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Abstract—The replicability crisis is a major issue across nearly
all areas of empirical science, calling for the formal study of
replicability in statistics. Motivated in this context, [Impagliazzo,
Lei, Pitassi, and Sorrell STOC 2022] introduced the notion of
replicable learning algorithms, and gave basic procedures for 1-
dimensional tasks including statistical queries. In this work, we
study the computational and statistical cost of replicability for
several fundamental high dimensional statistical tasks, including
multi-hypothesis testing and mean estimation.

Our main contribution establishes a computational and sta-
tistical equivalence between optimal replicable algorithms and
high dimensional isoperimetric tilings. As a consequence, we
obtain matching sample complexity upper and lower bounds for
replicable mean estimation of distributions with bounded covari-
ance, resolving an open problem of [Bun, Gaboardi, Hopkins,
Impagliazzo, Lei, Pitassi, Sivakumar, and Sorrell, STOC 2023]
and for the N-Coin Problem, resolving a problem of [Karbasi,
Velegkas, Yang, and Zhou, NeurIPS 2023] up to log factors.

While our equivalence is computational, allowing us to shave
log factors in sample complexity from the best known efficient
algorithms, efficient isoperimetric tilings are not known. To
circumvent this, we introduce several relaxed paradigms that
do allow for sample and computationally efficient algorithms,
including allowing pre-processing, adaptivity, and approximate
replicability. In these cases we give efficient algorithms matching
or beating the best known sample complexity for mean estimation
and the coin problem, including a generic procedure that reduces
the standard quadratic overhead of replicability to linear in
expectation.

Index Terms—replicability, high dimensional statistics, foams,
isoperimetry, learning theory

I. INTRODUCTION

The replicability crisis permeates almost all areas of sci-
ence. Recent years have seen the repeated failure of influential
work in oncology [ 1], clinical research [2], and other high im-
pact areas to replicate under scrutiny. Indeed the problem is so
pervasive that in a survey of 1500 scientists, 70% reported they
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had tried and failed to replicate another researcher’s findings
[3]. While many factors underlie the failure of replicability
in science, a key component is the instability of underlying
statistical methods. Even techniques as basic as hypothesis
testing suffer from these issues [4], and combined with the
explosion in number of performed tests each year, it seems
inevitable published false positives will skyrocket unless new
methods are developed.

Motivated in this context, we study the cost of replica-
bility in statistics in the recent algorithmic framework of
Impagliazzo, Lei, Pitassi, and Sorrell [5]. An algorithm A
drawing samples from an (unknown) population D is called p-
replicable if, run twice on independent samples and the same
randomness, A produces exactly the same answer with proba-
bility 1 — p. We focus on characterizing the computational and
statistical complexity of replicability for two core interrelated
problems: multi-hypothesis testing and high dimensional mean
estimation.

As a warm-up, consider the setting of a single hypothesis
test. A typical procedure sets up a test statistic Z to distinguish
between a null hy and alternative hypothesis h; such that
under hg, Z is uniform on [0, 1], while under %, there exists
go > po such that Pr[Z < pg] > ¢o. Formalized in this
way, hypothesis testing is equivalent to one of the earliest
problems in replicability and distribution testing, the coin
problem (testing the bias of a weighted coin). Despite its
central position, the complexity of the replicable coin problem
is not fully understood. Worse, current methods have quadratic
overhead in p which may be infeasible in practice. Our first
contribution is a tight characterization of the coin problem,
reducing this cost to just linear in expectation.

The coin problem is a fundamental example of I-
dimensional problem in statistics but, in practice, most prob-
lems are really high dimensional. An epidemiologist, may, for
instance, want to test the prevalence of a suite of N diseases
in some population. Or, even in a single hypothesis test, the
test statistic itself may involve computing the mean of some
N-dimensional data; if such pre-processing steps are non-
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replicable, the final test may be as well. This brings us to
the main question addressed in this paper: how does the cost
of replicability scale with dimension N ?

High dimensional replicability in this sense was first con-
sidered in [6] and [7]. In [7], the authors study the N-Coin
Problem, akin to the ‘multi-hypothesis’ setup above. They
argue that while independently estimating each coin replicably
takes N3 flips, by correlating choices one can improve this
cost to N2, albeit in exponential time. Likewise, [6] show a
correlated strategy for replicably estimating an N-dimensional
Gaussian in N2 samples. At outset, it was unclear whether the
proposed strategies were optimal: while [7] conjectured no
better algorithm could exist, [6] asked if the problem could
be solved in N samples. Is there a principled approach to
understanding the cost of such problems?

