem density
160 or high biomass, or more broadly, greater invasive plant cover in a community, will decrease
161 the diurnal range of temperature and humidity (i.e., will buffer microclimate extremes) relative
162 to habitats without the invader but with dominant native species. Greater invasive plant cover
163 and specific functional traits may also reduce days with extreme microclimate conditions (i.e.,
164 very hot or cold) compared to native plant dominated habitats. Conversely, if an invader has a
165 unique growth form such as an open canopy and replaces a more densely growing native
166 species, microclimate temperature or humidity extremes may increase.

167

168 **Figure 2. Example of how an invasive plant with a unique growth form and different**
 169 **functional traits may alter microclimate conditions.** Here, the invader is a tall forb with a dense
 170 canopy that is replacing a shorter statured native grass species. As a result, the invaded area has a
 171 lower temperature and higher humidity than the native plant dominated area.

172

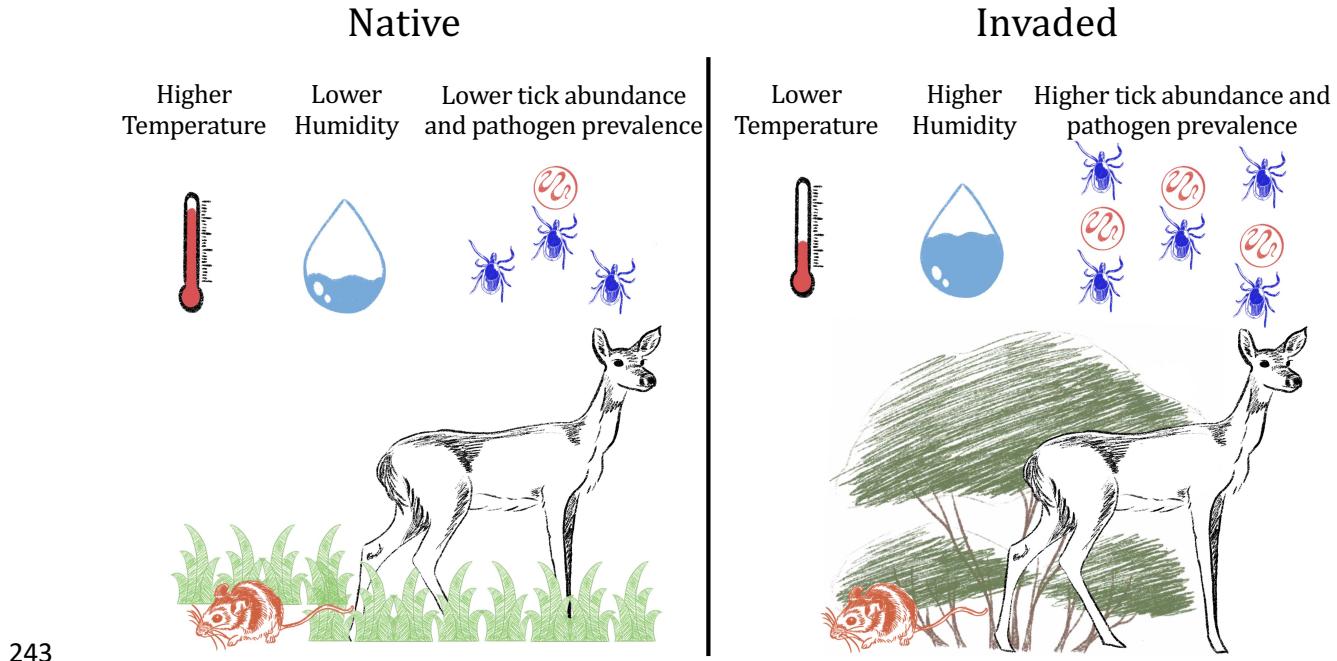
173 **B. Tick survival and abundance under altered microclimates**

174 Previous research on a limited number of tick species under specific conditions has shown that
 175 temperature and humidity can significantly influence off-host tick survival (Stafford 1994,
 176 Bertrand and Wilson 1996). High temperature and low relative humidity are stressors that
 177 disrupt water balance regulation and prompt changes in physiological, behavioral and
 178 developmental responses in individual ticks, which may translate to population level responses
 179 (Duffy and Campbell 1994). Characterizing this response is important given tradeoffs between
 180 behaviors enabling tick longevity (e.g., burrowing in leaf litter) versus energetically costly
 181 host-seeking (e.g., “questing”) behaviors (Nielebeck et al. 2023). For example, high humidity

182 and low temperature promotes optimal hydration status between questing bouts when ticks
183 climb vegetation, which prompts water loss and physiological stress. Climate conditions
184 outside optimal temperature and humidity ranges could limit costly behaviors such as questing
185 for blood meals and might compromise survival as conditions become more extreme.

186 We expect that 1) tick longevity will be greater when unfavorable microclimate
187 conditions (e.g. high temperature, low humidity) are buffered (Van Gestel et al. 2022) by
188 densely growing or high biomass invasive plant species compared to native plant species that
189 would otherwise occur at the site, and; 2) effects of invasive plants on microclimate and tick
190 survival will be mediated by the larger environmental context, including macroclimate,
191 landscape characteristics (e.g., elevation, canopy coverage), and disturbance patterns. Tick
192 life-history can be impacted by the microclimate conditions created by invasive plants; while
193 we describe this as a potential positive impact on survival and host-seeking activities, it could
194 also impose negative impacts, or even different impacts on different parts of the tick life cycle
195 (e.g., higher larval survival but lower nymph survival depending on how phenology of plant
196 species correspond to phenology of tick species; (Civitello et al. 2008)). Finally, changes in
197 tick survival may not always translate to differences in tick abundance depending on other
198 biotic factors such as blood meal host availability.

