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Abstract
We design a finite element method for the quad-curl problem on three dimensional Lips-
chitz polyhedral domains with general topology that is based on the Hodge decomposition
for divergence-free vector fields. Error estimates and corroborating numerical results are
presented.

Keywords Quad-curl - Hodge decomposition - Finite elements - Polyhedral domain with
general topology

1 Introduction
Let @ C R? be a bounded connected polyhedral domain with a Lipschitz boundary and the
space E be defined by
E={ve [L2(52)]3 ceurlv € [HOI(Q)]3, divv=0andn x v =0 on 082},
where n is the unit outer normal on 9<2.

Remark 1.1 Here and below we follow the standard notation for differential operators, func-
tion spaces and norms that can be found for example in [12, 22, 27].

The quad-curl problem is to find u# € E such that
(curl (curlu), curl (curl v))Lz(Q) + B(curlu, curlv), 2 g,
+y@, v =g VYvek, (L.1)

where 8, y are nonnegative constants and f € [L?(Q2)]3. We assume y > 0 if 92 is not
connected.
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The space E is a Hilbert space under the inner product
(v, w)g = (v, w);2(q) + (curl v, curlw) 41 (g (1.2)
where (componentwise)
(W w1 = V. W) 2 + (grad v, gradw) 2, Vv, w e H'(Q),
and we have a norm equivalence (cf. Appendix A and [20])
||curl (curl v)ll%z(m + ﬁllcurlvlliz(g) + yllvlliz(g) ~@w,vrg VYveE. (1.3)

It follows from (1.3) and the Riesz representation theorem that (1.1) has a unique solution.
Our goal is to solve (1.1) numerically through a Hodge decomposition of u.

The quad-curl problem appears in the Maxwell transmission eigenvalue problem (cf. [15,
16, 34, 38]) and mathematical models for magnetohydrodynamics with hyperresistivity (cf.
[5, 18, 36]). Numerical methods for (1.1) have been investigated in [17, 19-21, 26, 28, 37,
39, 41, 44, 46, 48] and methods for its analog on two dimensional domains can be found in
[13,29, 42, 45, 47].

In this paper we treat the quad-curl problem on three dimensional domains with general
topology by extending the Hodge decomposition approach for two dimensional quad-curl
problems in [13]. The general topology of €2 leads to additional challenges in the construction
of the Hodge decomposition and corresponding finite element methods. Fortunately many
of the complications have been addressed in [1] and we are able to solve (1.1) by standard
simple finite elements and obtain error estimates solely based on the given Q2 and f without
any assumed regularity on the solution u.

The rest of the paper is organized as follows. The Hodge decomposition of divergence-
free vector fields is presented in Sect. 2, followed by the reduction of (1.1) into second order
problems in Sect. 3. Finite element methods for these second order problems are introduced
in Sect.4 with convergence analysis given in Sect.5. Improved error estimates for the case
where f € [H' ()] are presented in Sect. 6, followed by numerical results in Sect.7. We
end the paper with some concluding remarks in Sect. 8. The appendices contain the proofs
of some technical results.

Below we recall some notation that will be used throughout the paper.

o L2(Q) is the space of functions v € L?(€2) that satisfy

fvdx =0. (1.4)
Q

e H(curl; ) is the space of vector fields defined by
H(eurl; Q) = (v € [L*(Q)]’ : curlv € [L*(2)]°}

Wlth ||v||H(Clll‘];Q) = (”vHiZ(Q) + ||curlvl|iZ(Q))§'

e Hy(curl; 2) ={v e H(curl; 2) : n xv =0 on 0%} is the subspace of vector fields
in H (curl; ) with vanishing tangential components.

o H(curl®; Q) = {v € H(curl: Q) : curlv = 0} is the space of irrotational vector fields
in H(curl; ).

e H(div; Q) is the space of vector fields defined by

H(div; Q) = {v € [L2(Q)] : divv € L*(Q)}

with 0]l @ivie) = (10172 g, + Idivel],q )
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Ho(div; 2) is the subspace of H (div ; 2) defined by
Hy(div; Q) ={ve Hdiv;Q): n-v=0 on 9Q}.

