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ABSTRACT
Molecular dynamics simulations of a small redox-active protein plastocyanin address two questions. (i) Do protein electrostatics equilibrate
to the Gibbsian ensemble? (ii) Do the electrostatic potential and electric field inside proteins follow the Gaussian distribution? The statistics
of electrostatic potential and electric field are probed by applying small charge and dipole perturbations to different sites within the protein.
Nonergodic (non-Gibbsian) sampling is detectable through violations of exact statistical rules constraining the first and second statistical
moments (fluctuation–dissipation relations) and the linear relation between free-energy surfaces of the collective coordinate representing the
Hamiltonian electrostatic perturbation. We find weakly nonergodic statistics of the electrostatic potential (simulation time of 0.4–1.0 ωs) and
non-Gibbsian and non-Gaussian statistics of the electric field. A small dipolar perturbation of the protein results in structural instabilities of
the protein–water interface and multi-modal distributions of the Hamiltonian energy gap. The variance of the electrostatic potential passes
through a crossover at the glass transition temperature Ttr ≃ 170 K. The dipolar susceptibility, reflecting the variance of the electric field inside
the protein, strongly increases, with lowering temperature, followed by a sharp drop atTtr. The linear relation between free-energy surfaces can
be directly tested by combining absorption and emission spectra of optical dyes. It was found that the statistics of the electrostatic potential
perturbation are nearly Gibbsian/Gaussian, with little deviations from the prescribed statistical rules. On the contrary, the (nonergodic)
statistics of dipolar perturbations are strongly non-Gibbsian/non-Gaussian due to structural instabilities of the protein hydration shell.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0229619

I. INTRODUCTION

This study explores the statistics of electrostatic fluctuations
produced by the protein–water thermal bath inside proteins. Molec-
ular dynamics (MD) simulations are performed to study general
rules applicable to the statistics of two electrostatic observables: the
electrostatic potential and the electric field inside a small globular
protein plastocyanin (PC). This protein participates as an electron
shuttle in the electron transport chains of plants,1 delivering elec-
trons from photosystem I to photosystem II. The distribution of
the electrostatic potential at the PC’s active site is a major factor2
affecting the activation barrier for the reaction of electron transfer
between PC and electron donor/acceptor in the membrane-bound
protein complexes of two photosystems.3,4 In contrast, the distri-
bution of the electric field is a major factor defining the medium-
induced shift and broadening of optical spectral lines of photoac-
tive chromophores in proteins.5 Both electrostatic observables can,
therefore, be connected to laboratory observations. Keeping that in

mind, we view them here as generic properties of proteins solvated in
water and ask general questions about the statistics of these two col-
lective electrostatic variables and the dependence of their statistical
moments on temperature.

While the statistics of the electrostatic potential ϵ and the elec-
tric field E can be directly calculated from MD trajectories, we will
follow the protocol of experimental interrogation of physical prop-
erties by observing the response of the protein–water system to a
small perturbation, allowing one to use linear response theories.6,7
In particular, we will introduce a change in the system Hamiltonian
ωH by either altering partial charges on tagged residues or by plac-
ing a dipole moment ωω on a bond within the protein residue. The
goal here is to establish the basic phenomenology of protein electro-
statics by looking at the response of the thermal bath to such small
multipolar perturbations.

Deviations of the system from equilibrium can be characterized
by a set of collective coordinates establishing external perturbations.
The reversible work required to bring the system out of equilibrium
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defines the free energy surface (potential of mean force, PMF). The
system is expected to reach PMF’s minimum at equilibrium. Such
a generally multidimensional free-energy surface can be approx-
imated by a paraboloid near the equilibrium set of the chosen
collective coordinates. This is depicted as a one-dimensional surface
along a single collective coordinate shown in Fig. 1. The position of
mechanical equilibrium is thus characterized by zero total force act-
ing on the protein: ftot = 0. The total force is a sum of a number of
forces of different physical nature, of which electrostatic (el) and van
der Waals (vdW) forces are the two main contributions. Neglecting
other components, one can thus write fel = ⌐fvdW.

While the total force reaches zero at mechanical equilibrium,
the individual force components do not have to become zero. It is,
in fact, well established that proteins possess high electric fields in
their interior,5,8 implying that electrical and vdW forces are sepa-
rately out of equilibrium (fel,vdW ≠ 0) when the overall mechanical
equilibrium is reached for the protein. This is indicated by the two
shifted parabolas for electrostatic (el) and vdW free-energy surfaces
shown in Fig. 1. The slopes for the electrostatic and vdW surfaces are
nonzero at equilibrium: the slope of the electrostatic free-energy sur-
face indicates a nonvanishing average electric field within the protein
at equilibrium.

The total free energy surface can be approximated by a parabola
near equilibrium, and one anticipates Gaussian statistics for a collec-
tive coordinate u = uel + uvdW specified in the following. However,
given that components uel,vdW are not at mechanical equilibrium,
Gaussian statistics do not have to apply to them. In other words,
while the distribution of u samples the states near the equilib-
rium and is necessarily Gaussian, the components uel,vdW sample the
wings of the distribution and can potentially be non-Gaussian. Here,
we focus solely on the electrostatic component to examine, by MD
simulations, whether the electrostatic potential and the electric field
follow the Gaussian statistics. This question is not easy to answer
directly since sampling of distribution wings requires advanced
sampling techniques.9 We will, therefore, resort to analyzing rela-
tions between statistical moments of the Hamiltonian perturbation
in the unperturbed and perturbed states required by the Gaussian
statistics. We also ask the question of whether the second central

FIG. 1. Schematic drawing of the free-energy surface of the protein–water system
vs an unspecified collective coordinate. The total free energy is at minimum at the
equilibrium configuration. The electrostatic (el) and van der Waals (vdW) compo-
nents of the free energy do not have to be at equilibrium and their corresponding
minima can be shifted from the equilibrium configurations. The slope of the electro-
static potential energy quantifies the average electric force, ⌐Q⌜E⌜, in the protein
(Q is the protein charge).