199


200 **C. Invasive plant effects on host activity and pathogen prevalence**

201 Invasive plants can alter host activity through changes in habitat suitability and food
202 availability. The word ‘host’ is used generically here to capture the range of potential animal
203 species available to provide blood meals to a tick in the context of plant invasions. Ticks can
204 feed on a range of animals, both wild and domestic (including humans); these blood meals can

205 also be routes of transmission of pathogens that will either survive or not within the tick and
206 will either be possible to transmit to another host or may not be (de la Fuente et al. 2017). The
207 vector competence of ticks for the wide array of pathogens they are associated with is outside
208 the scope of this piece, but is an important component of the transmission pathway, and thus
209 of 'risk' for human disease. There is even some evidence for infection status of ticks changing
210 their questing behavior (Richardson et al. 2022), which, if mediated by altered habitat in the
211 presence of invasive plants, would have onward implications for TBD risk.

212 Changes in conditions that influence host habitat preference and patch-use may lead to
213 changes in availability and density of blood meal hosts required for the life cycle of the tick,
214 consequently impacting tick reproductive success and tick population dynamics and density
215 (Fig. 3). Hosts may utilize invaded habitats for protection from predators (Orrock et al. 2010,
216 Borden et al. 2022), because of better environmental conditions (Cheeseman et al. 2019), or
217 they may use them as food sources in their foraging landscape (Cheeseman et al. 2018). All
218 three mechanisms for host use of invaded areas can promote host activity and potentially tick
219 abundance. For example, black-legged tick abundance was positively correlated with white-
220 tailed deer and white-footed mouse abundances in dense barberry invasions, which the authors
221 attribute to the physical protection provided by barberry (D'Antonio et al. 2023). However, in
222 another recent study, lone star tick abundance was not correlated with host activity in
223 cogongrass invasion, while there was a positive relationship between host activity and tick
224 abundance in native areas (Hiatt et al. 2024). These differences highlight the need to better
225 understand the ecological mechanisms by which blood meal hosts respond to plant invasions
226 and the complexity of drivers of TBD risk.

227 Greater host activity can impact pathogen prevalence depending on the reservoir
228 competence of host species for the transmission of pathogens. As a result, some studies have
229 demonstrated a positive relationship between abundance of pathogen-infected ticks and the
230 presence of invasive plant species. For example, Amur honeysuckle invaded plots had a higher
231 prevalence of the *Ehrlichia chaffeensis* – infected lone star nymphs (Allan et al. 2010a) due to
232 greater activity by white-tailed deer, an important host for lone star ticks and a pathogen
233 reservoir for *E. chaffeensis*, one of the causal bacterial pathogens of ehrlichiosis in humans
234 (Allan et al. 2010b). Similarly, there was a higher prevalence of the Lyme disease causing
235 *Borrelia burgdorferi* – infected black-legged nymphs in multiflora rose plots attributed to more
236 favorable understory structure for white-footed mice, a highly competent reservoir for this
237 pathogen (Adalsteinsson et al. 2018). Overall, relatively few studies have connected plant
238 invasions to the prevalence of tick-borne pathogens, and to our knowledge, none have extended
239 the full chain of interaction to human infections, which is the ultimate outcome of a far greater
240 chain of events in this One Health system (Sambado and Ryan 2024). Whether humans living
241 in areas with greater prevalence of non-native plant invasions experience higher rates of
242 infection by TBDs is an urgent research priority.

243

244 **Figure 3. Invasive plants may enhance tick survival and provide better host habitat**
 245 **compared to native plant dominated areas.** In this example, the invaded community has a cooler
 246 and wetter microclimate, and more food and shelter for hosts, which promotes tick survival and
 247 abundance and enhances pathogen prevalence compared to the uninvaded native plant dominated
 248 area.

249

250 **Potential for plant invasions to facilitate geographic expansion of ticks and pathogens**

251 Globally, numerous tick species and their associated pathogens are expanding in geographic
 252 distribution, imperiling human and animal health (Sonenshine 2018). Expanding distributions are
 253 frequently attributed to factors including climate change (Ostfeld and Brunner 2015), landscape
 254 change (Gardner et al. 2020) and novel introductions (Schappach et al. 2020). However, the role
 255 of non-native plant invasions in altering dispersal or habitat suitability for tick invasions has
 256 received scant attention. Parker et al. (2017) found avian migrants were less likely to be infested
 257 with multiple species of juvenile ticks in forest patches invaded by non-native shrubs, and

258 hypothesized this pattern was due to birds foraging on berries from shrubs higher than the questing
259 range of ticks. However, it was unknown whether these migrants arrived in these patches already
260 infested by these tick species or if they acquired them locally. We predict that when invaded
261 habitats serve to attract dispersing wildlife, plant invasions may increase geographic dispersal of
262 ticks by enhancing wildlife host movements. Additionally, should invaded habitats offer more
263 suitable microclimates for tick survival, plant invasions may increase tick establishment success
264 during dispersal to new areas. Considering the ongoing geographic range expansion of numerous
265 tick and tick-borne pathogen species, determining to what extent plant invasions alter dispersal
266 and establishment probabilities is another urgent research priority.

