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Abstract Forecasting the arrival time of Earth-directed coronal mass ejections (CMEs) via physics-based
simulations is an essential but challenging task in space weather research due to the complexity of the
underlying physics and limited remote and in situ observations of these events. Data assimilation techniques can
assist in constraining free model parameters and reduce the uncertainty in subsequent model predictions. In this
study, we show that CME simulations conducted with the Space Weather Modeling Framework (SWMF) can be
assimilated with SOHO LASCO white-light (WL) observations and solar wind observations at L1 prior to the
CME eruption to improve the prediction of CME arrival time. The L1 observations are used to constrain the
model of the solar wind background into which the CME is launched. Average speed of CME shock front over
propagation angles are extracted from both synthetic WL images from the Alfvén Wave Solar atmosphere
Model (AWSoM) and the WL observations. We observe a strong rank correlation between the average WL
speed and CME arrival time, with the Spearman's rank correlation coefficients larger than 0.90 for three events
occurring during different phases of the solar cycle. This enables us to develop a Bayesian framework to filter
ensemble simulations using WL observations, which is found to reduce the mean absolute error of CME arrival
time prediction from about 13.4 to 5.1 hr. The results show the potential of assimilating readily available L1 and
WL observations within hours of the CME eruption to construct optimal ensembles of Sun-to-Earth CME
simulations.

Plain Language Summary Accurately predicting the arrival time of coronal mass ejections (CMEs)
continues to be a challenge in space weather forecasting. To enhance the accuracy and reliability of predictions,
data assimilation techniques can be employed. In this study, we investigate assimilating CME simulations with
SOHO LASCO white-light solar corona observations. By establishing a correlation between CME speed
extracted from remote white-light images and CME arrival time at Earth, we are able to perform data
assimilation at an early stage of the CME simulation process. This enables us to effectively constrain the
simulation and improve the overall quality of the prediction.

1. Introduction

Coronal mass ejections (CMESs) are violent solar events where a massive amount of plasma and magnetic fields
are expelled from the solar atmosphere into the interplanetary space. Fast CMEs originating from active regions
are particularly violent affairs, which are strong drivers of space weather. Timely and accurate predictions of
Earth-oriented CME:s are crucial to mitigating the detrimental impacts of CMEs, such as satellite loss and damage
(Baruah et al., 2024), risks in power systems and pipelines (Pirjola et al., 2000), and radiation hazards to aviation
safety (Meier et al., 2020). Accurate CME arrival time prediction is one of several crucial and challenging goals of
space weather forecasting, alongside predicting the temporal variation of plasma velocity, density and the B,
component of the magnetic field impacting Earth or other points of interest.

Many models have been proposed to predict CME arrival times, and they can be roughly categorized as first-
principles (analytical and numerical) and data-driven (empirical or machine learning) models (Manchester
et al., 2017). First-principles models involve solving governing equations derived from known physical princi-
ples. Drag-based model (DBMs) are the simple yet effective analytical models (Cargill et al., 1996; Owens
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et al., 2005; Vr$nak et al., 2004) based on the assumption that the aerodynamic dominates CME velocity after the
eruption phase. One representative of numerical models is the WSA-ENLIL-Cone model (Emmons et al., 2013)
that combines the empirical WSA and Cone models with the first-principles magnetohydrodynamic (MHD)
ENLIL model, and is currently used by the Space Weather Prediction Center of National Oceanic and Atmo-
spheric Administration (SWPC NOAA). This model was tested and compared alongside several other empirical
models, all achieving a mean absolute error (MAE) of around 13 hr on arrival time prediction across 28 CME
events (Gopalswamy et al., 2013; Riley et al., 2018). While solving for a fully detailed physical description
including the solar corona would be highly computationally expensive, these models leverage empirical rules and
simplified physics, making them less expensive but also lower in fidelity.

In contrast, data-driven models forego the governing physics, and instead use available data to learn an empirical
correlation or a machine-learned mapping from near-sun observations to CME Sun-Earth transit times through
statistical and machine learning (ML) algorithms. Such a relationship is presented by Vr$nak and Zic (2007),
which relates CME transit time to CME speed derived from white-light (WL) observations from Large Angle and
Spectrometric Coronagraph (LASCO) instrument on-board SOlar and Heliospheric Observatory (SOHO). As an
example of machine learning, Liu et al. (2018) employed support vector machine (SVM) to predict CME arrival
time where they manually designed CME features such as propagation speed and angular width as model inputs.
Sudar et al. (2016) applied the neural network predict CME transit times using only the coronagraphic CME speed
and source-region location (central meridian distance) to train the model. Wang et al. (2019a, 2019b) proposed to
use a convolutional neural network (CNN) that directly takes in the entire WL image and avoids the need for the
manual design of CME features. Alobaid et al. (2022) further incorporated ensemble learning, which couples
regression algorithms and CNN to extract CME features from different observed data. The main advantage of
data-driven models is that they are computationally inexpensive to evaluate and suitable for real-time predictions.
However, their accuracy is highly dependent on the quantity, quality, and generalizability of the available training
data. For example, limited observations near the Sun and in interplanetary space, and few CME events available
for training, all pose a challenge to these techniques. Existing data-driven models generally achieve an MAE of
around 10 hr for arrival time predictions.

Recent studies have shown the potential of a hybrid approach combining newer-generation physics-based
modeling with data assimilation (DA) to improve CME arrival time prediction. Data assimilation (DA) is the
concept for integrating observational data into numerical models to improve predictive accuracy. DA commonly
refers to the task of state estimation in geoscience (Carrassi et al., 2018), where the model state is sequentially
updated with new observations while model parameters remain fixed. This is widely applied in numerical weather
prediction and is particularly popular in meteorology and oceanography (e.g., Ghil & Malanotte-Rizzoli, 1991;
Navon, 2009). However, DA can also be used for parameter estimation (e.g., Evensen, 2009; Evensen et al., 1998;
Smith et al., 2009). In either case, challenges in applying existing DA frameworks to space weather prediction
include, but are not limited to, the sparse and uneven observational coverage of the Sun-Earth space (Lang
et al., 2017; Temmer et al., 2023), and the quality and inconsistency of observational data (Turner et al., 2023).
These challenges make short-term and/or early-stage sequential updates difficult and introduce large uncertainty
in the model parameters. As a result, DA in space weather is often coupled with uncertainty quantification (UQ)
(e.g., Iwai et al., 2021; Singh et al., 2023). A common strategy involves first generating an ensemble of simu-
lations that manifest from the uncertainty in the model parameters or inputs and then down-selecting a subset of
simulations that best match the observational data. For instance, Iwai et al. (2021) demonstrated that by picking
simulations of the SUSANOO-CME model (Shiota & Kataoka, 2016) that most closely agree with the inter-
planetary scintillation (IPS) observations, the MAE of the predicted CME arrival time can be reduced from 6.7 to
5 hr for 12 halo CME events. Singh et al. (2023) used ensemble simulations to train a ML surrogate model, and
showed that the assimilation of Solar Terrestrial Relations Observatory (STEREO) Heliospheric Imager (HI) data
into simulations of the constant-turn flux rope model (Singh et al., 2022) reduces the MAE of the MS-FLUKSS
simulations from around 8 hr to 4-5 hr for six CME events. While these results were obtained from a small
number of CME events and thus warrant further validation, they displayed great promise for first-principles
modeling strategies with DA. One drawback, however, is that these studies primarily focused on the accuracy
improvement from DA, while uncertainty quantification and reduction were often secondary considerations or
largely overlooked in the final predictions.

The main contributions of this paper are the following: (a) proposing a probabilistic prediction of CME arrival
time through ensemble simulations and UQ, and (b) proposing DA of L1 observations of the background solar
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wind and SOHO LASCO C3 WL coronagraph observations, which are readily available at early times of a CME
propagation. We begin by conducting full Sun-to-Earth ensemble CME simulations using first-principles models
in the Space Weather Modeling Framework (SWMF; Gombosi et al., 2021; Téth et al., 2012). The L1 obser-
vations are used to constrain the model parameters of the background solar wind simulations. We then assimilate
WL observations into the CME simulations and illustrate its effectiveness in reducing the uncertainty of CME
flux rope parameters. Specifically, the assimilation uses synthetic WL images obtained from the model through
the line-of-sight integration of the density structure of the simulated CME. We demonstrate that the CME
propagation speed estimated from the WL observations can be used to filter the initial ensemble simulations, such
that only an optimal subset of the ensemble needs to be propagated to 1 au in order to construct an accurate
ensemble forecast for the arrival time and other quantities of interest with quantified uncertainty. Our approach
leverages observational data to reduce uncertainty and improves both predictive accuracy and numerical model
efficiency, thereby aligns with the general concept of DA. While this approach is also closely related to the
concept of model calibration that optimizes parameters to best match observations, it does not account for model
inadequacy (Kennedy & O’Hagan, 2001).

