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Abstract Geocoronal Solar Wind Charge Exchange (SWCX) is the process by which heavy ions from the
solar wind undergo charge exchange with neutral hydrogen atoms from the Earth's exosphere, releasing photons
at discrete energies characteristic of the solar wind ions. This paper investigates the solar wind types driving
geocoronal SWCX. We find that during periods of time‐variable SWCX, higher fractions of every ion species
are recorded by ACE compared to the averages. Notably, a subset of the slow solar wind characterized by a
systematic lower temperature and higher proton flux is surprisingly effective for producing SWCX. Given the
degradation of the solar wind composition spectrometer on ACE in 2011, we explore the capabilities of XMM‐
Newton as an alternative sensor to monitor heavy ion composition in the solar wind. Unlike the distributions of
other ion line fluxes analyzed, only OVIII, extracted via spectral analysis of XMM‐Newton observations,
display patterns similar to the corresponding parent ion abundances from ACE (O8+/ p) . Finally, we employ a
Random Forest Classifier model to predict solar wind types based on literature results. When combining proton
data with XMM‐Newton features, the model performance improves significantly, achieving a macro‐averaged
F1 score of 0.80 (with a standard deviation of 0.06).

1. Introduction
Heavy ions of the solar wind refer to any element heavier than He, that can be completely, or almost
completely, stripped of electrons. They consist primarily of C, N, O, Ne, Ni, Mg, Si, S, and Fe, and constitute
approximately 1% of the overall solar wind population (e.g., Gloeckler & Geiss, 1989). Their abundances are
determined low in the solar corona (Bame et al., 1974), and reflect the local electron temperature and density
history of the wind ions before they freeze‐in (Hundhausen, 1972). From the freeze‐in point, the solar plasma
travels outwards through interplanetary space keeping its composition mostly unaltered (Hundhausen
et al., 1968).

While traveling through the Solar System, the solar wind encounters obstacles such as the Earth's magnetic field,
which acts as an obstruction to its supersonic flow. This interaction causes the solar wind to abruptly decelerate,
resulting in the formation of a shock front known as the bow shock. Downstream of the bow shock, the dynamic
pressure of the solar wind transforms into thermal pressure, that is, the temperature, pressure, and density of the
solar wind increase. The shocked solar wind plasma cannot mix with Earth‐based plasma, so it flows around the
magnetopause, forming a region called the magnetosheath. The magnetosheath plasma is often turbulent and
exhibits small‐scale variations in density, magnetic field strength, and velocity (Rakhmanova et al., 2016, and
references therein). The high solar wind density and the presence of neutral hydrogen from the exosphere, the
outermost layer of the Earth's atmosphere, causes this region to be a source of soft X‐rays (≤2 keV) due to solar
wind charge exchange (SWCX; Cravens, 1997; Freyberg, 1998). SWCX is the process in which highly ionized
solar wind heavy atoms collide with neutral atoms and acquire an electron in an excited state. The decay of the
electron to a lower energy state causes the emission of a photon in the UV or soft X‐ray bands. The process is
formally described by the equations:

Xq+ + M → X∗(q−1)+ + M+, (1)

X∗(q−1)+ → X(q−1)+ + hν, (2)
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where Xq+ is the parent heavy ion carried by the solar wind, and M is the neutral atom. The asterisk on top of
X(q − 1)+ denotes the excitation state of the newly acquired electron. To clarify conventions between emission lines
and ions, OVIII emission lines result from the de‐excitation of O∗7+, which is itself generated through charge
exchange from the solar wind parent ion, O8+. This explains the focus in this paper on comparisons between
parent ions and their corresponding charge exchange emission lines.

SWCX occurs not only in the Earth's exosphere, but it is ubiquitous in the Solar System, arising wherever the solar
wind interacts with interstellar neutrals flowing through the heliosphere (e.g., Lallement, 2004), or planetary
environments like Mars, Venus, Jupiter, and Pluto (see Branduardi‐Raymont, 2022; Bhardwaj, 2006, and ref-
erences therein). Accurate modeling of the SWCX emission is a crucial aspect of understanding the interactions
between the solar wind heavy ions and the local neutral environment. Generally, the SWCX emissivity at a point x
is approximated by Equation 3 (Cravens, 1997),

Q(x) = α nH nSW vSW , (3)

αH(V) = ∑
Xq+ ,j

σXq+,H (V)bX(q−1)+,jEj
Xq+

p
(4)

where, nH is the neutral hydrogen density, nSW vSW is the solar wind heavy ion flux at a point x, and α is the
efficiency factor of the charge exchange. The α parameter (Equation 4) is proportional to the abundances of the
solar wind heavy ions involved in the process, Xq+

p , their cross‐section with neutral hydrogen at their collision
velocity, σq + ,H(V), the branching ratio, bX(q − 1)+,j, which is the fraction of ions with charge state (q − 1)+ that
relax through transition j, and the energies for each emitted transition line, Ej. The heavy ion measurements in
Equation 4 are often taken from the Advanced Composition Explorer (ACE; Stone et al., 1998), located at the
Lagrange point L1, then shifted in time to the Earth's bow shock (e.g., Carter et al., 2011; Koutroumpa, 2024;
Whittaker et al., 2016). This workaround is due to the current lack of heavy ion measurements in the vicinity of
Earth.

One way to validate SWCX models is by comparing simulations to observations of SWCX emissions made by X‐
ray telescopes, for example, by XMM‐Newton, Suzaku, Chandra, and Swift. Among them, only XMM‐Newton
(Jansen et al., 2001) allows narrow field‐of‐view observations of SWCX emission from the magnetosheath.
However, XMM‐Newton is an astronomical telescope and is not optimized for viewing SWCX. It does so
serendipitously, only when its line of sight traverses the magnetosheath while pointing at astronomical targets
(more in Section 2). Although comparisons between XMM‐Newton observations and SWCX model simulations
show a generally positive correlation, there can be extreme variations from case to case (e.g., Carter et al., 2011;
Whittaker et al., 2016). Reasons for such variations might be found in a possible variability of the exospheric
density as a result of a strong geomagnetic activity (Cucho‐Padin & Waldrop, 2019), or fluctuations in solar wind
composition within the turbulent magnetosheath that current models may not fully capture. It should also be noted
that, since the field of view of XMM is so small (15’), a small uncertainty in the location of the magnetopause can
make a very large difference in whether strong SWCX emission is seen or not. Given that MHD models do not
generally agree on the location of the magnetopause to better than ±1 RE, strong disagreements between model
and observation can occur even when the model is essentially correct.