We resolve this question by proving a tight connection
between high dimensional replicability and a well-studied
problem in high dimensional geometry: low surface area
tilings of RN. Low surface area tilings, closely related to
optimal packings, are a classical problem dating back to
Pappus of Alexandria in the 4th century,! with asymptotically
optimal constructions known since the 1950s [9], [10]. In
computer science, such tilings have seen more recent study
due to their close connections with lattice cryptography (see
e.g. [11], [12]) and hardness of approximation [13], [14].

We prove a computational and statistical equivalence be-
tween (efficient) replicable algorithms and (efficient) tilings.
Given a replicable algorithm with low sample complexity,
we give an oracle-efficient construction of an (approximate)
tiling with low surface area. Conversely given an (approxi-
mate) tiling with low surface area, we give an oracle-efficient
replicable algorithm with low sample complexity. Applying the
classical isoperimetric theorem, we immediately get near-tight
lower bounds for Gaussian mean estimation and the /N-Coin
Problem matching the algorithms of [6], [7] up to log factors,
resolving their corresponding open questions.”

On the algorithmic side, while isoperimetric tilings exist,
all known constructions take exponential time. Thus achieving
true sample optimality via this approach, similar to [6], [7],
currently requires exponential time. On the other hand, there
are efficient tilings that (slightly) beat naive ‘independent
estimation’ [11]. Combined with our equivalence theorem,
this gives the best known polynomial time algorithms for N-
dimensional mean estimation and the coin problem. Further,
even if no efficient isoperimetric tilings exist, we argue it is
nevertheless possible to pre-process an inefficient tiling in such
a way that sample-optimal replicability can be achieved in
polynomial time with query access to the pre-processing out-
put. We leave the construction (or hardness of) truly efficient
isoperimetric tilings as the main question (re)raised by this
work.

'Pappus claimed a solution for the 2-dimensional case, later proved by
Hales [8].

ZFormally, we resolve the sample complexity of the non-adaptive N-Coin
problem up to log factors. The authors of [7] do not consider the adaptive
sample model. We discuss this subtlety later on.
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Finally, in light of the lack of efficient isoperimetric tilings,
we introduce two relaxed paradigms for replicability and
multi-hypothesis testing that do allow for sample and com-
putationally efficient algorithms. First, we consider adaptive
algorithms which may choose which of N coins they flip
during execution based on prior observations. We exhibit a
polynomial time algorithm in this model matching the best-
known sample complexity of prior (inefficient) non-adaptive
methods. Second, we look at relaxations that only require
approximate replicability. In particular, we show if one only
requires the outputs over two runs to agree on most coins,
it is possible to build efficient algorithms beating the sample
complexity implied by isoperimetric tilings.

A. Our Contributions

Before stating our results, we briefly recall the formal notion
of a replicable algorithm.

Definition 1.1 (Impagliazzo, Lei, Pitassi, and Sorrell [5]):
An algorithm A is p-replicable if for all distributions D and
i.id. samples S, 5" ~ D

Pr (A(S;r) = A(S57)) 2 1= p,

where r denotes the internal randomness of the algorithm A.
Replicable algorithms are inherently randomized, and typically
have a corresponding ‘failure probability’ §. For simplicity, in
this overview we will ignore sample dependence on § which
always scales logarithmically in %. Formally, the below results
can be thought of as in the regime where § = O(p). Formal
dependencies on all parameters are given in the main body.

1) On Replicability in 1-Dimension: While our eventual
goal is to understand the price of replicability in high di-
mensions, it is of course natural to first ask for a tight
understanding in 1-dimension. With this in mind, we first
consider the fundamental problems of single hypothesis testing
and bias estimation.

Suppose we have some hypothesis hg and an experiment
designed to test this hypothesis is repeated m times, thus
creating a sequence of m p-values. If hg is true, then the
p-values should be uniformly distributed. On the other hand,
if ho is false, we should gather small p-values with higher
probability than normal. Quantitatively, there are constants
Po,qo such that p-values smaller than pg are observed with
probability gy > po (in statistics, go is called the power
of the experiment). Given a sequence of p-values, we want
to design an algorithm that replicably determines whether
to reject the null hypothesis hy. We formalize this in the
following definition.

Definition 1.2 (Hypothesis Testing): Let 0 < py < qo < 1,
0 < % A (randomized) algorithm A is a (po, qo)-hypothesis
tester if given sample access S to some unknown D on [0, 1]:

1) Given D = Unif ([0, 1]), then Pr(A(S) = RejeCT) < 6.

2) Given Prp.p(z < po) > qo, then Pr(A(S)

FAILTOREJECT) < 0.