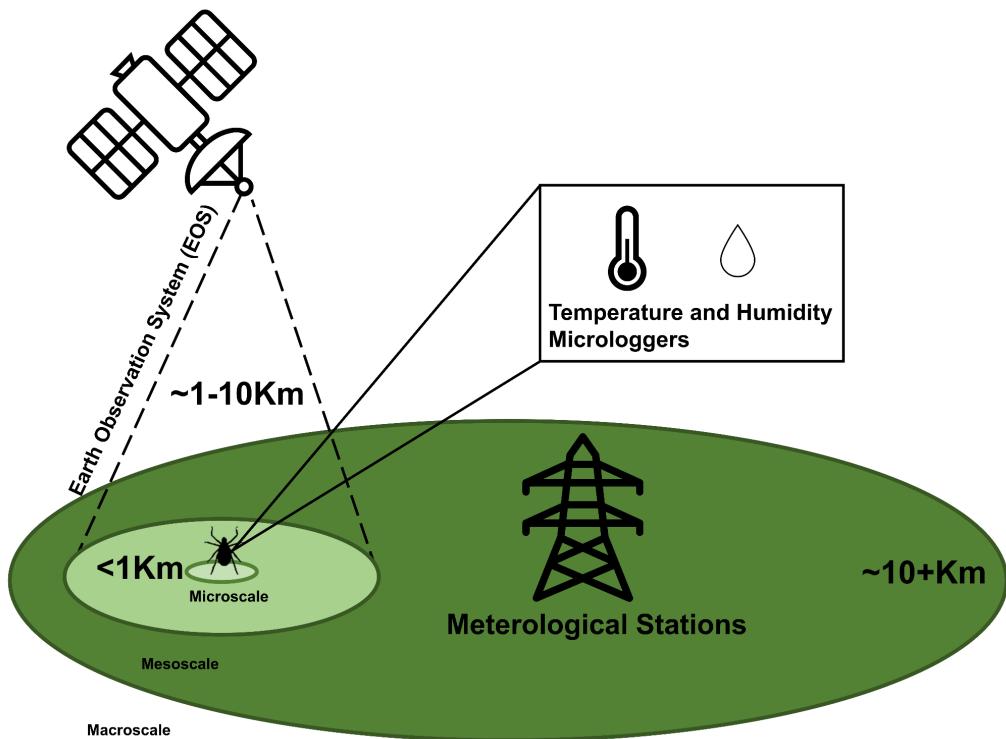
267

268 **Scales of measurement and models**

269 Few fully parameterized mechanistic models exist that directly link empirical microclimate data
270 and potentially mitigating effects of vegetation cover to tick survival, likely owing to the time and
271 resource-intensive nature of data collection required to inform such models (Boehnke et al. 2017).
272 Fewer studies have explored relationships across scales, for example, between local habitats and
273 broad scale climatologies to compare functional impact of habitat features on seasonality
274 (Randolph et al. 2002, Estrada-Peña et al. 2004, Ogden et al. 2008, MacDonald et al. 2020). To
275 understand how microclimate, mediated by plant invasions, is described by larger scale climate
276 measurements, models should explicitly incorporate multiple spatial scales: **(a)** micro, **(b)** meso,
277 and **(c)** macro scales (Box 2). Adopting a variety of modeling approaches with appropriately scaled
278 data inputs will allow for the exploration of potential trade-offs between modeling with large scale
279 climate layers, versus localized climate and microclimate measures that capture sub-annual
280 seasonal impacts on tick survival hypothesized to be influenced by invasive plants.

Box 2. Data collection across scales to quantify the ecological connections between ticks and their environment.

Scale, both spatial and temporal, is fundamental to the research question asked, determines how field data (on microclimate, plants, ticks, hosts) are collected, which environmental data products are appropriate (e.g., on-site climate measurements, Earth Observation Satellite (EOS) imagery, or gridded data such as interpolated surfaces or projected climate models), and how data must be prepared, aggregated, and modeled.


For understanding vector-borne diseases on the landscape, spatial scales generally range from the i) microscale (e.g., individual plants, sampling points for ticks), to the ii) mesoscale (e.g., sites or plots, described within a pixel of EOS data), and iii) macroscale (e.g., entire field sites, parks, or geographic regions). Microscale data have the advantage of capturing very fine scale relationships, for example, the immediate questing habitat of an off-host tick, when it is both sensitive to microclimate and most likely to be involved in human TBD transmission. Mesoscale may thus either aggregate microscale measured impacts or may instead reflect a different type of data measurements. For example, the mesoscale, describing the site or plot, may incorporate multiple temperature and humidity loggers to capture the variability of microscale climatologies, perhaps incorporating both invaded and uninvaded native plant dominated areas of a site. The availability of coarser temporal scale (e.g., 16-day aggregates) or coarser spatial scale, but longer-term data (e.g., 1km² over a decade) measurements from EOS data, and descriptors of landcover types or

greenness indices to capture phenology (e.g., NDVI (Pettorelli et al. 2005, 2011), allows for rapid observation data acquisition that can be replicated across multiple mesoscale sites.

How microclimate scales to mesoscales (and what we describe as macroscale) is an active field of research (Lembrechts and Lenoir 2020), but still relies on the availability of microclimate data to create reliable and validated generalizable products (Lembrechts et al. 2021). Adequate data collection at the microscale to inform generalizable models at larger scales is resource-intensive and time consuming. Similarly, the scaling ‘up’ issue is also applicable to the macroscale, describing geographic regions, or entire preserved ecosystems. However, at the macroscale, we can start to incorporate the impacts of broader scale patterns of global change such as human-environment modifications, including agricultural conversion, processes of urbanization such as an increase in impervious surfaces, and processes that increase tick encounters such as patterns of settlement (Combs et al. 2022, Gregory et al. 2022). For example, the U.S. urban-suburbanization and sprawl pattern, which is a proxy for disturbance history, leading to increased edge habitat, where plant invasions are promoted by availability of gaps in primary habitat and invasive species may comprise a significant proportion of primary and secondary successional species. At this macroscale, the configuration of environment types, and descriptions of landscape fragmentation, may become additionally important to understand landscape processes and TBD exposure, (Diuk-Wasser et al. 2021, Kache et al. 2022a, VanAcker et al. 2024), and see (Kache et al. 2022b) for a multiscale model for a mosquito-borne disease.

