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Abstract

We construct and analyze a multiscale finite element method for an elliptic distributed opti-
mal control problem with pointwise control constraints, where the state equation has rough
coefficients. We show that the performance of the multiscale finite element method is simi-
lar to the performance of standard finite element methods for smooth problems and present
corroborating numerical results.
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1 Introduction

Let @ ¢ R? (d = 1,2,3) be a polytopal domain, y; € L>(2) and ¥ < 1 be a positive
constant. The model optimal control problem (cf. [27, 36]) is to find

(y, ) = argmin J (y, u), (1.1)
(y,u)ek
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where the cost function J : HOI(Q) X Ly(2) —> [0, 00) is defined by

1
Jwy =S (1y = yallL, @) + VIl q). (1.2)

the closed convex subset K of HOl (2) x L»(L2) is defined by the conditions

a(y,z) =/ uz dx Vze Hy(Q), (1.3)
Q

$1 <u=<¢ a.e.in 2, (1.4)

and the bilinear form a(-, -) is given by

a(y,z) = / AVy - -Vzdx. (1.5)
Q

We assume that the components of the symmetric positive definite matrix .4 belong to
L (2), and that there exist positive constants « and § such that

the eigenvalues of A are bounded below (resp., above) by « (resp., B). (1.6)
For the constraint functions ¢; and ¢,, we assume
#1 and ¢ belong to H' (), (1.7)
and

$1 = ¢ ae.on . (1.8

Remark 1.1 Throughout this paper we follow the standard notation for differential operators,
functions spaces and norms that can be found for example in [1, 7, 12].

Remark 1.2 The rough coefficients in the title of the paper refer to the fact that (1.6) is the
only assumption on the matrix .A. Under this assumption we have the relation

alolf g < VI = a(,v) < Bl g Ve HY(Q) (1.9)

and nothing more. In particular, we do not assume the solution y of (1.3) belongs to H'+5()
for some positive s.

Itis well-known that standard finite element methods for elliptic boundary value problems
with rough coefficients can converge arbitrarily slowly (cf. [4]). This is of course also the
case for the optimal control problem defined by (1.1)—(1.5). Our goal is to design a multiscale
finite element method whose performance is in some sense similar to that of the standard
finite element methods for smooth problems.

The literature on the numerical solution of this optimal control problem is relatively small.
For problems with scale separations and periodic structures, the method in [28] is based on
an asymptotic expansion of the solution, the method in [8] is based on the multiscale finite
element space in [10], and the method in [18] is based on the heterogeneous multiscale
method in [14]. For problems that do not assume scale separations or periodic structures, a
numerical method based on the multiscale finite element space in [11] was investigated in
[3], and a numerical method based on a generalization of the multiscale finite element space
in [32] has just appeared in [9].

Our method is based on the local orthogonal decomposition (LOD) methodology (cf. [30])
which, like the methods in [3, 9], does not require scale separations or periodic structures
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in the coefficient matrix .A(x). A variant of the LOD method for elliptic optimal control
problems with rough coefficients but without control constraints can also be found in [6].

The rest of the paper is organized as follows. The properties of the continuous problem are
recalled in Sect.2 and a discretization of the optimal control problem is analyzed in Sect. 3,
where we present error estimates that are convenient for the error analysis of multiscale finite
element methods. The construction and analysis of our multiscale finite element method are
presented in Sect. 4, followed by numerical results in Sect.5. We end with some concluding
remarks in Sect. 6.

2 The Continuous Problem

In this section we recall some well-known facts about the optimal control problem that can
be found for example in [27, 36].

Since K is nonempty under (1.8) and J is strictly convex and coercive, the minimization
problem defined by (1.1)—(1.5) has aunique solution characterized by the first order optimality
condition (cf. [16, 25])

/(ﬁ—yd)(y—i)dx+)// uw—uydx =0 V(y,u) ek 2.1
Q Q
Let the adjoint state p € HO1 (2) be defined by

alg. p) = /Q@—yd)q dx Vg e H(Q). 2.2)

One can use (1.3) and (2.2) to write

[G=soyar=av.p= [wpdr Vi ek, 23)
and then (2.1) is equivalent to the inequality
/Q(ﬁ +yi)u—i)dx >0 Vuek, (2.4)
where

K={uel)(): ¢ <u<g¢ry ae.inQ}.

The inequality (2.4) is equivalent to the statement that i is the L (£2)-orthogonal projection
of —y~!j on the closed convex subset K, i.e.,

it = max(¢1, min(¢s, —y "' p)), (2.5)
which, in view of (1.7), implies in particular that (cf. [19, Lemma 7.6])
e HY(Q).

For the analysis of problems with rough coefficients, it is desirable to keep track of the
dependence of |i|y1(q) on @ and B. This can be achieved by using the estimate

15 = yall7 i) < 2J (e )

that holds for any convenient choice of (yx, ux) € K. One can then bound |p| 41 (g, through
(2.2) and then obtain an estimate of |I/_t|H1(Q) through (2.5).
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For example, under the additional assumption ¢y < 0 < ¢ almost everywhere in 2, we
can take (y4, ux) = (0, 0) to obtain a simple bound

15— yall3, @ < 2J0,0) = Iyall3, q- (2.6)
2(2) 2(2)