Single hypothesis testing is computationally and statistically

equivalent to a well-studied problem in distribution testing,
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the coin problem [15]. Given a coin with a hidden bias
p, the (po,qo)-coin problem asks the learner to determine
whether the bias p is at most pg, or at least ¢y. The coin
problem was one of the first questions studied in algorithmic
replicability and plays a critical role as a subroutine in later
works. Nevertheless, there is a still gap in the best known
bounds:

Theorem 1.3 (Impagliazzo, Lei, Pitassi, and Sorrell [5],
Karbasi, Velegkas, Yang, and Zhou [7]): Let pg, qo € (0,1/2)
and p € (0,1), there is a computationally efficient p-replicable
algorithm for the (pg, go)-coin problem using

~ 1

© ((qo - p0)2P2>
samples. Conversely, any algorithm for the (pg, go)-coin prob-
lem uses at least

. ((qU —po)ZPQ)
samples in the worst-case.
We tighten Theorem 1.3 in two key aspects. First, we re-
solve the gap in sample dependence on py and ¢o in the
numerator. Second, we address a more subtle issue regarding
Theorem 1.3’s dependence on p. In particular, we argue that
while quadratic dependence on p is indeed necessary in the
worst-case, in expectation the dependence can actually be
reduced to linear.

Theorem 1.4: Let po,q0 € (0,1/2) and p € (0,1). The
p-replicable (pg, go)-coin problem coin problem requires

A do

© <(QO *P0)2f0>
samples in expectation. Moreover, the same bound holds in
the worst-case with quadratic dependence on p and the upper
bound is computationally efficient.
A few remarks are in order. First, we note that the linear
overhead of Theorem 1.4 is not specific to the coin problem.
In fact, we give a generic amplification lemma showing any
replicable procedure can be performed with linear overhead
(in p) in expectation (see Section 6 of full paper for details).
Second, we remark that as an immediate consequence of
Theorem 1.4 we obtain a generic procedure to efficiently
transform any non-replicable distribution testing algorithm into
a replicable one with linear expected overhead. In particular,
let Ho,H; be two families of distributions and suppose
some distribution testing algorithm A4 accepts samples from
distributions D € H, with probability at most % and rejects
samples from distributions D € #; with probability at most %
We may view the output of .4 as a biased coin and apply Theo-
rem 1.4 to replicably determine membership in H or H; with
high probability. This gives replicable algorithms for a wide
range of distribution testing problems including uniformity,
closeness, independence, log-concavity, and monotonicity.

For simplicity of presentation, in the rest of the introduction
we state only worst-case sample complexity with quadratic
dependence on p. Up to polylog factors, all our bounds can

Do
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equivalently be stated in terms of expected complexity with
linear dependence.

2) Replicability and Isoperimetry in High Dimensional
Statistics: In many applications, scientists may wish to per-
form multiple experiments simultaneously; an epidemiologist,
for instance, may want to determine the prevalence of several
diseases or conditions in a population at once. Consider a
setting in which a scientist runs /N simultaneous hypothesis
tests. In the context of replicability, we’d like to ensure that
all N findings are simultaneously replicable—how does the
cost of this guarantee scale with N and p?

Like single hypothesis testing, such a multi-hypothesis test
is equivalent to the problem of testing biases of multiple coins
(typically called the N-Coin Problem). In this section, we
study the more general problem of high dimensional mean
estimation. In particular, given sample access to a distribution
D over RN, how many samples are required to p-replicably
output an estimate [ s.t.

Pr = polly = <) < 67
We say such an algorithm (e, £,)-learns the mean pp and refer
to the problem of giving such an estimator as the (¢, £,)-mean
estimation problem. We will always assume the distribution
D has bounded covariance. Up to log factors, the N-Coin
problem is the special case where D is the product of N
independent Bernoullis and p = oo (see full paper for details).

Our core contribution is that replicable mean estimation
(and therefore multihypothesis testing) is computationally and
statistically equivalent to the construction of (approximate)
low-surface area tilings of space. To state this more formally,
first consider the notion of an approximate tiling:

Definition 1.5 (Isoperimetric Approximate Tilings): A
(7, A)-isoperimetric approximate tiling (IAT) of RY is a
collection of sets P = {P} such that for any cube C C RV

1) (y-Approximate Volume): voly (PNC) > (1—7)voly(C).

2) (A-Approximate Isoperimetry): voly_1 (P N C) <
AVOlN(C).

3) (Bounded Diameter): Each P € P has diameter at most
1.

We call P efficient if there is an efficient membership oracle
O :RY — P such that forany P € P and w € P, O(w) = P
with high probability.
In other words, a good approximate tiling covers ‘most’ of RV
with diameter 1 bubbles with low surface-area to volume ratio.
We prove the sample complexity of replicable mean estimation
tightly corresponds to the surface area of an associated tiling,
and moreover that there are oracle-efficient reductions between
the two. We state the theorem below only for the case of ¢5-
estimation, but will discuss its implications and variants for
any p € [2,00] shortly.