To date, few studies have explored relationships between local habitats and broad scale climatologies to compare the functional impact of habitat features on tick seasonality. Models that

explicitly incorporate these multiscalar relationships will allow for exploration and comparisons of trade-offs in utility between large scale modeling approaches for TBD risk, and descriptions of fine scale, sub-annual dynamics of seasonality that are generated by plant invasions across the landscape. The figure below illustrates the proposed nesting of scales needed to capture climatological measurements combined with remotely sensed (EOS) data to describe and capture multiple scales of potential impacts of invasive plants in a landscape on larger landscape processes of TBD risk.

281

282 At present, models describing how ticks and TBDs exist on the landscape are mostly confined to
 283 rigorously captured data in specific locations, and models of ticks on those landscapes primarily
 284 assume stationarity of vegetation composition and phenology (for reviews, see (Lippi et al. 2021a,

285 2021c). When applied to larger landscapes using modeling approaches such as ecological niche
286 modeling (ENM) or species distribution modeling (SDM), e.g. (Lippi et al. 2021b, Flenniken et
287 al. 2022, Lippi et al. 2023b) retain similar assumptions, although projecting climate components
288 of environmental variables at these larger scales is feasible, with the caveat of uncertainty inherent
289 in extrapolating beyond the known environmental boundary conditions. Inherent in models based
290 on niche assumptions is that the environment has shaped the presence of the occurrence in that
291 place – which, when extended to a human case of a vector-borne disease, assumes that the case
292 represents all the processes in the transmission chain in a location.

293 Thus, an important question to address when modeling TBDs on landscapes is whether the
294 environmental history of a location shaped the presence of the pathogen, the human encounter, the
295 tick, or the tick's host; (for some exploration of these concepts in the context of SDM/ENM models
296 see (Lippi et al. 2021b, 2023a). Recent work by Estrada-Pena and de la Fuente (2024) also found
297 that across a suite of SDM/ENM model approaches, which they refer to as machine learning
298 algorithms, MLAs, the addition of land use and landcover variables greatly improved evaluations
299 of risk of tick-borne pathogens in Europe, beyond climate-only driven models. While a full review
300 of SDM/ENM models of TBDs is outside of scope of this overview, this issue presents a
301 conundrum about the inclusion of dynamic plant invasions into the most current approaches.
302 Peterson et al (2005), presented a time-specific niche modeling approach to dengue cases and
303 consistently captured mosquito surveillance data, to create monthly landscape level models, using
304 a suite of stationary variables (e.g. slope, aspect, elevation) and one key EOS derived dynamic
305 product, NDVI. With sufficient fine-scale and high frequency data, a similar approach could
306 capture year-on-year impacts of invasions to re-run and re-validate predictive models. To our
307 knowledge, this does not yet exist for TBDs or even tick or host distributions, separately.

308

309 **Future research directions and opportunities**

310 As a result of invader effects on microclimate and host habitat, plant invasions have been shown
311 to sometimes change tick survival and abundance, pathogen prevalence, or host activity. Thus,
312 invasive plants may indirectly influence human health if they modify interactions among species
313 in ways that ultimately alter transmission of diseases to humans. To date, transmission of TBDs
314 has been described primarily as interactions of humans, animals, and pathogens in a landscape.
315 However, the additional driving dynamics of how plant invasions mediate these interactions have
316 received far less attention and yet may be critically important. Future research should identify and
317 structure study systems involving multiple invasive plant and tick species and must focus more on
318 underlying mechanisms to advance understanding of plant invasions on TBD risk under global
319 change. We encourage the use of previous theory, existing data from field surveys, field and lab
320 experiments, and Earth observation satellite (EOS) data; thereby leveraging existing infrastructure
321 and extensive datasets to effectively address the questions highlighted here.

322 Evidence synthesized from studies to date suggest non-native plant invasions may alter
323 TBD risk through both direct and indirect mechanistic pathways, and the direction and magnitude
324 of these effects so far appear variable. However, the potential role of plant functional traits, growth
325 form (e.g., grass vs shrub), phenology, or form of subsidy provided to wildlife hosts (e.g., shelter
326 vs food), has been largely neglected in most studies. Focusing on invader functional traits may
327 facilitate development of a generalizable and predictive approach that links traits to microclimate,
328 host activity, and tick abundance, to advance understanding on how plant invasions may alter TBD
329 risk (Fig. 1). Thus, future studies should attempt to quantify not only the mechanisms by which

330 plant invasions alter the risk of TBD transmission, but also report key differences in the functional
331 traits of native and invasive plant species within study sites.

332 To determine whether plant invasions consistently alter TBD risk, several other factors
333 require further exploration. While some of the studies reviewed here suggested invader effects
334 were due to changes in tick survival, and a few field-based survival studies have been performed
335 comparing invaded to native plant dominated habitats, it remains largely unknown whether
336 changes in tick survival or other parameters meaningfully impact disease transmission. A high
337 priority across many aspects of vector-borne disease ecology is to connect environmental change
338 not only to risk of exposure to pathogen-infected ticks but also changes in human disease
339 incidence. For reportable diseases such as several of the TBDs in the U.S., including Lyme and
340 ehrlichiosis, it may be possible to connect plant invasions to changes in human case rates using
341 spatial distribution data. With sufficiently resolved geospatial data on human case reports, over
342 sufficient periods of time, coupling tick surveillance records (which are still sparse, but improving,
343 e.g. (Foster et al. 2023)) with vegetation surveys, remotely sensed classified imagery describing
344 landcover change, particularly in the context of known plant invasions, we can start to identify and
345 quantify these connections. Additionally, as many TBDs are expanding in geographic distribution,
346 understanding what role plant invasions may play in affecting tick or pathogen dispersal or
347 establishment in new areas can both illuminate a factor that is contributing to changes in
348 distribution, and offer a relatively tractable management approach. If controlling plant invasions
349 also places limits on tick and pathogen invasions and reduces TBD risk, natural areas managers
350 and users may benefit from a win-win solution to address both pressing environmental challenges.