It then follows from (1.9), (2.2) and (2.6) that

a'ﬁli]l(g) <a(p,p) = /Q(y = ya)pdx = |yl Lyl PlLo).
which implies
[Pl = (Cpr/e)llyallL @ 27
through the Poincaré-Friedrichs inequality
IvllLy@) < Crrlvlgiqy  Yv e Hy (). (2.8)
Putting (2.5) and (2.7) together, we arrive at the bound
il 1 (@) < max (111410 |921k10)» ¥~ (Cor/@) 1Vl Lo (@)-

Remark 2.1 Under the general assumption (1.8), we can take uy = (¢1 + ¢»)/2 and obtain a
(more complicated) upper bound for |u| 1 g, that depends only on |1 [l g1 (q)> 121151 (q),

IvallLy)» ¥y~ and ™!
Next we define
A=ptyu (2.9)
and obtain through (2.5) the decomposition
A=A1+ A2, (2.10)

where

A =max(p+y¢1.0) € H'(Q) and Az =min(p + y¢2,0) € H'(Q)

satisfy
M =0, 2.11a)
a1 — i) =0, (2.11b)
Vp+yV in 2
Vi = VP HyVer 2 @.11¢)
0 inQ\ A
2 <0, @.11d)
A(¢r —u) =0, (2.11e)
Vp+yV i
Vip = A VP TyVe2 in2 Q2.11f)
0 in 2\ 2,

Here the active set 2 ; is the closure in €2 of the set of the Lebesgue points where u —¢; = 0.
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3 A Discretization of the Optimal Control Problem

Let 7, be a simplicial/quadrilateral triangulation of € with mesh size p and W, C L»(£2)
be the space of piecewise constant functions with respect to 7,. The optimal control # will
be approximated by functions in W, while the approximation of y comes from a closed
subspace V, of HOI(Q).

Remark 3.1 By allowing Vi to be an arbitrary closed subspace of HOl (R2), the analysis devel-
oped below can be applied to standard finite element methods and multiscale finite element
methods.

The discrete problem is to find

(Fr,ps s, p) = argmin J (yy, up), (3.1

(.V*yup)EK*,p

where the closed convex subset K. , of Vi x W, is defined by the following conditions:

a(ys, 2) 2/ Upzxdx Vzi € Vi, (3.2)
Q

Qb1 Sup < Qo2 ae.in Q, (3.3)

and Q, is the orthogonal projection from L3 (£2) onto W,,.
We have a standard interpolation error estimate (cf. [7, 12])

1 = Oty < Cxmplilyi @) (34
where the positive constant Cyx only depends on the shape regularity of 7.

Since Q,u satisfies (3.3) for any u that satisfies (1.4), the set K , is nonempty and the
discrete convex minimization problem has a unique solution characterized by the first order
optimality condition

/ (}_’*p = Yd) (Y« — )_’*,p)dx + V/ '/_‘*,p(”p - I,_t*’p)dx >0 V (Vs Mp) € K*,p-

Q Q
(3.5)

The error analysis for (¥« ,, i+ ,) was carried out in the pioneering work [17] on finite
element methods for elliptic optimal control problems. Here we present a self-contained
treatment that is suitable for the analysis of the multiscale finite element method in Sect. 4.

The following lemma is useful for the error analysis.

Lemma3.2 Let g € Ly(R2) and w, € V, satisfy
a(wy, vy) :/ gudx Vv, €V,
Q

Then we have

lwall Ly @) < (Chr/@)ligllzy@), (3.6)
lwslla < (Cee/V)lIglLo0)- 3.7
Proof Tt follows from (1.9), (2.8) and the Cauchy-Schwarz inequality that

2 2 2 2
||w*||L2(Q) =< CpF|w*|H1(Q) < (Cpr/a)a(wsy, wy)

— (Cp/a) /Q guidx < (Cp/e)lgll Lo lwell L.
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which implies (3.6).
The estimate (3.7) also follows from (1.9), (2.8) and the Cauchy-Schwarz inequality:

lwill2 = a(ws, wy) = /ng*dx < gl zo@ lwsll Lo @) < IgllLa) (Crr/ve) llwilla-
o

We will include the approximation of p by p. , in the error analysis, where p. , € Vi is
defined by

a(qx, Px,p) = / Yep — Yd)qxdx Vqs € Vi. (3.8)
Q

Theorem 3.3 There exists a positive constant Cy, depending only on || yallL,@), 1611l g1 ()
21l g1 (@) vy~ a~! and the shape regularity of 1y, such that

1y = e pllLo + it — s plly@) + 10 — Prpllia@
< Ci(ly = Y«llza@) + 1D — Pellia) + £), (3.9)

where Vi, px € Vi are defined by
atiz = [ dzds Vi, eV, (3.10)
a(qx, ps) = /Q(ﬁ — Ya)q«dx Y gy € V. (3.11)
Proof First we note the following analog of (2.3):

/ (V = ya)y«dx = a(ys, ps) = / uppxdx YV (ye,up) € Ky p (3.12)
Q Q

by (3.2) and (3.11).
Let (34, ) € K , be defined by

iup = Qplt (3.13)
and
a(Ps, 7x) = /Qﬁpz* dx Vzy € V. (3.14)
It follows from (3.4) and (3.13) that

lu —tpliLy@) < Cmplil g g)- (3.15)

We have
- -2 - -0
ly — y*,p“LZ(Q) +ylu— u*,p”Lz(Q)

= / (Y = Yep) (¥ = Yu)dx +y / (U — U, p) (U — U p)dx
Q Q

+ /Q(i = Vep) s — Yxp)dx +y /Q(ﬁ — Uy, p)(llp — U, p)dx, (3.16)
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and, in view of (2.9), (3.5) and (3.12),