o H(div?; Q) = {v e H(div; Q) : divv = 0} is the space of divergence-free vector fields
in H(div; 2).

o Hy(div?; Q) = {v € Hy(div; Q) : divv = 0} is the space of divergence-free vector
fields in Hy(div; 2).

e Given a vector field v = [v;, va, v3]' € [H! (Q)]3, the matrix function Grad v is given

by
dv1/dx1 dvy/dxy dvy/ox3
Gradv = | dvp/0x; dvy/dx dvy/0x3
dv3/dx1 dv3/dxy dv3/0x3
so that
(Grad v, Grad w) 2y = / Gradv : Grad w dx
Q
3
= Z(grad vi,gradw;) 2 Vo, we [HI(Q)]3
i=1
1
and |Grad v| ;2(q), = (Grad v, Grad v)zz(m = v|p1(q)-

We end the introduction with a fundamental result on two subspaces of H (curl; Q) N
H (div; ©2) (cf. [1, Proposition 3.7]).

Lemma 1.2 There exist two positive numbers oy and oy in (%, 1] such that

o]l ger @) < C(IIvll 120y + leurlv]l2q) + Idiv vll;2q)) (1.5)
forall v e H(curl; Q)N Hy(div; ),

ol gen @) < CIIvllz2¢q) + lleurl v] 12y + ldiv o] 12q)) (1.6)
forallv € Hy(curl; Q) N H(div; Q). We can take oy = ay = 1 if Q is convex.

Here and throughout the paper we use C to denote a generic positive constant independent
of the mesh sizes that can take different values at different occurrences.

2 Hodge Decomposition for Divergence-Free Vector Fields

The Hodge decomposition has to take into account the topology of the domain €2, which may
be multiply connected and the boundary of 2 may have multiple components, i.e., the Betti
numbers B and B, of 2 may be greater than 0.

More precisely we assume that €2 becomes simply connected after m cuts X1, ..., X,
have been removed and that €2 has n + 1 components I'g, ..., I',, where m = f; and
n = fy. Each cut X;, which is the intersection of a plane with €2, is simply connected and
the closures of X; are pairwise disjoint. The open subset 2 \ (Uf»"z1 Ei) of 2, denoted by
Q°, is simply connected. We take I"p to be the outer component of 92 and I'y, ..., [, to be
the inner components of 9<2.

As an illustration, the domain €2 in the center of Fig. 1 withm = 2 and n = 1 is generated
by removing two rectangular columns (shaded in blue) and a cube (shaded in brown) from the
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Fig. 1 Rectangular box (left), domain €2 (center), domain 2 with cuts (right)

rectangular box on the left of Fig. 1, where the boundary of the cube is the inner component
I'; of 2. The two cuts ¥ and X, (shaded in green) are depicted on the right of Fig. 1.

2.1 Vector Potentials

We will use the vector potentials for divergence-free vector fields in [1, Section 3] in the con-
struction of the Hodge decomposition and the finite element methods (cf. also [2, Section 3.5
and Section 3.6]).

Let the subspace &7; of H(curl; 2) N Hy(div 0. Q) be defined by

@Tz{veH(curl;Q)ﬂHo(diVO;Q):/ v-nydS=0 for 1 <i=<m}, (2.1)
i

where ny, is a unit normal of X;.
The following lemma is Theorem 3.12 in [1].

Lemma 2.1 The operator curl is a surjection from H (curl; Q2) onto the space
Py ={we Hdiv’; Q) : fr von,dS=0 for 1<j<n},
j
where nr, (1 < j < n) is the unit outer normal on the inner component I j of 0$2, and the
restriction of the operator curl to & is an isomorphism between &y and Dr.
Remark 2.2 Since 27 is a Hilbert space under the inner product
(v, w) g (curl; ) = (v, w)Lz(Q) + (curl v, curl w)Lz(Q)

and curl is a bounded linear operator from 2, onto the closed subspace Z; of [L*(2)]%, it
follows from the open mapping theorem that

||U||L2(Q) < C”curlv”LZ(Q) Vve '@T~
Hence &7; is also a Hilbert space under the inner product (v, w) 2, = (curlv, curl w);2q.