In this paper, we investigate the viability of utilizing heavy ion ACE data shifted from L1 to the bow shock as an
approximation for the turbulent magnetosheath composition when modeling SWCX emissions. This is done by
comparing the heavy ion composition data from ACE with the heavy ion line fluxes derived from a previous
archival spectral analysis of XMM‐Newton observations that showed evidence of time‐variable geocoronal
SWCX. Our goals include.

1. Investigate the predominant solar wind types and properties responsible for driving geocoronal SWCX.
2. Assess the extent to which the solar wind variability observed by ACE is reflected in XMM‐Newton data.

By doing this, we will explore the feasibility of using XMM‐Newton as an alternative solar wind heavy ion
monitor within the inner magnetosphere, particularly given the degradation of the solar wind ion composition
spectrometer (SWICS instrument) onboard ACE in 2011, due to a radiation and age‐induced hardware anomaly
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(see SWICS 2.0 Level 3 Version 1.11 Data Release Notes (https://izw1.caltech.edu/ACE/ASC/DATA/level2/ss2/
swics_lv2_V2_release_notes.txt)). Since then, no further heavy ion measurements have been made from L1 or
closer to Earth. Such measurements are crucial for improving our understanding of the SWCX process and
supporting future X‐ray missions, including the upcoming SMILE mission (Branduardi‐Raymont et al., 2018).
SMILE, a joint mission by the European Space Agency and the Chinese Academy of Sciences, is scheduled for
launch in 2025 and will capture large‐scale magnetopause dynamics for the first time using soft X‐ray imaging
(Sembay et al., 2024).

This paper is organized as follows: in Section 2, we describe the data sets used for our analysis. In Section 3, we
measure the plasma properties of the solar wind during 1998–2011 and compare it with times when XMM
detected SWCX emission from the Earth's exosphere (henceforth SWCX periods) between 2000 and 2009. In
Section 4, we analyze to what extent we can use XMM‐Newton data to classify the solar wind types driving
SWCX in absence of ion measurements from ACE. In Section 5, we discuss our results, summarize the con-
clusions and further work.

2. Data Set
2.1. XMM‐Newton List of Exospheric SWCX

XMM‐Newton, hereafter XMM, is a spacecraft launched in 1999 into a highly elliptical orbit, with an apogee of
about 15 RE (Earth Radii) and a perigee of ca. 4 RE, which takes it far below the dayside ecliptic plane. As it points
to its more distant astrophysical targets, XMM occasionally observes through the dayside magnetosheath, where
most of the SWCX emission can be found. The XMM X‐ray imaging suite of cameras is known as the European
Photon Imaging Camera (EPIC), and is comprised of two Metal Oxide Semi‐conductor (MOS; Turner
et al., 2001) and one pn (Strüder et al., 2001) charged coupled device (CCD) arrays. Both cameras complement
each other in terms of characteristics and capabilities, allowing for comprehensive X‐ray observations over an
energy range from 0.2 to 15 keV (even though calibration at energies below ∼0.35 keV is highly questionable).
This covers the SWCX band (below ∼2 keV) and higher energies for accurate monitoring of the non‐SWCX
background. It is crucial to note that XMM does not provide in situ measurements of X‐ray emission. Instead,
it integrates the observed emission along its line‐of‐sight (LOS), based on the selected energy range.

For our analysis, we use a set of 103 XMM/EPIC observations exhibiting time‐variable exospheric SWCX
emissions, found in data between the years 2000 and 2009 (Carter et al., 2011). The total coverage of the data set is
approximately 1,000 hr, with each observation lasting from 2 hr to 1 day. These SWCX events were found
through temporal variability in the diffuse low‐energy X‐ray emission, ranging from 0.5 to 0.7 keV, compared to a
non‐variable continuum between 2.5 and 5.0 keV, the background. The low‐energy band is mainly dominated by
OVIII and OVII emission lines, which are key indicators of charge exchange emission, and the continuum was
assumed to be free of exospheric SWCX. All of the chosen lines‐of‐sight are known to pass through or near the
nose of the magnetosheath, thus the significant temporal variability of this set could only be explained by
exospheric emission, ruling out other heliospheric sources. Heliospheric contributions from interstellar neutrals
fluctuate over much longer timescales and exhibit less intensity variation (Robertson & Cravens, 2003). They
provide a nearly constant offset to the background, which Carter et al. (2011) removed from the data set via
spectral background subtraction.

The Carter et al. (2011) data set comprises low‐energy lightcurves and the average ion line fluxes produced via
charge exchange of the solar wind parent ions: O7+, O8+, C5+, C6+, and Mg11+. The ion line fluxes were extracted
through spectral fitting analysis, employing a free fitting approach at fixed energies, determined by the theoretical
model of Bodewits et al. (2007) for charge exchange interactions between H‐like and He‐like ions and hydrogen
atoms. The fitting process accounted for contributions from both background and instrumental spectra.

2.2. ACE Data of the Solar Wind at L1

ACE is a spacecraft located at the Lagrange point L1 between the Sun and Earth, which provides in situ mea-
surements of the incoming solar wind and interplanetary magnetic field (IMF). From the Solar Wind Ion
Composition Spectrometer (SWICS; Gloeckler et al., 1992), we employ the ACE/SWICS 1.1 2‐hr Level 2 data
set, which covers the period between 1998 and 2011. In particular, we take the elemental abundances relative to
oxygen X

O, the ion charge state distributions Xq+

X , and the He++ number density. From the ACE/SWICS 12‐min
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Level 2 data set, we take the number density of solar wind protons ( p). We also use ACE/MAG (Magnetic Field
Experiment; Smith et al., 1998) measurements of the total magnitude of the IMF, and ACE/SWEPAM (Solar
Wind Electron, Proton and Alpha Monitor; McComas et al., 1998) 1‐Hour Level 2 data for the solar wind velocity
and the spacecraft position components. We shifted all the data from L1 to Earth, using the time‐shifting equation
from the OMNI 2 data set on the OMNIWeb page (https://omniweb.gsfc.nasa.gov/html/ow_data.html). This
approach provides a good approximation of the data time‐shift with an accuracy of a few minutes, which is
suitable given the time resolution of the ACE data set.

3. Method
We compare the solar wind heavy ion evolution from L1 to Earth, by answering the following questions.

1. Which solar wind types are the main drivers of geocoronal SWCX?
2. Does the distribution of solar wind properties during time‐variable SWCX reflect those of the entire ACE data

set from 1998 to 2011?
3. Does the distribution of the heavy ion composition as measured by ACE/SWICS reflect the distribution of the

ion fluxes extracted from XMM‐Newton data during SWCX periods?
4. Is the variability observed in the SWCX emission from XMM‐Newton associated with a particular solar wind

type?