/Q G = Fup) G — Fup)dx + 7 / (i — s )i — ity p)dx
Q
- / 5 — Fup)dx +y / (i — fin.p)dx
Q Q
_/ y*p(i’* - i*,p)dx - V/ ﬁ*,p(ﬁp - L_‘*,p)dx
Q Q
< L(y —Ya)(Px — y*,p)dx + V/ ﬁ(ﬁp - ﬁ*,p)dx
Q
= / (ps + Vﬁ)(ﬁp - ﬂ*,p)dx
Q
- / MGy — iy, p)dx + f (Pe — P)iip — iy p)dlx. (3.17)
Q Q

We can bound the first integral on the right-hand side of (3.17) by (1.7), Remark 2.1,
(2.10), (2.11), (3.3), (3.4) and (3.15):

/A(ap—a*,p)dx:/ M(a,,—a*,,,)dwrf Dy — ity p)dx
Q Q Q
:/ )Ll(QpL_t—IZ)dx-i-/ Kz(Qpb_t—L_t)dx
Q Q
+[ M(ﬁ—¢1)dx+/ Joii — go)dx
Q Q
+ /Q A1 — Qpd)dx + /Q ha(ds — Qpa)dx
+/Q)»1(Qp¢1 —b_t*,p)dx+/Q)»2(Qp¢2—ﬁ*,p)dx
< / )Ll(QpIZ—IZ)dx-i-/ )\Q(Qpb_t—b_t)dx
Q Q
+ /Q 31 — Qpd)dx + fQ ha(da — Qpo)dx
=/Q(A1 — 0,0, —ﬁ)dx-l-/ﬂ()»z— 0,02)(Qpii — i)dx

+ /Q(M — Qpr1)(P1 — Qpd1)dx + /Q(?»z — Qpr2) (92 — Qpp2)dx

< Cipt (3.18)
For the second integral on the right-hand side of (3.17), we have

/Q(ﬁ* — P)tp =ity p)dx = 1P — pelly@(lip — ully@) + i — i pllzo@)

< 1P = pella@) (Complitl g gy + i = itx pllLy(2))  (3:19)

by (3.15).
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It follows from Remark 2.1, (3.15), and (3.16)—(3.19) that
17 = Feol Ty + Y1 — itxpll7 0
<Y = YupllLa@lly = Pl + VIE — it pll Ly @) Complitl g )
+ C1p” + Capllp = PellLae) + 17 — Pellallii — v ol Ly
which together with the inequality of arithmetic and geometric means implies

19 = Feplliia + i — i plia@ < C3(I1Y — Fellio@ + 12 — Pella) + 0)-

(3.20)
On the other hand, we have
am—ﬁxw=L@—%mm Vzp € Vi,
by (3.10) and (3.14), and hence
135 = FllLa) < (Chp/llit = dipllzy@) < (Cpp/a)Crxplit g1 (3:21)

by (3.4) and Lemma 3.2.
Putting (3.20) and (3.21) together, we arrive at the estimate

17 = Fepllza@ + 18 — s pllLa@) < Ca(lly = YullLa@) + 17 = PellLac) + p)-

(3.22)
For the estimate of p — py ,, we begin with
1P = PrpllLa) S I1P — Prlla) + 1P« — Prplla@) (3.23)
and note that
cw%m—mw=f@—ﬁw%m Vg, e Vi (3.24)
Q
by (3.8) and (3.11), which implies
s — PrpllLa) < (Ce/a)IF = Fupllia@ (3.25)
through Lemma 3.2.
The estimate (3.9) follows from (3.22), (3.23) and (3.25). ]

The following result shows that the estimate (3.9) is a tight estimate.
Theorem 3.4 There exists a positive constant Cy, depending only on o~ such that

19 = Yella@ + 112 = Pella@ < Ci(I1y = Veplliace)
it — s pllzy@) + 117 — Prplla). (3.26)
where y, (resp., py) is defined by (3.10) (resp., (3.11)).
Proof We have
1Y = Vella@) = MY = Veoplla@) + 1950 — VellLo@)s (3.27)

and

a()_’*,p — Vi, Z) = / (’/_‘*,p — U)Zxdx Ve € Vi
Q
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by (3.2) and (3.10), which implies

13,0 = Sl Lac@) < (Chp/@)lit = i pll Lo (3.28)

by Lemma 3.2.
Similarly we have

P — PellLa@ <D — Pxpllia@ + 1Dx,p — PllLa)
<15 = Pepllia@ + Che/F — Vs pllLae) (3.29)

by (3.25).
The estimate (3.26) follows from (3.27)—(3.29). O

It is straightforward to derive error estimates in the energy norm from the estimate (3.9).

Theorem 3.5 There exists a positive constant Cg, depending only on ||yallL ), 1911l g1 ()
21l g1 () vy~ «~! and the shape regularity of Ty, such that

19 = Fsplla + 17 = Prplla < Cs(Il7 = Yslla + 15 = Pslla + 0), (3.30)
where Vi, px € Vi are defined in (3.10) and (3.11).