Theorem 1.6 (Replicability <> Isoperimetry):

1) (Replicability — Isoperimetry): Let A be a p-replicable

algorithm on m samples that (&, £5)-learns the mean of N
independent Bernoulli variables. Given oracle access to
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A, there is an efficient algorithm generating an efficient
N-dimensional (p, O(ep/m))-1AT.

2) (Isoperimetry — Replicability): Let P be an N-
dimensional (p, A)-IAT. Given access to P’s member-
ship oracle and sample access to a bounded covariance
ditribution D over RY, there is an efficient p-replicable
algorithm that (e, ¢5)-learns pup in O(%) samples.’

A few remarks are in order. First, notice the surface area and
sample complexity in Theorem 1.6 ‘match’ up to constant
factors. That is starting with an m-sample algorithm we get an
IAT with surface area O(epy/m). Starting with a surface area
O(epy/m)-1AT, we get an algorithm on O(%) =0(m)
samples. Second, we note the forward direction above really
only relies on the family of input distributions satisfying
certain mutual information bounds (see full paper for details),
and therefore also holds e.g. for standard Gaussians.

By the isoperimetric inequality, the best possible sur-
face area for an isoperimetric approximate tiling is A
Q(N), while simply tiling space by cubes achieves A
O(N?3/?).* Moreover, constructions of isoperimetric tilings,
that is (0, O(NN))-1ATs, have existed since the 50’s [9]. Com-
bined with Theorem 1.6, these facts lead to a tight statistical
characterization of replicable mean estimation:

Corollary 1.7 (Replicable {5 Mean Estimation): Let e, p €
(0,1). The p-replicable (e, ¢2)-mean-estimation problem re-

quires
(%)

samples. Moreover, the lower bound holds even under
Bernoulli or Gaussian distributions.

Corollary 1.7 resolves (in the negative) [6, Open Question
4] regarding whether estimation can be performed in O(N)
samples, as well as the ¢y-variant of [7]’s question regarding
the complexity of the /N-Coin Problem.

a) Computational Efficiency: Theorem 1.6 and Corol-
lary 1.7 leave two important questions: what can we say about
computational efficiency, and to what extent does the above
hold for norms beyond ¢2? Toward the former, unfortunately
all known isoperimetric tilings have membership oracles that
run in (at best) exponential time, so the above algorithms are
not efficient. The best known tiling with an efficient member-
ship oracle, a lattice-based construction of Micciancio [11],
only manages to shave a log factor. Nevertheless, this gives
the first efficient algorithm for replicable mean estimation with
(slightly) sub-cubic sample complexity.

Corollary 1.8 (Efficient Mean Estimation in Sub-Cubic
Samples): Let €,p € (0,1). There is an efficient p-replicable
algorithm for (e, £2)-mean-estimation using

o < N3 loglog(N))

log(NV)
3This statement assumes & > 2~V for simplicity. The true bound is

pvQ

€2p2

p2e?

b 2 1
o A2 A% log 3
e2p? Ne2p2 :

4This comes from the diameter restriction. To have diameter 1, the cubes
must be of side-length ﬁ
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samples.

By the reverse direction of our reduction, any algorithm
beating the above must imply improved efficient IATs. In the
lattice setting, this problem has remained open since it was
proposed in Micciancio’s work [11]. We leave the construction
of tilings satisfying our relaxed approximate notion as the main
open question from this work.

b) Replicability Beyond the {3-Norm: Finally, recall in
the context of hypothesis testing we are really interested in
learning biases in /., rather than /5-norm. A version of the
equivalence theorem indeed holds for general £,-norms as a
consequence of the forward direction of the ¢y equivalence
(Theorem 1.6), an £, learner based on IATs (Theorem 1.10),
and Holder’s inequality.

Corollary 1.9 ({,-norm Replicability <= Tilings): Fix

p € [2,00],p € (0,1),e € (0,0.1). Then:

1) (Replicability — Isoperimetry): Let A be a (p/24)-
replicable algorithm on m samples that (—*,¢,)-
learns biases of N Bernoulli variables. leeQn ‘oracle
access to A, there is an efficient algorithm generating
an efficient N-dimensional (p, O (epy/m))-IAT.

2) (Isoperimetry — Replicability): Let P be an N-
dimensional (p, A)-IAT. Given P’s membership oracle
and sample access to a bounded covariance ditribution D
over RV, there is an efficient O(p)-replicable algorithm

that (e, £, )-learns pp in o) samples.