3.1. Solar Wind Classification

We use the solar wind classification methods for ACE data gathered by Koutroumpa (2024) from literature re-
sults. It splits the solar wind into five categories: “Streamer” slow solar wind, “Outlier” slow solar wind, “Upper
Depleted Wind” (UDW), fast solar wind from coronal holes (CHs), and interplanetary coronal mass ejections
(ICMEs), (see below for definitions). ICME events are taken from the list of Richardson and Cane (2010),
whereas the other solar wind types are based upon the in situ measurement of ion abundances from the ACE/
SWICS 1.1 database, which spans from 1998 to 2011.

Figure 1a shows a 2D histogram (adapted from Koutroumpa, 2024, Figure 3) of the occurrence of the ratios O7+

O6+

and C6+

C5+ in the non‐ICME ACE/SWICS 1.1 data, plotted on a 10‐base logarithmic scale. These ionization state
ratios are used for the classification of solar wind because they provide insights into the temperature and ioni-
zation processes occurring in the solar corona. On top of it, the black lines represent the thresholds adopted to
separate the data into solar wind types.

• The CH wind is separated from the slow Streamer wind using the threshold O7+

O6+ × C6+

C5+ ≤ 0.01 (Von Steiger &
Zurbuchen, 2016), displayed by the black solid line, and proton speed V ≥ 500 km s−1. Von Steiger and
Zurbuchen (2016) have demonstrated from Ulysses data that the product of O7+

O6+ and C6+

C5+ is a better parameter to
separate streamer from CH wind, than O7+

O6+ versus proton speed used for the classification of solar wind type
released in the ACE/SWICS 1.1 database.

• The Outlier solar wind (Zhao, Landi, Lepri, Kocher, et al., 2017) is a subset of slow solar wind characterized
by a decrease in the abundance of fully charged ions (e.g., He2+,C6+, O8+) and lower ion temperatures
compared to average Streamer solar wind distributions. Although this wind is slower and denser than Streamer
slow wind, it seems to be accelerated from the same coronal source regions as the CH wind, for example,
active regions and quiet‐Sun regions, and its occurrence rate depends on the solar cycle. To isolate these
Outliers, we take the data lying below the dot‐dashed line, given by the empirical formula:

log10 (
C6+

C5+
) = a1log10 (

O7+

O6+
) + b1 − c1, (5)

where a1 = 0.765, b1 = 0.649, and c1 = 0.602 (see Equation 2 from Zhao, Landi, Lepri, Kocher, et al., 2017, for
further details).

• The Upper Depleted Wind (UDW; Zhao et al., 2022) exhibits a systematic depletion of O7+

O6+ . It is likely to be
associated with quiet Sun regions, and its occurrence rate is anti‐correlated with the solar cycle. To isolate the
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UDW, we take the data lying above the dotted line, given by Equation 5 with c1 = −0.256 (see Equation 2
from Zhao et al., 2022, for further details).

In cases where ACE/SWICS data is missing, the associated solar wind type for those timestamps is considered
“undefined.”

In Figure 1b, we apply the same set of rules as in Figure 1a to classify solar wind types, but we limit the ACE/
SWICS 1.1 data set only to the time when geocoronal SWCX events were observed. Each SWCX event from the
XMM SWCX data set has start and stop times, which indicate the duration of the corresponding XMM/EPIC
exposure. The exposure length across the data set can range from a minimum of 2 hr to a maximum of one day,
with an average duration of 9 hr. As in Figure 1, the Streamer category exhibits the highest occurrence, but the
second most prevalent type of solar wind is Outlier, rather than CH.

In Figure 1c, we compare the occurrence frequency, in percentage, of each solar wind type for the ACE/SWICS
measurements from 1998 to 2011 (in pink) and during the SWCX periods (in purple). Streamer slow wind is the

Figure 1. (a) 2D histogram of the log(C6+/ C5+) versus the log(O7+/ O6+) ratio counts from the non‐ICME (Interplanetary
Coronal Mass Ejection) ACE/SWICS 1.1 data. The black lines represent the Coronal Hole ‐ Streamer (solid), the Outlier
(dot‐dashed) and the Upper Depleted Wind (UDW, dotted) type separation. Adapted from Koutroumpa (2024, Figure 3).
(b) Same as (a) but with ACE/SWICS 1.1 data during the SWCX periods from Carter et al. (2011), which were found
between 2000 and 2009. (c) Comparison of the solar wind type frequency, in percentage, for ACE SWICS 1.1 data during
1998–2011 (pink) versus SWCX periods (purple) found between 2000 and 2009.
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most common during both periods, with 71% (40,997 measurements) between 1998 and 2011 and 53% (262
measurements) during the SWCX periods. The frequency of CH solar wind is around 10% in the ACE/SWICS
data set from 1998 to 2011, whereas, during SWCX periods, it drops to 3%. A lower percentage of CH wind being
responsible for SWCX emissions was expected, due to lower ionization temperatures of their sources on the Sun,
causing the elemental composition of the CH wind to be less fractionated (Neugebauer, 1994; Zhao, Landi, Lepri,
Gilbert, et al., 2017).

The incidence of ICMEs increases from approximately 10% in the ACE/SWICS data set to 20% during SWCX
events. ICMEs exhibit a higher O7+

O6+ ratio compared to the ambient solar wind (Richardson & Cane, 2004; Zhao
et al., 2009). Upon reaching Earth, an ICME can temporarily distort the Earth's magnetosphere, pushing it
Earthward. This phenomenon can expose a broader portion of the exosphere to the incoming solar wind. As the
exosphere density rises sharply (∝r3) with decreasing distance from Earth, an Earthward motion of the
magnetopause result in sharp changes to SWCX emission (Samsonov et al., 2022). The increased frequency of
ICMEs during SWCX events can be explained by the compound factors of the density of exospheric neutrals
being proportional to SWCX emission (Cravens et al., 2001), and the dominance of the line emission from OVIII
in most recorded SWCX events driven by ICMEs (Carter et al., 2011), due to charge state distributions shifted to
higher charge states (Henke et al., 2001).

Unexpected to us is the higher frequency of the Outlier solar wind during SWCX periods, which reaches 20% of
occurrence, against the 5% over all 5 categories in the period 1998–2011. While bare ions are more effective for
the SWCX process (Bodewits et al., 2007), they were found to be less abundant in the Outlier wind compared to
the Streamer wind (Zhao, Landi, Lepri, Kocher, et al., 2017), suggesting that we might have more He‐like ions
enhancing the SWCX emission during such periods.