Proof We have

1Y = Yeplla + 112 = Prplla < 1Y = Yella + 12 = Pslla + 1135 = Vsplla + 1125 — Prplla-

(3.31)
It follows from (3.2) and (3.10) that
a(y* - )_)*,p, Z*) = / (’2 - ﬁ*,p)Z*dx Ve € Vi,
Q
and hence
94 = Vsplla < (Crr/Va)llit = it pll Ly (3.32)
by Lemma 3.2.
Similarly the relation (3.24) and Lemma 3.2 imply
9 = Prplla = (Cor/vVe) Iy = FupllLac- (3.33)

The estimate (3.30) is obtained by combining (3.9), (3.31)—(3.33) and the relation

1V — VellLa@ + 117 — Pellza@) < (Cre/Va) (I — Vella + 112 — Plla)
that follows from (1.9) and (2.8). O

Remark 3.6 Note that (2.2) and (3.11) imply p. € Vi is the projection of p with respect to
the bilinear form a(-, -). Therefore we have

lp — pxlla = inf [P — gulla
q+€Vy
Similarly we have
1y = y«lla = inf ||y — z«lla
74€Vy

by (1.3) and (3.10).
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Let V,, = V}, be the P1/Q; finite element space associated with a simplicial/quadrilateral
triangulation 7, of Q2 with mesh size h andlet (¥, i+, p, P+, p) be writtenas (Y, p, Un, p> Ph,p)-
The estimate (3.9) becomes

Y = YnpllLo) + it —unpllo) + 10— Prplliae)

< Ci(ly = yullLy ) + 1P — prllL, @) + £)s (3.34)
where yy,, pn € V), are defined by
a(Yn, zn) :/ iuzpdx Yz € Vy, (3.35)
Q
algn. pr) = / G — ya)andx Vai € Vi (3.36)
Q

and the estimate (3.30) becomes
19 = Ynolla + 12 = Prplla < Cs(I1y — Yulla + 117 — Plla + p). (3.37)

In the case where A is the identity matrix and € is convex, we have 7, p € H?(2) by the
elliptic regularity theory for polygonal/polyhedral domains (cf. [13, 20, 31]). It follows from
Remark 3.6, (3.34) and a standard duality argument (cf. [7, 12]) that

15 = Snplla + i — i pllio@ + 16 = Propllia@ < C* +p).  (3.38)
In this case the estimate (3.37) yields

15 — ol + 15— Prpluiy < Clh+ p). (3.39)
In the case of rough coefficients, we can derive from (2.8), (3.9), (3.30) and Remark 3.6
that
1Y = YnpllLy@ + e —tnpllLy@ + 12— PropllLa + 1Y = Ynplla + 112 = Prplla
<c( inf 15— zilla+ inf 15 —gnla+0),
ZneVp qgneVp
which implies

hlipﬂfo (19 = Fn.plliza + i — inpllLo) + 16 = Proplliae
+1y = Fnplla + 12 = Ph.plla) = 0.

However the convergence with respect to 4 can be very slow. Therefore a satisfactory approx-
imate solution of the optimal control problem obtained by standard finite element methods
will require a very fine mesh 7.

Below we will show that it is possible to recover on coarse meshes a performance similar
to (3.38) and (3.39) for rough coefficients and general 2 provided that one takes a multiscale
finite element space to be V.

4 A DD-LOD Multiscale Finite Element Method

First we recall the construction of the multiscale finite element space from [5]. It begins with
a simplicial/quadrilateral triangulation 7y of €2, and a refinement 7;, (h < H) of Ty. The
P1/Q; finite element subspace of HO1 (R2) associated with 7y (resp., 7j) is denoted by Vg
(resp., Vi).
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The first step is to construct a projection operator [T : HOl (2) —> Vg such that

1
v = Mavliy@ + Mavlgig) < Glvlme Vv e Hy(Q).

Remark 4.1 The operator I in [5] is constructed by taking the averages of local L, projec-
tions. There are other constructions that are adapted to the coefficient matrix A(x) (cf. [21,
33]).

Let K }ll_l 7 = {v € Vj : TIyv = 0} be the kernel of I in V, and the correction operator

C;I” SV — K,?” be the projection operator with respect to a(-, -), i.e.,

a(C}?HU,w):a(v,w) VweK}ll-[H.

The multiscale finite element space V;}l Shc vy is the orthogonal complement of K ;1:[ "
with respecttoa(-, -). Let ¢y, . .., ¢, be the standard nodal basis functions of Vi associated
with the interior vertices py, . .., pm of Ty. Then V}}’S‘h is spanned by ¢ —C,?qu] s P—

C}:I 7 ¢m. The performance of the finite element method based on VI';,1 I for the problem

a(u, v):/ fvdx Yve Hj(Q) (4.1)
Q

with rough coefficients is similar to the performance of Vy for problems with smooth coeffi-
cients on convex domains (cf. [29, 30]). However, the construction of Vgs’h requires solving
m problems on the fine mesh 7}, which is expensive.

The localized orthogonal decomposition (LOD) method is based on replacing the cor-
rection C,Il] " @; by a correction computed in a subdomain consisting of a certain number of
layers of elements from 7 around p;. It significantly reduces the computational cost and at
the same time it preserves the good approximation property of VII; S because the function
C}:I H ¢ decays exponentially away from p; (cf. [2, 29, 30]).

The multiscale finite element method from [5] is a variant of the LOD method which
is based on the ideas in [26]. It computes an approximate solution C}lz ,f ¢; of the corrector
equation

a(c}l;[qui, w) =a(pi,w) VYwe K,?H

by applying k iterations of a preconditioned conjugate gradient (PCG) method with initial
guess 0. The theory of PCG (cf. [34]) implies that the convergence of C}l—[ f i to C}? "o
in || - ||, is approximately g*, where ¢ € (0, 1) depends on the condition number of the
preconditioned operator.