While the potentials in &2, appear in the Hodge decomposition, another space of vector
potentials also plays arole in the construction of the finite element methods and their analysis.
Let the subspace &2y of Hy(curl; 2) N H (div 0. Q) be defined by

Py = {v € Hy(curl; Q)N H(diVO; Q) : / v- np/.dS =0 for 1 <j<n}. (22
L

Remark 2.3 Note that &y is a subspace of 7.

The following lemma is Theorem 3.17 in [1].
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Lemma 2.4 The operator curl is a surjection from Hy(curl; Q) onto the space

20 ={veHydiv% Q) : | v-nydS=0 for 1<i<m)
%

and the restriction of the operator curl to &y is an isomorphism between &y and @2.

2.2 Harmonic Functions @1, ..., @,

The harmonic functions ¢y, ..., ¢, € H 1 (2) are defined by

/ gradg; -gradpdx =0 Vg e Hj(Q), (2.3a)
Q
il =0, (2.3b)
Fo
andfor 1 < j,k <n,
1 ifk = j
9ilp, = e (2.3¢)
k 0 ifk # j
Remark 2.5 The harmonic functions ¢y, . .., ¢, belong to the Sobolev space H!™*Dir (Q) for

some op; € (1/2, 1] by the elliptic regularity theory for polyhedral domains in [24, 32],
where op;, depends on the conic angles at the vertices of €2 and the dihedral angles of the
edges of 2. We can take ap;, to be 1 if 2 is convex.

Lemma 2.6 Given any v € H(divO; Q), there exist unique constants ci, ..., cy such that
w=v—3"_ cjgradg; satisfies

/w'nr/.dS=O for 1 <j<n. 24
r; ’

J

Proof Tt suffices to show that the n x n matrix
/ grad ¢ - n1dS / grad g, -n1dS
r I
M =

/ grad ¢ - n,dS / grad ¢, - n,dS
Ty L

is nonsingular.
Let [a1, ..., a,)" belong to the null space of M and ¢ = > _}_, axpk. Then

n
Z(/r gradgak-nde)ak:O for 1<j<n

/ grado -n;dS =
Lj k=1 J

and we have

n
/gradw-grad(pdx:f (gradtp-n)godS:Zaj/ grady -nr,;dS =0
Q a0 X r;

j=1 J

by (2.3a)—(2.3c) and integration by parts.
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Consequently ¢ is a constant that must be zero because ¢ = 0 on I'g, and hence a; =
-+ =a, = 0 because ¢1, ..., ¢, are linearly independent by (2.3c). O

Remark 2.7 The vector fields grad ¢; belongs to [E by construction. Furthermore, in view of
Lemma 2.1, (2.3b) and (2.3¢) we have

(Curl'//, grangj)L2(Q) =0 Vd/ € 97‘.

Remark 2.8 The constants cy, ..., ¢, in Lemma 2.6 are bounded by max <<, | fr, v-n;dS
and hence by [|v[| g iv;2) = IvllL2(q)-

2.3 Hodge Decomposition for H(div °; Q)

Let v belong to H (div?; Q). It follows from Lemma 2.6 that there exist unique constants
c1, ..., cysuchthat (2.4)is satisfied, where w = v— Z;Il cjgrad ¢; belongs to H (div 0. Q)
by (2.3a). We can then apply Lemma 2.1 to conclude that there exists a unique ¥ € &r such
that

w = curly,
or equivalently
n
v =curlw+2cjgrad<pj, (2.5)
j=1

which is the Hodge decomposition of v.

3 Reduction of the Quad-Curl Problem

Let u € E be the solution of (1.1) and

n
u :curl(b—}—quradw 3.1
Jj=1

be the Hodge decomposition of u. Our goal is to find u by finding ¢ and 71, ..., 7,.

Remark 3.1 Tt follows from (2.3b), (2.3c) and (3.1) that n x curl¢ = 0 on 92, which will
be posed as a natural boundary condition in Sect.3.1.

