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Abstract 

Linking neurobiology to relatively stable individual differences in cognition, emotion, 

motivation, and behavior can require large sample sizes to yield replicable results. Given the 

nature of between-person research, sample sizes at least in the hundreds are likely to be 

necessary in most neuroimaging studies of individual differences, regardless of whether they are 

investigating the whole brain or more focal hypotheses. However, the appropriate sample size 

depends on the expected effect size. Therefore, we propose four strategies to increase effect sizes 

in neuroimaging research, which may help to enable the detection of replicable between-person 

effects in samples in the hundreds rather than the thousands: (1) theoretical matching between 

neuroimaging tasks and behavioral constructs of interest; (2) increasing the reliability of both 

neural and psychological measurement; (3) individualization of measures for each participant; 

and (4) using multivariate approaches with cross-validation instead of univariate approaches. We 

discuss challenges associated with these methods and highlight strategies for improvements that 

will help the field to move toward a more robust and accessible neuroscience of individual 

differences. 
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1. Introduction 

We are researchers who use neuroscientific methods to investigate psychological 

individual differences. Humans differ in their thoughts, feelings, and behaviors, and such 

variations among individuals are neither random nor entirely determined by the current situation. 

Many individual differences, described with terms such as traits, dispositions, attitudes, abilities, 

and symptoms, are relatively stable over time and are caused by a mixture of genetic and 

environmental influences (Polderman et al., 2015). We will use the term “traits” as a generic 

descriptor for all such constructs. Trait levels represent the probability of particular thoughts, 

feelings, and behaviors; they are relatively stable within individuals over time, reasonably 

consistent in rank order between individuals, and typically observable in many situations. Many 

trait measures are useful for predicting future behavior and important life outcomes (Deary, 

2012; Soto, 2019). A long tradition of research on traits has focused on identifying their causes. 

Regardless of the proportion of the distal causes of a trait that are genetic versus environmental, 

trait differences must be caused proximally by differences in brain function, because the brain 

governs behavior and experience. 

Neuroimaging research increasingly investigates associations of psychological traits with 

individual differences in brain structure and function (DeYoung et al., 2022; Hilger & Markett, 

2021). Our aim in this article is to discuss how best to conduct neuroimaging research on 

psychological individual differences in order to achieve robust, replicable results, in light of 

recent debates about sample size (e.g., Grady et al., 2021; Marek et al., 2022; Spisak et al., 

2023). If samples are too small, estimation of parameters will be imprecise, and the chance of 

detecting true effects as significant (i.e., statistical power) will be low. Precision and power both 

depend crucially on sample size, and the fact that underpowered samples yield imprecise 

estimates has an important consequence that is often overlooked in neuroimaging research (Nebe 
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et al., 2023): Not only are underpowered studies more likely (by definition) to yield false 

negatives (Type II error, failing to detect a true effect) than adequately powered studies, but they 

also yield a higher proportion of significant results that are false positives (Type I error, 

detecting an effect that is not true) because the estimated effects fluctuate widely around the true 

value. Thus, significant effects in small samples are often inflated (sometimes known as a Type 

M or magnitude error; Gelman & Carlin, 2014) or even completely spurious, which contributes 

to the prevalence of unreplicable results in scientific publications (Yarkoni, 2009).  

It is often said that power is defined by three things: the significance criterion (), the 

effect size, and the size of the sample; however, power is also crucially defined by the statistical 

model being used. Neuroimaging research in general is often underpowered (Poldrack et al., 

2017; Szucs & Ioannidis, 2020), and this problem is amplified in research on individual 

differences because the statistical models used to estimate between-person effects require larger 

sample sizes than those for estimating within-person effects. When studying the function of the 

average brain, as in typical research on task-evoked brain activity, one compares neural activity 

in different conditions within the same individuals—in other words, participants serve as their 

own controls—and this reduces noise. For example, to achieve 80% power to detect a simple 

bivariate correlation of r = .20 as significant ( = .05; two-tailed) requires a sample of 194 

participants, which is considerably larger than would be required to detect the same effect size as 

a difference between conditions in typical within-person designs (e.g., 49 participants required 

for a paired samples t-test with d = .41,  = .05, two-tailed).  