moments of these perturbations follow the linear temperature law(∝ T), known as the Johnson–Nyquist law,10 anticipated by the
fluctuation–dissipation theorem (FDT).11,12

Proteins possess a wide range of relaxation times nearly contin-
uously distributed between picosecond and millisecond time scales
or even longer.13–16 The broad tail in the distribution of relaxation
times implies that equilibrium sampling is not always attained on a
given observation time ϑobs associated either with the length of the
simulation trajectory in numerical simulations or with the resolution
time of the spectrometer in laboratory experiments.17,18 Nonequi-
librium sampling implies that Gibbsian statistics (defined in the
following) do not apply and one needs a measure of deviations from
the anticipated equilibrium sampling.19,20 These concerns are com-
bined with the picture of nonequilibrium electrostatics in proteins
(Fig. 1) to address the following questions. (i) Do Gibbsian statistics
describe protein electrostatics? (ii) Are the statistics of electrostatic
fluctuations Gaussian and do they follow the standard prescriptions
of the FDT?6,7,11

The collective coordinate adopted in our study is the change of
the electrostatic interaction energy between a tagged protein residue
and the surrounding protein–water thermal bath. The collective
variable is thus the variation of the system Hamiltonian ωH. All
motions of the medium are projected out on this collective coor-
dinate to create a single-coordinate PMF, that is, the system free
energy vs ωH. The picture of the smooth parabola shown in Fig. 1
might not reflect the reality since it was proposed that the landscape
of proteins can be rugged,13,15,18,21,22 which many local minima of
nearly equal free energy values (similar to fragile glasses in glass sci-
ence23). This scenario seems unlikely given an enormous reduction
of the entire protein–water phase space to a single collective coordi-
nate. The PMFs we find are indeed mostly smooth and we only find
some occasions of PMFs with two minima for the electric field, car-
rying some similarity with basins of attraction assigned to potential
energy landscapes of glassformers.24,25 When this happens, statis-
tics of electrostatic fluctuations become distinctly non-Gibbsian and
non-Gaussian.

In what follows, we describe MD simulations introducing small
electrostatic perturbations to two residues and the active site of
PC. The main goal is to formulate the general statistical rules for
the statistics of the electrostatic potential and the electric field pro-
duced by the protein–water thermal bath at specific locations inside
the protein. We study the distributions of the potential and field
variables and test them on compliance with the static limit of the
FDT.26,27

It is often believed that active sites of enzymes are evolutionally
designed to provide special electrostatic properties, allowing lower
activation barrier for enzymatic reactions.28,29 Electron-transfer pro-
teins, to which PC belongs, can also be viewed as enzymes lowering
the activation barrier for redox reactions changing the oxidation
state of the active site.30 To address the difference between generic
electrostatic properties of the protein interior and those of the active
site, we compare the statistics of electrostatic fluctuations at two
selected protein residues, which carry no biological function, with
that at the active site of PC. The active site of PC is altered both by
changing the oxidation state of the Cu ion and by placing a per-
turbation dipole on the Cu–S bond connecting the Cu ion with
sulfur of methionine ligating it (see the supplementary material).
We find that the statistics of electrostatic fluctuations essentially
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follow the same general rules for all sites chosen here, suggesting
that there is little special about the active site from the perspective
of the protein electrostatics. The protein interior is characterized by
generic electrostatic properties. They are related to non-vanishing
and strongly inhomogeneous electric field inside the protein (Fig. 1)
and structural instabilities of the hydration water toward small
dipolar perturbations (see in the following).

II. STATISTICS OF ELECTROSTATIC FLUCTUATIONS
The goal of this study is to ascertain which level of theory

is required to describe the statistics of protein electrostatic vari-
ables. The universally adopted starting point is the Gibbs ensemble31
defined here by the following conditions: (i) Boltzmann weight
exp[⌐ϖH], ϖ = (kBT)⌐1 for states with different energy (Hamilto-
nian) of the system H, (ii) Gibbs postulate32 assigning equal statisti-
cal weights to all states with the same energyH (principle of equal “a
priori” probabilities), and (iii) the ergodicity assumption—implying
the ability to sample all states of the phase space on the observa-
tion time tobs. The last requirement, in practical terms, anticipates
that tobs is longer than the slowest relaxation time in the system ϑα
usually assigned to α relaxation.23 The latter assumption is poten-
tially violated in short simulations of slowly relaxing proteins. We,
however, identify yet another reason for nonergodicity in the follow-
ing: the expansion of the available phase space allowed by structural
instabilities of the protein–water interface.

The starting configuration of the system is the Hamiltonian of
the wild-type protein H0. Several variations of the electrostatic part
of the Hamiltonian are introduced here to measure the response of
the medium to electrostatic perturbations. First, partial charges are
varied by ωqi = 0.3qi on a tagged amino acid (proline 16, PRO16)
such that the system Hamiltonian changes by ωH = Hα ⌐H0= ⩀jωqjϵj, where ϵj are fluctuating site electrostatic potentials. The
state α = 1 (PRO16, Fig. 2) is obtained by applying this modification

FIG. 2. Structure of PC (PDB: 1YLB) with three mutations sites used in this study:
proline 16 (PRO16, iceblue), leucine 5 (LEU5, red), and the copper ion (orange)
and sulfur atom (ochre) of the active site. The average distances between the
mutation sites and the nearest water of the hydration shell are: 3.76 Å (Cα of
PRO16), 6.35 Å (Cu ion), and 5.75 Å (Cα of LEU5).

(see the supplementary material for more details). The Hamilto-
nian of the altered state is Hα = H0 + ωH, and α = 1. We use the
dimensionless variable x = ϖωH.

The second type of perturbation of the wildtype protein
involves the introduction of the altered dipole moment at the car-
bonyl group C=O of the tagged amino acid. This perturbation
introduces additional charges ωqd = ±0.255e to C and O atoms of
the carbonyl group (α = 2 for PRO16 and α = 4 for leucine 5, LEU5)
yielding an additional carbonyl dipoleωω = ωqdrCO, where rCO is the
fluctuating C=O bond length. The resulting average dipole moment
is ⌜ωω⌜ ≃ 1.51 D with the standard deviation of ≃ 0.03 D.