This filtering procedure is established based on the result of correlation analysis between the apparent propagation
speed inferred from CME WL images and the CME arrival time in historical CME events, which enables us to
construct a down-select criterion from CME propagation speed overshoot under a Bayesian framework. The
analysis calls for the estimation of CME propagation speed as well as the estimation of CME arrival time from
both ensemble simulations and observations. Estimating CME propagation speed through manual identification
of CME front edges in coronagraph images can be inefficient and challenging, especially when dealing with a
large ensemble size. This underscores the necessity for an automated procedure. Over the years, many methods
for automatic CME detection have been proposed, such as those by Robbrecht et al. (2009), Olmedo et al. (2008),
Morgan et al. (2012), Wang et al. (2019a, 2019b), Shan et al. (2020), and Alshehhi and Marpu (2021). However,
these methods have primarily been designed for LASCO WL observations, while in our study we need a method
that can flexibly accommodate both observed and synthetic WL images. We propose a new CME edge detection
algorithm based on K-means clustering, which is an unsupervised clustering technique. The algorithm is similar
to that of Alshehhi and Marpu (2021), but we apply clustering algorithms directly to coronagraph images without
using any dimension reduction techniques. Finally, we automate the estimation of CME arrival time through a
shock detection algorithm with a background solar wind speed correction method.

We demonstrate the overall proposed method for predicting CME arrival time on the following three CME events:

1. CME on 2014-09-10 18:00 UT (referenced as CMEI1 hereafter),
2. CME on 2015-03-15 01:48 UT (hereafter CME2), and
3. CME on 2017-07-14 01:25 UT (hereafter CME3).

This method reduces the mean absolute error of CME arrival time prediction from 13.4 to 5.1 hr.

The remainder of this paper is organized as follows. Section 2 describes the simulation setup of the SWMF and the
AWSoM and EEGGL models within it. Section 3 provides details of the processing pipeline for the WL images
and their subsequent comparisons, and the UQ and DA methods that lead to the final CME arrival time prediction.
Section 4 contains key results and their discussion. Section 5 presents concluding remarks and directions for
future work.

2. Numerical Models and Simulation Setup
2.1. Space Weather Modeling Framework (SWMF)

The modeling and simulation utilized in this paper are based on the University of Michigan's Space Weather
Modeling Framework (SWMF; Gombosi et al., 2021; Téth et al., 2012), a fully-functional, state-of-the-art, well-
documented software for high-performance computing. SWMF covers different physical regimes of space
through various model components and couples them together to model the space environment from the Sun to
Earth and/or outer heliosphere in one framework. The SWMF suite is open-source (http://github.com/
SWMFsoftware) and also available for runs-on-request through the Community Coordinated Modeling Center
(CCMC) at the NASA Goddard Space Flight Center (GSFC) (https://ccmc.gsfc.nasa.gov).
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2.2. Alfvén Wave Solar Atmosphere Model (AWSoM)

The solar corona (SC) and inner heliosphere (IH) components of the SWMF are represented by the Alfvén Wave
Solar atmosphere Model (AWSoM; Sokolov et al., 2013, 2021; van der Holst et al., 2014, 2022). The SC extends
from the upper chromosphere, through the transition region into the corona (up to 24 R, radial distance) and the
IH component couples with the SC at 18-21 R, and extends up to 1 au and beyond. AWSoM is a self-consistent,
global three-dimensional (3D) extended MHD model and includes the non-linear interaction of forward-
propagating and reflected Alfvén waves (van der Holst et al., 2014). The solar wind is accelerated due to the
pressure gradient of the Alfvén waves and heated by their dissipation. The energy is partitioned over the isotropic
electron temperature and anisotropic parallel and perpendicular proton temperatures (van der Holst et al., 2022).
AWSoM also includes stochastic heating and linear wave damping (Chandran et al., 2011), radiative losses based
on the Chianti model (Dere et al., 1997) and electron heat conduction for both collisional and collisionless re-
gimes. The MHD equations of AWSoM are solved using the Block-Adaptive-Tree Solar wind Roe-type Upwind
Scheme (BATSRUS; Powell et al., 1999).

AWSoM is driven by observations of the solar photospheric magnetic field. The electron and proton tempera-
tures (both parallel and perpendicular) are set equal to 50,000 K and the density at the inner boundary is set to
2 x 107 m™3. There are only a few free input parameters in AWSoM. These include the Poynting flux (S,) of
the outward traveling Alfvén wave (Fisk, 1996; Fisk & Schwadron, 2001; Sokolov et al., 2013), the wave
correlation length (L;) (Hollweg, 1986), and the stochastic heating amplitude and exponents (Chandran
et al., 2011). Previous works by van der Holst et al. (2014), Huang et al. (2023, 2024), Sachdeva et al. (2019,
2021), and Jivani et al. (2023) describe in detail the typical values for these parameters and their variation during
different phases of the solar cycle.

2.3. Eruptive Event Generator

The SWMF is equipped with an Eruptive Event Generator (EEG) module that facilitates the eruption of a
magnetic flux-rope inserted at the inner boundary and superimposed on the modeled background solar corona.
This flux-rope can be specified by an analytical flux-rope model, including the Gibson-Low (GL, Gibson and
Low (1998)) and Titov-Démoulin (TD, Titov and Démoulin (1999)) flux-ropes. In this work, we use the GL
model that has been employed in various previous studies (Jin et al., 2017a; Lugaz et al., 2005; Manchester
et al., 2004, 2014) of CMEs using AWSoM. This eruptive event generator based on the Gibson-Low magnetic
configuration (EEGGL) model is described in detail in Jin et al. (2017b), and is available as a user-friendly tool
via CCMC. The analytical GL flux-rope is inserted along the polarity inversion line (PIL) of the CME-producing
active region (AR) in a state of force imbalance leading to an immediate eruption. The flux-rope model is data-
driven and parameterized with observational constraints. The location (longitude/latitude) of the erupting AR is
obtained from flare observations, the radius of the flux-rope is constrained by the size of the active region obtained
from the observations of the photospheric magnetic field (via magnetograms). The observed speed of the CME
near the Sun is used to determine the magnetic strength of the flux-rope. The flux-rope also has an associated
helicity and orientation. Two more geometric parameters associated with this flux-rope are the distance of the
center of the torus to the center of the Sun and the stretching parameter used to obtain the analytical solution of a
stretched axisymmetric spherical magnetic flux configuration (Jin et al., 2017a, 2017b).

The use of an out of equilibrium flux-rope inserted into the background solar wind is advantageous for both
scientific and operational investigations. The GL flux-rope can mimic the three-part (front, cavity, core) CME
structure commonly seen in coronagraph images (Hundhausen, 1993). Since the flux-rope is not in equilibrium it
is also computationally less expensive to model the eruption in comparison to a time-consuming energy buildup
process.

2.4. Numerical Simulation Setup

To model the solar wind and CMEs using AWSoM, the grid blocks in the SC and IH domains consist of
6 X 8 X 8and 8 x 8 X 8 grid cells, respectively. The SC component uses the 3D spherical grid extending from
the Sun to 24 R, while the IH, on a Cartesian grid, is coupled with SC through a spherical buffer grid between 18
and 21 R and extending up to 250 R. Adaptive mesh refinement (AMR) is used to increase the resolution of
the domain where needed, including the current sheet, around the CME eruption site and along the Sun-Earth line
to better resolve the CME. The angular resolution in SC is 0.35° around the initial flux rope and the Sun-Earth
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Figure 1. Simulation of the 2015 March 15 CME event (CME2). Four panels show the time evolution of flux rope and plasma
on a central meridional plane at times # = 0,1, 12 and 48 hr. Top-left t = 0: The GL flux-rope is shown in 3D with magnetic
field lines above the solar surface showing B, in gray scale. The central meridional plane shows the plasma mass density in color
where a cavity is found embedded in the flux rope. The numerical mesh is shown in black. Top-right t = 1 hour: Magnetic field
lines are shown in 3D. The plasma velocity on the central meridional plane is shown in color and an isosurface for velocity at
1,000 km/s captures the location of the CME driven shock. The numerical mesh is also shown. Bottom-left t = 12 hours: The
erupting magnetic field are shown in 3D at with the plasma velocity shown in color on the central plane. The inner boundary of
the IH domain is colored to show the magnetic field strength. Bottom-right t = 48 hours: The CME shown in the same format
used at bottom-left.

line. In the IH component, the smallest cell size is 0.24 R, along the Sun-Earth line. To model the background
solar wind, AWSoM uses local time-stepping for 80,000 iterations in SC to obtain a converged steady-state
solution and couples it with the I[H domain followed by 5,000 iterations in the IH component to get the 3D so-
lar wind solution. The GL flux-rope is then superimposed onto the steady-state solar wind solution in the corona
as a perturbation to the density, magnetic field, and pressure at the inner boundary, which leads to a force-
imbalanced state and the flux-rope erupts as the simulation advances in time. The CME evolution is simulated
in the SC domain only for 1 hr following which the solution is coupled with the IH domain and both domains are
evolved for the next 11 hr. At the end of first 12 hr, it is assumed that the CME has completely traveled out of the
SC domain into the IH domain. The SC component is then switched off and the solution is propagated in the IH
component only for up to 4 days of physical time covering the entire Sun-to-Earth propagation of the CMEs.
Figure 1 illustrates the evolution of simulated 2015 March 15 CME event (CME2) with the flux rope and the
resulting disturbance passing through the SC and IH domains.