To assess whether the distribution of solar wind types in the ACE 1998–2011 data is statistically different from
the distribution during the SWCX periods, we use the chi‐square test for independence. The test yields a chi‐
square statistic of 401.47 with 5 degrees of freedom, and a p‐value ≪10−5, suggesting that the solar wind
sampled during SWCX periods is not a random subset of the parent ACE data set from 1998 to 2011.

3.2. ACE Proton Properties of the Solar Wind Driving SWCX

We investigate the proton properties of the solar wind during SWCX periods. In Figure 2, we depict the proton
speed (a), density (c), flux (e), and temperature (g) measured by ACE/SWICS and ACE/SWEPAM during non‐
ICME SWCX events. Each solar wind property is shown by 2D histograms in the left panel, divided into 20 × 20
boxes, with each box indicating the solar wind property value averaged over their occurrence between 2000 and
2009 (shown in Figure 1b). The black lines indicate the thresholds used for identifying non‐ICME solar wind
types, as detailed in Sect. 3.1. Panels (b), (d), (f), and (h) show histograms of the occurrence rate for Streamer
(black), Outlier (red), and ICME (green) solar winds, plotted on a 10‐base logarithmic scale. Table 1 presents a
summary of the average solar wind properties along with the IMF from ACE/MAG during SWCX periods,
compared to the averages recorded from 1998 to 2011 for the different types of solar wind.

Figures 2a and 2b reveals similar proton speed distributions for the Streamer and Outlier winds, with an average
value of 380.3 km s−1 and 387.6 km s−1 respectively. In Figure 2a, speed tends to increase to the lower left of the
diagram, as also shown by Von Steiger and Zurbuchen (2016). Figure 2b shows, along with Outlier and Streamer
proton speed histograms, the occurrence rate of the ICME proton speed during the SWCX periods, peaking at
400 km s−1 with an average value of about 450 km s−1. The values from Table 1 do not indicate significant
changes between the average proton speed during the SWCX periods and 1998–2011.

Figures 2c and 2d display the solar wind proton density distribution. Figure 2c shows distinct density patterns
between the Outlier and Streamer wind, with the Outlier wind exhibiting higher density values compared to the
Streamer wind. Figure 2d shows the Streamer wind histogram centered around 7 cm−3, while the Outlier wind
peaks at 11.7 cm−3, consistent with values previously reported in Zhao, Landi, Lepri, Kocher, et al. (2017).
According to Table 1, the mean Streamer density is 13.5 cm−3, double the average density from 1998 to 2011.
This results in a drastic reduction in the relative difference between the Outlier and Streamer proton density from
100.9% in 1998–2011 to 8.9% during the SWCX periods. This trend suggests, as one might expect, that SWCX
events are most likely to be observed when the solar wind density is high.
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Figure 2. Distributions of proton speed (Vp) , density (Np) , flux (Np × Vp) , temperature (Tp) and interplanetary magnetic
field during non‐ICME driven SWCX events. In the left panels, (a), (c), (e), (g), (i), the solar wind properties are shown as 2D
histograms, averaged over their occurrence between 2000 and 2009, in a O7+

O6+ × C6+

C5+ space, with black lines separating different
solar wind types. The right panels, (b), (d), (f), (h), (j), show 1D histograms that indicate the occurrence rate of solar wind
properties for the Streamer (black) and Outlier (red) wind.
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In Figures 2e and 2f, the proton flux, calculated as the product of the proton speed and the proton density, re-
sembles the patterns observed in the proton density. The average Outlier wind flux peaks at 6 × 108 cm−2 s−1,
and is higher than the Streamer wind flux by 40.5%. Since the SWCX emission is proportional to the solar wind
flux, the higher incidence of Outlier wind during SWCX periods may be explained by associated higher proton
flux during such wind type. The ICME wind clipped during SWCX periods shows a similar proton flux distri-
bution compared to the Streamer wind, with a relative deviation of −12% (Table 1), and an average value of
4.1 × 108 cm−2 s−1.

Figures 2g and 2h show the proton temperature distribution. In Figure 2g, a clear separation between the Streamer
wind and the Outlier wind can be observed according to the proton temperature, with the Outlier wind having a
significantly lower temperature than the Streamer wind by 65%. This difference between the average values is
consistent with the period 1998–2011. The ICME wind, on the other hand, has a temperature 18% lower than the
Streamer temperature, on average, and also decreases by approximately 30% compared to 1998–2011. Thus, we
see no strong dependence of SWCX events on the temperature of the solar wind.

The results for the IMF distributions are summarized together with the other properties in Table 1. The IMF
averages during Streamer and Outlier wind almost match around 8.6 nT, with a relative difference between the
Outlier and Streamer wind of only 0.7%. This difference is about 30% between 1998 and 2011. The ICME IMF
increases from 8.9 nT during 1998–2011 to 10.8 nT during the SWCX periods.

3.3. XMM Lightcurve Variability by Solar Wind Type

The XMM lightcurves are a timeseries of soft X‐ray photon counts binned at 1 kilosecond (ks) intervals, between
500 and 700 eV, during periods of detected SWCX. These lightcurves are already filtered by Carter et al. (2011)
both temporally, to remove periods of soft proton flares, and spatially, for bright sources in the cameras' FOV.
Figure 3a shows as an example the XMM lightcurve in counts per kilosecond (ct ks−1) of the observation with ID
0111300101 during revolution 0340. The red horizontal line is the mean count rate during that observation and the
arrows departing from the mean represent the deviation of the count rate from the mean, positive when directed
upward, and negative otherwise. The inflowing solar wind type is shown in the plot by different background
colors.