The key is to use an additive Schwarz domain decomposition ]iglreconditioner (cf. [35])
where the subdomains are small patches w; around p; so that C, ;/¢; is supported on a
subdomain obtained by adding approximately 2k layers of elements from 7y around w;, i.e.,
C,ll_f 7 ¢ is also a localized correction of ¢;. The computation of C,lz & ¢; only involves solving
local small problems and ||C}ll_I Hepi —C }If ,’j ¢illa = O(H) provided k is proportional to | In H|.

The multiscale finite element space VIr{n S,;h C Vp, is spanned by ¢ — C}: ,f Gly s O —
C ,1? & ¢m. We will refer to it as the DD-LOD multiscale finite element space. The corresponding
finite element method for (4.1) can be viewed as a reduced order method, where the functions
C ,? Lot ..., CE ¢ ¢m are computed off-line. The on-line computation only involves solving
an m X m system.

The following is the main result from [5] whose derivation only involves basic results
from finite element methods, domain decomposition methods and numerical linear algebra.
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Lemma4.2 Let f € Ly(R), y, € V), and y,rfi’h € V,rj,ns,;h such that
a(yn, zn) :/ fandx Vzp € Vi,
Q
aOiy i = [ et Ve e Vi

There exists a positive constant Cy depending on the shape regularity of Ty but independent
of o, B, h and H, such that

h
e = yix la < (Co/NVaO)HI £l Ly
llyn = v Ia@) < (Co/Na HA N fll a0,
provided k = [—j In H] for a sufficiently large j.

Remark 4.3 The magnitude of j depends on the condition number of the preconditioned
operator in the PCG algorithm.

The DD-LOD finite element method for (1.1)—(1.5) is defined by (3.1)—(3.3), where V,, =

V}}“S];h and its solution is denoted by (&,‘ii”', i),

We also include the approximation of p by ﬁr,fi‘h in the error analysis of the multiscale
finite element method, where ﬁ?qsk’h € V;In S];h is defined by

algyy" " = /Q G = yoanydx - Vgt e vk, 4.2)

Remark 4.4 Strictly speaking jgi’h and ﬁﬁi’h also depend on p and i, also depends on £,
H and k. These dependencies are suppressed for the sake of readability.

Theorem 4.5 There exists a positive constant Cy, depending only on ||yallr,), |¢1 |l g1 )
21l g1 () vy~ o~ and the shape regularities of Ty and 1,, such that
- -ms,h - - ~ —ms,h
19 = Y Nea) + i —ipliye + 117 — Piy s
< Co(I = Ynplira@ + i — @npllLo@) + 1P — Propllia) + H? + p), 4.3)

where (Yn.p, Un.p, Ph,p) IS the approximation of (y, u, p) obtained by using the standard
finite element space Vi, x W), in the discretization defined by (3.1)—(3.3).

Proof We apply Theorem 3.3 (with V, = ;S,;h) to obtain

- _msh — ~ _msh
19— Ve Mo + i = pllo@ + 17 — Pii L@

— .ms.h _ . ms,h
< Ci(1y = vy ey + 12 = Pk s + £). 4.4

ms,h ms,h

where y™" ¢ Vi (resp., sl e Vi i) is the analog of . in (3.10) (resp., ps in (3.11)),
i.e., y™ M is defined by

aGist ) = [ amtdx vaR e v, 45)
Q
and pi%" is defined by

s,h  .ms,h — S, h S, h W/
Mﬁ;mm)zéu—mﬁﬁw Vg e vt 4.6)
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Let y, € Vj, (resp., pn € Vp) be defined by (3.35) (resp., (3.36)). According to Theo-
rem 3.4, we have

17— yulle,@ + 12 — Prlliae)

< C:(I1y = Vnpllzo + i — inpliLy@) + 112 — Phoollio)- 4.7)
On the other hand, in view of Lemma 4.2, we have
15— 355" 2@ < (Co/Ve)* H2 il Ly 4.8)
by (3.35) and (4.5), and
1n = " 2@ < (Co/ V) HAF = yall Lo 4.9)
by (3.36) and (4.6).
The estimate (4.3) follows from (4.4), (4.7)—(4.9) and the triangle inequality. O

Remark 4.6 The estimate (4.3) indicates that up to an O (H? + p) error the approximation of
(3. i1, p) by (G i1, pS"Y is as good as the approximation by (4. ith.p» Ph.p)- On the
other hand, by comparing (3.38) and (4.3), we can also say that, up to the fine scale error, the
performance of the multiscale finite element method on coarse meshes (with respect to the
L>(£2) norm) is similar to the performance of standard finite element methods for problems
with smooth coefficients on convex domains.

We also have error estimates in the energy norm.

Theorem 4.7 There exists a positive constant C,, depending only on ||yallr,«), |¢1ll g1 )
21l g1 () vy~ o~ and the shape regularities of Ty and 1,, such that

15— 503" e + 15 — P Nla < Co(IlF = Fnplla + 115 — puplla + H + p). (4.10)

where (Yp,p, Pn,p) is the approximation of (y, p) obtained by using the standard finite element
space Vi, x W, in the discretization defined by (3.1)—(3.3).