All numerical simulations are run on Frontera, a petascale computing system (Stanzione et al., 2020). We use 19
nodes for each background solar wind simulation and 59 nodes for each CME simulation, with each node
equipped with 56 cores. The steady state phase takes 5 hr of wall time, resulting in about 5300 CPU hr. The time
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dependent phase on average takes about 16 hr of wall time, using about 53,000 CPU hours. Note that the wall time
is significantly shorter than the 4 days of simulated time.

Over the years, AWSoM has been extensively validated against remote and in situ observations during various
phases of the solar cycle. AWSoM produces synthetic extreme ultra-violet (EUV) images that have been
compared to EUV observations from STEREO/EUVI, SDO/AIA and SOHO/LASCO instruments (Jin
etal., 2017a; Meng et al., 2015; Sachdeva et al., 2019, 2021; Van Der Holst et al., 2010). The AWSoM predicted
structure of the solar corona also compares well with the tomographic reconstructions of the density and tem-
perature of electrons near the Sun determined using the Differential Emission Measure Tomography (DEMT)
during the quiescent phase (Lloveras et al., 2017, 2020, 2022). In addition, comparisons with Interplanetary
Scintillation (IPS) data at various heliospheric distances as well as solar wind plasma observations at 1 au have
successfully validated the capability of the AWSoM model to reproduce the solar wind structure near the Sun as
well as in the inner heliosphere (Sachdeva et al., 2019). Multiple studies have also modeled observed CME events
using AWSoM and the EEG module with SWMF with both the GL (Jin et al., 2017b; Manchester et al., 2014) and
TD flux-rope descriptions (Lugaz et al., 2005; Manchester et al., 2008; Téth et al., 2007). The modeled synthetic
WL images have been compared with multi-viewpoint coronagraph observations of CMEs from LASCO C2, C3
and STEREO A/B COR1, COR?2 instruments. CME driven shock arrival signatures at 1 au were also compared
with the plasma observations from WIND and ACE satellites.

3. Methodology

In this section, first, we show the DA of L1 solar wind observation and present a systematic UQ study on the flux
rope parameters that leads to the experimental design of ensemble simulations. Second, we present a six-step
CME edge detection algorithm for calculating the CME propagation speed from WL images. Then, we
demonstrate the automation of CME arrival time calculation from 1 au solar wind speed using our shock detection
algorithm with background correction. Finally, we show the correlation between CME arrival time and WL speed,
and use it to develop a UQ and DA procedure to improve the CME arrival time prediction by constraining the
ensemble with WL observations.

3.1. Background Solar Wind Simulations

We perform background solar wind simulations using the AWSoM model in the SWMF. Our previous study
(Jivani et al., 2023) performed global sensitivity analysis (GSA) on background solar wind simulations and
identified the three most influential parameters that impact background speed and density to be: the multiplicative
correction factor applied to the magnetogram (“FactorB0”), Poynting flux per magnetic field strength constant
(“PoyntingFluxPerBSi”) used at the inner boundary, and the coefficient of the perpendicular correlation length
(“LperpTimesSqrtBSi”) in the turbulent cascade model in AWSoM. Since our primary focus here is to investigate
and incorporate the uncertainty of the flux rope parameters, we do not propagate uncertainty from these back-
ground parameters fully to the CME simulations in order to control computational cost. Instead, we identify the
optimal background parameters that best reproduce the background solar wind observations at L1 under the curve
distance (Sachdeva et al., 2019), and then perform CME simulations with varied flux rope parameters under this
optimal background. Specifically, this first step of DA is described below and illustrated in Figure 2:

1. Following the same approach as in our previous study (Jivani et al., 2023), we vary the three most influential
background parameters using maximum projection (MaxPro) designs (Joseph et al., 2015) to launch 10
background wind simulations for each CME event. The MaxPro design ensures that the space-filling prop-
erties on projections to all subsets of parameters are maximized (Joseph et al., 2015). The algorithm is
implemented using R package MaxPro (Ba & Joseph, 2015). For CME3, which occurs during solar minimum
conditions, we also vary the ion stochastic heating profile exponent (“StochasticExponent”) parameter.

2. We calculate the curve distance between the simulation and the OMNI observations at 1 au for the plasma
velocity (U) and proton number density (Np) over a 10 day time window prior to the map time. The map time
refers to the time associated with the input magnetic field map of EEGGL, which is the closest map available to
the CME eruption time. All observations in this window are equally weighted to calculate the distance. The
background with the minimum averaged curve distance is then used to insert flux ropes and launch the
ensemble of CME simulations.
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Figure 2. Background simulations of three Carrington rotations. We select the optimal background (in red) from the El
background ensemble (in gray) based on average curve distance calculated for plasma velocity (U) and proton number E
density (Np) over a 10-day time window prior to the map time (blue dashed line).
3.2. Ensemble CME Simulations g
We parametrize GL flux ropes using the EEGGL module in the SWMF, and the flux rope parameters are listed in
Table 1. These parameters correspond to the geometric representation of a GL flux rope in 2D, as depicted in é
Figure 3. While the baseline point estimates of these parameters can be obtained from EEGGL, a single CME g
simulation using these values would not capture the uncertainty effect of these parameters; therefore, we will z
create an ensemble of simulations while varying the values of certain parameters. Specifically, this is done by E_
introducing a set of perturbation parameters: AOrientation, ApexCoeff, RelativeStrength and Helicity as shownin £
g
Table 2. These perturbation parameters are used either as-is or in combination with their corresponding baseline =
‘
Table 1
Flux Rope Parameters That Control the Flux Rope Geometry B
EEGGL parameter Description ;
Latcyg, Loncyg Location of the flux-rope on the solar surface §_‘
Orientation Orientation of the flux-rope on the solar surface “5
Radius Radius of the GL torus that is stretched into the flux-rope %
Stretch Stretching parameter applied to the torus é;
ApexHeight Height of the stretched torus above the solar surface :Si
B Magnetic field strength of the flux-rope :i
Helicity Sign of the magnetic helicity of the flux-rope (;:
[e]
E]
z
c
CHEN ET AL. 7 of 28 £



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Space Weather 10.1029/2024SW004165

Figure 3. A schematic of Gibson-Low flux rope in 2D. Three EEGGL

parameters are shown.

Stretch 1

estimates (which are denoted by the subscript baseline in the following) to
obtain the flux rope parameters that are inputs to the code (Jin et al., 2017a),

The Gibson-Low

Torus Structure
while the other flux rope parameters are fixed to the baseline estimates:

. (Latoyme, Loneve) = (Latom baselines LONCME baseline)
. Orientation = Orientationy,gi,e + AOrientation
Radius = Radiuspygejine

. Stretch = Stretchy,gefine

. ApexHeight = Radius X ApexCoeff

. BStrength = RelativeStrength X |Bpaelinel

. Helicity (—1 or +1)

ApexHeight . , .
pextielg We use MaxPro designs to generate the entire ensemble of perturbation pa-

rameters based on their feasible ranges. The limits of AOrientation mean that
the angle between the line connecting the centers of the positive and negative
polarities and the direction of the flux rope is at most 45°. The Helicity can
only be +1. The range of ApexCoeff limits the center of the stretched flux rope to be at [-1/8,1/4]-Radius
relative to the surface of the Sun, which results in a reasonable shape and aspect ratio of the stretched flux rope
above the surface. The RelativeStrength range is the least certain since the baseline value of Bstrength is based on
empirical formulas in EEGGL and/or previous simulations results. Our range of +50% is probably too narrow and
may need to be expanded based on the comparison of simulated and observed WL images as we will discuss later.
These values should not be considered hard limits and warrant further calibration in future work.