To analyze whether XMM is able to distinguish the examined solar wind types, we look at the variability in the
XMM lightcurve during our list of SWCX periods. We measure the lightcurve variability as the deviation of the
XMM count rate from the mean of each observation, then averaged with a 2 hr cadence (∼7 ks). In such a way, the
timeseries of the lightcurve deviation are synchronous with ACE/SWICS data and short‐term fluctuations of the
count rate around the mean are canceled out. In Figure 3b, the O7+

O6+ × C6+

C5+ chart is populated with the XMM

Table 1
Comparison of Averages, Standard Deviations, and Percentage Changes of the Proton Speed, Density, Flux, and Magnetic Field of the Outlier Slow Wind and Streamer
Slow Wind Measurements During SWCX Events Versus the Values for the ACE Data Set From 1998 to 2011, With and Without Interplanetary Coronal Mass Ejection
Periods

Mean (std) Data set

Solar wind types Relative difference

Streamer Outlier ICME Outlier − Streamer
Streamer % ICME − Streamer

Streamer %

Proton Speed [km/s] SWCX Periods 380.3 (48.3) 387.6 (51.6) 454.0 (75.7) 1.9 19.4

1998–2011 389.6 (56.7) 372.1 (55.7) 466.0 (111.6) −4.51 19.6

Proton Density [n/cc] SWCX Periods 13.5 (9.84) 14.73 (9.23) 8.54 (6.21) 8.89 −36.9

1998–2011 6.41 (4.51) 12.88 (8.69) 7.12 (7.03) 100.93 11.05

Proton flux (108 cm−2s−1) SWCX Periods 4.71 (3.70) 6.62 (3.86) 4.13 (3.92) 40.5 −12.42

1998–2011 2.60 (1.84) 4.96 (3.29) 3.29 (3.36) 90.84 26.52

Proton temperature (104 K) SWCX Periods 7.91 (5.47) 2.74 (1.24) 6.41 (5.05) −65.4 −18.95

1998–2011 7.60 (4.33) 2.62 (1.46) 9.55 (10.6) −65.6 25.53

IMF [nT] SWCX Periods 8.63 (4.41) 8.69 (4.27) 10.77 (4.97) 0.70 24.73

1998–2011 5.47 (2.26) 7.09 (3.91) 8.87 (5.51) 29.63 62.1
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lightcurve deviation data, where each box represents the average lightcurve deviation based on the corresponding
O7+

O6+ and C6+

C5+ values over time from the ACE data. The plot reveals a higher number of negative values within the
Streamer region compared to the Outlier region, where the values are predominantly positive with only a few
boxes showing a lightcurve deviation below 0 ct/ks. Thus, the Outlier period has stronger SWCX emission than
the Streamer periods, as seen by multiple different visualizations of the same data.

Figure 3c displays the occurrence rate distributions of lightcurve deviation for Outlier, Streamer, and ICME solar
wind types, shown in red, black, and green respectively. The ICME and Streamer distributions cover the same
range of [−40, +40] ct/ks and are skewed toward negative values, with peaks at approximately −20 ct/ks and
−12 ct/ks respectively. Despite this skew, their means are close to 0: at −3 ct/ks for ICME and −1 ct/ks for
Streamer. The Outlier distribution, depicted in red, is the only distribution with a mean in the positive values at
9 ct/ks. Moreover, the Outlier occurrence rate distribution features two peaks of equal height, one around 0 ct/ks
and another at 19 ct/ks.

3.4. ACE Heavy Ion Abundance Versus XMM Ion Line Fluxes

We conduct a comparison between individual heavy ion abundances from ACE and heavy ion line fluxes obtained
through spectral analysis of the XMM SWCX data set. The ACE abundances are considered relative to protons,
allowing us to filter out any variations in heavy ion abundance resulting from changes in solar wind density, and
consequently, proton density. As for the SWCX data set by Carter et al. (2011), it is crucial to note that it presents
only constant values of heavy ion line fluxes throughout the duration of each SWCX‐affected XMM observation;
there is no way to normalize these observations to the proton flux. These values correspond to the average fluxes

Figure 3. (a) In black, the XMM lightcurve in ct/ks, between 500 and 700 eV, of the observation with ID 0111300101 during
revolution 0340. The red horizontal line is the mean count rate during that observation and the arrows departing from the
mean represent the deviation of the count rate from the mean, positive when directed upward, and negative otherwise. The
inflowing solar wind type is shown in the plot by different background colors. (b) 2D histogram of the XMM lightcurve
deviation averaged over their occurrence between 2000 and 2009, in the O7+

O6+ × C6+

C5+ space, with black lines separating different
solar wind types. (c) Occurrence rate of XMM lightcurve deviation for the Streamer (black), Outlier (red), and interplanetary
coronal mass ejection (green) wind.
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extracted during each SWCX event. Since there is no direct way to cross‐calibrate ion abundances from ACE and
ion line fluxes from XMM spectral analysis we plot ACE and XMM data separately and compare their distri-
butions and relative differences across the solar wind types, summarized in Table 2.

In Figure 4, we compare the distributions of the bare oxygen abundance, O8+/ p, from ACE, and the emitted line
flux, OVIII, from XMM. Figures 4a and 4c respectively show higher values of O8+/ p and OVIII for higher
O7+

O6+ × C6+

C5+ . As a result, in the Outlier wind, O8+/ p is on average 57% more abundant compared to the Streamer
wind, and the OVIII line flux is stronger by 53% (from Table 2). We are aware that the results presented in Table 2
differ from those in Zhao, Landi, Lepri, Kocher, et al. (2017) (Table 3), which report a depletion of fully stripped
ions, such as O8+, in the Outlier wind compared to the Streamer wind. We believe this discrepancy is caused by
the different versions of the ACE data set being used, with ours being publicly available from CDAWeb and
Zhao's the pre‐distributed data set available to the instrument team. This discrepancy, however, does not affect the
results of this analysis, which compare the variability observed in ACE data with that of XMM. The O8+/ p
distribution for ICME, illustrated in Figure 4b, is skewed toward higher values, with an average abundance 133%
greater than in the Streamer wind. This elevated O8+/ p abundance is characteristic of ICME wind composition,
confirming expected results based on literature findings (Richardson & Cane, 2004).

Figure 5a displays a clear separation between the Outlier and Streamer winds in terms of O7+/ p, with the Outlier
wind showing a greater abundance compared to the Streamer wind. This separation becomes more pronounced in
Figure 5b, where the occurrence rate distributions for the Outlier and Streamer winds peak at approximately
5 × 10−4 and 5 × 10−3, respectively, indicating an order of magnitude difference. The distribution of O7+/ p in
the ICME wind lies between these two, overlapping mainly with the Streamer distribution, and peaks at
1.6 × 10−4. In Figure 5c, the OVII line flux does not show a distribution similar to O7+/ p, and no clear pattern
can be observed. The occurrence rate distribution for ICME, Streamer, and Outlier winds seems to overlap, with
the main peak at 1.8 × 10−13 ergs cm−2 s−1. However, the ICME and Outlier distributions exhibit a second peak
at 4 × 10−12 ergs cm−2 s−1, which is not observed in the Streamer distribution. The combination of Figures 4 and
5 can be understood as follows: SWCX periods were determined based on times when the 0.5–0.7 keV band,
containing both OVII and OVIII, is strong. Between the two lines, OVII is the stronger one. Therefore, SWCX
event periods are generally selected when OVII is high (as seen in Figure 5c), which explains why there are fewer