Achieving sufficient power is additionally challenging in neuroimaging because many 

statistical tests are often conducted within a single analysis. In the common case of univariate 

brain-wide association studies (BWAS), this entails using values from voxels, vertices, or parcels 

across the entire brain and testing for associations of psychological variables with each neural 
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value independently. Such multiple testing reduces power by effectively requiring a more 

stringent significance () threshold for each individual test to maintain the same overall . 

(Note, however, that alpha should not be corrected simply by dividing by the number of tests, as 

in Bonferroni corrections, because the correlated structure of the data—e.g., in spatially adjacent 

voxels—makes many of the tests nonindependent; other approaches, such as controlling the false 

discovery rate, are needed.) Conducting many tests also increases the temptation to engage in 

selective reporting, in which some tests or analyses are not reported, obscuring the true burden of 

multiple testing by reporting results that are nominally but not actually significant. This kind of 

selective reporting within neuroimaging studies increases publication bias—the tendency to 

report only significant effects—and has contributed greatly to the proliferation of false positives 

and the resulting replication crisis (Stanley, 2005). 

All of this entails that sample sizes for individual-differences research in neuroimaging 

need to be considerably larger than samples sizes traditionally used in this field. The big question 

is, “How much larger?” Recently, an influential article argued that “thousands” of participants 

are necessary for “studies of the associations between common inter-individual variability in 

human brain structure/function and cognition or psychiatric symptomatology” (Marek et al., 

2022, p. 654). This important study demonstrated the limited power of common neuroimaging 

approaches to individual-differences research and served as a clarion call to develop more robust 

approaches for identifying associations between traits and neural variables. Here, we attempt to 

answer that call by discussing potential solutions to this problem that might not require 

thousands of participants. We argue that appropriate methods may allow replicable 

neuroimaging research on individual differences with hundreds of participants.  

The key question we consider is how to increase expected effect sizes, because larger 

effect sizes require fewer participants to achieve the same statistical power. Fundamentally, the 
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motivation for claims that thousands of participants are necessary comes down to effect size. 

Using three very large MRI samples, Marek et al. (2022) examined brain-wide associations of 

structural parameters and resting-state functional connectivity with performance tests of 

cognitive ability and questionnaire measures of features of psychopathology and observed that 

the largest 1% of replicable univariate effects were between |r| = .06 and .16. It is worth 

emphasizing that this means 99% of the replicable effects were even smaller than .06. If all 

expectable between-person effect sizes were indeed this low, then it might be true that samples 

in the thousands were always necessary, not only when conducting many statistical tests (though 

of course this makes the problem more acute), but even when conducting more focused studies 

that are not “brain wide.” However, the observations of Marek et al. do not necessarily 

generalize to all individual-differences research in neuroimaging. 

Expected effect sizes cannot be generalized from one set of methods to all others. Marek 

et al. (2022) drew conclusions based on analyses using some of the most common methods in the 

field, but these nonetheless represent only a small subset of available methods and some of them 

are suboptimal. Here we discuss alternative methods, focusing on four categories of 

methodological improvement designed to increase expected effect sizes and, therefore, to 

increase power independently of sample size: (1) theoretical matching between tasks and trait 

constructs, (2) improving measurement reliability; (3) individualization of measurement for each 

participant, and (4) pivoting from univariate to multivariate analytic approaches. Our aim is not 

merely to discuss arguments made by Marek et al. (2022), though we do address some of them 

directly. Rather, our aim is to consider the broader issue of improving neuroimaging methods for 

individual differences research. 
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2. Trait-Relevance: Matching fMRI Tasks to Trait Constructs  

The first strategy we recommend to increase effect sizes concerns the modality of 

neuroimaging assessments. Many neuroimaging studies of individual differences have relied on 

structural MRI or resting-state fMRI data, but effect sizes may be larger in studies using 

appropriate fMRI tasks (Finn, 2021). Structural and resting-state data have been widely used in 

individual-differences research for multiple reasons. For one, it is assumed that any trait could 

potentially be related to parameters derived from these imaging modalities because they do not 

target any specific psychological content or processes. This makes it possible to study many 

psychological traits in relation to the same structural and resting-state data, whereas data from 

any particular task seem likely to be relevant to a more limited set of traits. Additionally, brain 

structure and resting-state functional connectivity are sometimes assumed to be more trait-like 

than task-evoked activity because they are independent of the situational demands of any specific 

task (Hilger & Markett, 2021) and have been found to demonstrate adequate retest reliability 

(Zuo & Xing, 2014), whereas task-induced neural activity often has poor retest reliability (Elliott 

et al., 2020). However, the meta-analysis of Elliott et al. (2020) shows that neural activity during 

some specific tasks does have adequate retest reliability. 