We conducted two batches of CME simulations in this work. The first batch has the largest sample size and
includes an ensemble of 120 CME simulations for CME3, while the second batch consists of 72 simulations in
total: 24 each for CME1, CME2, and CMES3. The first batch was designed for sensitivity analysis, which will be
discussed in detail in Section 4.1. Figure 4 illustrates the design of the resulting flux rope parameters (i.e., ob-
tained by combining baseline estimates with perturbations) for the first batch. The first row of the figure shows the
pairwise scatter plots of parameters under two levels of Helicty, with each point representing a single simulation.
The ensemble produces synthetic WL images and CME arrival time predictions at 1 au for each member in
chronological order as the CME propagates from the Sun to Earth. The design of the second batch of CME
simulations, which were launched based on the results of sensitivity analysis and therefore varying only Rela-
tiveStrength and Helicity, will be introduced in Section 4.1.

3.3. White-Light Coronagraph Image Processing

WL images play a central role in our procedure to ultimately predict the CME arrival time. Both synthetic and
observed WL images are involved. The former are generated from the SWMF described in Section 2; the latter are
publicly available LASCO WL coronagraph data retrieved from https://sdac.virtualsolar.org. This section de-
scribes the image processing steps for extracting features that allow us to compare observed and synthetic images.
In particular, WL observations usually show fine structures of CMEs but are subject to noise arising from
irrelevant solar activities or measurement errors; synthetic WL images, on the other hand, do not have these
features. Therefore, a few additional steps are included to process the observation images. We introduce our six-
step algorithm below.

Step 1: Ratio Enhancement. Starting from a WL image (observation or synthetic), the total brightness is divided
by the background brightness before CME eruption in order to reveal the relative enhancement. This step helps

Table 2

Flux Rope Perturbation Parameters

Parameter Value range Description

AOrientation [~45°, +45°] Change in orientation relative to baseline
ApexCoeff [0.875,1.25] Multiplicative factor for ApexHeight from baseline
RelativeStrength [0.5,1.5] Field strength relative to baseline from baseline
Helicity —lor +1 Sign of magnetic helicity

CHEN ET AL.
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Figure 4. MaxPro design of flux rope parameters for the 120 ensemble CME simulations conducted for CME3. The first row shows the pairwise scatter plots of the
parameters, with each point representing a single simulation. Excluded runs are annotated. The second row shows the parameter marginal distribution of excluded runs.

eliminate any bright background effects and highlights the subtle intensity changes caused by the outward

propagation of the CME that may be otherwise hard to observe. Next, we add F and K corona contributions to the
synthetic image as they are not captured by AWSoM. The left panel in Figure 5 shows a ratio enhancement image

CME Front Edge

2014-09-10T19:06 UT

16 16 1.10

1.08

— 1.06
=
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T
©

‘f 1.02
£

2 : I 1.00

-8 -8 ; X
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Figure 5. Edge detection demonstration on CME]. Left: One snapshot of the LASCO C3 WL ratio enhancement image of
2014-09-10 18:00 UT CME event. Right: Automatically detected CME front edges. The red solid line represents the edge
used in this study. The yellow dashed line corresponds to the fast moving segment discussed in Section 4.2.
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Figure 6. Edge detection workflow on CMEL. Panel (a): after Step 1, LASCO C3 observation ratio image in polar coordinate.
Panel (b): after Step 2, image clipping to retain angles at which CME front edge are traceable. Panel (c): after Step 3,
application of the median filter which has edge-preserving property. Panel (d): after Step 4, image segmentation separates
CME region from the background. Panel (e): after Step 5, opening operation and closing operations for morphological post-
processing of segmented image. Panel (f): after Step 6, WL images in polar coordinate with detected edges in red.

for CME1 (2014-09-10 18:00 UT CME event). We will use this event as an example to demonstrate the sub-
sequent algorithm steps.

Step 2: Transformation. In order to facilitate comparison and better estimate the CME propagation speed in the
radial direction, one common practice (Kirnosov et al., 2015; Olmedo et al., 2008; Wang et al., 2019a, 2019b) is to
transform the WL ratio enhancement image from the original ring-shaped image in Cartesian coordinates, ,,(x, y),
to a rectangular image in polar coordinates, 7,,(6, r). We transform the image into 512 X 128 pixels in the 6 and r
directions. Subsequently, the transformed image is constrained in the € coordinate to the interval of interest where
the CME has a traceable front. For halo CME observations, we only remove the angles blocked by the physical
support of the instrument. This step is done manually due to the potential presence of irrelevant brightness
features in the observational image, which may lead to artificial or incorrect boundaries. The coronagraph
observation of CME2 shown in Figure 7 illustrates such cases, where a tail-like structure exists that may cause
errors if not removed. See Figure 6 panels (a) and (b). The resulting image is an N’ x M matrix with M = 128
and N’ <512 being the number of pixels in the angular direction covering the angles of interest.

Step 3: Noise Filtering. Observation WL images are contaminated with artifacts such as salt-and-pepper (SAP)
noise and minor stray marks primarily induced by the LASCO instrument (Brueckner et al., 1995). A common
approach to remove SAP noise is by applying a median filter, which additionally, has the edge-preserving
property. Figure 6 panel (c) illustrates this idea, where the SAP noise is removed and the CME front edges are
well-preserved after applying a median filter of size 7 X 7. As the median filter also smooths out local extreme
pixel values, we apply it to both the observation and the synthetic WL images.

Step 4: Segmentation. This step aims at segmenting CME features from the filtered WL image. While various image
segmentation techniques are available (Zaitoun & Agel, 2015), we choose a clustering-based segmentation
approach (Coleman & Andrews, 1979) since we anticipate CME features to be connected rather than isolated as the
CME propagates outward away from the Sun. Specifically, we choose the K-means clustering (Lloyd, 1982;
MacQueen, 1967), an unsupervised clustering method that assigns to the ith pixel a cluster label Z; € {1,2,...,K}
(from K candidate clusters) based on its pixel value X;. For a given K, the optimal pixel cluster labels Z} and cluster
center locations u;,k = 1,2, ...,K can be found by minimizing the within-cluster-sum-of-square (WCSS) value:
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Figure 7. Snapshots of WL images from CME2 (2015-03-15 01:48 UT CME event). Red curves represent the detected edges.
Top: LASCO C3 observation WL images. Bottom: Synthetic WL images from a simulation.
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The number of clusters, K, is a tunable hyperparameter. In order to find the best K that avoids overfitting (e.g.,
choosing a large K may result in many small clusters, each with only a few points or even a single point, that are
usually associated with background noise), we seek a K such that Wy explains 95% of the total variance V, which
can be written as:

’

MN K
V=20 1% = XIPF = W (Z" 1) + 2 Nellwg = X1 2
i=1 k=1

where N, is the number of points assigned to the k-th cluster. In other words, we choose the smallest K such that
Wy (Z*,*)/V >0.95. Figure 6 panel (d) shows the image after segmentation.

Step 5: Opening and Closing. Occasionally the segmented image contains artifact spikes and blobs in the
background. We include two morphological operations, opening and closing, to further clean the segmented
image. An opening operation is a composite of two basic morphological operations: erosion followed by dilation
(Soille, 2004), while using the same structuring element (SE). It removes noise and small objects from an image
while preserving the overall shape and connectivity of larger objects. A closing operation is the reverse of
opening, involving dilation followed by erosion. It is effective at closing small gaps in object boundaries and
connecting objects that are almost touching. Empirically, we find that when applied to observation WL images,
the combination of the two operations effectively removes noise while preserving the connectivity of CME
features. When applied to synthetic WL images, the closing operation is often unnecessary. Figure 6 panel (e)
shows the effect of this two-step procedure on LASCO C3 observation WL image.

Step 6: Edge Detection. The coordinates of edge points are found by scanning each column from top to bottom
and identifying the first value that differs from the background. The resulting set of edge points is a vector of f;
values describing the discrete radius values of edge occurrence at each polar angle 6;. The edge detection is then
finalized by applying the Savitzky—Golay filter (Savitzky & Golay, 1964) to the set of edge points, which fits
successive subsets of adjacent edge points with a cubic polynomial by the method of linear least squares to ensure
smoothness. Figure 6 panel (f) shows the edge detection in polar coordinates while the right panel of Figure 5
depicts the corresponding edge curve in the original Cartesian coordinates.

We further demonstrate the overall edge detection algorithm applied to the CME2 (2015-03-15 01:48 UT CME
event) WL images in Figure 7, showing six snapshots of both LASCO C3 observations and synthetic WL images
from a simulation, together with their detected edges. The angles are selected according to the observation such
that the CME part is covered.

3.4. Observation-Simulation Comparison

The resulting CME front edges allow quantitative comparison between LASCO C3 observations and synthetic
WL images from simulations. In this study, we target comparisons in terms of height-time measurement and
angle-averaged speed overshoot.