The interaction of the carbonyl dipole with the surrounding
thermal bath can be described in the lowest multipolar order as the
dipole-field interaction. We, therefore, define states α = 2, 3, and 4
with the Hamiltonian Hα = H0 + ωH = H0 ⌐ ωω ⋊ E, where E is the
electrostatic field from the rest of the protein and the water sol-
vent at the tagged protein site. The assignment of the perturbation
to the electric field was tested for consistency by direct calculations
involving potentials ϵj at two atomic charge perturbations ωqd,j.

The dipole moment perturbation is also applied to the active
site of PC, where the dipole moment of the Cu–S bond connecting
the Cu atom of the active site to the ligating sulfur atom of methio-
nine is modified by placing 0.4e on the Cu atom and ⌐0.4e on the
sulfur atom (state α = 3). Similar to the case of potential alteration,
we introduce the dimensionless variable y = ϖωH for the alteration
of the residue carbonyl and active site dipoles.

The final energy perturbation introduces a single charge
ωq = 0.3q(0) at the Cu atom of the active site (state 5; q(0) is the partial
atomic charge of Cu in the wildtype PC). This mutation alters the
overall charge of the simulation cell and requires finite-size correc-
tions to the Ewald sums calculations33–35 (see the supplementary
material). This perturbation is designed to probe the statistics of
the electrostatic potential inside the protein and is described by
the dimensionless variable z = ϖωH = ϖωqϵCu, where ϵCu is the
electrostatic potential at the Cu atom.

All simulations, minimizations, and equilibrations were per-
formed with NAMD.36 For the initial system, conjugate gradient
descent minimization was performed for 250 000 steps. Then, NPT
equilibration was performed for 10 ns using Langevin dynamics with
the following parameters: a piston period of 100 fs, a piston decay
time of 50 fs, a piston target pressure of 1.013 bar, and constant tem-
perature targeted at 300 K. NVT production simulations followed up
using the same parameters as in NPT, but with the constant pressure
controls removed. The particle-mesh Ewald technique with a cutoff
distance of 12.0 Å was used to treat the long-range electrostatics.9
All the simulations were generated using 2 fs time steps. The pro-
duction runs were done with the simulation box containing 11 091
TIP3P water molecules and no ions neutralizing the total charge to
avoid electrostatic contributions from the electrolyte. The relevant
corrections35 for the uniform charge background in calculations of
electrostatics with Ewald sums are discussed in the supplementary
material.

A. Gibbsian/Gaussian statistics
A number of general statistical rules apply to the perturba-

tion variable u = x, y, z, imposing constraints on possible forms of
the probability density Pα(u) and the corresponding free energy
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function (PMF) Fα(u). Assuming the Gibbsian distribution of the
variable u, one can derive37–39 a general relation between the prob-
ability densities P0(u) in the initial (wildtype) state and probability
densities in the perturbed states Pα(u),

lnPα(u) = lnP0(u) ⌐ u + ln (Q0⌝Qα), (1)

where Q0 and Qα are corresponding partition functions. If the free-
energy surfaces fα(u) = ϖFα(u) = ⌐ln Pα(u) are associated with the
probability densities, one obtains a linear relation between fα(u),

fα(u) = f 0(u) + u ⌐ ω fα. (2)

Here, ω fα = ⌐ln(Qα⌝Q0) = fα ⌐ f0 is the difference of thermody-
namic free energies (scaled with ϖ) in states α and 0. This relation is
limited only by the assumption of the Gibbsian statistics,31 as defined
above. It provides the difference of thermodynamic free energies in
two states ω fα [in contrast to PMFs fα(u)] from the intercept of the
straight line of fα(u) ⌐ f0(u) vs u.

If the number of particles involved in fluctuations of u is large,
the central limit theorem prescribes Pα(u) to approach the Gaussian
distribution, resulting in parabolas for fα(u),

fα(u) = fα + (u ⌐ ⌜u⌜α)2
2Ϛ2

. (3)

The variances of two Gaussian distributions,

Ϛ2 = ⌜(ϕu)2⌜0 = ⌜(ϕu)2⌜α (4)

must be equal if the linear relation (2) is satisfied.
Combining Gibbsian and Gaussian statistics imposes very sig-

nificant constraints on the values of the first, ⌜u⌜α, and second,
Ϛ2α , statistical moments. The difference of first statistical moments
connects to the variance in the static limit of the FDT,26

ω = ⌜u⌜0 ⌐ ⌜u⌜α = ⌜(ϕu)2⌜. (5)

Here, based on Eq. (4), we put ωα = ω0 = ω. One additionally finds
the connection between the free energy difference and the mean of
the first moments: ω fα = um, where um = (⌜u⌜0 + ⌜u⌜α)⌝2 at α > 0.

Equal results are obtained when a sufficiently small pertur-
bation u is chosen to allow the use of the perturbation theory
(supplementary material). When the first-order perturbation theory
is applied to the Hamiltonians ωHα = Hα ⌐H0, one arrives at the
results equivalent to assuming Gaussian distributions Pα(u). Devia-
tions of the first and secondmoments fromEqs. (4) and (5) signal the
breakdown of the Gaussian approximation. The free-energy func-
tions fα(u) must be non-parabolic in this case. Even in this case,
the Gibbsian statistics can still be maintained if the linear relation in
Eq. (1) is satisfied.40

Deviations from Eq. (5) signal either the appearance of the
non-Gaussian statistics or the violation of the Gibbsian statistics dis-
cussed in the following. Both scenarios can be quantified in terms of
the ratio of an effective temperature Teff and the kinetic temperature
T according to the following relation:27

Teff

T
= ⌜(ϕu)2⌜max

ω
. (6)

TABLE I. Statistics of u = x, y, z obtained by mutating the wildtype state 0
(T = 300 K).