351

352

353 **Acknowledgments**

354 SLF was supported by USDA NIFA Ecology and Evolution of Infectious Diseases (1031035);
355 SLF, SJR, and CAL were inspired by ideas and content generated through a UF Biodiversity
356 Institute Seed Grant; SJR and CAL were supported by NSF CIBR: VectorByte: A Global
357 Informatics Platform for studying the Ecology of Vector-Borne Diseases (NSF DBI 2016265); and
358 BFA and MM received support from the Illinois Department of Public Health.

359

360 **References**

361 Adalsteinsson SA, D'Amico V, Shriver WG, Brisson D, Buler JJ. 2016. Scale-dependent effects
362 of nonnative plant invasion on host-seeking tick abundance. *Ecosphere* (Washington, D.C)
363 7: e01317.

364 Adalsteinsson SA, Shriver WG, Hojgaard A, Bowman JL, Brisson D, D'Amico V, Buler JJ. 2018.
365 Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not
366 necessarily Lyme disease risk. *Parasites & vectors* 11: 1–10.

367 Alba C, NeSmith JE, Fahey C, Angelini C, Flory SL. 2017. Methods to test the interactive effects
368 of drought and plant invasion on ecosystem structure and function using complementary
369 common garden and field experiments. *Ecology and evolution* 7: 1442–1452.

370 Allan BF, Dutra HP, Goessling LS, Barnett K, Chase JM, Marquis RJ, Pang G, Storch GA, Thach
371 RE, Orrock JL. 2010a. Invasive honeysuckle eradication reduces tick-borne disease risk by
372 altering host dynamics. *Proceedings of the National Academy of Sciences of the United
373 States of America* 107: 18523–18527.

374 Allan BF, Goessling LS, Storch GA, Thach RE. 2010b. Blood meal analysis to identify reservoir
375 hosts for *Amblyomma americanum* ticks. Emerging infectious diseases 16: 433.

376 Barbour AG, Fish D. 1993. The biological and social phenomenon of Lyme disease. Science 260:
377 1610–1616.

378 Bertrand MR, Wilson ML. 1996. Microclimate-dependent survival of unfed adult *Ixodes*
379 *scapularis* (Acari: Ixodidae) in nature: life cycle and study design implications. Journal of
380 medical entomology 33: 619–627.

381 Boehnke D, Gebhardt R, Petney T, Norra S. 2017. On the complexity of measuring forests
382 microclimate and interpreting its relevance in habitat ecology: the example of *Ixodes*
383 *ricinus* ticks. Parasites & vectors 10: 1–14.

384 Borden JB, San Antonio KM, Tomat-Kelly G, Clark T, Flory SL. 2022. Invasive grass indirectly
385 alters seasonal patterns in seed predation. Biology letters 18: 20220095.

386 Busala GM, Phillips PM, Behm JE. 2024. Variation in forest patch habitat quality for white -
387 footed mice driven by invasive plants in an urbanizing landscape. Ecosphere (Washington,
388 D.C) 15.

389 CDC Office of Public Health Data, Surveillance, and Technology, 2024. 2024. 2022 Annual
390 Tables of Infectious Disease Data. Centers for Disease Control and Prevention. National
391 Notifiable Diseases Surveillance System, 2022 Annual Tables of Infectious Disease Data.
392 Atlanta, GA. (November 27, 2024; <https://www.cdc.gov/nndss/data-statistics/infectious-tables/index.html.>).

394 Chapin FS 3rd. 2003. Effects of plant traits on ecosystem and regional processes: a conceptual
395 framework for predicting the consequences of global change. *Annals of botany* 91: 455–
396 463.

397 Cheeseman AE, Cohen JB, Ryan SJ, Whipps CM. 2019. Determinants of home-range size of
398 imperiled New England cottontails (*Sylvilagus transitionalis*) and introduced eastern
399 cottontails (*Sylvilagus floridanus*). *Canadian journal of zoology* 97: 516–523.

400 Cheeseman AE, Ryan SJ, Whipps CM, Cohen JB. 2018. Competition alters seasonal resource
401 selection and promotes use of invasive shrubs by an imperiled native cottontail. *Ecology*
402 and evolution 8: 11122–11133.

403 Civitello DJ, Flory SL, Clay K. 2008. Exotic grass invasion reduces survival of *Amblyomma*
404 *americanum* and *Dermacentor variabilis* ticks (Acari : Ixodidae). *Journal of medical*
405 *entomology* 45: 867–872.

406 Combs MA, Kache PA, VanAcker MC, Gregory N, Plimpton LD, Tufts DM, Fernandez MP,
407 Diuk-Wasser MA. 2022. Socio-ecological drivers of multiple zoonotic hazards in highly
408 urbanized cities. *Global change biology* 28: 1705–1724.

409 D'Antonio BE, Ehlert K, Pitt AL. 2023. The effects of varying degrees of Japanese barberry
410 invasion on the abundance of blacklegged ticks and white-footed mice. *BIOS* (Florence,
411 AL) 94: 12–19.

412 Diuk-Wasser MA, VanAcker MC, Fernandez MP. 2021. Impact of land use changes and habitat
413 fragmentation on the eco-epidemiology of tick-borne diseases. *Journal of medical*
414 *entomology* 58: 1546–1564.

415 Duffy DC, Campbell SR. 1994. Ambient air temperature as a predictor of activity of adult *Ixodes*
416 *scapularis* (Acari: Ixodidae). *Journal of medical entomology* 31: 178–180.