CME catalogs typically contain the observed CME speed based on height-time plots, where the height is defined
as the maximum edge value over the angles 0:

h(r) = meaxf(ﬂ, 1), 3)

with f(6,7) denoting the extracted edge radial value at angle 8 and time . Subsequently, the CME propagation
speed v can be estimated directly by performing a linear fit of these height-time measurements 4() and then taking
the slope. Although this quantity is a popular choice to characterize CME propagation, it also has several limi-
tations described below.
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1. The maximum CME edge values (i.e., the height values defined in Equation 3) generally occur at different
angles for different times. Consequently, the CME propagation speed based on such mixture of different
angles lacks a straightforward interpretation. It does not necessarily correspond to the maximal speed over all
propagation angles, nor does it represent an average speed of a specific angle.

2. The height defined in Equation 3 loses angular information, since the maximum operator is a summary statistic
that only reports the single extreme value across all angles. In fact, angular width is already recognized as an
important feature of CMEs in several studies, for example, by Liu et al. (2018).

3. While a general agreement in morphology can be achieved between synthetic WL images and LASCO ob-
servations, an exact match is always challenging, maybe even impossible to achieve. Using this quantity to
compare simulation with observation emphasizes the discrepancy in the outermost segment of CMEs.

We propose instead to characterize the CME propagation speed by the average speed over all angles of interest:
o1
b= ]72 v(6,), 4)
i

where v(6;) is the speed estimate at angle ; obtained by performing a linear least squares fit to fi(r) = f(6;,t) for
each i and then taking the slope. The comparison between simulation and observation is then made through the
error metric:

y = Jim ~ Yobs o 1005, (5)
Vobs

where 7, and ¥, are the calculated average speeds for the simulation and observation, respectively. This
quantity reflects the relative overshoot error of angle-averaged propagation speed of simulation compared to
observation. We refer to 7 as the WL speed overshoot hereafter. Note that this metric primarily measures the radial
propagation speed of the CME front, while lateral velocities only contribute indirectly.

3.5. CME Arrival Time Initial Estimation at 1 au

The CME arrival time at Earth's position is initially estimated (i.e., prior to any background corrections and DA)
for each individual simulation or observational time-series based on the solar wind speed simulated/measured at 1
au. For simulation, the CME arrival time is defined to be the time that corresponds to the first significant change in
simulated solar wind speed. For observation, in general such property holds as well. Therefore, the arrival time
can be viewed as a change point (Basseville & Nikiforov, 1993) in the time series of solar wind speed. It is
important to note that even without a CME there can be gradual or even sharp changes in speed, for example, due
to corotating interaction regions (CIRs). Consequently, identifying the CME shock arrival is not always
straightforward.

We propose a shock detection algorithm to automatically determine the CME transit time for both observational
and simulated data. The CME arrival time can then be obtained by adding CME transit time to the event start time.
The algorithm is based on statistical hypothesis testing. We track the hourly-averaged solar wind speed over a 10-
hr-wide sliding window. The CME arrival time is identified by a sudden increase in the speed of the 10-hr window
that has a probability less than 2.5% to be random change. We formalize the algorithm in Appendix A. Figure 8
demonstrates this algorithm on CME2 (2015-03-15 01:48 UT CME event) using 1 hr averaged OMNI data. The
algorithm detects the change point when the F statistics of the sliding window (F = 25.09) exceeds the threshold
value (Fy975(9,9) = 4.03) under statistical significance level @ = 0.025. We validated that the detected change
point matches true (i.e., expert identified) arrival time.

3.6. Background Solar Wind Correction

The CME arrival time estimated for a simulation can be further improved by taking into account the difference in
the background solar wind speed between the simulation and the observation. This difference is typically not very
large since we constrain the parameters of the background model to match L1 observations, but often it is not
negligible either, as shown in Figure 2.
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Figure 8. Applying the shock detection algorithm to 1 au plasma speed of CME2 (2015-03-15 01:48 UT CME event) to
determine the CME arrival time. Left: plasma velocity of 4 days of CME propagation. The solid line represents the actual
arrival time. Right: The first order difference in plasma speed. The dotted line represents the arrival time determined by the
algorithm, which is detected when the F-statistic calculated from a 10-hr sliding window exceeds the threshold value under a
statistical significance level of @ = 0.025. See Appendix A for details.

The CME arrival time is the start time plus the transit time 7. The former is defined to be the start time of the flare
associated with the CME #,,., which is always known, and the latter can be written as

L
T=——r, (6)
ucmg + Uy,
where ucyg is the average CME speed relative to the background over the propagation period, u, is the back-
ground solar wind speed that is assumed to be constant, and L is the distance between Sun and Earth (1 au).
Changing the background speed u;, from ugy, to ul, results in a change of T from Ty, to

L L 1
= T T L = Tim- (7)
+ ug 7 = Ugim + Us; !
UCME 'sim Tim sim sim 1+ (usim —_ usim)

As expected, the correction makes Ty, > Ty if Usm < Usim and decreases it if ul, > ugy,. Also, the relative

T.

sum

Tyim
L

correction |Tgm — Tiiml|/ Tsim is smaller for fast CMEs, that is, when Ty;,,/L is smaller than for slow CMEs when
Tgm/L is larger. The error (ugim — usim) in the simulated background speed can be estimated by
Uops (Ftares L1) — tsim (Friare> L1 ) » the difference between the observed and simulated solar wind speeds at L1 at the
time of the CME eruption. We use the modified transit time TG, to better approximate T.

3.7. Correlation Analysis and Data Assimilation

The prediction error of CME arrival time from a single run is the same as its prediction error in transit time, which
we denote by y:

y= Tobs - T;im' (8)

Using an ensemble of simulations, we conduct a linear correlation analysis between y and WL speed overshoot 7.
As will be shown later in Section 4.3, the data indicates a strong linear relationship with only a small amount of
dispersion. This finding motivates us to build a linear regression model:

y =k +b, ©)
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where k is the slope, and b is the y-intercept which can be interpreted as the bias of the physics-based model.

When making a prediction for a new, previously unseen event, ideally one would like to select a simulation whose
11 is close to —2, which leads to a near-zero error for the arrival time prediction (i.e., y = 0) per Equation 9.
However, as will be illustrated in Figure 12, both k and b differ from event to event. Therefore, we take a
probabilistic approach to capture a distribution of possible # values that emerges from the event-to-event un-
certainty, and constrain the range of # using observational data from historical events through a Bayesian
framework. Subsequently, we retain only a subset of simulations from the initial ensemble that fall within this
range of 7 (i.e., the most promising simulations for achieving y = 0) and propagate only these simulations all the
way to 1 au to finally construct a probabilistic prediction for the CME arrival time.

Under this approach, we treat 7 as a random variable, and 7 now has a distribution. Consider a particular historical
CME event E, the posterior distribution of 7 conditioned on y = 0 (i.e., the probability density for overshoot of #
to lead to zero-error arrival time prediction) can be expressed following Bayes' rule:

p(|E)p(y =0|n,E)

fp(’? y =0|E) dn o p(n|E)p(y =0|n, E) (10)

p(nly =0,E) =

where p(y|E) is the prior distribution and p(y = 0|y, E) is the likelihood. The prior represents our belief in the
overshoot distribution before seeing any data for this historical CME. Leveraging knowledge from previous
works on model validation (Jin et al., 2017a; Manchester et al., 2008), we place a Gaussian prior with mean 0 and
standard deviation ¢ = 0.1. According to the empirical rule of Gaussian distribution, this means that we expect
the overshoot to be within 36 = 30%. We further assume the prior does not depend on the specific event since one
would expect the same model performance if given a randomly-selected CME event. Hence, the prior is
p(E) ~ N (0,02). The likelihood p(y = O|n,E), in principle, can be obtained by running many different
simulations and using them to estimate the conditional probability density; however, this would be a highly
expensive endeavor. Instead, we use the fitted linear model in Equation 9 as a density estimator to obtain an
approximation of the true likelihood, which we denote as p(y = 0|y, E). Forming this linear model needs training
data of 5 and y, which in turn requires simulations to 1 au, WL observations, and the true arrival time, of this
historical event. With the prior and likelihood, we can draw samples from the posterior distribution via Markov
chain Monte Carlo (MCMC), specifically the Metropolis—Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953).

The above posterior can be computed for multiple different historical events. We can combine them together, by
taking the expectation over multiple events, to obtain the final posterior:

plrly =0) = plnly =0, EYP(E). (11)
E

We assume each historical CME event contributes equally to our knowledge of 7, so we take P(E) to be a constant
for all events E. Samples from this final posterior can be obtained by a direct mixing of the (same number of)
posterior samples from individual events.