States Teff⌝T ω Ϛ20 Ϛ2α ↼⌐1

0,1 (x)a 1.26 0.58 0.69 0.72 1.22
0,2 (y)b 2.85 2.17 1.08 6.20
0,3 (y) 1.68 7.08 1.47 11.86
0,4 (y) 1.08 3.71 4.00 2.60 1.0
0,5 (z)c 1.50 0.80 1.17 1.20 1.02
aStates involved in the calculations and the variable x, y, or z specifying the alteration of
the system Hamiltonian.
bThe distribution of the perturbed state is bimodal and the linear relation [Eq. (2)] does
not hold.
cFinite size corrections are applied to account for altering charge of the simulation
cell when the charge mutation is introduced (see the supplementary material). One
finds Teff⌜T = 0.98 without corrections, in a good agreement with ↼⌐1 calculated from
uncorrected free-energy surfaces.

Here, in anticipation of the breakdown of the Gaussian statistics and
the violation of Eq. (4), ⌜(ϕu)2⌜max specifies the maximum variance
between Ϛ20 and Ϛ2α . We show in the following that Ϛ2α⌝Ϛ20 can be as
high as 7–8 (Table I) and merely taking the mean of two variances
does not provide a meaningful metric of the non-Gaussian statistics.

B. Nonergodic sampling
Given that the Gibbsian statistics is the only assumption used in

deriving Eqs. (1) and (2), the violation of the linear relation between
the PMFs is an indication of non-Gibbsian statistics. Our simula-
tions presented in the following indeed show that the linear relation
between fα(u) [Eq. (2)] is often violated and, phenomenologically,
can be replaced with an alternative linear relation involving a slope
lower than unity (↼ ≤ 1),

fα(u) = f 0(u) + ↼u ⌐ ω f neqα . (7)

Here, given the nonequilibrium sampling, we have also specified a
nonequilibrium offsetω f neqα . It is important to emphasize that fα(u)
in Eq. (7) are given in terms of time averages, which do not coin-
cide with ensemble averages when ergodicity is broken. Therefore,
the functions fα(u) in Eq. (7) depend on the observation time and
do not carry the universal meaning of the corresponding Gibbsian
ensemble averages in Eq. (2). We do not introduce separate nota-
tions for the former since only time averages are allowed to us in
numerical simulations.

The violation of the Gibbsian statistics leading to Teff > T
has been found in MD simulations of a number of redox active
proteins,27,39 with the separation between Teff and T increasing
for large membrane-bound proteins of electron-transport chains of
bacterial photosynthesis and respiration.41,42 One anticipates that
longer sampling is required for larger proteins, with the resulting
stronger violation of the equality between Teff and T. We have cho-
sen a small redox-active protein here with the hope to achieve full
equilibration on the simulation time scale of 0.4–1.0 ωs to study
the statistics of fully equilibrated electrostatic variables. However,
even for a small protein, there are noticeable deviations between
Teff and T attributed to the violation of equilibrium sampling and
to non-Gibbsian statistics (Table I).
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The non-unity slope [Eq. (7)] also leads to the violation of the
FDT equality between the first and second moments [Eq. (5)] and
thus yields Teff ≠ T. It still requires the equality between two Gaus-
sian variances [Eq. (4)] when the Gaussian statistics hold. In that
case, fα(u) in Eq. (7) are parabolic and one obtains

↼ = T⌝Teff, ω f neqα = ω fα(T⌝Teff). (8)

The slope of the linear relation in Eq. (7) is a direct measure
of the effective temperature provided the distributions Pα(u) are
Gaussian, which is often the case with long-range electrostatic fluc-
tuations involving many particles (central limit theorem). An illu-
minating example from optical spectroscopy of proteins is discussed
in the following. The deviation of the nonequilibrium offset ω f neqα
from the equilibrium free energy difference ω fα can be observed in
nonequilibrium injection of charge carriers into molecular junctions
when the measured nonequilibrium resonance peak deviates from
the equilibrium reduction potential.42,43

C. Statistics of ωH
Table I presents the results of MD simulations for electro-

static perturbations produced at two protein residues and at the
active site of PC in TIP3P water, as described in more detail in the
supplementary material. As mentioned above, states α = 1, 2 spec-
ify electrostatic perturbations applied to the PRO16 residue close
to the surface of PC, while state 3 is obtained by placing a dipole
on the Cu–S bond of the active site. State 4 is produced by placing
a probe dipole to LEU5, and state 5 is obtained by increasing the
partial charge of the Cu ion in the active site (Fig. 1).

The 0→ 1 perturbation does not involve changing the residue
charge and can be viewed as a mixed probe involving a multipolar
expansion starting from the dipole moment. The variances of the
variable x are nearly equal in two states [Eq. (4)], but the slope of the
linear relation is less than unity supporting Eqs. (7) and (8). In the
case of potential perturbation (0→ 5),Teff > T comes from applying
the finite-size corrections35 (see the supplementary material), which
discriminate between ω and Ϛ2: the statistics directly from simula-
tions are Gibbsian and Eq. (5) is satisfied. It is currently unclear how
to apply finite-size corrections to the free-energy surfaces, which are
calculated directly fromMD trajectories.

States targeting the electric potential largely fall in line with the
expectations of linear response. Increases in the calculated effective
temperatures span 26%–50% of the bath temperature when account-
ing for finite-size effects. State 1 shows a modest deviation from
linear response, with the variance approximately conserved between
states. While the active site showed the greatest response here, it was
not by a large margin. This result runs counter to the idea that the
active site has been specially crafted to possess unique electrostatic
properties.

D. Electric field statistics
The statistics of the electric field probed by the perturbation y

are both non-Gibbsian and strongly non-Gaussian. It appears that
even small dipolar perturbations to various sites within the protein
produce strongly nonlinear responses of the protein–water thermal
bath. Changing the carbonyl dipole at PRO16 (0→ 2) results in a
distinctly bimodal distribution of the hydration water in the per-
turbed state, thus leading to a bimodal free-energy surface f2(y)

[Fig. 3(a)]. In contrast, placing the probe dipole to the Cu–S bond
of the active site (0→ 3)makes the protein distribution both shifted
and strongly broadened. It is likely that the broad basin in state 3
is a superposition of closely separated minima. In both cases, one
finds Ϛα > Ϛ0 and non-Gaussian fα(y) for α > 0 [Figs. 3(a) and 3(b)].
The perturbation of LEU5 (0→ 4) results in less dramatic conse-
quences because this residue is more separated from the hydration
shell (Figs. 1 and S1). Moving from 0→ 2 to 0→ 3 to 0→ 4 shows a
decrease in the non-Gaussian character of the electric field response.
One can, therefore, conclude that it is the hydration layer of the pro-
tein that is responsible for the non-Gibbsian/non-Gaussian statistics
of the electric field.