The possibility of reliable signals from task fMRI is consistent with the excellent 

reliability of various performance-based cognitive tests (e.g., IQ tests) and with the common 

conceptualization of traits as tendencies to respond in consistent ways to specific classes of 

stimuli (DeYoung et al., 2022). Choosing the right task can provide the kind of stimuli that are 

particularly relevant to the processes underlying the trait in question, leading to differential 

associations between activation in different fMRI tasks and personality traits (Hardikar et al., 

2024). 
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The potential relevance of structural and resting-state measures to any trait is both a 

strength and a weakness. Neither modality directly assesses an aspect of brain function that is 

transparently relevant to most psychological traits. (Also, brain structure is ultimately relevant to 

psychological traits only to the degree that it influences function, so that the increment in trait 

prediction provided by structural variables over functional ones may not be very large; Ooi et al., 

2022.) 

In contrast, task-based fMRI may induce brain states directly relevant to the trait of 

interest whenever that trait is theorized to reflect variation in psychological processes like those 

involved in the task. Identifying appropriate tasks requires at least some minimal amount of 

theory regarding the processes underlying the trait in question, and we encourage researchers to 

consider the theoretical background of any trait they are studying (DeYoung et al., 2022). 

Theoretically-informed research can potentially increase effect sizes by identifying likely 

associations among traits, underlying psychological processes, and the brain systems that support 

them. 

That task-based fMRI may lead to meaningful between-person effects has been shown in 

studies considering task-induced neural activation (e.g., Tetereva et al., 2022) as well as in 

studies focused on functional connectivity during tasks (e.g., Greene et al., 2018). In fact, task-

based brain–behavior associations are consistently stronger than resting-state based associations 

in cross-validation studies of very large samples (Chen et al., 2022; Feilong et al., 2021; Greene 

et al., 2018; Ooi et al., 2022; Sripada et al., 2020). For example, working memory is well-

established as a cognitive function involved in general cognitive ability, and several of the 

studies cited in the previous sentence show that associations of intelligence with neural 

functioning during working-memory tasks are stronger than associations with resting-state or 

structural data. 
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Marek et al. acknowledged that fMRI task data may yield larger effect sizes than resting-

state or structural data. Notably, in their Extended Data Figure 3, they reported that the 

correlation between cognitive ability and activation of the dorsal attention network during a 

working-memory task was .34. They dismissed this finding by characterizing working-memory 

performance as a “confound” that needs to be controlled for in analysis (yielding a much smaller 

correlation of .14), but the plausible causal arrangement of the three variables—activation of the 

dorsal attention network, working-memory performance, and general cognitive ability—is not 

one of confounding. Working-memory performance is a relatively stable trait strongly correlated 

with general cognitive ability and thought to be a crucial process facilitating that ability (Kovacs 

& Conway, 2016). Therefore, it should act as a mediator between neural activity and general 

cognitive ability, rather than as a confound. A correlation of .34 can readily be detected in 

samples considerably smaller than a thousand. We would not recommend assuming that task-

based effects in general will be this large for the purposes of power calculations, but any effect 

larger than .16 is larger than all of the replicable univariate structural and resting-state effects 

reported by Marek et al. (2022) and can be detected in hundreds of participants if the multiple 

testing burden is not too high. We suspect that such effects may be relatively common, given the 

right pairings of traits with fMRI tasks. 

Despite our enthusiasm for task-based fMRI, we want to be clear that we are not 

suggesting individual-difference researchers should abandon structural and resting-state 

neuroimaging studies. The remaining three categories of strategies we endorse are applicable to 

all neuroimaging modalities. 

3. Improving Measurement Reliability 

After deciding what question to address, an important strategy for increasing effect sizes 

is to improve the reliability of both trait and neural measures, because the joint reliability of two 
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measures sets an upper bound on the possible strength of association between them (Nikolaidis 

et al., 2022). Many recent articles have discussed reliability in the context of human 

neuroscience (e.g., Haines et al., 2023; Nebe et al., 2023; Nikolaidis et al., 2022), so our 

discussion here is not intended to be exhaustive. However, we will highlight some opportunities 

for improving reliability for three different types of assessment: neural measures, behavioral 

tasks, and questionnaires. (Additionally, our suggested methods in the next section also tend to 

increase reliabilities of neural measures.) 