Corollary 1.9 is somewhat weaker than its ¢2-analog in terms
of the applicable range of e. Namely while it is possible

1+2
to derive a lower bound for £,-estimation of Q(%5-) via
Corollary 1.9, the result only holds in the regime where
e < To circumvent this issue we prove a direct

lower l%ima in the special case of the {.,-norm by an extra
‘reflection’ trick in our IAT analysis. This results in a near-
tight characterization of replicable /.-mean estimation:
Theorem 1.10 (Replicable {..-Mean-Estimation): Lete, p €
(0,1). The p-replicable (e, ¢, )-mean-estimation problem re-

quires
()

samples. Moreover, the lower bound holds even under
Bernoulli or Gaussian distributions
Theorem 1.10 essentially resolves the complexity of the N-
Coin Problem up to log factors, settling in the positive [7,
Conjecture D.8]. We remark that an Q(N) lower bound for
N-Coins was also given in [0] under the moniker ‘One-Way-
Marginals’ using fingerprinting. It is not clear, however, how to
get the appropriate dependence on p and € using their method.
3) Efficient Replicability from Relaxed Models: In the pre-
vious section we saw in the standard model, any replicable
algorithm improving over the trivial union bound strategy
(beyond log factors) must make progress on the efficient
construction of low surface area tilings. In this section, we
argue this connection can be circumvented if one is willing

1
T_1-

N

€22
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to relax the model in question. We consider three relaxations
that allow us to obtain efficient algorithms matching (in
some cases even beating) the sample complexity implied by
isoperimetric partitions: pre-processing, coordinate samples,
and approximate replicability.

a) Pre-Processing: While it is true all known construc-
tions of isoperimetric tilings have exponential time member-
ship oracles, instead of paying this cost every time we perform
a replicable procedure, we might instead hope to pay this high
cost just once by constructing a large data structure after which
membership queries can be performed in polynomial time. In
the world of lattices, this problem is actually well-studied; it
is known as the Closest Vector Problem with Pre-processing
(CVPP). Unfortunately, existing algorithms for CVPP still run
in exponential time. We show with sufficient pre-processing, it
is in fact possible to solve CVPP on any lattice in polynomial
time. More formally, we show CVPP is solvable in the decision
tree model:

Theorem 1.11 (CVPP): Let N € N and £ C RY. There is
a depth O(N2%log(N)) decision tree T satisfying

1) Pre-processing: 7 can be constructed in 2P°Y(Y) time
and space.

2) Run-time: Given 7, there is an algorithm solving CVP
for all t € RY in poly(N) time.

Since deterministic isoperimetric lattice tilings exist [11], all
statistical upper bounds in the previous sections relying on
the existence of an isoperimetric partition can in fact be
executed in polynomial time after a single pre-processing
cost of 2P°(V)'We remark that Theorem 1.11 may also be
of independent interest. CVPP is an NP-hard problem, and
prior results typically focus on improving the constants in the
exponent. The decision tree model circumvents the classical
hardness of CVPP by allowing access to an exponential size
data structure, drawing inspiration from similar results for
subset sum and other combinatorial NP hard problems [16].

b) Adaptivity and Coordinate Samples: In Section 1-A2
we assumed our algorithm draws vector samples from an N-
dimensional distribution over R™. In hypothesis testing (or
indeed even mean estimation), sometimes the tester has more
freedom and may instead choose to restrict their test to a
particular subset of coordinates, drawing from the relevant
marginal distribution. Consider, for instance, our prior example
of the epidemiologist testing disease prevalence. In this setting,
each ‘vector sample’ corresponds to a patient, and each
coordinate a particular test or disease. The practitioner need
not run every test on the patient (indeed this may not even be
possible). Moreover, if during the procedure of the experiment
some diseases are exceedingly common or rare, the practioner
may wish to adaptively choose to avoid these tests and focus
only on coordinates on which the result is less certain.

The equivalence of replicable mean estimation and tilings
(and its corresponding lower bounds) actually holds in this
coordinate sampling model as well, but only against non-
adaptive algorithms that must choose ahead of time how many
samples they’ll draw for each coordinate. In the adaptive
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setting, we can actually give an efficient algorithm with coordi-
nate sample complexity roughly O(N 2), matching the number
of coordinate samples implied by the isoperimetric lower
bound for non-adaptive /., learning. Since the coordinate
sampling model is most natural for hypothesis testing and the
coin problem, we state the result in this regime:

Theorem 1.12: Let L > p > & > 0. There is a p-
replicable algorithm solving the N-coin problem using at most

2
40 coordinate samples and runtime.

Nl
(q0—p0)?p?

Our algorithm requires no assumption of independence
between coins. In particular, the estimates are correct and
replicable even if certain diseases might be correlated.