It is also clear that the linear relation between unperturbed
and perturbed free-energy surfaces [Eq. (2)] cannot be satisfied if
a one-well PMF is transformed to a two-well PMF by perturbation
[Fig. 3(a)]. The induction of a structural transition by a perturba-
tion is thus a signature of non-Gibbsian statistics of the perturbing
collective variable.

The non-Gaussian statistics of the coordinate y result in ω
falling between two distinct variances for all dipolar perturbations
(Table I). The Q-model distribution, derived to describe statistics
of perturbations in electron-transfer reactions and optical spec-
troscopy,40 satisfies this constraint. This generic distribution func-
tion describes transitions in systems with altering force constants of
the harmonic medium between two states or, in other words, allow-
ing different variances of the perturbation variable u in the original
and perturbed states. The Q-model was derived in the Gibbs ensem-
ble and thus follows the standard linear relation [Eq. (2)]. Conse-
quently, the distributions in two states are skewed, but not bimodal.
Figures 3(c) and 3(d) show Pα(u) produced with the Q-model
based on the statistical moments provided by MD (supplementary
material). It captures the general features for 0→ 3, 4 perturbations
but, being a Gibbsian model, does not capture the bimodal form of
f2(y) shown in Fig. 3(a) (Fig. S2).

FIG. 3. fα(y) = ⌐ln Pα(y) for α = 0 (open points) and α = 2 (filled points) (a) and
α = 0, 3 (b). Distributions Pα(y) in state 3 (c) and state 4 (d). The points indicate
MD calculations, and the solid lines refer to the Q-model40 calculations based on
Ϛ2α, ω, and ym from MD simulations.
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TABLE II. Separation of the total variance in the protein, water, and cross compo-
nents. In addition, Teff⌝T are shown for the protein (p) and water (w) components of
the thermal bath.

States (Teff⌝T)p Ϛ2p ωp (Teff⌝T)w Ϛ2w ωw Ϛ2 2Ϛpw

0 (x) 1.64 0.43 0.26 1.65 0.52 0.32 0.69 ⌐0.25
1 (x) 0.39 0.52 0.72 ⌐0.19
0 (y) 3.15 0.89 0.28 3.95 0.97 1.89 1.08 ⌐0.78
2 (y) 0.85 7.47 6.20 ⌐2.13
0 (y) 1.74 1.35 4.24 1.02 1.46 2.84 1.47 ⌐1.34
3 (y) 7.39 2.90 11.86 1.57
0 (y) 1.21 4.36 3.62 6.63 0.62 0.09 4.00 ⌐0.98
4 (y) 3.12 0.39 2.60 ⌐0.91
0 (z)a 98.0b 1.77 0.018 2.11 2.00 0.948 0.984 ⌐2.53
5 (z) 1.25 1.56 1.012 ⌐1.80
aNo finite-size corrections applied to the protein and water components.
bThe distributions are distinctly non-Gaussian, producing a very low shift ω between
the two states.

E. Protein and water components
All the perturbations considered here can be separated into

corresponding protein (p) and water (w) components: u = ϖωH= p +w. The overall variance of u is a composite quantity,

Ϛ2 = Ϛ2p + Ϛ2w + 2Ϛpw , (9)

including the self-components and a cross term Ϛpw = ⌜ϕpϕw⌜.
The cross term is nearly universally negative (Table II), physically
reflecting dielectric screening of the protein charges by hydration
water.

Table II also presents (Teff⌝T)p,w from Eq. (6) for the pro-
tein and water components of the total Hamiltonian perturbation.
The effective temperatures of components typically exceed those cal-
culated for the total perturbation (Table I). This does not imply
enhanced nonergodic sampling of component perturbations since(Teff⌝T)p,w > 1 is allowed by standard statistical-mechanical argu-
ments. For instance, perturbation theory suggests that the compo-
nent variances can be obtained from the corresponding ωa, a = p,w
and the cross-correlation term44 (supplementary material),

Ϛ2a = ωa ⌐ Ϛpw. (10)

With a negative Ϛpw , this equation leads to Ϛ2a > ωa, as reported
by the simulations. However, a quantitative agreement between
Eq. (10) and simulations is poor. Nevertheless, it shows that coupling
between protein and water is responsible for the breakdown of the
standard relation between the first and second statistical moments:
Ϛ2a > ωa and (Teff⌝T)p,w > 1 do not violate the standard rules of
Gibbsian statistics.

III. TEMPERATURE DEPENDENCE
All electrostatic perturbations introduced at three sites of PC

are designed to satisfy the linear response approximation and to
avoid the nonlinear electrostatic response. The linear response
approximation6,7 also prescribes the variance Ϛ2α to satisfy the

Johnson–Nyquist temperature dependence,10 predicting that ther-
mal noise of a macroscopic statistical variable scales linearly with
temperature,

(kBTϚα)2 = 2kBT↽α. (11)

The parameter ↽α here is known as the reorganization energy in
theories of electron transfer when electrostatic perturbation is exper-
imentally achieved by delivering an electron to a localized site in
a half (involving an electrode) or a full (involving a donor and
an acceptor moieties) redox reaction.45 The electrostatic perturba-
tions used here introduce either fractional charge ωq or a dipole
moment ωω to protein sites. When linear response is satisfied, ↽α
scales linearly with either ωq2 or ωω2 and our results can be applied
to practical situations of redox reaction or spectroscopy by rescal-
ing ωq to ⌐1e and ωω to the alteration of the chromophore dipole
moment with optical excitation.