In the case where n > 1, the boundary of €2 is not connected and y > 0 by assumption.
In view of Remark 2.7 and (3.1), we can take v = grad ¢y in (1.1) to obtain

n
1
Z fj (gl‘ad (pj, gl‘ad (pk)L2(Q) = (u, grad gﬂk)LZ(Q) = ;(f, grad ng)LZ(Q) (32)
j=1
for 1 < k < n. Therefore the coefficients 7y, ..., 7, are determined by the system (3.2),
which is symmetric positive definite by (2.3b).
Below we will show that ¢ € Z7; is determined by several second order saddle point
problems. The following observation is useful.
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Lemma 3.2 The operator curl maps E into the space . defined by
S = {n € [H ()P NHWiv; Q) : / n-nsdS=0 for 1<i< m} . (33)
%
which is the divergence-free subspace of

[H&(Q)]%:{ne[H(}(Q)]3:/ n-nydS=0 for 1§i§m}. (3.4)

El

Proof This is a direct consequence of Lemma 2.4 since E is a subspace of Hy(curl; ) N
H(div'; Q). O

Remark 3.3 Note that . is a subspace of .@2.
Remark 3.4 [H(} (Q)]?t and .7 are Hilbert spaces under the inner product (-, -)g1(q). In

the case where € is simply connected, [H} ()13 = [H](2)]® and . = [HJ ()P N
H(div'; Q).

3.1 A Second Order Saddle Point Problem for ¢

Leté =curlu € H(} (R2). It follows fromn x u = 0 on 9€2, Remark 2.7, (3.1) and integration
by parts that, for any ¥ € &, we have

n
(Curl¢, curl 'ﬁ)LZ(Q) = (u, curl '/,)LZ(Q) — Z fj (gl‘ad i, curl V’)LZ(Q)
=1

= (Curlu, VIf)LZ(Q)
=& V)2 @)- (3.5)

In view of Remark 2.2, ¢ € 7 is the unique solution of the well-posed problem (3.5)
and we have

11 b1 curt: ) < ClENL2(0y- (3.6)

The integral constraints in the definition of #; in (2.1) are inconvenient for the numerical
solution of (3.5). They can be removed through the reformulation of (3.5) as a saddle point
problem, for which we will need the subspace ® of H'(2°), where Q° = Q\ UL, =i

For any v € H'(Q°), the jump [[v]x, of v across the cut ¥; is well-defined by the trace
theorem, and

®O={ve HI(QO) : [[v]ls;, = constant for1 <i < m} 3.7

is a closed subspace of H'(£2°). We will denote by é;zt/l v the function in L*(2) that agrees
with grad v in ©°. The subspace ® N L%(Q) of ® is denoted by ©°.
The following result is a simple consequence of integration by parts.

Lemma 3.5 A vector field v € [L*(Q)]? satisfies
(v,grad6) 2 =0 V6@

if and only if v € Ho(div%; Q) and

/ v-n5,dS=0 forl<i=<m. 3.8)
%
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Remark 3.6 Note that v € H!(Q°) belongs to ® if and only if g'?u/i v € H(curl?; Q) (cf.
[1, Lemma 3.11]).

Remark 3.7 In the case where €2 is simply connected, we have ® = H'(Q) and gTEH v =
grad v forv € ©.

The saddle point problem for (3.5) is to find (¢p, 6) € H (curl; 2) x ©Y such that

a(@. ¥) + bW, 0) = . ¥) 2 V¥ € H(curl; Q), (3.9a)
b(¢, ) =0 Vueo (3.9b)
where
a(, ¥) = (curly, curl )2 g, (3.10)
b(@. w) = (. grad (1) 2. (3.11)

We will establish the well-posedness of (3.9) by the theory of saddle point problems in
[3, 14]. The inf-sup condition is satisfied because

by, ) _ (gradp, gradp)
yereur;2) |VllHCur:2) ~ |grad il geur: o)

= llgrad pll 2oy V€ ©°

(3.12)
by Remark 3.6. Moreover it follows from Lemma 3.5 that
Kerb = {v € H(curl; 2) : (v,g/r\zi(/iu)Lz(Q) =0 Vue ®0}
is precisely 7, and hence

a(¥, ¥) = (curl ¢, curl ¥) 120y > ClIY 113 cun ) (3.13)

by Remark 2.2. The well-posedness of the saddle point problem follows from (3.12) and
(3.13).