For the prediction on a new CME event, we constrain the WL speed overshoot 7 to the 95% credible interval of the
posterior, which is constructed by taking the 2-th and (1 - %)—th quantiles of the MCMC posterior samples with
a = 0.05. We use 103 posterior samples per event to estimate the credible interval at high resolution. Lastly, we
use this credible interval to filter the simulation ensemble, and only retain ensemble members whose 7 values fall
within this acceptance range.

3.8. Probabilistic CME Arrival Time Prediction

We now form the probabilistic prediction for CME arrival time at the ensemble level. Given the final ensemble of
transit time predictions T;m;i for ensemble members i = 1,...,M, we use the ensemble mean as the final estimate:

T= Timsi (12)

iMs=

N
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Under a normal distribution assumption, a confidence interval (CI) for the mean can be established:

S

\/M

Cl=|T-tM-1)"=. T+uM-1) (13)

St
VM |

where Sp = \/ S (T — T)z/ (M — 1) is the square root of sample variance and t,(N) represents the a-th
quantile of Student's ¢-distribution with N degrees of freedom. We construct CI under a statistical significance
level of @ = 0.05. The CME arrival time prediction is then obtained by adding the estimated CME transit time to
the event start time.

The overall DA procedure can be summarized as follows:

1. Assimilate L1 background solar wind observation into an ensemble of background solar wind simulations, and
select the best matching background model.

2. Launch an ensemble of CME simulations based on perturbed EEGGL estimate.

. Calculate WL speed overshoot for each ensemble member using WL observation.

4. Retain ensemble members whose WL speed overshoot fall within the acceptance range derived from historical

w

events.
5. Simulate the filtered ensemble to 1 au and construct probabilistic prediction.

4. Results

In this section, we demonstrate the proposed method to assimilate WL observational data for constraining the
ensemble of CME simulations and finally predicting the CME arrival times.

4.1. Sensitivity Analysis

We begin by performing sensitivity analysis to identify the most important flux rope parameters associated with
CME arrival time prediction. The result can allow us to focus on varying a smaller set of perturbation parameters,
thereby improving the statistical power of ensembles. In order to avoid contamination of the sensitivity results
from event-to-event variations, we carry out the sensitivity analysis using the first batch of 120 CME simulations
only from CME3. The experimental design of these runs are shown in Figure 4 and discussed in Section 3.1.
While all simulations completed successfully, we further exclude those that provide physically implausible re-
sults. Specifically, we extract remote LASCO C3 images and the plasma state along Earth's orbit. A simulation is
discarded if it meets any of the following exclusion criteria:

. the plasma velocity (U) at 1 au exceeds 2,000 km/s;
. the number density (Np) of the background solar wind at 1 au exceeds 250 cm~>;
. the CME propagation speed overshoot (17) exceeds 200% or falls below —50%;

. no CME arrival detected based on the solar wind speed at 1 au.

AW~

As aresult, 23 runs were excluded and 97 runs are retained. Most of the excluded runs meet exclusion criteria 3
and 4 due to their slow solar wind speeds. Figure 4 highlights the excluded runs with cross signs and shows the
probability density of the excluded flux rope parameters. These cases are primarily associated with small
BStrength and ApexHeight values. Interestingly, specific combinations of Orientation and Helicity also play a
significant role in determining exclusion. However, the generality of these exclusion patterns requires additional
investigations.

One approach to sensitivity analysis is by calculating variable importance through regression analysis, where a
regression model is created to map from the flux rope parameters to the CME arrival time. A specific class of
regression models, known as decision tree-based models, can approximate the mapping while simultaneously
providing variable importance scores for predictors. In this study, we employ the Bayesian additive regression
tree (BART) (Chipman et al., 2010), a Bayesian non-parametric model that uses a sum of decision trees to learn
flexible representations of data. Each decision tree consists of a set of splitting rules that partition the parameter
space into the subgroups, and a regularization prior is placed to avoid overfitting. The tree predicts the same value
for points within the same subgroup. Since every split depends on the value of only a single variable, the variable
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importance score for any variable can be estimated by its inclusion proportion—that is, the proportion of times
that a variable is chosen as a splitting rule out of all splitting rules among the posterior draws of the BART model
(Chipman et al., 2010; Kapelner & Bleich, 2016).

We adopted the BART implementation from the R package bartMachine (Kapelner & Bleich, 2016). The
inclusion proportion results, reflecting the importance of each flux rope parameter, are shown in Table 3. Among
all continuous parameters, BStrength, which is the magnetic field strength of the flux-rope, has the highest in-
clusion proportion in the trained models thus it is identified as the most important variable. Physically, BStrength
is also the most obvious parameter impacting the arrival time, and we vary it in future ensemble runs. Although
the inclusion proportions of ApexHeight and Orientation suggest that varying these two variables in future
ensemble runs could benefit UQ, we have decided not to vary them in order to keep the ensemble small and fit
within our computational budget. With a realistic ensemble size of around 20 members, including more pa-
rameters would lead to poor coverage of the sample space, thus increasing the difficulty of parameter inference.
Note that, we should not compare the inclusion proportion of Helicity with other continuous variables. This is
because a categorical variable with two levels can at most show up once in the splitting rules of a decision tree,
while there is no such constraint for continuous variables. However, we choose to vary Helicity for future runs as
it can have a significant effect on Bz prediction, which is crucial for quantifying the geo-impact of a CME event in
addition to predicting CME arrival time. It is also relatively computationally inexpensive to vary Helicity, as it
only increases the ensemble size by a factor of two.

For all three events, CME1-3, we now conduct the second batch of CME simulations with smaller ensembles that
only varies BStrength and Helicity, which corresponds from varying the RelativeStrength and Helicity pertur-
bation parameters, while fixing the remaining continuous parameters to the baseline estimate. We extend the
range of RelativeStrength from [0.5,1.5] in Table 2 as needed to make sure we cover both positive and negative
values of the velocity overshoot parameter 7 as shown in Figure 12. In total, each ensemble uses 12 values of
BStrength, each with Helicity set to —1 or +1, resulting in 24 runs for each event. All runs completed successful.
Note that the first batch of simulations for CMES3 is used solely for sensitivity analysis and is not included in the
subsequent analysis. For the prediction of future events, we cannot afford such a large ensemble size due to the
computational cost. Excluding the first batch ensures a fair comparison between events with affordable ensemble
sizes.

The CME arrival time error versus BStrength for these simulations are shown in Figure 9. Note that per Equa-
tion 8, a positive error means that the model predicts an arrival time earlier than the actual arrival time, and vice
versa. The predicted arrival time becomes early when BStrength increases, while for CME1 we observe that the
predicted arrival time stops changing when BStrength exceeds around 55 G. Different signs of magnetic helicity
also introduce difference to the prediction of the arrival time. Figure 10 shows the difference in the quantities of
interest between the run with the smallest arrival time prediction error and its counterpart with flipped sign of
helicity. These quantities include the plasma velocity (U), the proton number density (Np), and the magnetic field
component in the North/South direction (Bz). We see that both U and Bz can change drastically when the helicity
is flipped, while having the helicity set to EEGGL estimate does not always yield better predictions. This suggests
that investigating CME with both values of helicity is important.

4.2. Height-Time Measurement Comparison

In this section, we validate our edge detection algorithm against the CDAW catalog. In particular, we will
compare the CME height as defined in Equation 3 and the resulting CME (scalar) propagation speed, as they are
widely used and available in many CME catalogs. However, discrepancies often exist for the same event across
multiple catalogs. For the sake of consistency, we make our validation comparisons with the CDAW CME catalog
(Gopalswamy et al., 2009).

We compare our estimates of CME maximal height and CME propagation speed to those in the CDAW catalog
where these quantities are estimated from visually identified CME attributes. The hyperparameters of the edge
detection algorithm are shown in Table 5. Figure 11 shows the height-time profile comparisons, with the linear fit
slopes being the propagation speed estimates. The Spearman's rank correlation coefficients between CME
maximal height estimated by our method and that from the CDAW catalog is greater than 0.99 for all three CME
events considered in this paper. We see that our estimates are close to that of CDAW for most of CME events we
studied, except for CME1. For CMEI, processing the available LASCO images becomes more complicated as
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Table 3 several snapshots contain features of another CME prior to CME1. The event

Inclusion Proportion of Flux Rope Perturbation Parameters in the BART time of CMET is 2014-09-10 18:00, while the prior CME has event time is

Model for Sensitivity Analysis Using CME3 Simulations 2014-09-10 17:24. The data on CDAW show that heights of CME1 were

BStrength ApexHeight Ofeation Helicity measured at the fastest segment of the leading edge and the measurement

position angle of the maximal height is at around 175° counter-clockwise to
0.314 0.251 0.244 0.191

solar north (see yellow dashed line in Figure 5). However, it is unclear if the

outermost segment around this angle, which is faint and blends with the
background very quickly after a few snapshots, is truly a part of CME]. In contrast, our method is tracking the
bright front of CMEI, which has a clear edge and whose maximal height is obtained at around 335° (see solid red
line in Figure 5). Maharana et al. (2023) also studied this event and they reached a similar conclusion that CME1
propagated mainly north of the ecliptic. Therefore, the discrepancy mainly comes from the complexity of this
event. It is also worth noting that using propagation speed derived from maximal height to describe a CME can be
problematic in such cases, since it does not reflect the propagation globally. In fact, for CME], the estimate of the
speed is much larger than that averaged from the major part (brightest region in coronagraph images) of the CME
so the result can be misleading if we include this estimate for comparisons of simulation output.