The reliability of neural parameters can be improved by a variety of means, both in fMRI 

data acquisition and in subsequent data processing and analysis. For acquisition, we recommend 

the use of multi-echo sequences. Multi-echo fMRI significantly improves whole-brain temporal 

signal-to-noise ratio and reduces signal drop-out in typically problematic regions along the 

ventral-anterior surface of the brain (Kundu et al., 2017; Lynch et al., 2020). Further, it enables a 

biophysically-based removal of noise from fMRI datasets during preprocessing because of the 

known echo-time dependence of the blood-oxygen level dependent signal. This has been shown 

to improve reliability substantially (Kundu et al., 2017; Lynch et al., 2020). More costly but also 

effective is simply increasing the amount of fMRI data for each task (or resting-state scan) that is 

collected for each participant (Cho et al., 2021; Noble et al., 2017). In data processing, reliability 

can be improved by modeling the hierarchical structure of neural parameters, using machine 

learning methods, or generating aggregates from multiple measures (Blair et al, 2022; Schubert 

et al., 2022).  

In task-based fMRI, one pitfall to avoid is exclusively selecting regions of interest (ROI) 

for individual-differences research by using group-level fMRI contrasts to identify regions where 

a task significantly activates the brain relative to a control condition (DeYoung et al., 2022). The 

problem with this approach is that group-level contrasts ensure identification of ROI where a 
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sufficient number of individuals show activation for the group average to be significantly 

different from the control condition. This approach risks identifying ROIs with less individual 

variation in brain activity relative to other brain regions. The most important regions for a given 

trait may be ones that are not significant at the group level, precisely because different brains 

respond differently to the task in those regions. Because the reliability of measures of individual 

differences depends on variability, focusing on robust within-persons effects works against 

reliability at the between-person level, a phenomenon described as the “reliability paradox” 

(Hedge et al., 2017). Beyond using group-level contrasts to select ROIs, researchers can select 

ROIs from functional networks or anatomical regions indicated as relevant for the trait of interest 

by theory or prior empirical evidence, or they can use other relevant individual-difference 

variables that are not involved in the focal hypothesis to identify regions where those predict 

neural variables (for example, using performance during a scanned working memory task to 

identify regions where performance predicts activation, then using activation levels in those 

regions to predict other behavioral traits, such as intelligence; DeYoung et al., 2009).  

The reliability paradox applies not only to neural variables, but also to behavioral 

variables extracted from tasks. Some tasks, such as those that make up standard intelligence 

tests, have been designed specifically to optimize the assessment of individual differences, but 

many experimental tasks used in neuroimaging have not. Instead, those tasks have usually been 

designed to minimize between-person variability to aid in studying typical function as the group 

average in within-person designs. Researchers should investigate the degree to which tasks used 

in neuroimaging are reliable as measures of individual differences and take steps to improve 

them (Blair et al., 2022). Sometimes better options are already available; for example, new 

versions of the Stroop and Flanker tasks have recently been designed to improve measurement of 
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individual differences, and they show excellent internal consistency and retest reliability 

(Burgoyne et al., 2024). 

For questionnaires, reliability is most often measured as internal consistency (that is, the 

degree to which individual items correlate with each other), but, for constructs that are conceived 

as relatively stable features of individuals, retest reliability (i.e., the degree to which a sample’s 

rank order is consistent over time) is an even more relevant metric (Nikolaidis et al., 2022). 

Another important consideration is that measures may differ in their reliability across the range 

of the variables they are assessing, which requires more sophisticated methods to detect. 

Although Marek et al. reported adequate reliability for their measure of psychopathology, 

analysis of the same data using item response theory showed that it was inadequate for assessing 

individual differences in the lower range of the scales, where most healthy individuals score 

(Tiego et al., 2023). Measures should be investigated to make sure they are appropriate for the 

population being studied.  