Table 2
Comparison of Averages, Standard Deviations, and Percentage Changes of the XMM Ion Fluxes and ACE Ion Abundances, During SWCX Periods Versus Averages for
the ACE Data Set From 1998 to 2011

Mean (std) Data set

Solar wind types Relative difference

Streamer Outlier ICME Outlier − Streamer
Streamer % ICME − Streamer

Streamer %

O8+/ p abundance [10−5]
1998–2011 0.37 (0.85) 1.01 (1.71) 0.52 (0.76) 170.6 546.2

SWCX Periods 1.09 (1.80) 1.70 (1.83) 4.53 (4.93) 56.8 316.9

OVIII line flux [10−13 ergs cm−2 s−1] SWCX Periods 0.90 (0.85) 1.38 (1.01) 2.10 (2.04) 52.9 133.1

O7+/ p abundance [10−5]
1998–2011 4.33 (4.11) 56.9 (113.3) 9.33 (18.9) 1,214.1 115.5

SWCX Periods 8.58 (7.21) 98.0 (137.1) 22.8 (74.4) 1,043.0 165.7

OVII line flux [10−13 ergs cm−2 s−1] SWCX Periods 2.14 (1.52) 1.78 (1.47) 1.57 (1.55) −16.2 −26.1

C6+/ p abundance [10−5]
1998–2011 7.33 (4.91) 5.82 (5.33) 9.71 (8.04) −20.6 32.5

SWCX Periods 9.76 (6.22) 7.84 (5.46) 14.2 (10.6) −19.6 45.5

CVI line flux [10−13 ergs cm−2 s−1] SWCX Periods 1.09 (1.35) 1.03 (1.04) 1.46 (1.58) −5.96 33.5

C5+/ p abundance [10−5]
1998–2011 7.99 (4.52) 30.8 (52.5) 7.88 (11.2) 285.0 −1.27

SWCX Periods 8.64 (5.25) 41.1 (52.8) 10.1 (14.2) 373.7 16.7

CV line flux [10−13 ergs cm−2 s−1] SWCX Periods 3.07 (2.85) 2.76 (3.01) 2.94 (3.62) −9.97 −5.46

Mg11+/ p abundance [10−6]
1998–2011 0.13 (0.38) 6.13 (31.2) 2.06 (16.7) 4,394.9 1414.5

SWCX Periods 0.34 (0.89) 9.24 (13.9) 2.99 (10.5) 2,624.8 783.8

MgXI line flux [10−14 ergs cm−2 s−1] SWCX Periods 1.23 (1.64) 1.83 (2.45) 2.85 (5.62) 47.89 130.6
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CH wind periods associated with SWCX. After selecting periods with high OVII emission, whether OVIII is also
high depends upon the type of solar wind.

Figure 6a illustrates a greater abundance of C6+/ p at the upper edge of the Streamer wind, and a depletion of
C6+/ p in the Outlier wind compared to the Streamer wind, which is consistent with Figure 6e of Zhao, Landi,
Lepri, Kocher, et al. (2017). However, the occurrence rate distributions of Streamer, ICME, and Outlier winds
span the same range of C6+/ p values, all peaking at approximately 8 × 10−5. Similarly, the CVI line flux shows

Figure 4. (a) SWCX periods ACE O8+/ p 2D histograms, averaged over their occurrence between 2000 and 2009, in a
O7+

O6+ × C6+

C5+ space, with black lines separating different solar wind types. (b). Occurrence rate of ACE O8+/ p for the Streamer
(black) and Outlier (red) wind. (c) (d) Same as left plots but for OVIII ion line fluxes from the XMM SWCX data set.

Table 3
Performance Metrics With and Without XMM Features (Including Standard Deviations)

Metrics Features

Labels Averaged metrics

Streamer Outlier ICME Macro avg Accuracy

Precision ACE + XMM 0.86 (0.06) 0.76 (0.12) 0.84 (0.07) 0.82 (0.06) 0.83 (0.05)

Recall 0.90 (0.07) 0.61 (0.14) 0.87 (0.07) 0.79 (0.06)

F1 score 0.88 (0.05) 0.67 (0.12) 0.85 (0.05) 0.80 (0.06)

Precision ACE 0.46 (0.38) 0.76 (0.26) 0.49 (0.33) 0.57 (0.12) 0.74 (0.16)

Recall 0.35 (0.29) 0.82 (0.17) 0.54 (0.30) 0.57 (0.13)

F1 score 0.40 (0.33) 0.76 (0.20) 0.50 (0.30) 0.55 (0.12)
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limited differentiation between the solar wind types, indicating that neither C6+/ p nor CVI are not effective
indicators for distinguishing between different solar wind types during SWCX periods.

The variability observed in C5+/ p across the solar wind types is completely missed in CV line flux, from
Figures 7c and 7d, which show nearly overlapping distributions for ICME, Outlier, and Streamer winds.

In Figure 8, Mg11+/ p is higher as O7+

O6+ increases. The average Mg11+/ p in the Streamer wind is about an order of
magnitude lower than in the Outlier and ICME wind. However, the MgXI line flux distribution across the three
solar wind types highly overlap, with a similar peak at around 2 × 10−14 ergs cm−2 s−1.

From Table 2, the ACE average ion abundances relative to proton during SWCX periods are to some extent
always higher than in 1998–2011, showing that the time‐variable SWCX process tends to happen during richer
solar winds.

4. Random Forest Classifier for Solar Wind Type Recognition
In this section, we aim to see whether the aid of XMM‐Newton data can improve predictions of solar wind type, in
the absence of heavy ion measurements from ACE/SWICS. Our data set comprises a combination of solar wind
proton properties from ACE/SWEPAM (proton density, velocity, flux, and temperature), IMF from ACE/MAG
and XMM‐derived features (lightcurve deviation and line fluxes from OVIII, OVII, CVI, CV and MgXI), as
described in previous sections. In addition, we include two temporal features, the day of year (DOY) of the
measurement and the corresponding monthly averaged sunspot number from NOAA (https://www.swpc.noaa.
gov/products/solar‐cycle‐progression). The solar wind types that we aim to predict are Streamer, Outlier, and
ICME wind, as they are the predominant types associated with SWCX.