In fact, Theorem 1.12 is really a special case of a gen-
eral adaptive composition theorem (see Section 6 of the
full paper), a computationally efficient procedure that can
solve any collection of N statistical tasks replicably with
(¥

p . . . . .
two steps. First, using adaptive amplification, we can solve
each individual task in only % expected samples. We then
compose NN such instances that are £-replicable into a p-
replicable algorithm for the composed problem. Each of the
N individual procedures costs % samples in expectation, so

) expected samples. The basic procedure proceeds in

linearity of expectation gives O g]\/';) total expected cost.
Note that the use of average-case dependence on p is critical
in this procedure. Composing using worst-case bounds results
in a blow-up of N3, since running each individual procedure
at p/N-replicability costs JZ—; samples.

¢) Relaxing Replicability and the Coin Problem: De-
spite the above improvements, in practice sample complexity
quadratic in dimension may still be prohibitively expensive.
Toward this end, we consider two final relaxations of the
N-coin problem where we obtain efficient algorithms with
subquadratic sample complexity.

First, we consider relaxing replicability itself by allowing
the output sets of the algorithm A between two runs to differ
in at most R elements, rather than to be exactly identical.

Definition 1.13 (Approximate Replicability): Let1 < R <
N. An algorithm A that outputs a set is (p, R)-replicable if
for all input distributions D,

Pr (JASiT)AA(S's )| 2 R) < p.

The output of the N-coin problem can be naturally viewed
as a set (say the set of output large bias coins). We give an
efficient adaptive (p, R)-replicable algorithm for the N-coin
problem.

Theorem 1.14: There exists an efficient, (p, R)-
replicable algorithm solving the N-coin problem using at most
) % coordinate samples.

Second, we study the cost of determining only the max-
imally biased coins. Returning to our epidemiologist, while
we may not have the resources to determine the prevalence
of every disease, it may still be useful to determine say the
10 most prevalent, identifying a subset for which to prioritize
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treatment. We design an algorithm that replicably returns a set
of K coins within ¢ of the maximum bias p,.x.

Theorem 1.15: There is an efficient, p-replicable algorithm
that outputs a set of at least K coins ¢ such that p; > ppax—€
O N4/32/3

using at most e coordinate samples.

B. Technical Overview

We now give a high level overview of our core results
and techniques, focusing on the equivalence theorem and
replicability with linear overhead.

1) Replicable Algorithms and Isoperimetry:

a) Replicable Algorithms to Isoperimetric Tilings: Sup-
pose there is a p-replicable algorithm A on m samples
estimating the mean of N Bernoulli variables up to ¢s-error
¢ with probability at least 1 — §. We show A induces an
approximate partition of the cube C = [1/2 — 5¢,1/2 + 5¢]V
whose sets 1) cover at least 1 — O(p) fraction of points from
C, 2) have covering radius at most O(e), and 3) have surface
area at most O(py/m) (excluding the cube boundary). After
scaling and translation, we obtain an approximate tiling with
constant covering radius and A < O(pe+/m) surface area.

We appeal to a minimax-type argument. Consider an adver-
sary that chooses a random mean vector p € C. Because A
is correct and replicable over all biases, it must be the case
that for many random strings r the deterministic procedure
A(;r) is correct and replicable on most p € C. Fix such an 7.
For each p € C on which A(;r) is replicable, there is some
‘canonical hypothesis’ p such that A(Sy,,r) = p with high
probability when S), is drawn from an N-Bernoulli distribution
with mean p. Moreover, A(;r) should map any close biases
p,p’ € C to the same canonical solution since S, and S,/ will
be statistically indistinguishable, suggesting each p sits in a
small ‘bubble’ of biases mapping to it. This suggests a natural
candidate partitioning of the cube by these bubbles:

We note a similar partitioning strategy is taken in [17] to
lower bound the number of random strings needed by a
replicable algorithm (an orthogonal consideration to our goal
of characterizing sample complexity). We discuss connections

with [17] and other geometric methods in algorithmic stability
in Section I-C.

3
> —

F; = {p € C: Pr[A(;r) = p) 1

Observe that by definition this partition already (nearly)
satisfies Properties (1) and (2). By replicability of A(;r),
all but an O(p) fraction of biases have some canonical p,
promising the {F;} cover a 1 — O(p) fraction of C. On the
other hand, by correctness at most an O(d) fraction of biases p
have a canonical hypothesis p which is e-far, meaning the sets
F; almost have small diameter. To ensure the sets truly have
bounded diameter, we slightly modify each F}; by intersecting
with the e-ball B.(p). This forces each set to have 2e-diameter
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while only removing an O(¢) fraction of points from the
partition.’ Denote the new partition by G == F; N B (p).