Additionally, although it may be tempting to use short forms of questionnaires, longer 

measures generally have better validity and reliability (Credé et al., 2012). Using multiple 

informants is also valuable, as they provide incremental validity and reduce the biases introduced 

by individual raters. This principle can also be extended to the use of multiple measurement 

modalities for the same trait (e.g., questionnaire and behavioral task), though identifying 

adequately parallel measurements across modalities can be challenging (Joyner & Perkins, 

2023). Whenever multiple measures of the same variable are collected, measurement can often 

be improved by modeling constructs as latent variables representing the shared variance of 

multiple indicators. 
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4. Individualization of Measures 

The third strategy we recommend to increase effect sizes is to improve measurement 

through a family of procedures known as individualization. A serious measurement challenge 

arises from the uniqueness of every human brain. Standard procedures to align individual brains 

to a common anatomical template cannot handle variations in which an anatomical feature is 

present or absent. For example, in anterior cingulate cortex (ACC), people vary in whether they 

have only one sulcus or two, and the second sulcus (known as the paracingulate sulcus; PCS), if 

present, can be very short, or it can extend the entire length of the ACC. Warping a brain with a 

PCS to a template without one (or vice versa) causes inaccuracy in subsequent comparisons 

across individuals because presence or absence of PCS has important consequences for the 

brain’s functional and structural organization (Amiez et al., 2018; Fornito et al., 2008). Such 

structural idiosyncrasies can be taken into account to improve measurement (Miller et al., 2021; 

Voorhies et al., 2021). 

Not only do different brains differ in structure, but also the localization of functions 

relative to the brain's anatomical landmarks differs from person to person. This means that, even 

if structural alignment were perfect, comparing brains based merely on location would remain 

suboptimal. Neuroimaging studies often use canonical brain atlases or parcellations to identify 

ROI and define brain networks (Moghimi et al., 2022), and these schemes often rely in part or 

entirely on functional information to parcellate the cortex (which is appropriate given the 

primacy of function for psychology). However, using the same standard parcellation for all 

participants means that the parcel boundaries will not precisely reflect the relevant functional 

boundaries for any participant (Mueller et al., 2013; Chong et al., 2017).  

To overcome this problem, we recommend methods that individualize standard 

parcellations by optimizing the boundaries of each parcel for each participant. These include 
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group prior individualized parcellation (GPIP; Chong et al., 2017) and multi-session hierarchical 

Bayesian modelling (MS-HBM; Kong et al., 2019). Both of these methods have been found to 

increase effect sizes in individual-differences research, as compared to using the same atlas or 

parcellation scheme without individualization (Kong et al., 2021; Sassenberg et al., 2023). 

Notably, individualized parcellation is preferable to using dual regression following independent 

components analysis (an earlier strategy to deal with the same problem) because, unlike dual 

regression, individualized parcellation retains the benefit of canonical atlases in allowing 

comparison of the same parcels across individuals and samples (DeYoung et al., 2022). 

Individualization can be taken even a step further than shifting boundaries of parcels, to 

identifying different collections of voxels that encode the same information in different brains. 

Even within a given brain region that is well aligned through GPIP or MS-HBM, information 

may be encoded differently in different people. A technique known as hyperalignment identifies 

different sets of voxels with similar patterns of neural activity for each participant and treats 

them as the relevant neural unit of analysis. Hyperalignment increases effect sizes relative to 

other methods (Feilong et al., 2021; Haxby et al., 2020), considerably more than the increase 

generated by individualized parcellation, though both methods can be used together. 

An older method of individualization is the use of functional localizers, which are fMRI 

tasks that reliably activate a particular brain system and thus can be used to identify a specific 

region or regions activated by that task in each participant before correlating parameters derived 

from those regions with measures of psychological traits. This is a powerful method for theory-

driven research and may be especially valuable for focal hypothesis testing that maximizes 

power by minimizing the multiple-testing burden. However, it is also limited in that it can only 

identify regions that are relevant to the particular task used, rather than being able to 

individualize the whole brain. Individualized parcellation using the methods described above can 
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match the functional localization of neural activity by tasks, even when the individualized 

parcellation is derived from resting-state data (Chong et al., 2017; Kong et al., 2021; Uddin et 

al., 2023). 

Finally, people vary not only in the spatial layout of brain function but also in the timing 

of brain function as measured by fMRI. An early fMRI study revealed marked variability in the 

hemodynamic response function (HRF) across individuals and brain regions (Aguirre et al., 

1998). Although fMRI research typically assumes a canonical HRF, methods are available for 

estimating the idiosyncratic shape of the HRF for each participant separately (Singh et al., 2020; 

2022). Variability in the HRF is related to variation in vasculature more generally, and methods 

to estimate and control for such differences have been shown to improve fMRI signals 

dramatically (Kazan et al., 2016).   