417 Duncan CA, Jachetta JJ, Brown ML, Carrithers VF, Clark JK, DiTOMASO JM, Lym RG,
418 McDANIEL KC, Renz MJ, Rice PM. 2004. Assessing the economic, environmental, and
419 societal losses from invasive plants on rangeland and Wildlands1. *Weed technology: a*
420 *journal of the Weed Science Society of America* 18: 1411–1416.

421 Ehrmann S, Liira J, Gärtner S, Hansen K, Brunet J, Cousins SAO, Deconchat M, Decocq G, De
422 Frenne P, De Smedt P, Diekmann M, Gallet-Moron E, Kolb A, Lenoir J, Lindgren J, Naaf
423 T, Paal T, Valdés A, Verheyen K, Wulf M, Scherer-Lorenzen M. 2017. Environmental
424 drivers of *Ixodes ricinus* abundance in forest fragments of rural European landscapes. *BMC*
425 *ecology* 17: 31.

426 Elias SP, Lubelczyk CB, Rand PW, Lacombe EH, Holman MS, Smith RP Jr. 2006. Deer browse
427 resistant exotic-invasive understory: an indicator of elevated human risk of exposure to
428 *Ixodes scapularis* (Acari: Ixodidae) in southern coastal Maine woodlands. *Journal of*
429 *medical entomology* 43: 1142–1152.

430 Estrada-Peña A, de la Fuente J. 2024. Machine learning algorithms for the evaluation of risk by
431 tick-borne pathogens in Europe. *Annals of medicine* 56: 2405074.

432 Estrada-Peña A, Martinez JM, Sanchez Acedo C, Quilez J, Del Cacho E. 2004. Phenology of the
433 tick, *Ixodes ricinus*, in its southern distribution range (central Spain). *Medical and*
434 *veterinary entomology* 18: 387–397.

435 Ferreira FC, González J, Milholland MT, Tung GA, Fonseca DM. 2023. Ticks (Acari: Ixodida) on
436 synanthropic small and medium-sized mammals in areas of the northeastern United States
437 infested with the Asian longhorned tick, *Haemaphysalis longicornis*. International journal
438 for parasitology.

439 Flenniken JM, Tuten HC, Rose Vineer H, Phillips VC, Stone CM, Allan BF. 2022. Environmental
440 drivers of Gulf Coast tick (Acari: Ixodidae) range expansion in the United States. Journal
441 of medical entomology 59: 1625–1635.

442 Foster E, Maes SA, Holcomb KM, Eisen RJ. 2023. Prevalence of five human pathogens in host-
443 seeking *Ixodes scapularis* and *Ixodes pacificus* by region, state, and county in the
444 contiguous United States generated through national tick surveillance. Ticks and tick-borne
445 diseases 14: 102250.

446 de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, Johnson
447 N, Kocan KM, Mansfield KL, Nijhof AM, Papa A, Rudenko N, Villar M, Alberdi P, Torina
448 A, Ayllón N, Vancova M, Golovchenko M, Grubhoffer L, Caracappa S, Fooks AR,
449 Gortazar C, Rego ROM. 2017. Tick-pathogen interactions and vector competence:
450 Identification of molecular drivers for tick-borne diseases. Frontiers in cellular and
451 infection microbiology 7.

452 Gardner AM, Pawlikowski NC, Hamer SA, Hickling GJ, Miller JR, Schotthoefer AM, Tsao JI,
453 Allan BF. 2020. Landscape features predict the current and forecast the future geographic
454 spread of Lyme disease. Proceedings. Biological sciences 287: 20202278.

455 Goss EM, Kendig AE, Adhikari A, Lane B, Kortessis N, Holt RD, Clay K, Harmon PF, Flory SL.

456 2020. Disease in invasive plant populations. Annual review of phytopathology 58: 97–117.

457 Gregory N, Fernandez MP, Diuk-Wasser M. 2022. Risk of tick-borne pathogen spillover into

458 urban yards in New York City. Parasites & vectors 15: 288.

459 Hair JA, Sauer JR, Durham KA. 1975. Water balance and humidity preference in three species of

460 ticks. Journal of medical entomology 12: 37–47.

461 Halsey SJ, Allan BF, Miller JR. 2018. The role of *Ixodes scapularis*, *Borrelia burgdorferi* and

462 wildlife hosts in Lyme disease prevalence: A quantitative review. Ticks and tick-borne

463 diseases 9: 1103–1114.

464 Hiatt D, Dillon WW, Gardner A, Cabrera S, Dietze M, F. B, Luke Flory S. 2024. 1 Mechanistic

465 pathways of tick exposure risk in native and invaded plant communities. bioRxiv

466 2024.11.19.624319.

467 Holmes TP, Aukema JE, Von Holle B, Liebhold A, Sills E. 2009. Economic impacts of invasive

468 species in forests: past, present, and future. Annals of the New York Academy of Sciences

469 1162: 18–38.

470 Kache PA, Bron GM, Zapata-Ramirez S, Tsao JI, Bartholomay LC, Paskewitz SM, Diuk-Wasser

471 MA, del Pilar Fernandez M. 2022a. Evaluating spatial and temporal patterns of tick

472 encounters using community science data submitted through a smartphone application.

473 Kache PA, Santos-Vega M, Stewart-Ibarra AM, Cook EM, Seto KC, Diuk-Wasser MA. 2022b.

474 Bridging landscape ecology and urban science to respond to the rising threat of mosquito-

475 borne diseases. Nature ecology & evolution 6: 1601–1616.

476 van Kleunen M, Weber E, Fischer M. 2010. A meta-analysis of trait differences between invasive
477 and non-invasive plant species. *Ecology letters* 13: 235–245.

478 Knülle W, Rudolph D. 1982. Humidity relationships and water balance of ticks. Pages 43–70 in.
479 *Physiology of Ticks*. Elsevier.