Considering the above comparisons and explanation for CME], the results overall support that our algorithm is
able to provide reliable estimate of the CME front edge in an automated manner.

4.3. Correlation Results and Arrival Time Prediction Without Data Assimilation

In this section, we show the correlation results between arrival time error and WL speed overshoot, and we
analyze CME arrival time prediction at both the individual and the ensemble level.

We first apply the edge detection algorithm and shock detection algorithm with background correction introduced
in Section 3 to simulation and observational data of each event. The parameters of the two algorithms used for
simulation data are listed in Table 4, and the parameters used for observations are listed in Table 5. For the WL
edge detection algorithm, these include the range of position angle at which the speed is measured, the size of the
median filter, the size of Savitzky—Golay filter, the size of structuring element for opening operation, the size of
transformed image in polar coordinate, and the proportion of variance explained by WCSS in K-means clustering.
The position angles are measured from solar north in degrees counter-clockwise. For the L1 shock detection
algorithm, these include the size of the sliding window, and the background correction factor.

We calculate the WL speed overshoot and the arrival time error for the second batch of simulations of three
events. All successful runs are then subjected to the exclusion criteria in Section 4.1. For CMEL, out of 24 runs, 4
runs are excluded and 20 runs are retained. For CME2, out of 24 runs, 5 runs are excluded and 19 runs are retained.
For CME3, out of 24 runs, 1 run is excluded and 23 runs are retained.

The CME arrival time predictions at the individual ensemble member level are shown in the left column of
Figure 12, where we plot scatter plots of speed overshoot # against the arrival time error y for each event. Each
point represents a single ensemble member. We find a strong positive correlation between the two quantities with

_ 2014-09-10 18:00 CME1 _  2015-03-15 01:48 CME2 302017-07-14 01:25 CME3
3 3 3
2 2 z
E 20 sé . § 20
| | wm
g0 £ g
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Figure 9. CME arrival time error versus BStrength with positive and negative helicity choices for CME1-3. A positive error
means that the model predicts an arrival time earlier than the actual arrival time.
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Figure 10. Quantities of interest for CME1-3 in the 1 hr averaged OMNI data (black), simulations with magnetic helicity set
to the EEGGL estimate (red), and simulations with sign of helicity opposite from the EEGL estimate (purple). Each row
represents a different CME event and each column represents a different quantity. Simulations are shifted to the actual CME
arrival time (green dashed line) for better comparisons.

Spearman's rank correlation coefficient exceeding 0.90 for all three events. This indicates that a CME simulation
that propagates rapidly at the early stage of simulation would also arrive early at 1 au in the simulation. However,
the vertical wide spread of scatter points also indicates that there is uncertainty in the predicted arrival time among
simulations even with similar initial propagation speeds. The uncertainty may be due to different reasons:

o WL coronagraph images represent only the integral of brightness along the line of sight, which means they are
projections and cannot fully represent the actual 3D objects. In fact, coronagraph images show the plasma
velocity in close proximity to the image plane, while the velocity in the direction of Earth is approximately
orthogonal to this plane and located behind the occulting disk. Consequently, we have no direct measurement
of the speed of the Earth-directed plasma.

o The WL propagation speed is averaged over a range of propagation angles, so two simulations with the same
averaged propagation speed do not necessarily match in every propagation angle.
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Table 4
Parameters of WL Edge and L1 Shock Detection Algorithms for Simulation Data

Algorithm parameters CMEI1 CME2 CME3

White-light Edge Detection

Position angle [—182°,99°] [244°, 329°] [209°, 300°]
Size of median filter 13 x 13

Size of Savitzky—Golay filter 51

Size of structuring element in opening 11 x 11

Size of transformed image in polar coordinates 128 x 512

Proportion of variance explained by WCSS 0.99

L1 Shock Detection
Size of sliding window [h] 10

The least-squares linear regression captures this uncertainty. Prediction uncertainty intervals are given alongside
the fitted line, as shown in Figure 12. The results of the least squares fit are summarized in Table 6. The Y-
intercept represents the expected arrival time error conditioned on a zero WL speed overshoot. These errors
are 7.7, 11, and 10 hr for CME1, CME2, and CME3, respectively. These indicate that the model has a tendency to
predict early arrival for all three events. This tendency is further illustrated in the right column of Figure 12, where
we compare the WL averaged propagation speed across position angles between the simulations and the
observation. The dashed line represents the observation, while each solid line represents a single ensemble
member, with color indicating the error in arrival time prediction.

Table 7 contains the summary statistics of the CME transit time prediction errors T, — T, based on the initial
ensemble without DA. The prediction errors of CME1, CME2, and CME3 are 14.6, 10.9, and 14.7 hr, respec-
tively. The ClIs fail to cover the actual arrival time for all three events. We will next discuss and compare the
prediction results after DA is performed.

4.4. Arrival Time Prediction With Data Assimilation

The accuracy of CME arrival time prediction can be improved by assimilating WL observations into the simu-
lations, which allows us to down-select the initial simulation ensemble based on the WL speed overshoot. Recall
that, the ideal overshoot, which is expected to give no error in arrival time prediction, is the X-intercept of the
fitted linear equation, as shown in Figure 12. The variation in X-intercepts across different events indicates
additional uncertainties induced by the nature of events, aside from the uncertainty mentioned in Section 4.3. Our
proposed Bayesian procedure can systematically incorporate uncertainty from these sources.

2014-09-10 18:00 CME1 2015-03-15 01:48 CME2 2017-07-14 01:25 CME3
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Figure 11. Height-time profiles of three CME events produced by our method and by CDAW catalog. The straight lines are fitted from scatter points by the method of
linear least squares regression. The average speeds are derived based on regression coefficients.

CHEN ET AL. 20 of 28

d ‘1 °STOT *06€LTHST

sy woxy paproy

QSUADIT SUOWWOY) 2ATEAL) d[qeardde ayy £q pauraAo are sa[oILIE () asn JO sanI 10y AIeIqI AuI[uQ) L3[IAL UO (SUOHIPUOI-PUB-SULId}/WOD" Ka[im KIeIqi[aur[uoy/:sdny) SUONIPUO)) pue SULIR L, oy 93 *[S707/90/81] U0 Kreiqry auruQ Aoip “Areiqry uediyory JO Ansioatun £q S91H00MSHZ0T/6201°01/10p/wod Kajim: £



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Space Weather 10.1029/2024SW004165

Table 6

Table 5
Parameters of WL Edge and L1 Shock Detection Algorithms for Observational Data

Algorithm parameters CMEI1 CME2 CME3

White-light edge detection
Position angle [—182°,99°] [244°, 329°] [209°, 300°]
Size of median filter 15 x 15 7 x17 11 x 11
Size of Savitzky-Golay filter 51 51 51
Size of structuring element in opening 11 x 11 7 %17 11 x 11
Size of transformed image in polar coordinates 128 x 512
Proportion of variance explained by WCSS Optimized by snapshots
L1 Shock Detection

Size of sliding window [h] 10

To evaluate the DA method, we perform leave-one-event-out cross-validation across the three events. Specif-
ically, we use data of two events to construct the acceptance range of the WL speed overshoot, then we filter the
ensemble of the third event to construct the final ensemble solution. The results are presented in Table 7. The DA
procedure reduces the prediction error from 14.6, 10.9, and 14.7 hr to 0.8, 9, and 5.4 hr for CME1, CME2 and
CMES3, respectively. The mean absolute error is reduced from 13.4 to 5.1 hr. In addition, the CI for arrival time is
improved in each event. However, we note that the CIs still fail to cover the actual arrival time for CME2 and
CMES3 even after DA, suggesting that the model has additional errors that are not captured by the analysis. We
also include the results without background solar wind correction in Table 7. The mean absolute error of three
events increases to 6.1 hr (from 5.1) when the correction is not applied. There is a significant decrease in pre-
diction performance for CME2 that has the slowest initial WL speed among the three events as shown in
Figure 11, while there is a large discrepancy between the simulated (about 404 km/s) and observed (about
327 km/s) background solar wind speeds. This highlights the usefulness of the background solar wind correction.