Up to this point, we have focused on individualizing neural data, but it is worth noting 

that individualization of psychological measurements is also sometimes possible, for example 

using computerized adaptive testing (Wainer et al., 2000) or fitting computational models to each 

participant’s trial-by-trial task data. The latter is useful in part because different individuals can 

employ different strategies when performing the same task. For example, studies using learning 

tasks can estimate the degree to which participants engage in model-free versus model-based 

learning (e.g., Kool et al., 2017). 

5. Moving from Univariate to Multivariate Approaches 

Our fourth suggestion is to increase effect sizes by transitioning from univariate to 

multivariate analytic approaches. Multivariate analyses involve using multiple variables to 

predict the criterion variable, and follow naturally from the premise that psychological traits are 

determined by many neural parameters. These variables could all be of the same type (e.g., 

activation values of individual voxels, as in multi-voxel pattern analysis, or parameters derived 
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from resting-state EEG; Thiele et al., 2023), or they could involve parameters from multiple 

measurement modalities, such as structural and functional MRI, from which parameters can be 

combined in the statistical model (Jiang et al., 2020; Rasero et al., 2021). 

It is unsurprising that multivariate models using many predictors can yield better overall 

predictions than univariate models using a single predictor. In a commentary on the work of 

Marek et al. (2022), Spisak et al. (2023) showed that multivariate BWAS effects are larger than 

univariate effects and can be replicable even when identified in smaller samples. Although they 

suggest these samples can be as small as 75, we would not recommend samples that small, given 

the resulting lack of precision of parameter estimates. Indeed, Spisak et al.’s analyses show that 

multivariate effects in such small samples may be replicable in the sense of producing a 

significant effect in the same direction, but the size of that effect is often substantially different. 

Nonetheless, they showed that samples of 300-500 generally yield multivariate effects 

reasonably replicable in magnitude as well as significance, when they are cross-validated to 

prevent overfitting. 

Tervo-Clemmens et al. (2023) rejected Spisak et al.’s (2023) conclusion, but their 

exchange makes it clear that the argument between the two research teams is based largely on a 

terminological disagreement about the proper way to use the phrase “out of sample.” Before 

considering their different uses, it is important to understand the difference between more 

traditional statistical approaches that optimize the fit of the statistical model in all of the data at 

once to best explain variance within one sample, and predictive approaches, such as those in 

machine learning, in which the model is fit in one sample (or subset of one sample), and then the 

parameters from that model are applied in another sample (or subset of the same sample). In the 

predictive approaches, the data are divided into a training set, in which the model parameters are 

identified, and a test set, in which the model parameters identified in the training data are used to 
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predict the criterion variable in the test data, to determine the generalizability of the model. The 

effect size reported is from the test data (often computed as the correlation between the predicted 

values of the criterion and the observed values) because it is less biased by overfitting than the 

effect size from the training data. The predictive approach can be implemented in three ways 

(Thiele et al., in press; Yarkoni & Westfall, 2016): (1) A sample can be split into training and 

test sets in an iterative manner, repeatedly fitting a model in one part of the sample and then 

testing it in the rest of the sample (as in k-fold cross-validation), with the reported effect size 

being the average result from the test sets across iterations. (2) A sample can be split just once 

into test and training sets, without iteration, such that the test set is never used as part of the 

training set (lock-box validation). (3) For the most stringent test of model generalizability, the 

model parameters identified in the complete original sample can be used in an entirely new 

sample, differing in various characteristics (external cross-validation). In the predictive 

approach, finding a significant effect in the test data is not considered replication because 

replication requires an entirely new independent sample beyond both the training and the test 

data. 

Marek et al. (2022) and Tervo-Clemmens et al. (2023) use the phrase “out of sample,” to 

refer to any test of a model in data not used to train the model (including the use of a different 

subset of the same sample as the test set), whereas Spisak et al. use “out of sample” to refer to 

testing the model in an entirely new sample, excluding cases where the test set is a subset of the 

same sample. These different uses of “out of sample” diverge in k-fold cross-validation (which 

was used by Spisak et al., 2023) because the training and test data are both subsets of the same 

sample. This effect size is “out of sample” in Marek et al.’s sense, but “in sample” in Spisak et 

al.’s. From our perspective, Spisak’s perspective more directly addresses the question of how 

many participants are needed in total to identify effects with sufficient precision that they will be 
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replicable in subsequent studies in other samples. In other words, how large must a single sample 

be to yield accurate results after cross-validation in that sample? The exchange between Spisak 

et al. and Tervo-Clemmens et al. makes clear that replicable results considerably larger than |r| = 

.16 can be achieved using multivariate prediction in samples in the hundreds rather than the 

thousands, as long as effect sizes are estimated using appropriate cross-validation procedures, 

rather than in data for which the model was optimized. 