480 Lembrechts JJ, Lenoir J. 2020. Microclimatic conditions anywhere at any time! *Global change
481 biology* 26: 337–339.

482 Lembrechts JJ, Lenoir J, R. Scheffers B, De Frenne P. 2021. Designing countrywide and regional
483 microclimate networks. *Global ecology and biogeography: a journal of macroecology* 30:
484 1168–1174.

485 Linske MA, Williams SC, Ward JS, Stafford KC 3rd. 2018. Indirect effects of Japanese barberry
486 infestations on white-footed mice exposure to *Borrelia burgdorferi*. *Environmental
487 entomology* 47: 795–802.

488 Lippi CA, Canfield S, Espada C, Gaff HD, Ryan SJ. 2023a. Estimating the distribution of
489 *Oryzomys palustris*, a potential key host in expanding rickettsial tick - borne disease risk.
490 *Ecosphere* 14.

491 Lippi CA, Gaff HD, Nadolny RM. 2023b. Newer surveillance data extends our understanding of
492 the niche of *Rickettsia montanensis* (Rickettsiales: Rickettsiaceae) infection of the
493 American dog tick (Acari: Ixodidae) in the United States. *Vector-Borne and Zoonotic
494 Diseases* 23: 316-323.

495 Lippi CA, Gaff HD, White AL, Ryan SJ. 2021a. Scoping review of distribution models for selected
496 Amblyomma ticks and rickettsial group pathogens. PeerJ 9: e10596.

497 Lippi CA, Gaff HD, White AL, St John HK, Richards AL, Ryan SJ. 2021b. Exploring the niche
498 of *Rickettsia montanensis* (Rickettsiales: Rickettsiaceae) infection of the American dog
499 tick (Acari: Ixodidae), using multiple species distribution model approaches. Journal of
500 medical entomology 58: 1083–1092.

501 Lippi CA, Ryan SJ, White AL, Gaff HD, Carlson CJ. 2021c. Trends and opportunities in tick-
502 borne disease geography. Journal of medical entomology 58: 2021–2029.

503 MacDonald AJ, McComb S, O'Neill C, Padgett KA, Larsen AE. 2020. Projected climate and land
504 use change alter western blacklegged tick phenology, seasonal host-seeking suitability and
505 human encounter risk in California. Global change biology 26: 5459–5474.

506 Mack R, Smith M. 2011. Invasive plants as catalysts for the spread of human parasites. NeoBiota
507 9: 13–29.

508 Malo AF, Godsall B, Prebble C, Grange Z, McCandless S, Taylor A, Coulson T. 2013. Positive
509 effects of an invasive shrub on aggregation and abundance of a native small rodent.
510 Behavioral ecology: official journal of the International Society for Behavioral Ecology
511 24: 759–767.

512 Mandli JT, Lee X, Bron GM, Paskewitz SM. 2021. Integrated tick management in south central
513 Wisconsin: Impact of invasive vegetation removal and host-targeted acaricides on the
514 density of questing *Ixodes scapularis* (Acari: Ixodidae) nymphs. Journal of medical
515 entomology 58: 2358–2367.

516 Mathakutha R, Steyn C, le Roux PC, Blom IJ, Chown SL, Daru BH, Ripley BS, Louw A, Greve
517 M. 2019. Invasive species differ in key functional traits from native and non - invasive
518 alien plant species. *Journal of vegetation science: official organ of the International*
519 *Association for Vegetation Science* 30: 994–1006.

520 Mathisson DC, Kross SM, Palmer MI, Diuk-Wasser MA. 2021. Effect of vegetation on the
521 abundance of tick vectors in the northeastern United States: a review of the literature. 58:
522 2030–2037.

523 Morand S, Lajaunie C. 2021. Outbreaks of vector-borne and zoonotic diseases are associated with
524 changes in forest cover and oil palm expansion at global scale. *Frontiers in veterinary*
525 *science* 8: 661063.

526 Needham GR, Teel PD. 1991. Off-host physiological ecology of ixodid ticks. *Annual review of*
527 *entomology* 36: 659–681.

528 Nielebeck C, Kim SH, Pepe A, Himes L, Miller Z, Zummo S, Tang M, Monzón JD. 2023. Climatic
529 stress decreases tick survival but increases rate of host - seeking behavior. *Ecosphere*
530 (Washington, D.C) 14: e4369.

531 Noden BH, Tanner EP, Polo JA, Fuhlendorf SD. 2021. Invasive woody plants as foci of tick-borne
532 pathogens: eastern redcedar in the southern Great Plains. *Journal of vector ecology: journal*
533 *of the Society for Vector Ecology* 46: 12–18.

534 Ogden NH, Bigras-Poulin M, Hanincová K, Maarouf A, O'Callaghan CJ, Kurtenbach K. 2008.
535 Projected effects of climate change on tick phenology and fitness of pathogens transmitted

536 by the North American tick *Ixodes scapularis*. Journal of theoretical biology 254: 621–
537 632.

538 Orrock JL, Baskett ML, Holt RD. 2010. Spatial interplay of plant competition and consumer
539 foraging mediate plant coexistence and drive the invasion ratchet. Proceedings. Biological
540 sciences 277: 3307–3315.

541 Ostfeld RS, Brunner JL. 2015. Climate change and Ixodes tick-borne diseases of humans.
542 Philosophical transactions of the Royal Society of London. Series B, Biological sciences
543 370: 20140051.

544 Ostfeld RS, Canham CD, Oggeneffuss K, Winchcombe RJ, Keesing F. 2006. Climate, deer, rodents,
545 and acorns as determinants of variation in lyme-disease risk. PLoS biology 4: e145.

546 Ostfeld RS, Levi T, Keesing F, Oggeneffuss K, Canham CD. 2018. Tick - borne disease risk in a
547 forest food web. Ecology 99: 1562–1573.