Next we turn to surface area. Consider a point p € 9Gj.
By construction, p either lies on 0B, (p) or OF. If p lies in
the former, its associated canonical output p is e-far from p,
so A(;r) typically fails correctness on this bias. On the other
hand, if p lies in the latter, there is no ‘canonical hypothesis’
and A(; r) fails replicability. The key is to observe that this is
true not only of points in G, but for any point sufficiently
nearby. Using tools from information theory, we show that for
any p,q € C satisfying ||p — ¢l|2 < \/%, A(;r) has similar
outputs on samples from p and g. As a result, A(; r) fails either
correctness or replicability on any point in the thickening
0Gp+B - The desired bound now follows from considering
the volume of this set. On the one hand, the volume of this
thickening is roughly ﬁ times the surface area of G;.° On
the other hand, by replicability and correctness of A(;r), the
volume is at most O(p+9) < O(p), giving the desired bound.

Finally, observe that A(; r) itself immediately gives a mem-
bership oracle for this approximate partition. In particular,
given p € G, the oracle simply runs A(S,;) on a simulated
p-biased sample S, several times and outputs the majority.
Since Pr[A(S,;7) = p] > i, the outcome should agree with
p with high probability by Chernoff. All that is left to generate
such a partition is to actually find a good random string 7.
We show most strings are good, and one can be easily found
by drawing a small number and efficiently testing them for
replicability.

b) Isoperimetric Tilings to Replicable Mean Estimation:
Suppose we are given a (p, A)-IAT P and its associated mem-
bership oracle P(-). We outline an oracle-efficient algorithm
for replicable mean estimation for bounded covariance distri-
butions. Our main technical contribution is an oracle efficient
procedure turning any isoperimetric approximate tiling into
a randomized rounding scheme such that 1) the output after
rounding is e-close to the input with high probability, and
2) running the rounding scheme on two inputs within distance
epV/N /A leads to identical outputs with high probability when
the two runs share randomness.

Given such a scheme, observe it suffices to estimate the
mean non-replicably up to accuracy min(e/2,epV/N/A).
Rounding the estimator then ensures the output is replicable
and within ¢ distance of the true mean with high probability
by the triangle inequality. For simplicity, we focus below on
the regime where ¢ is constant; general € error can be achieved
by scaling the tiling by .

Given p € C, the most straightforward approach to rounding
p would simply be to apply the membership oracle P(p). This

SFormally this means we need to assume § < O(p). We remark that this
step is not really necessary, and one can instead define an equivalence with
partitions that have a ‘d-approximate diameter’ of this sort. However, since
6 < p is really the main regime of interest anyway, we choose to make this
simplifying assumption.

5In reality, the volume is the integral over boundaries 8(Gﬁ + By) for
r < —. We argue there exists some r* for which the surface area satisfies
the desired bound, and take the true final partition to be G5 + By, arguing
this does not greatly effect the other desired properties.
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clearly fails Property (2) in the worst case: no matter how close
two inputs p and p’ may be, as long as the segment p — p’
connecting them crosses a boundary of our IAT we will round
to different points. This is a standard issue in replicablility
(even in 1-dimension) [5]; the typical trick is to first apply
a random shift before rounding. In our case, applying a
random shift (and wrapping around C when necessary) ensures
rounding leads to consistent outputs with probability at least
1 — p whenever the two inputs have distance at most p/A.

In high dimensions, however, a simple random shift is
insufficient. Estimating the mean up to p/A accuracy requires
NA2/p? samples, so even using an isoperimetric partition
(A = O(N)) we’d require N3 samples. The issue is we have
not accounted for direction. Consider inputs u(!), u(?) that are
within distance 7 both from each other and the boundary of
the partition. Rounding ©(*) and ©(?) only leads to inconsistent
outputs if u(® — u(M) points in the worst case direction,
namely towards the boundary. We can avoid this by randomly
rotating our input before shifting it. The resulting difference
vector u(® — u() then points in a random direction and a
simple calculation shows the worst-case direction has size
Tlﬁ [[u® — u™M)]||5 in expectation. This saves a /N factor,
meaning our original points only need to be within distance
O(pV/'N/A) as desired.

2) Lower Bounds for the N-Coin Problem: Recall for (-
estimation and the N-Coin Problem, the procedure described
above only gives a tight sample lower bound of Q(Ne=2p~2)
vector samples when ¢ < -L_. We now discuss how to
modify the argument to give a tight bound in all regimes.
For convenience we work directly with the N-Coin Problem,
and assume that the algorithm invokes m flips for each of the
coin (alternatively, the algorithm takes m vector samples).

Similar to the argument in the ¢5-case, we look at the set
of possible canonical outputs 6 € {AccEpt, Regect}?, and the
approximate partition {F;} over C = E, %] N induced by the
algorithm in the same manner. If we could show the surface
area of the boundaries of {F;} (excluding the cell boundary)
is at least Q(v/Ne~'), we would be able to use a similar
argument to the {5 case to show the fraction of non-replicable
points is at least \/N/me™! < O(p), implying the desired
sample complexity lower bound on m.