This conclusion is supported by the existing literature, especially in relation to cognitive 

ability. One study of the same sample used by Spisak et al. found that neural activation during 

various tasks predicted general cognitive ability in multivariate models with r ≈ .30 (Sripada et 

al., 2020). Similarly high multivariate correlations between task connectivity and cognitive 

ability were found in another large sample (Chen et al., 2022). Multivariate effects can be even 

larger when combined with individualization approaches. In the same sample analyzed by Spisak 

et al. (2023), Feilong et al. (2021) were able to predict cognitive ability using estimates of 

functional connectivity based on hyperalignment, with average multivariate effect sizes of r = 

.53 for task data and r = .44 for resting-state data. 

 When transitioning to multivariate analysis, it is important to keep in mind that not all 

multivariate methods provide equally good prediction or equally generalizable results. Some 

yield larger effects than others (Spisak et al., 2023). Even with cross-validation, effects are likely 

to be larger if multiple modalities of imaging data are employed (Schulz et al., 2024). 

Multivariate approaches are often understood as wholly exploratory rather than hypothesis-

driven, and this impression is reinforced by their association with brain-wide analyses. However, 

multivariate methods need not be applied brain-wide and can easily be used in theoretically-

driven research, in which multiple parameters are derived, for example, from particular brain 

regions or systems of interest. When multivariate approaches are designed to facilitate 
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interpretable insights rather than only maximizing prediction, they can also be used to test 

hypotheses and provide evidence for or against specific psychological models (Thiele et al., in 

press). For example, a study of 257 participants used many of the strategies we recommend and 

identified significant multivariate correlations (ranging from .18 to .47) of a trait measure of 

autobiographical memory with functional connectivity between two theoretically identified brain 

regions (hippocampus and temporal pole) and the default network (Setton et al., 2022). 

6. Conclusion 

Our proposed strategies for increasing effect size are summarized in Table 1, organized 

according to the typical sequence of neuroimaging research. Our list is not exhaustive; anything 

that improves the reliability and validity of measurement should increase expected effect sizes in 

research linking neural variables to individual differences in psychological traits. Careful 

application of these methods may provide a path to identifying more robust, generalizable, and 

scientifically or clinically useful brain–behavior relationships in samples with hundreds of 

participants. The debate about how large samples sizes should be is currently prominent in the 

field, but focusing exclusively on increasing sample sizes ignores other ways to achieve higher 

statistical power. Increasing effect size contributes independently to power and is often easier 

and cheaper than increasing sample size. 

Evident in the research we reviewed above is that multivariate effect sizes are generally 

larger than univariate effect sizes, and shifting to multivariate methods with cross-validation and 

samples in the hundreds seems likely to be very effective for increasing effect sizes, statistical 

power, and replicability. However, smaller replicable effects can also yield important conceptual 

insights, and univariate research will continue to be valuable, especially for theory-driven 

hypothesis testing. For univariate research where the focal analysis involves only a single 

statistical test, we suggest using a sample size of at least 200, provided there is reason to expect 
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an effect size of at least r = .20 (and such expectations should never be based on a single study). 

Note, however, first that this is just a loose heuristic that does not consider the exact statistical 

model (such as the inclusion of standard covariates like sex and head motion), and second that 

only a small fraction of published neuroimaging research on individual differences includes only 

a single focal test. If univariate research involves conducting multiple tests, then the sample size 

needs to be adjusted upward accordingly (or researchers must be confident that their expected 

effect sizes are even larger, which will probably be rare). We have mainly contrasted increases in 

sample size with increases in effect size as two ways to improve statistical power, but it is 

important to keep in mind a third way: reducing the multiple-testing burden by using theory to 

devise more focused hypotheses. 