The reorganization energies ↽α(T) are expected to be constants
according to the Johnson–Nyquist equation [Eq. (11)]. Therefore,
we cast our MD data in the form of ↽α(T) to quantify potential devi-
ations from this standard expectation due to either structural tran-
sitions or ergodicity breaking (glass transition) in the protein–water
thermal bath. We, therefore, use Eq. (11) to split ↽α into the protein
and water components and the cross term,

↽α = ↽pα + ↽wα + 2↽pwα . (12)

We find notable violations of ↽α(T) = Const, and the character of
these violations is affected by the choice of the electrostatic property,
that is either the electrostatic potential or the electric field.

Figures 4(a) and 4(b) shows the reorganization energies ↽α(T)
for two states α = 0, 1 and the corresponding water components
↽wα (T). One finds a crossover, at around 150–170 K, from con-
stant values of ↽ at high temperatures, in accord with Eq. (11), to
approximately linearly decreasing functions. Previous MD simula-
tions of PC with the simulation time of ≃ 10 ns found the crossover
at higher temperatures,44 ≃ 200–220 K, close in magnitude to the
temperature of dynamical transition46 Td reported by quasielastic
neutron scattering with the observation time of ≃ 0.1–1 ns. The drop
in Td at the longer observation time ∼ 0.4–1.0 ωs in the present

FIG. 4. (a) ↽α(T), where α = 0, 1. (b) ↽wα , where α = 0, 1 (0,1 perturbation). (c)
↽p,w0 (T) when the perturbation is achieved by adding the charge ωq = ⌐1e to the
Cu atom of PC. (d) ↽0 and ⌐↽pw0 with the perturbation as in panel (c).
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simulations is consistent with the general interpretation of the
dynamical transition as the point at which a major relaxation pro-
cess, with the relaxation time ϑ(T), crosses the observation time: ϑobs≃ ϑ(Td).47–50 A general outcome of this perspective is lowering of
Td for longer sampling times, as we find in our present simulations.
The kink temperature, 150–170 K, found here comes close to the
glass transition temperature of protein hydration water, ≃ 170 K,48
signaled by an abrupt change in the expansion coefficient of water in
hydrated lysozyme powders. This connection to observations sug-
gests that the kink shown in Figs. 4(a) and 4(b) can be attributed to
hydration water.

A similar analysis is presented in Figs. 4(c) and 4(d), where
↽0(T) is calculated for state 0, assuming that the perturbation
involves adding the charge ωq = ⌐1e to the Cu atom of the PC’s
active site. This perturbation corresponds to a half redox reac-
tion when an electron is transferred to PC to change its oxidation
state. The results presented for state 5 in Table I are produced with
ωq = 0.1125e and can be connected to an electrochemical exper-
iment by rescaling with ωq⌐2, as is shown in Figs. 4(c) and
4(d).

The temperature dependences of the water and protein compo-
nents of ↽0 shown in Fig. 4(c) resemble the results shown in Fig. 4(a):
the component ↽ shows a kink at a slightly higher temperature. How-
ever, in contrast to Fig. 4(b), the total ↽0(T) is nearly flat. This
distinction must require the protein–water correlation term ↽pw0 to
show a sharp change below the crossover temperature [Fig. 4(d)].
Interestingly, we find that the total reorganization energy and the
cross terms nearly coincide in magnitude at high temperatures, but
are opposite in sign, ↽0 ≃ ⌐↽pw0 . The total reorganization energy at
high temperatures becomes

↽0 ≃ 1
3
⌝↽p0 + ↽w0 ⌝. (13)

The cross term ↽pwα physically reflects the screening of protein
charges by interfacial water. A positive ionized residue at the pro-
tein surface induces a negative surface charge from the water dipoles
oriented by the local electric field, leading to a negative sign of the
cross term. A substantial drop in ⌝↽pw0 ⌝ at lower temperatures and the
ensuing breakdown of Eq. (13) signal a strong change in the ability
of interfacial water to screen protein’s charged residues. The indi-
vidual components ↽p,w0 drop at low temperatures, but so does the
magnitude of mutual screening.

The Johnson–Nyquist temperature law predicts a linear scal-
ing with temperature for the variance of a macroscopic variable.
There are established violations of this law, such as the tempera-
ture scaling of the macroscopic dipole moment of a polar liquid,
which is typically a decaying function of temperature.51 Following
the protocol established in Fig. 4 for the change in the systemHamil-
tonian induced by altering dipole moment, we define the parameter
↽Eα based on the variance of the electric field E at a given site within
the protein calculated here for α = 0,

↽Eα = 1
2
ϖ⌜(ϕE)2⌜α. (14)

The variance of the electric field at the tagged site can be connected,
in isotropic media, to the dipolar susceptibility of the medium52,53

⇀d,α = ↽Eα⌝3. This susceptibility defines the linear response of the

FIG. 5. Temperature dependence of ↽E0 = ϖ⌜(ϕE2)2⌜0⌝2 produced by protein and
water at the carbonyl dipole of PRO16 in state 0 (a) and at the Cu–S dipole
of the active site (b). Filled diamonds indicate the overall ↽E0 values. The high-
temperature data for the water component are fitted to the a + b⌝T2 functionality
(dashed line). The lower-temperature portion of the water data is fitted to an
a + b⌝T function to guide the eye.

medium to a change in the site dipole and is often given by
using the Onsager formula52,54 in dielectric models of the medium
response.

The interaction of the protein–water electric field with a probe
dipole is more short-ranged than the charge–potential interaction.
One might expect some qualitative differences in the temperature
dependence ↽E0(T) compared to ↽0(T) and, given a shorter range
of interactions, more pronounced deviations from the macroscopic
Johnson–Nyquist temperature law. Indeed, ↽E0(T) (Fig. 5) is very dif-
ferent from ↽0(T) shown in Fig. 4: instead of the kink shown in
Fig. 4, we find a discontinuous transition at Ttr ≃ 170 K. Figure 5
shows the results for ↽E0(T) for PRO16 and the active site of PC,
while the results for the LEU5 dipolar perturbation are shown
in Fig. S3.