Next we show that the unique solution of (3.9) is given by (¢, 0) where ¢ is the solution
of (3.5). Indeed by taking ¥ = grad 6 in (3.9a), we see that

(g/l—;;lei gl;ﬁ@)]}(g) = (&, gl;ﬁ@)]}(g) = (§,grad0),@) =0

by Lemma 3.2 and Lemma 3.5, and hence 6 € ®U is the constant 0. Furthermore ¢ belongs
to Kerb = Z; by (3.9b) and therefore (3.9a) implies that it is the solution of (3.5).

Remark 3.8 Since 6 = 0, it follows from (3.9a) that ¢ € 22, C H(curl; Q) N Hy(div; Q)
satisfies the elliptic Maxwell boundary value problem

(curl @, curl ¥) ;2 ) + (dive, div ) 12q) = (€, ¥) 2
V¢ € H(curl; Q) N Hy(div; )

that has been analyzed in [23].

Remark 3.9 The saddle point problem was investigated in [31] for domains with trivial topol-
ogy.

We still need to determine the vector field £= curl u that appears on the right-hand side
of (3.9). Note that & belongs to . by Lemma 3.2.
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3.2 Second Order Saddle Point Problems for ¢

Let  belong to the space . defined in (3.3). According to Lemma 2.4, there exists a unique
vector potential y € Py C Hp(curl; Q) N H(div 0. Q) such that

curl ¥ =7, (3.14)

which implies in particular that ¢ € E.
It then follows from (1.1) and (3.14) that

(curl &, curl p) 12 = (curl (curlu), curl (curl ¥)) ;2 q)
=Qf. ) -y, V)2 — BE D2 (3.15)

where Q is the orthogonal projection from [LZ(SZ)]3 onto H (divo; Q).
On the other hand, by letting v in (1.1) be the gradient of the harmonic functions ¢y, . .., ¢,
from Sect. 2.2, we see that

0= / (Of —yu)grad ¢;dx :/ (Qf —yuw)-nr;dS for 1<j<n
Q2 T

Therefore Q f — yu belongs to Z, and there exists a unique @ € 27 such that
curlw = Qf —yu (3.16)
by Lemma 2.1, which together with (3.14) and (3.15) implies
(curl§, curl p) 2y +B(E, N 2gy=(curl®, ¥) 2 )=(@, M) 2(q) V7 €.7.(3.17)
Since we have (cf. Lemma A.1)
(curl v, curl w) ;2 (g, = (Grad v, Grad w) 2, Vv, w € [H} () N H(div%; Q),
the problem (3.17) can be rewritten as

(Grad §, Grad n) 2o + BE. M2 = (@. M2 YHEL. (3.18)
3.2.1 TheCasey =0

In this case (3.16) and (3.17) are decoupled. We can first determine @ € &7, by

(curlw, curl )2 = (O f, curl¥) 2y = (f, curl ¥) 2y V¥ € &7, (3.19)

which is a well-posed problem by Remark 2.2, and then & € . is determined by (3.18),
which is also a well-posed problem on the closed subspace . of [HOl (§)1? because of the
Poincaré inequality.

Remark 3.10 1t follows from Remark 2.2 and (3.19) that
lll g url;@) < Clleurl |2y < CllfllL2q)- (3.20)

We can remove the inconvenient constraints in the definition of &7; and . by reformu-
lating (3.18) and (3.19) as saddle point problems.
The saddle point problem for (3.19) is to find (@, 8) € H(curl; ) x ©0 such that

a(@,¥) +bW,0) = (f.curly),2, V¥ € H(curl; Q), (3.21a)
bw,n)=0 Vueo’, (3.21b)
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where a(-, -) and b(-, -) are defined by (3.10) and (3.11).