The main difficulty in the ¢, setting is an issue we brushed
under the rug in the previous section: the cube boundary. In
particular, the naive way of lower bounding the surface area of
{F5} is to apply the isoperimetric inequality to d(UsF; NC),
then subtract out the boundary of the cube. Since we now
measure error in {,,-norm, however, we can only bound the
radius of F; by v/Ne and the above method gives surface area
A>+/Ne~! — O(N), useless when & > #N

To circumvent this, we need to somehow apply the isoperi-
metric inequality to F;\OC directly. To this end, first observe
that, by correctness, F; can only intersect a d-fraction of
faces of C not incident to the corner 0. Moreover, if F; only
intersects such faces, we can create a valid surface by reflecting
F; across the cube boundary. This forces points on the cube
boundary to become interior while otherwise ‘copying’ the
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boundary of Fj itself 2V times. Since reflecting only changes
the {..-radius by a constant factor, we can now apply the
isoperimetric inequality to the reflected set with no asymptotic
loss to get the desired lower bound on 0Fj;.

3) Adaptivity: Prior replicable algorithms in the literature
are non-adaptive: they draw a fixed number of samples ahead
of time, typically incurring a quadratic dependence on p as a
result. We show this strategy is wasteful. By instead allowing
the algorithm to terminate early based on initial observations,
we can reduce this cost to just linear expected overhead.
As discussed in Section [-A3, this also leads to an adaptive
composition theorem with improved overhead.

Here we overview our most basic adaptive algorithm, testing
the bias of a single coin (say between 1/3 and 2/3). Prior
algorithms based on statistical queries compute the empirical
bias of the coin using a fixed number of samples and compare
it with a random threshold, ensuring sufficient samples are
drawn such that even if the threshold is within O(p) of the
bias p, our estimate still lands on the correct side. Our adaptive
algorithm samples a random threshold » and draws samples
adaptively until it determines whether the true bias p lies above
or below the threshold r. The key observation is that when
the true bias p and the random threshold r are far apart, we
only need ﬁ samples to determine with high confidence
whether the true bias is above or below the threshold. Since r
uniformly random, |r — p| is (roughly) uniform over (p,1/3)
and the expected sample complexity is

/1/3 1 1
P

Using similar ideas, we also build an adaptive algorithm for
the heavy hitters problem. This allows us to run an adaptive
variant of replicability amplification (similar to [5], [6]) to
show any replicable algorithm can be run with only linear
expected overhead.

C. Further Related Work

a) Replicability: Algorithmic replicability was indepen-
dently introduced in [5], [18]. Replicable algorithms have since
been developed for PAC Learning [6], [19], reinforcement
learning [7], [20], bandits [21], [22], clustering [23], and large-
margin halfspaces [5], [24]. Several works have shown tight
statistical connections between replicability and other notions
of algorithmic stability [6], [17], [19], [25]-[27]. Most closely
related to our work are the discussed algorithms (and lower
bounds) for /N-Coins and mean estimation problems in [6], [7]
respectively, and the work of [17] studying ‘list” or ‘certificate’
replicability for N-Coins. The latter in particular uses a similar
partitioning strategy to our lower bound, but relies on totally
different properties of the partition.

b) Geometry and Algorithmic Stability: Our work adds
to a growing line of connections between geometry, topology,
and algorithmic stability. Such ideas were first introduced in
the study of pure differential privacy in [28], where packing
lower bounds are now a standard tool [29]-[32]. Impossibility
results for related notions of replicability, specifically list
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replicability, certificate replicability, and global stability have
been obtained via geometric and topological tools [17], [25],
[26], in particular via the Sperner lemma and variants of
Borsuk-Ulam.

c) Tilings and Rounding: The basic connection between
replicability, tilings, and randomized rounding was first ob-
served in [5]. The authors used 1-dimensional randomized
rounding to give the first replicable algorithms for statistical
queries and heavy hitters, and the high dimensional scheme
of [13] to build a replicable PAC-learner for large margin
halfspaces. The authors also analyzed rounding via cubical
tiling, equivalent to independent handling of each coordinate.

There are many known constructions of isoperimetric tilings
[OT-[11], [13], [14]. Our work is mostly closely related to [13],
who also observe their construction induces a ‘noise resistant’
rounding scheme. Both our work and [13] critically rely on
the Buffon needle theorem to analyze surface area and noise
resistence. The main difference is that [13] study a specific
randomized framework that in some sense ‘automatically’
results in rounding, while we show how to take an arbitrary
tiling and transform it into a rounding algorithm.

D. Full Version of This Work

We refer the reader to the full version of this work for more
and rigorous discussions of our results [33].
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