In contrast to Fig. 4(c), a pronounced drop at Ttr is seen for
both the protein and water components and for the total ↽E0 . The
high-temperature branch of ↽E0 is notably increasing with temper-
ature, approximately following the a + b⌝T2 functionality (dashed
lines shown in Fig. 5), in contrast to a plateau high-temperature
region shown for ↽0 in Fig. 4. Overall, the transition to the lower-
temperature branch is accompanied with a strong drop in the field
fluctuations.

A. Non-Gaussian parameter
The appearance of crossovers in the temperature dependen-

cies of second moments of either the Hamiltonian energy gap or
the electric field raises the question of their physical origin. Such
crossovers can generally be attributed to either protein–water struc-
tural transitions or to dynamical transitions (ergodicity breaking)
when the time scale of fluctuations, increasing with lowering tem-
perature, crosses the observation time ϑobs (length of the trajectory
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FIG. 6. Binder parameters ⇀0(T) [u = z, Eq. (15)] and ⇀E0 (T) [Eq. (16)] for the
electric field at the active site of PC. The dashed lines are linear fits drawn to guide
the eye.

in our case). To distinguish between the two scenarios, we calculated
the Binder non-Gaussian parameter,55,56

⇀α = 1 ⌐ ⌜(ϕu)4⌜α
3⌜(ϕu)2⌜2α , (15)

where ϕu = u ⌐ ⌜u⌜ and α specifies the equilibrium state used for
statistical averages.

The Binder parameter is expected to show a narrow dip for
a structural transition when two alternative states of the system
become nearly equally accessible in a narrow range of temperatures
around Ttr.56 In contrast, we generally find a transition between
high- and low-temperature branches at Ttr ≃ 170 K. For instance,
Fig. 6 shows ⇀0 for u = z. It is nearly zero at T > 200 K, followed
by substantial negative values at lower temperatures. This crossover
signals an onset of non-Gaussian statistics of z at low temperatures.

The analog of the Binder parameter for a vector variable has
to account for the average over random vector orientations with the
following result for the electric field E:

⇀Eα = 1 ⌐ 3⌜(ϕE)4⌜α
5⌜(ϕE)2⌜2α . (16)

One obtains ⇀Eα = 0 for ϕE, satisfying the Maxwell distribution.
Figure 6 shows ⇀Eα for the electric field at the active site of PC. A
similar trend is found for the electric field at the PRO16 site of
the protein (Fig. S4). As for the scalar Binder parameter (Fig. 6),
there is a change in the temperature dependence of ⇀Eα , but no nar-
row dip expected for a structural transition. We, therefore, conclude
that crossovers observed here have to be related to ergodicity break-
ing (glass transition) at low temperatures caused by the growing
medium relaxation time reaching the level of the observation (sim-
ulation) time. A strong sensitivity of the hydration shell to small
dipolar perturbations introduced to the protein (Fig. 3) suggests that
a structural transition might be present at a lower temperature, but
is pre-empted by the glass transition at ≃ 170 K.
IV. DISCUSSION

This study asks two major questions. (i) Do protein electro-
statics equilibrate to the Gibbsian ensemble on the simulation time
of 0.4–1.0 ωs? (ii) Do the electrostatic potential and electric field
inside proteins follow the Gaussian distribution? The first question

is driven by the recognition of a broad distribution of relaxation pro-
cesses in proteins, including time scales in the millisecond range,
well beyond the typical length of numerical simulations. If the
relaxing modes characterized by such long relaxation times affect
protein electrostatics, the ensuing nonergodic sampling violates
statistical–mechanical relations between the first and second statisti-
cal moments [Eq. (5)]. One anticipates that nonergodic sampling is
pertinent to large proteins20,57 and membrane-bound protein com-
plexes41 encountered in electron-transport chains of photosynthesis
and respiration. Assuming that relaxation is slower for larger pro-
teins, we have chosen here a small redox-active protein plastocyanin
to achieve equilibrium sampling on currently accessible simulation
times.

The violation of Eq. (5) (which connects the first and second
statistical moments of the Hamiltonian perturbation ωH) can be
attributed to either nonergodic sampling or to the non-Gaussian
statistics of ωH. The latter also requires different variances Ϛ2α in
the perturbed and unperturbed states [Eq. (4)]. In contrast, the
violation of the linear relation between the free energy functions
fα(u) [Eq. (2)] is a direct signature of nonergodic sampling and
a non-Gibbsian ensemble. Such violations are not only a matter
of curiosity. It was suggested27,39 that nonergodic sampling car-
ries physiological significance since it lowers activation barriers for
reactions involving redox-active proteins by the ratio T⌝Teff [cf. to
Eq. (8)],

ωF† = ωF†
erg(T⌝Teff). (17)

Here, ωF†
erg is the activation barrier when the conditions of ergodic

(Gibbsian) sampling are satisfied and ωF† is the activation barrier
with nonergodic sampling. The ratio Teff⌝T is expressed either in
terms of the slope ↼ of the modified linear energy gap law [Eq. (7)]
or through the ratio between the second and first central moments
of the energy gap collective coordinate u = ϖωH [Eq. (6)]. The sec-
ond relation connects the effective temperature to experimental
observables.

Both parameters Ϛα [Eq. (4)] and ω [Eq. (5)] carry spectro-
scopic meaning: kBTω corresponds to the medium-induced Stokes
shift, and kBTϚα specifies inhomogeneous broadening in optical
spectroscopy. When light photon is absorbed, the Hamiltonian per-
turbation is the energy of the light photon hc⇁̄ (⇁̄ is the wavenumber
and c is the speed of light in vacuum) and the reduced perturba-
tion coordinate becomes x = ϖhc⇁̄. We use absorption and emission
lines of mStrawberry fluorescent protein58 to illustrate the spectral
analysis.