Figure 5. Same as Figure 4 but for ACE O7+/ p on (a) and (b), and OVII ion line fluxes from the XMM SWCX data set on
(c) and (d).
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We predict solar wind types employing a Random Forest (Breiman, 2001) classifier from the scikit‐learn library
for Python (Pedregosa et al., 2011). Random Forest is a supervised ensemble learning method that constructs
multiple decision trees during training and merges their results to improve classification performance. One of the
advantages of using Random Forests is inherently performed feature selection. During the construction of each
tree within the forest, the model evaluates the importance of each feature based on how well it improves the purity
of the node splits. The final prediction is made by aggregating the predictions from all individual trees, through
majority voting for classification. This approach helps to reduce over‐fitting and improve the model's general-
ization to unseen data.

To ensure that the features were on a comparable scale, we standardized them, so that each feature has a mean of
0 and a standard deviation of 1. This normalization process is usually not necessary for the performance of
Random Forests, but we found it helpful given the mixture of data types and different scales in our data set. The
hyperparameters of the Random Forest model are tuned using RandomizedSearchCV (https://scikit‐learn.org/1.5/
modules/generated/sklearn.model_selection.RandomizedSearchCV.html). This method searches for the hyper-
parameters that maximize the model accuracy, by randomly sampling from a specified distribution of possible
parameter values. The final parameters for the model are set as follows: bootstrap was set to False, maximum
depth of the tree set to 10, minimum number of samples required to split an internal node to 2, minimum number
of samples required to be at a leaf node to 1, and number of trees in the forest to 100.

To evaluate the performance of the model, we employ a cross‐validation approach using RepeatedStratifiedKFold
(https://scikit‐learn.org/1.5/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html) with 5
splits and 3 repeats. The process involves splitting the data set into training and validation sets, training the
Random Forest model on the training set, and evaluating it on the validation set. We chose this method because it
ensures that each fold maintains approximately the same proportion of samples from each target class as the full

Figure 6. Same as Figure 4 but for ACE C6+/ p on (a) and (b), and CVI ion line fluxes from the XMM SWCX data set on
(c) and (d).
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data set, preserving class balance across the splits. Performance metrics are presented in Table 3 for models
trained with and without the inclusion of XMM features. The metrics used include precision, recall, and F1 scores,
which are calculated for each fold and then averaged. Precision measures the ratio of correctly predicted positive
observations to the total predicted positives, while recall measures the ratio of correctly predicted positive ob-
servations to the total actual positives. The F1 score,

F1 = 2 ×
Precision × Recall
Precision + Recall

, (6)

is the harmonic mean of precision and recall, providing a single metric that balances both measures. The macro‐
averaged metrics compute the average precision, recall, and F1 score across all classes, with all classes equally
contributing to the final averaged metric. This metric is useful in case of a multi‐class classification problem with
imbalanced classes, like the one we are analyzing, because it will highlight the performance of a model on all
classes equally. Finally, accuracy measures the overall correct predictions divided by the total number of
predictions.

The comparison between models trained with and without XMM features shows significant improvements in
most metrics. Notably, the macro‐averaged precision, recall, and F1 score increase from 0.57 to 0.82, 0.57 to 0.79,
and 0.55 to 0.80, respectively, when transitioning from ACE‐only to ACE and XMM features. The overall ac-
curacy also increases from 0.74 to 0.83. When looking at individual classes, the F1 score shows a substantial
improvement for Streamer and ICME class prediction, although similar gains are not seen for the Outlier class.
Overall, the model trained with both ACE and XMM features achieves higher scores and exhibits much smaller
standard deviations, suggesting enhanced stability.

Figure 7. Same as Figure 4 but for ACE C5+/ p on (a) and (b), and CV ion line fluxes from the XMM SWCX data set on
(c) and (d).
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Figure 9a displays the average confusion matrix for the model trained with ACE and XMM features, providing a
visual representation of classification performance averaged across all folds and repeats, with standard deviations
in brackets. This matrix details the counts of true positive, true negative, false positive, and false negative pre-
dictions across all classes. The x‐axis represents the predicted solar wind type, while the y‐axis represents the true
solar wind type. On average, the test set contains 47 samples: 30 from the Streamer wind, 11 from the Outlier
wind, and 16 from the ICME wind. The majority of samples from each solar wind type are correctly predicted, as

Figure 8. Same as Figure 4 but for ACE Mg11+/ p on (a) and (b), and MgXI ion line fluxes from the XMM SWCX data set on
(c) and (d).

Figure 9. Left: Average confusion matrix for the Random Forest model trained with ACE and XMM features, with standard
deviations in brackets. The x‐axis corresponds to the predicted solar wind type, and the y‐axis corresponds to the true solar
wind type. The diagonal elements indicate the number of correct predictions for each class, while the off‐diagonal elements
show the misclassifications. Right: Importance of each feature in predicting solar wind types, expressed as a percentage. The
features are ranked in descending order of their importance.
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evidenced by the values along the diagonal. Specifically, there is an average of one ICME sample misclassified as
Streamer per fold, and from the Streamer group, an average of 2 samples are misclassified as ICME and Outlier
wind. As indicated in Table 3, the Outlier wind exhibits a lower performance compared to the other classes. The
confusion matrix shows that missed Outlier samples are labeled as Streamer 3 out of 11 times on average, and as
ICME 1 out of 11 times. This highlights the model's tendency to confuse Outlier samples with the Streamer class
more frequently.

Figure 9b shows the feature importance analysis for the Random Forest model trained with ACE and XMM
features, which highlights the most influential variables in predicting solar wind types. The top six features are
half from ACE and half from XMM, showing how the addition of XMM features to train the Random Forest
model contributes to the model's predictive accuracy. In order we have: proton temperature, OVII flux, and proton
speed, proton density, OVIII flux and lightcurve deviation, with importance scores of 18.1%, 12.6%, and 11.5%,
9.4%, 8.3% and 6.5%. These findings are expected as many of these features exhibited the greatest relative
separation between the different wind types in our preliminary analysis. Specifically, OVIII flux's high ranking is
anticipated because it was the only feature displaying similar distributions to the parent ion abundance O8+ from
ACE. Unexpectedly, OVII flux ranks in second place, despite its distribution largely overlapping across solar
wind types in Figure 5d. This high ranking appears to be influenced primarily by its distribution along the y‐axis
for flux values below 8 × 10−14 ergs cm−2 s−1. To investigate this effect, we excluded these lower flux values
from the data set, which led to the OVII flux ranking dropping from second to sixth place, confirming that its
initial high ranking is largely driven by these low flux values. In the process, the rankings of the other features
were marginally affected.

In contrast, the XMM features, including CVI flux, CV flux, and MgXI flux, are ranked at the bottom. This aligns
with our expectations since their distributions (Figures 6–8) showed limited to no separation between the different
classes.