Proof 1t follows from Theorem 3.5 that
15 = 555" la + 15 = P la < Cs (15 = 53" la + 15 — P15 la + p). (4.11)
where v, pi" € V5 are defined by (4.5) and (4.6).
Let y;, € Vj, (resp., pn € Vp) be defined by (3.35) (resp., (3.36)). In view of Lemma 4.2,
we have

I3n — V5" e < (C2/Ve)Hllitll Ly (4.12)
by (3.35) and (4.5), and also
1w = PR la < Co/VOHIF = yall @ 4.13)
by (3.36) and (4.6).
Finally we note that
1y = Yulla <MY = Ynplla and 1p = prlla < 11D — Pr.plla (4.14)
by Remark 3.6.
The estimate (4.10) follows from (4.11)—(4.14) and the triangle inequality. O
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Remark 4.8 The estimate (4.10) indicates that, up to an O (H + p) error, the approximation
of (y, p) by (y}}“j;h, ﬁﬂi’h) in the energy norm is as good as the fine scale approximation by
(Yn,p» Dh,p)- By comparing (3.39) with (4.10), we can also say that up to the fine scale error
the performance of the multiscale finite element method (with respect to the energy norm) on
coarse meshes is similar to the performance of standard finite element methods for problems

with smooth coefficients on convex domains.

5 Numerical Results

In this section we report the numerical results of two examples, one with highly heterogeneous
coefficients and one with highly oscillatory coefficients. The domain is the unit square 2 =
(0, 1) x (0, 1) for both examples, and we use the Q1 element on uniform rectangular meshes.
The regularization parameter y is taken to be 1.

The objective function in our computations is given by

~ 1
Tw = S (9150 + vl @) - fg yyadx (5.1)

that differs from J (y, u) by the constant ||y, ||%2(Q)/2.

The fine scale solution (yp, up) (Where 7, = 7j) is computed by using the primal-
dual interior point method in the PETSc/TAO library with 20 processors on the SuperMIC
supercomputer at Louisiana State University. Each compute node is equipped with two 2.8
GHz 10-Core Ivy Bridge-EP E5-2680 Xeon 64-bit Processors, two Intel Xeon Phi 7120P
Coprocessors, 64GB DDR3 1866MHz Ram, 500 GB HD, 56 Gigabit/sec Infiniband network
interface, and 1 Gigabit Ethernet network interface.

The DD-LOD solution (ﬁ;”’, uy) (with 7, = 7Ty) is computed by using the quadprog
algorithm in MATLAB on a Lenovo Thinkpad X1 Carbon laptop with a 12th Gen Intel(R)
Core(TM) 17-1260P processor, 4.70 GHz Max Turbo Frequency, an 18MB Intel(R) Smart
Cache and 32 GB of RAM.

Example 5.1 (Highly Heterogeneous Coefficients) The coefficient matrix for this example is

given by
A 0
A= |: 0 A22i| ’

where A1) and Ay are piecewise constant matrices with respect to a 40 x 40 uniform
rectangular subdivision of €2. The values of A and .45, on each square of the subdivision
are randomly generated and range between 1 and 1350 (cf. Fig. 1).

We choose y; = 1 and the control constraints are given by ¢;(x) = 0.0002x; — 0.0001
and ¢»(x) = 0.0002x; 4+ 0.0001 (cf. Fig. 2).

We take h = 1/320 for the fine scale solution (y,, u;,). In the first set of experiments
we take H = 1/10, 1/20, 1/40, 1/80 for the DD-LOD solution (y,‘}‘f;h, ity) with 7, = Ty.
The number of iterations k used in the solution of the corrector equation equals [—31n H]
for H = 1/10, 1/20 and 1/40, and equals [—61n H] for H = 1/80. The relative errors for
the approximation of the standard finite element solution (yy, u;,) by the multiscale finite
element solution (", ii;) are presented in Fig. 3.

The O(H) convergence of iy predicted by Theorem 4.5 is observed. The convergence
of yg{i’h in the L, norm is O (H?), which is better than the O (H) convergence predicted by
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1200

1000

600

400

200

Fig. 1 Ajp (left) and Ay; (right)

Fig.2 Graphs of the control
constraints ¢ and ¢, for
Example 5.1

Theorem 4.5. It should be noted that the error estimate in (4.3) concerns the approximation of
(y, ) by ( ﬁ,?i’h, iy), and the results reported in Fig. 3 measure the approximation of (yy, ity,)
by (y?jh, iy ). The convergence of y?j;" in the energy norm is O (H), which agrees with
Theorem 4.7.

For this example, the value of the modified cost function Jin (5.1) is —3.60479 x 10~8
for the fine scale standard finite element solution (yy, up). The values of J (i,r;i’h, iy) are
displayed in Table 1. The order of convergence of J (ig‘i’h, ity) is roughly O (H?), which is
consistent with Theorem 4.5.

We compare the graphs of y;, and yg{ig” (with H = 1/20) in Fig. 4, and the graphs of i1, and
uy (with H = 1/20) in Fig. 5. The active sets for u;, and u (with H = 1/20) are depicted in
Figs.6 and 7. The computation of the fine scale standard finite element solution (yj, u) of
the discrete optimization problem takes 3.90 x 10! seconds by using the PETSc/TAO library
with 20 processors. The computational time (in seconds) for (yi3", ii;) using MATLAB on
a laptop are presented in Table 2 for H = 1/10, 1/20, 1/40.

For H = 1/20, the DD-LOD solution (yg‘_i’h, ily) yields a reasonable approximation
of (yn, up) (cf. Figs.4, 5, 6, 7) and its computation is more than 100 times faster than the
computation of (yp, itp).