The total absorption and emission lines shown in Fig. 7 are
superpositions of individual inhomogeneously broadened vibronic
lines with corresponding Franck–Condon weights.59 The decom-
position of the band shapes (supplementary material) allows one
to extract two individual 0-0 Gaussian lines for absorption and
emission,

Pα(x)∝ exp ⌝⌐(x ⌐ xα)2
2Ϛ2α

⌞, (18)

where α = abs, em. The relative shift of their maxima is the medium-
induced Stokes shift kBTω [Fig. 7(a)]. Normalizing the functions
Pα(x) and taking the logarithm of their ratio produces the differ-
ence of the corresponding PMFs and allows one to test the linear
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FIG. 7. (a) Normalized absorption (abs.) and emission (em.) spectra of mStraw-
berry fluorescent protein.58 The band envelopes are decomposed in vibronic lines,
and the dashed lines show the 0-0 transitions for abs. (shaded) and em. (b)
ln[Pabs(x)⌝Pem(x)] vs x = ϖh⇁ = ϖhc⇁̄ (tick line). The dashed line refers to a
linear fit with the slope ↼ = 0.56.

relation in Eqs. (1) and (2). This test applied to mStrawberry fluo-
rescent protein58 indeed leads to a nearly straight line with the slope
↼ ≃ 0.56 [Fig. 7(b)]. One, therefore, obtains Teff⌝T ≃ 1.8. A practical
difficulty of applying this analysis is to find a proper chromophore
with well-resolved absorption and emission lines, but the algorithm
itself provides a direct test of the linear relation between the ground
and photoexited PMFs.

A surprising outcome of our simulations is a strong response
of the protein–water thermal bath to a relatively small, ωω ≃ 1.5 D,
change in a site dipole, which is consistent with or below the typ-
ical dipole changes for chromophores in optical transitions (e.g.,
ωω ≃ 6.5 D for green fluorescent proteins60). We find that altering
the site dipole results in a bimodal distribution of the energy gap
coordinate or to a broad basin most likely arising from a superpo-
sition of multiple minima (Fig. 3). The response and broadening
are reduced for the residue LEU5 in the protein core compared
to PRO16 close to the protein surface (Fig. S1). A strong nonlin-
ear response of the hydration water is, therefore, the origin of the
non-Gibbsian [violation of Eq. (2)] and non-Gaussian [violation of
Eq. (4)] statistics.

A high susceptibility of the hydration shell of PC toward a
small dipolar perturbation is indicative of the proximity of the
protein–water system to the point of structural instability. This
situation is reminiscent of divergent susceptibilities of bulk mate-
rials near phase transitions.61 A small dipolar perturbation induces
a structural re-arrangement of the hydration layer. This outcome
seems to be general for interfacial water. A small dipolar probe
placed near water interfacing a hard-sphere/Lennard-Jones cavity
produces a structural transition similar to that observed here for the
protein–water interface.62 In the former case, one finds a bimodal
shape of the electric field distribution. In addition, the dipolar sus-
ceptibility of interfacial water passes through a sharp spike as the
magnitude of the probe dipole increases. Experimental data also

report a number of structural instabilities of interfacial water, often
leading to the release of O–H dangling bonds, when the charge
of the substrate is altered.63–66 All these results indicate that water
in the interface can adopt alternative structures and can fluctu-
ate between them when the barrier separating the corresponding
minima is altered by the solute–solvent electrostatics. Surface pro-
tein residues are a source of such an external perturbation, making
the hydration shell split into nano-domains and carry properties of
relaxor ferroelectrics.67

A reason for nonergodic sampling of protein electrostatics cited
above is the separation of time scales, i.e., the inability to sam-
ple the system’s phase space on the observation time shorter than
a subset of slow relaxation times. However, structural instabilities
and the appearance of multi-minima PMFs upon an electrostatic
perturbation offer a newmechanism for nonergodic sampling of sol-
vated biomolecules. The phase transition in bulk materials is a prime
example of statistical nonergodicity, given that only the configu-
ration space describing a given thermodynamic phase is accessible
on the experimental observation time.68 The appearance of new
structural states of the protein–water system, unavailable in the
unperturbed configuration, constitutes an expansion of the avail-
able configuration space that breaks the ergodicity assumption of the
Gibbs ensemble. The situation at hand is shown in Fig. 8.

Figure 8 shows the expansion of the phase space available to
the ensemble average when the protein–water system develops a
structural instability upon perturbation. The phase space effectively
available to the system in the one-minimum unperturbed state is
within the energy kBT near the bottom of the potential well. When
the potential well develops two minima in the perturbed state, the
available phase space significantly expands. Such an expansion of the
phase space accessible to sampling is not anticipated in the deriva-
tion of the linear relation between the unperturbed and perturbed
PMFs [Eq. (2)]. The phase space expansion is analogous to altering
a set of constraints defining the ensemble,69 and it results in viola-
tions of the standard statistical relations based on the preservation
of constraints. The key to this picture is a close proximity of the

FIG. 8. Phase space (y, py) of one minimum in the unperturbed state α = 0 and
the combined phase space of two minima in the perturbed state α = 2. The phase
space available to sampling is substantially enhanced due to structural instability
leading to a bimodal PMF. The effective phase space available for sampling is
within the range kBT in the PMF well.
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protein–water interface to points of structural instability. Such insta-
bilities do not have to be global and can involve rearrangements of
clusters of waters around specific parts of the protein surface or of
some surface residues.

V. CONCLUSIONS
To summarize, we found nearly Gibbsian/Gaussian statistics

of the electrostatic potential perturbation, in line with the corre-
sponding fluctuation–dissipation theorem. Dipolar perturbations,
however, disturb the protein–water interface and their statistics
are strongly non-Gibbsian/non-Gaussian. While there are no non-
Gibbsian models to account for the new statistical rules, the ergodic
(Gibbsian) Q-model accounts for the basic features of the non-
Gaussian statistics in response to dipolar perturbations. The dipolar
susceptibility characterizing the electric field variance [Eq. (14)]
shows a strong increase with cooling, interrupted by a dynamical
glass transition at ≃ 170 K.
SUPPLEMENTARY MATERIAL

The supplementary material encompasses the details of the
simulation protocol, analysis of the results, and derivation of equa-
tions listed in the text. In addition, details of applying the Q-model
and the band-shape analysis of optical lines are provided.
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