5. Conclusions
In this study, we analyzed data derived from 103 XMM‐Newton observations exhibiting time‐variable
exospheric Solar Wind Charge Exchange (SWCX) emissions (Carter et al., 2011), alongside concurrent
ACE data on heavy ions (e.g., C6+, C5+, O8+), proton properties and IMF. We investigated the predominant
solar wind types driving periods of geocoronal SWCX (SWCX periods) and analyzed the characteristics of
their ion and proton properties. The solar wind types are obtained from literature, as in Koutroumpa (2024),
and they are differentiated based on ion abundances and proton speed measurements from ACE. Overall,
the SWCX periods display a solar wind type distribution distinct from the average ACE data from 1998 to
2011. Even though XMM‐Newton measures charge exchange line emissions along a line‐of‐sight with
moderate spectral resolution, unlike ACE's in situ measurements of parent ion abundances, XMM‐Newton is
able to capture distributions that deviate from the general population and can effectively identify solar wind
types during SWCX events.

We observed that a subset of the slow solar wind, known as Outlier wind, characterized by systematically lower
ion and proton temperatures compared to the average Streamer wind (Zhao, Landi, Lepri, Kocher, et al., 2017),
occurs more frequently during SWCX periods, around 20%, than in the overall ACE data set from 1998 to 2011,
about 5%. The Outlier wind exhibits higher solar wind flux compared to the Streamer wind, what we called the
average slow solar wind, which could explain its increased occurrence during SWCX periods. Moreover, the
Outlier is characterized by high OVII flux, as detected by spectral analysis of XMM‐Newton EPIC data. Since the
OVII line is the strongest of the batch, detection of that SWCX line is more probable than detecting the other lines.

The remaining SWCX periods are predominantly associated with Streamer wind, approximately 70% and
interplanetary coronal mass ejections (ICMEs, as defined by Richardson & Cane, 2010), around 20%. Fast solar
wind from CHs is almost absent during the SWCX periods we analyzed, probably due to their lower OVII (or
O7+) values. This was expected due to the lower temperatures of their sources on the Sun, which cause the
elemental composition of the fast solar wind to be less fractionated (Neugebauer, 1994; Zhao, Landi, Lepri,
Gilbert, et al., 2017).

We compared individual heavy ion abundances from ACE with heavy ion line fluxes obtained through spectral
analysis of the XMM SWCX data set. It is crucial to note that XMM does not provide in situ measurements of X‐ray
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emission; instead, it integrates the observed emission along its line‐of‐sight based on the selected energy range.
Consequently, there is no direct method for cross‐calibrating ACE ion abundances with XMM spectral line fluxes.
Therefore, we analyzed ACE and XMM data independently, comparing their distributions and relative differences
across various types of incoming solar wind. We found that both the XMM data and ACE data reveal an increasing
O8+/p abundance and OVIII flux with a rising ratio of O7+

O6+ during the events from the SWCX data set. Furthermore,
the distribution of O8+/p is consistent with the OVIII distribution across different solar wind types, displaying
similar relative differences between Outlier and Streamer winds. In contrast, the distributions of other ion line
fluxes, such as OVII, CVI, CV, and MgXI, differ significantly from the corresponding ion abundances from ACE
(O7+/ p, C6+/ p, C5+/ p, Mg11+/ p). This discrepancy may be due to the fact that emissions at these energies can
show greater spatial variability across the sky background compared to OVIII (Henley & Shelton, 2012), and due to
the fact these lines are weaker than OVII. Therefore, future work should focus on refining the SWCX model used
for spectral analysis of the XMM‐Newton data.

Finally, we investigated whether the aid of XMM‐Newton data can improve predictions of solar wind type, in
the absence of heavy ion measurements from ACE/SWICS, as these measurements are no longer provided by
any solar wind monitor. Our data set comprises a combination of solar wind proton properties from ACE/
SWEPAM (proton density, velocity, flux, and temperature), IMF from ACE/MAG and XMM‐derived features
(lightcurve deviation and line fluxes from OVIII, OVII, CVI, CV and MgXI). We predicted solar wind types
employing a Random Forest (Breiman, 2001) classifier. XMM‐Newton data improves the performance of the
Random Forest Classifier model to predict solar wind types when blind folded from ACE ion measurements.
When using only ACE data, the macro‐averaged F1 score, a measure that balances precision and recall,
achieves a value of 0.55 with a standard deviation of 0.12. By incorporating XMM‐Newton features into the
model, the macro‐averaged F1 score increases to 0.80 with a reduced standard deviation of 0.06. This notable
improvement underscores the value of XMM‐Newton data in enhancing the accuracy and reliability of solar
wind type predictions, particularly when direct measurements of heavy ions are unavailable. Predicting solar
wind types allows us to estimate ranges for solar wind composition. This approach is especially relevant for
fully ionized ions, which lack excitation or emission, and can otherwise only be observed through direct in situ
measurements.

Although XMM‐Newton provides valuable insights into the solar wind type approaching Earth, this infor-
mation is limited to when its line‐of‐sight traverses the magnetosheath. Additionally, XMM‐Newton cannot
provide detailed composition abundances of the heavy ions in the solar wind due to its moderate spectral
resolution. Continuous monitoring of the solar wind ion composition is crucial for interpreting solar‐
terrestrial interactions, particularly the SWCX signal. This monitoring will be essential for analyzing up-
coming data from the SMILE mission, a joint ESA‐CAS collaboration, as well as NASA's LEXI mission.
Both missions aim to capture large‐scale magnetopause dynamics via soft X‐ray imaging. Additionally, this
analysis will be crucial for future X‐ray missions currently in development or under study, for example,
Athena, LEM, and GEO‐X. Due to the declining performance of the solar wind ion composition spec-
trometer onboard ACE since 2011, it is crucial for the solar‐terrestrial physics community to include high‐
cadence spectrometers within new missions. The recently proposed Elfen mission aims to address this data
gap using a 16U CubeSat in a circular orbit 12 Earth radii around Earth (Carter et al., 2023). The CubeSat
will carry two instruments: T‐FIPS, a time‐of‐flight, energy ion mass spectrometer that measures heavy ions,
developed from the FIPS instrument used on NASA's MESSENGER mission, and a magnetometer, MAGIC,
to finally determine the plasma conditions inside and outside the Earth's magnetosphere encountered by the
Elfen spacecraft.

Data Availability Statement
The ACE solar wind composition data were downloaded from CDAWeb at https://cdaweb.gsfc.nasa.gov/. The
Random Forest Classifier was taken from https://scikit‐learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html. Sunspot number data was taken from NOAA at www.swpc.noaa.gov/products/
solar‐cycle‐progression.
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