Although the results are obtained from only three CME events, we observe that the acceptance ranges of WL
speed overshoot have similar values, indicating their transferability across events to a certain extent. This shows
the prospect of learning the acceptance range from past events and leveraging early-stage data assimilation to
constrain CME flux rope parameters for predicting new events, thereby improving CME arrival time predictions
at 1 au. As data from additional CME events become available, we can continually update the acceptance range
following this Bayesian framework. Importantly, the DA procedure offers computational savings, as the filtering
only requires synthetic WL simulation of 3 hr of physical time, currently taking approximately 13 hr of wall-clock
time on 3,304 CPUs on Frontera. Completing the simulation to obtain 1 au results would take approximately 16 hr
on the same number of cores. Therefore, down-selecting a smaller ensemble of simulations for completion to 1 au
reduces the overall computational cost for accurate CME arrival time prediction.

Lastly, we present the ensemble prediction for three quantities of interest (Qols), U, Np, and Bz, with and without
DA in Figures 13—15 for CME1-3. The point estimate, given by the ensemble average and shown as the solid red
line in the figures, is calculated after aligning all simulated quantities. The prediction interval is constructed based
on 0.025-th and 0.975-th quantiles of ensemble members. These Qols predictions are then aligned with the
observations to facilitate comparison, and the CME arrival predictions are shown separately as dashed red lines.
We observe that while there is significant improvement in CME arrival time prediction with DA, the Qols
prediction with the filtered ensemble does not necessarily outperform the
prediction without filtering in terms of accuracy to the OMNI observational
data. This shows the difficulty of predicting these Qols and the misalignment

Linear Regression Results and Correlation Coefficients for the Three CME of calibrating the model to predict the Qols versus the arrival time.

Events

CME1 CME2 CME3

5. Conclusions

Slope (k)

15 15 22
7.7 11 10

In this study, we demonstrated the benefit of combining MHD CME simu-

Y intercept (b) in hours

Spearman's rank correlation 0.94 0.98 0.99

lations with DA to improve CME arrival time prediction. We performed a
correlation analysis between the LASCO WL edge speed overshoot
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Table 7
Arrival Time Prediction Errors (in Hours) for the Three CMEs, With and Without DA, and With and Without Background
Correction

With background correction CME1 CME2 CME3 MAE
Prediction error with DA 0.8 £ 3.7 9+ 14 54 39 5.1
Prediction error without DA 14.6 £ 4.9 10.9 £ 2.0 147 £ 4.5 13.4
Acceptance range of 5 [-52%, —1%)] [~30%,10%] [-52%,10%] [~45%,6%]
Ensemble size without DA 20 19 23 -
Ensemble size with DA 6 10 11 -
Without background correction CMEI CME2 CME3 MAE
Prediction error with DA =27 £ 42 121 £ 1.2 35 £ 42 6.1
Prediction error without DA 12.8 £ 5.5 13.5 £ 1.8 13.4 + 4.8 13.2
Acceptance range of 5 [~43%,3%] [-27%,12%] [-43%,12%] [-38%,9%]
Ensemble size without DA 20 19 23 -
Ensemble size with DA 6 9 11 -

(simulation vs. observation) and the arrival time error at L1, and a very high degree of correlation was observed.
The Spearman's rank correlation coefficients are greater than 0.90 for the three CME events considered in this
paper. We developed a Bayesian DA procedure to quantify the uncertainty in the WL speed overshoot and filter
the initial ensemble based on LASCO WL observations. Fusing DA into a physics-based model framework
substantially reduced the MAE of CME arrival time prediction from 13.4 to 5.1 hr over the three CME events.
Another benefit of this DA procedure is to reduce the computational cost by only propagating a smaller and more
reliable ensemble to 1 au. While CME arrival time predictions with similar accuracy can be achieved using
simpler and computationally less expensive models (e.g., Chierichini et al. (2024); Zhao & Dryer (2014)), the
Sun-to-Earth 3D MHD simulation provides comprehensive predictions for plasma parameters and magnetic field
in the full 3D domain and is also suitable for physical interpretation of the CME evolution and propagation
through the heliosphere.

The following are the key contributions of this work:

1. Real-time availability: We proposed DA of L1 observations of the background solar wind and SOHO LASCO
WL coronagraph observations. Both data are readily available, which makes this approach highly viable for
forecasts in an operational setting with further refinement and scaling.

2. Reduction of uncertainty: We have established the high correlation between the simulated CME's WL
propagation speed and the CME arrival time, based on which we developed a data assimilation procedure to
filter the initial ensemble by the WL speed overshoot and reduce uncertainties in flux rope parameters.

3. Predictive uncertainty estimation: We proposed a probabilistic CME arrival time prediction based on the data-
assimilated ensemble to cover the uncertainty and achieve more accurate results at 1 au.

4. Automation: We developed an automated processing pipeline for both observational and synthetic LASCO
WL images that is robust to complex CME morphology and also efficient when applied to ensemble simu-
lations. We designed an automated processing pipeline for estimating CME arrival time in ensemble simu-
lations with the background solar wind correction.

5. Flexibility: The down-selecting criterion in the DA is conducted within a Bayesian framework, which can be
continually updated as more events are studied.

There are several avenues of future work that can further improve the current method. First, robustness of the DA
procedure can be strengthened by incorporating a more extensive range of events to cover diverse types of CMEs.
We note that the simulations for the three CMEs studied in this work exhibit similar characteristics, consistently
predicting shorter transit times compared to the observed data, even when synthetic white light images align well
with coronagraph observations. While the results may suggest a systematic model bias, the small sample size of
CMEs could also skew the analysis, as the model may exhibit different transit time behaviors when tested on a
broader variety of CMEs. Second, the spatial and temporal information contained in the sequence of WL images is
lost when the image is summarized into a scalar quantity of WL speed overshoot, and other WL features can
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Figure 12. Left column: Linear regression analysis of the CME arrival time error versus the CME propagation speed
overshoot. A positive error means that the model predicts an arrival time earlier than the actual arrival time. Shaded area
represents the 95% prediction interval. r is the Spearman's rank correlation coefficient. Right column: The averaged CME
propagation speed as a function of the position angle. Simulations are color-coded based on the prediction error in CME arrival
time. The dashed line represents the observation.
potentially even better inform the CME arrival time as well as other quantities of interest such as U, Np, and Bz. A
key challenge to finding informative features lies in identifying a relationship that is transferable across different
events. Third, the relatively high spread in arrival time, such as in CME2, suggests the need of calibration of
feasible range of flux rope parameters.
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Figure 13. Ensemble predictions of CME arrival time and quantities of interest (Qols) in the 1 hr averaged OMNI data (black)
for CMEI before (the first row) and after (the second row) DA. Qols predictions are aligned with the actual CME arrival time
(green and dashed) for better comparison, with CME arrival time predictions shown separately as a dashed red line. Both the
solid and dashed red lines indicate the ensemble average. The shaded area represents the 95% prediction interval.
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Figure 14. Ensemble prediction of CME arrival time and quantities of interest in the 1 hr averaged OMNI data for CME2.

Notations are the same as in Figure 13.
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Notations are the same as in Figure 13.

Appendix A: Shock Detection Algorithm

Let ¢ denote the time and u(¢) denote the solar wind speed at time . We assume that the difference of solar wind
speed:

x, = u(t+ 1) — u(?), (A1)

follows a Gaussian distribution x, ~ N(u, ¢*), with mean y and variance o°. Then if we apply a sliding window
with bandwidth /4 to the time series x,, and if we denote the sample variance calculated on the i-th window as

1 & )
S12 = h—1 Z (xi+m - x)Z’ (A2)
m=1
it is easy to show that
(h—1)82
2 X (h=1), (A3)
and so
S2
F = tS+21 ~F(h—=1,h—1), (A4)

i

h

¥y =1
where ¥ = ;) _;

degree of freedom h, and F(n,m) is the F distribution with n and m degrees of freedom.

X; 4 is the sample mean over the sliding window, y%(h) is the Chi-square distribution with

Using the statistics F;, the change point is detected by statistical hypothesis testing. The null hypothesis H, as-
sumes that the mean value of x; on the i-th window, y;, is equal to the mean value of x; on the (i + 1)-th window
H; 41, that s,

Hy :pp = pig (A5)
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significance level a to detect the change point:
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where F,(h — 1,h — 1) is the upper percentile of an F-distribution with 2 — 1 and 2 — 1 degrees of freedom.
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