In the second set of experiments we take H = 1/20 and p = 1/40, 1/80, 1/160 for the
DD-LOD solution (yg‘;*h, it,). In view of Theorem 4.5 and Theorem 4.7, we expect these
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107
— 10" —
g ~ 7 07
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--x-= O(H) reference N O(H) reference
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107!
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55 102
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104
102 10° 10*

(©)

Fig. 3 a Relative Ly error of iy, b relative Ly error of
Example 5.1 with H = 1/10, 1/20, 1/40, 1/80

J

TaZIe1 Values of
7 ( -ms,h 3

Yui »un ) for Example 5.1

-ms,h
YH k

and c relative energy

error of ygsk*” for

H

T (o )

1/10
1/20
1/40
1/80

—3.55321 x 1078
—3.59107 x 10~8
—3.60102 x 1078
—3.60372 x 1078

approximate solutions will improve over the approximate solution (ym'” ,iy) with H =
1/20 and 7, = 7y obtained in the first set of experiments. This is confirmed by comparing
the values of the cost function J in Table 3 with the value f(&h, iy) = —3.60479 x 1078 for
the fine scale solution. The number of significant digits increases from 2 to 4 as p decreases
from 1/20 to 1/160.
We can also visualize the improvement due to a smaller p by comparing the graph of the
fine scale solution i, for the optimal control and the graph of the DD-LOD solution u , for the
optimal control (with H = 1/20 and p = 1/160) in Fig. 8. They are hardly distinguishable,
which is not the case for the graphs in Fig. 5.

a
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Fig.4 Graph of 3, (left) and graph of ygfk"’ (right, with H = 1/20) for Example 5.1

Table 2 Computational time in H

Time
seconds for (ygsk" i H)
(Example 5.1) 1/10 1.26 x 1072
1/20 174 x 107!
1/40 1.04 x 10+1

04
06 \\/ 02
08
x L Y

Fig.5 Graph of i, (left) and graph of &y (right, with H = 1/20) for Example 5.1

This is also true for the active sets, where the ones for the fine scale solution u; and the
ones for the DD-LOD solution i, (with H = 1/20 and p = 1/160) are almost identical in
Figs.9 and 10.

Example 5.2 (Highly Oscillatory Coefficients) The coefficient matrix for this example is
given by

_|ex) 0
A_|: 0 c(x)i|’

where

2 + sin (2”2)

€

24 1.85in(27””)

€

cx) = +

€ €

24 1.83in<2”x‘)

2+ 1.8sin (2’”2
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0.9 0.9

0.8 08

0.7 0.7

0.6 06

0.4 04

0.3 03

0.2 0.2

0.1 0.1

0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9 1 0 0.1 0.2 0.3 04 0.5 06 0.7 0.8 0.9 1
X X

Fig.6 Active sets for ¢ for Example 5.1: i1y, (left) and iy (right, H = 1/20)

1 1

0.9
0.8
0.7
0.6
>05
0.4
03
0.2
0.1

0

0

Fig.7 Active sets for ¢ for Example 5.1: i1y, (left) and iy (right, H = 1/20)

Table3 Values of J (375", 7)) (i

with H = 1/20 and various p for L (quk ’ up)

Example 5.1 3
1/20 —3.59107 x 10~
1/40 —3.60090 x 10~8
1/80 —3.60357 x 108
1/160 —3.60431 x 10~8

with € = 0.025. This choice of coefficients originates from the pioneering work [23] in
numerical homogenization.

We choose y; = —1 and the control constraints are given by ¢;(x) = —0.01x; — 0.005
and ¢ (x) = 0.0007x2 — 0.005 (cf. Fig.11).

We take h = 1/320 for the fine scale solution (¥, i). In the first set of experiments
we compute the DD-LOD solution (y,‘f}”, uy) for H = 1/10,1/20, 1/40,1/80 (with
7, = Tg). The number of iterations k used in the solution of the corrector equation equals
[—31n HT for all H. The relative errors for the approximation of the fine scale standard finite
element solution (yy, i) by the multiscale finite element solution (igi’h, i) are presented
in Fig.12. The O(H) convergence is observed for both iy and y,‘;‘j” , which agrees with
Theorem 4.5 and Theorem 4.7.
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0.8
X 1 0 y

Fig.8 Graph of i1y, (left) and graph of i, (right, with H = 1/20 and p = 1/160.) for Example 5.1

09 09
08 0.8
07 07
0.6 0.6

>05 >05
0.4 04
03 03
02 0.2
0.1 0.1

0 0

Fig.9 Active sets for ¢1 for Example 5.1: it, (left) and i, (right, H = 1/20 and p = 1/160)

Fig. 10 Active sets for ¢, for Example 5.1: i1, (left) and it (right, H = 1/20 and p = 1/160)

For this example, the value of the modified cost function J in (5.1) is —8.29631 x 107
for the fine scale standard finite element solution (¥, i5,). The values of J (yg{i’h, iiy) are
displayed in Table 4. The O (H?2) convergence of J (y,‘}’j;h, it ) also agrees with Theorem 4.5.