548 Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB. 2016. Global threat to
549 agriculture from invasive species. Proceedings of the National Academy of Sciences of the
550 United States of America 113: 7575–7579.

551 Parker CM, Miller JR, Allan BF. 2017. Avian and habitat characteristics influence tick infestation
552 among birds in Illinois. Journal of medical entomology 54: 550–558.

553 Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E. 2005. Time-specific
554 ecological niche modeling predicts spatial dynamics of vector insects and human dengue
555 cases. Transactions of the Royal Society of Tropical Medicine and Hygiene 99: 647–655.

556 Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M, Kausrud K. 2011. The
557 Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology.
558 Climate Research 46: 15–27.

559 Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC. 2005. Using the satellite-
560 derived NDVI to assess ecological responses to environmental change. Trends in ecology
561 & evolution 20: 503–510.

562 Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M. 2012. A global assessment
563 of invasive plant impacts on resident species, communities and ecosystems: the interaction
564 of impact measures, invading species' traits and environment. Global change biology 18:
565 1725–1737.

566 Racelis AE, Davey RB, Goolsby JA, Pérez de León AA, Varner K, Duhaime R. 2012. Facilitative
567 ecological interactions between invasive species: *Arundo donax* stands as favorable habitat
568 for cattle ticks (Acari: Ixodidae) along the U.S.-Mexico border. Journal of medical
569 entomology 49: 410–417.

570 Randolph SE, Green RM, Hoodless AN, Peacey MF. 2002. An empirical quantitative framework
571 for the seasonal population dynamics of the tick *Ixodes ricinus*. International journal for
572 parasitology 32: 979–989.

573 Richardson EA, Taylor CE, Jabot B, Martin E, Keiser CN. 2022. The effects of habitat type and
574 pathogen infection on tick host-seeking behaviour. Parasitology 149: 59–64.

575 Rochlin I, Toledo A. 2020. Emerging tick-borne pathogens of public health importance: a mini-
576 review. Journal of medical microbiology 69: 781–791.

577 Sambado S, Ryan SJ. 2024. Ecological and socioeconomic factors associated with globally
578 reported tick-borne viruses. *bioRxiv* 2024.10. 11.617937.

579 Sauer JR, Hair JA. 1971. Water balance in the Lone Star tick (Acarina: Ixodidae): The effects of
580 relative humidity and temperature on weight changes and total water Content. *Journal of*
581 *medical entomology* 8: 479–485.

582 Schappach BL, Krell RK, Hornbostel VL, Connally NP. 2020. Exotic *Haemaphysalis longicornis*
583 (Acari: Ixodidae) in the United States: Biology, Ecology, and Strategies for Management.
584 *Journal of Integrated Pest Management* 11.

585 Sonenshine DE. 2018. Range Expansion of Tick Disease Vectors in North America: Implications
586 for Spread of Tick-Borne Disease. *International journal of environmental research and*
587 *public health* 15.

588 Stafford KC 3rd. 1994. Survival of immature *Ixodes scapularis* (Acari: Ixodidae) at different
589 relative humidities. *Journal of medical entomology* 31: 310–314.

590 Stewart PS, Hill RA, Stephens PA, Whittingham MJ, Dawson W. 2021. Impacts of invasive plants
591 on animal behaviour. *Ecology letters* 24: 891–907.

592 Swei A, Ostfeld RS, Lane RS, Briggs CJ. 2011. Effects of an invasive forest pathogen on
593 abundance of ticks and their vertebrate hosts in a California Lyme disease focus. *Oecologia*
594 166: 91–100.

595 Trumbore S, Brando P, Hartmann H. 2015. Forest health and global change. *Science* (New York,
596 N.Y.) 349: 814–818.

597 Vaicekonyte R, Keesing F. 2012. Effects of garlic mustard (*Alliaria petiolata*) removal on the
598 abundance of entomopathogenic fungi. *Invasive plant science and management* 5: 323–
599 329.

600 Van Gestel M, Matthysen E, Heylen D, Verheyen K. 2022. Survival in the understorey: Testing
601 direct and indirect effects of microclimatological changes on *Ixodes ricinus*. *Ticks and tick-
602 borne diseases* 13: 102035.

603 VanAcker MC, Hofmeester TR, Zhang-Sun J, Goethert HC, Diuk-Wasser MA. 2024. Urban
604 greenspace connectivity drive shifts in host assemblages and tick-borne pathogen infection.
605 *bioRxiv* 2024.11. 12.623035.

606 Warren RJ, Wright JP, Bradford MA. 2010. The putative niche requirements and landscape
607 dynamics of *Microstegium vimineum*: an invasive Asian grass. *Biological Invasions* 13:
608 471–483.

609 Wei C-Y, Wang J-K, Shih H-C, Wang H-C, Kuo C-C. 2020. Invasive plants facilitated by
610 socioeconomic change harbor vectors of scrub typhus and spotted fever. *PLoS neglected
611 tropical diseases* 14: e0007519.

612 Williams SC, Ward JS. 2010. Effects of Japanese barberry (Ranunculales: Berberidaceae) removal
613 and resulting microclimatic changes on *Ixodes scapularis* (Acari: Ixodidae) abundances in
614 Connecticut, USA. *Environmental entomology* 39: 1911–1921.

615 Williams SC, Ward JS, Worthley TE, Stafford KC 3rd. 2009. Managing Japanese barberry
616 (Ranunculales: Berberidaceae) infestations reduces blacklegged tick (Acari: Ixodidae)

617 abundance and infection prevalence with *Borrelia burgdorferi* (Spirochaetales:
618 Spirochaetaceae). Environmental entomology 38: 977–984.

619 Yabsley MJ, Thompson AT. 2023. *Haemaphysalis longicornis* (Asian longhorned tick). Trends in
620 parasitology 39: 305–306.