In conclusion, our suggestions for increasing effect size can help neuroimaging 

researchers to conduct robust research on psychological individual differences in situations 

where it is difficult to amass thousands of participants for a single study. Marek et al.’s (2022) 

impressive work showed that common approaches to investigating univariate associations of 

traits with resting-state or structural MRI data are likely to require thousands of participants. If 

this were true for all approaches to neuroimaging research on psychological traits, it would be 

truly daunting, especially given the cost of neuroimaging. This issue is especially critical for 

those with less access to resources, such as early-career researchers or researchers in developing 

countries. (Such researchers can certainly benefit from the increasing availability of open data, 

but many research questions require new data acquired with specific acquisition parameters, 

during appropriate tasks, or within particular samples.) Fortunately, the situation we face as a 

field is not quite so dire. There are many available ways to improve our methods and increase 

effect sizes, leading to sample requirements that are larger than traditional norms in 

neuroimaging research but still less than a thousand.  
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Table 1. Recommendations to increase effect sizes in neuroimaging research on individual differences, organized by stages of research.  

 Strategy Examples 
Relevant 

References 

Article 

Section 

 

(1) Study Design 

 

Selecting tasks for fMRI acquisition that induce/require 

behavior that is relevant for the behavioral constructs 

of interest 

 

 

Using a working-memory task during fMRI 

acquisition to study neural correlates of intelligence 

 

Greene et al. (2018) 

 

2 

Using tasks during fMRI assessment that were 

developed to measure individual differences instead of 

tasks optimized for research on within-person effects  

 

Stoop and Flanker tasks that were specifically 

developed to detect individual differences 

 

Burgoyne et al. 

(2024) 

3 

Using longer questionnaires instead of abbreviated 

forms 

 

A measure of personality traits that includes 10 items 

for each construct rather than two 

Credé et al. (2012) 3 

Using multiple informants and multiple measurement 

modalities  

 

Using self-, parent, and teacher ratings of children’s 

behavioral problems; measuring impulsivity using 

tasks as well as questionnaires 

Joyner & Perkins 

(2023) 

3 

Choosing behavioral measures appropriate for the 

population being studied  

 

Avoiding instruments optimized only for making 

clinical distinctions when assessing the general 

population 

Tiego et al. (2023) 3 

Using computerized adaptive testing (CAT) to improve 

questionnaire or cognitive test assessment 

Using CAT to reduce the number of items needed for 

high quality assessments of intelligence or symptoms 

of psychopathology  

Wainer et al. (2000) 4 

(2) Data Acquisition Using multi-echo fMRI to improve signal-to-noise 

ratio and reduce signal drop-out  

 

 Kundu et al. (2017); 

Lynch et al. (2020) 

3 

Increasing the amount of fMRI data per participant  Lengthening scan time or conducting multiple scan 

sessions longitudinally 

Cho et al., (2021); 

Noble et al. (2017) 

 

3 

(3) Data Processing Modelling the hierarchical structure of neural 

parameters  

 

 Schubert et al. (2022) 3 

Using machine-learning methods to increase the 

reliability of neural parameters 

 

 

 Blair et al. (2022) 3 
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Note: fMRI = functional magnetic resonance imaging 

Taking into account categorical differences in brain 

morphology 

Considering whether each participant has one or two 

sulci in the anterior cingulate cortex 

Miller et al. (2021); 

Voorhies et al. 

(2021); Amirez et al. 

(2018); Fornito et al. 

(2008) 

 

4 

Using individualized parcellation of the brain 

 

Applying group prior individualized parcellation 

(GPIP) or multi-session hierarchical Bayesian 

modelling (MS-HBM) 

Mueller et al. (2013); 

Chong et al. (2017); 

Chong et al. (2017); 

Kong et al. (2019) 

 

4 

Using hyperalignment  

 

Intelligence can be predicted more accurately using 

hyperalignment than with non-individualized 

methods 

Feilong et al. (2021); 

Haxby et al. (2020) 

4 

Modelling the idiosyncratic shape of the hemodynamic 

response function for each participant 

 Sigh et al. (2020, 

2022) 

4 

 Individualization of psychological measures  

 

Identifying the extent to which participants use 

different strategies in the same tasks (e.g., model-

based vs. model-free strategies in learning tasks) 

Kool et al. (2017) 4 

(4) Formal Analysis Using latent variable models for neural or behavioral 

variables 

 Joyner & Perkins, 

(2023); Schubert et 

al. (2020); Tiego et 

al. (2023) 

3 

Using multivariate approaches with cross-validation to 

predict criterion variables 

Using multiple variables of the same type or 

combining variables from different modalities in a 

prediction model 

 

Thiele et al. (2023, 

2024); Jiang et al. 

(2020); Rasero et al. 

(2021) 

5 