We compare the graphs of y; and )'/,Tjgh (with H = 1/20) in Fig. 13, and the graphs of
up and uy (with H = 1/20) in Fig. 14. The active sets for u;, and uy (with H = 1/20) are
depicted in Figs. 15 and 16.
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Fig. 11 Graphs of the control
constraints ¢ and ¢, for
Example 5.2
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T( )

Table4 Values of

J Z}‘),T?,é N7 :) for Example 5.2 H
1/10
1/20
1/40
1/80

—8.22171 x 1073
—8.28313 x 1073
—8.29343 x 107>
—8.29550 x 1073

Fig. 15 Active set for ¢ for Example 5.2: iz, (left) and iy (right, H = 1/20)
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1 ]
0.9 0.9
08 0.8
0.7 0.7
0.6 0.6

>05 >05
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

0 0
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 [ 0.1 0.2 03 0.4 05 06 07 0.8 0.9 1
X X

Fig. 16 Active set for ¢»» for Example 5.2: i1y, (left) and iy (right, H = 1/20)

Table 5 Computational time in

W Time

seconds for (572?,; N7 H) for

Example 5.2 1/10 1.71 x 1072
1/20 127 x 107!
1/40 1.40 x 10!

Table 6 Values of J (775", e

with H = 1/20 and various p for ~ * (vak ; “P)

Example 5.2
1/20 —8.28313 x 1072
1/40 —8.29252 x 1073
1/80 —8.29448 x 1077
1/160 —8.29510 x 107

The computation of the fine scale standard finite element solution (yy,, u;,) of the discrete
optimization problem takes 4.36 x 10*! seconds by using the PETSc/TAO library with
20 processors. The computational time (in seconds) for (y;‘,‘?k*h, uy) using MATLAB on a
laptop are presented in Table 5 for H = 1/10, 1/20, 1/40. For H = 1/20, the DD-LOD
solution (y,rﬁi’h, ily) is a reasonable approximation of (yp, i) (cf. Figs. 13, 14, 15, 16) and
its computation is more than 200 times faster than the computation of (y, ip).

In the second set of experiments we take H = 1/20 and test the improved approximation
by the DD-LOD solution (y,‘?j;h, itp) for p = 1/40,1/80/1/160 that is predicted by the
estimates in Theorem 4.5 and Theorem 4.7. This improvement can be observed by comparing
the values of the cost function J in Table 6 with the value J (yn, up) = —8.29631 x 1073 for
the fine scale solution. The number of significant digits improves from 2 to 3 as p decreases
from 1/20 to 1/160.

The improvement can also be visualized through a comparison of the graphs of the fine
scale solution u;, and the DD-LOD solution i, (with H = 1/20 and p = 1/160) in Fig. 17.
They are almost identical, which is not the case in Fig. 14.

We can also observe the improvement due to smaller p by comparing the active sets
depicted in Figs. 18 and 19. These sets are almost identical, which is not the case in Figs. 15
and 16.
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Fig.17 Graph of i, (left) and graph of i, (right, H = 1/20, p = 1/160) for Example 5.2

Fig. 18 Active set for ¢ for Example 5.2: i1, (left) and it (right, H = 1/20 and p = 1/160)

09 09
0.8 08
07 07
06 06

>05 >05
0.4 04
0.3 03
02 0.2
01 0.1

o 0
0 01 02 03 04 05 06 07 08 09 1 0 02 04 06 08 1

Fig. 19 Active set for ¢ for Example 5.2: iy, (left) and u, (right, H = 1/20 and p = 1/160)

6 Concluding Remarks

We have constructed and analyzed a multiscale finite element method for the optimal control
problem defined by (1.1)—(1.5). We showed that the approximate solution obtained by the
DD-LOD finite element method on the coarse mesh 7% is, up to an O (H 24 p) term for the
L, error and an O(H + p) term for the energy error, as good as the approximate solution
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obtained by a standard finite element method on a fine mesh 7;,. Alternatively we can say
that up to the fine scale error the performance of the DD-LOD method is as good as standard
finite element methods for smooth problems.

The DD-LOD multiscale finite element method is one of the simplest multiscale finite
element methods in terms of construction and analysis. There is inherent parallelism in the
construction of the DD-LOD finite element space that comes from domain decomposition so
that it can readily benefit from high performance computing (cf. [6]), and its analysis only
requires basic knowledge in finite element methods, domain decomposition methods and
numerical linear algebra. After a multiscale basis has been computed off-line, the on-line
solution with the coarse scale DD-LOD finite element method is fast. The multiscale finite
element method is particularly useful for applications where the optimal control problem has
to be solved repeatedly for different y4, ¢1 and ¢5.

We note that the error estimates in Theorem 3.3 and Theorem 3.5 are applicable to any
subspace V. of H(; (£2). The key is to have good error estimates for the Galerkin solution of
(4.1). In particular, we can take V, to be the LOD multiscale finite element spaces in [21,
22, 33] and arrive at similar results. Note that the LOD methods in [21, 33] are suitable for
problems with high contrast.

We can also take V, to be the multiscale finite element space V}, from [15, 23, 24] for
problems with highly oscillatory and periodic coefficients (such as the problem in Exam-
ple 5.2), where & stands for the coarse mesh size. The corresponding L, error estimate then
takes the form

_ _ _ _ _ _ €
15 = Sl Lac@ + 18 = T plla@ + 15 = Prplliae < C( +e+ - +p).

where € (< h) is the parameter for the small scale, and the positive constant C only depends
on ||yallLy)s 1911 51 @)ys 1921 51 (@) y~!, a~! and the shape regularities of 7, and Tp.

Similarly, the multiscale finite element methods in [3, 9] can also be analyzed by Theo-
rem 3.3, Theorem 3.5 and the estimates in [11, 32].
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