We already saw that (3.21) is a well-posed problem in Sect. 3.1. Let (w, 6) be the solution of
(3.21). By taking ¢ = grad 6 in (3.21a) we see that (grad 6, grad 6) 2, = 0by Remark 3.6
and hence 6 = 0. Then we observe that Lemma 3.5 and (3.21b) imply @ € Ker b = &, and
finally @ satisfies (3.19) because of (3.21a).

Remark 3.11 Since 6 = 0, it follows from (3.21a) thatw € 2, C H (curl; Q)NHy(div?; Q)
satisfies the elliptic Maxwell boundary value problem

(Curlw, curl V’)L2(Q) + (le w, div ‘./,)LZ(Q) = (f, curl 'ﬁ)LZ(Q)
V¢ € H(curl; Q) N Hy(div; )

that has been analyzed in [23].

The saddle point problem for (3.18) is to find (£, p) € [H} ()13 x L3(S2) such that

gE. M+ BE M2 +c p) =@ N2 Vi e lH ()], (3.22a)
c,q9)=0 VqelLi), (3.22b)

where
g(t,n) = (Grad 7, Grad n)2(q), (3.23)
e, q) = —(divn, q)2q)- (3.24)

This saddle point problem is well-posed because (cf. Appendix B)

c(n, q) . (div 0,92

vemi@n Mui@ geamiep  Mri@

> Cligll2@ Yq € LiR). (3.25)

and

g m + B Mg = Ml g V0 eKere=5.

Let (¢, p) be the solution of (3.22). It follows from (3.22b) that & belongs to Ker ¢ = .
and then (3.22a) implies £ is the solution of (3.18).

Remark 3.12 1t follows from the well-posedness of (3.22) that
1§01 + IPl2 @) = Cll@li2q)-
Remark 3.13 The saddle point problem (3.22) is the standard Stokes problem for incom-
pressible flows if 8 = 0 and Q2 is simply connected. The regularity of Stokes problem in
[25] can be extended to (3.22) for a general 2 that is not necessarily simply connected (cf.
Appendix C), i.e., we have
161l ives @) + IPIlHes @0) < Cll@llz2@) = Cllfll2 @) (3.26)

for some o € (%, 1] determined by the geometry of €2, and we can take o to be 1 if 2 is
convex. (The last inequality in (3.26) follows from (3.20).)
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3.2.2 TheCasey >0

In this case the problem (3.19) is replaced by
(curlw, curl ¥) 2oy + v (&, ¥) 2 = (f,curl )2y VY € P (3.27)

The coupled problems (3.18) and (3.27) can be reformulated as the following saddle point
problem without the inconvenient constraints in the definition of . and Z;.
Find (¢, 0, &, p) € H(curl; Q) x ©° x [H} ()13 x L3(S) such that

a@, V) + bW, 0) + 7T, E) g =y 2 (f, curl¥) 2y, (3.282)

b(¢, ) =0, (3.28b)
i, M2 —8E. M —BE M2 —c, p) =0, (3.28¢)
—c(&,q9) =0, (3.28d)

forall (¥, 11, 1, q) € H(eurl; Q) x 00 x [H} ()13 x L3(Q), where a(-, ), b(-, ), g(-, )
and c(-, -) are defined by (3.10), (3.11), (3.23) and (3.24) respectively.

Remark 3.14 Using Lemma 3.5, Remark 3.6 and the arguments in Sect. 3.2.1, it is straightfor-
ward to check that if (¢, 0, &, p) € H(curl; Q) x ©° x [HJ ()13 x L3(Q) satisfies (3.28),

then & = 0 by (3.282), » = y%§ belongs to &2, by (3.28b), & belongs to .« by (3.28d), and
they satisfy (3.18) (resp., (3.27)) by (3.28c) (resp., (3.28a)). It only remains to show that the
saddle point problem (3.28) is well-posed.

In view of (3.12) and (3.25), it suffices to observe that the bilinear form

B((W, ), (t,p) =a¥, 1)+ Yy, Do) + Yy, P2
-8, p) — B, P12 (3.29)

induces an isomorphism between &, x . and (£; x .%) because of the relation

> [leurl ¥ 175 g, + IGrad 7|75 o (3.30)

and Remark 2.2. The well-posedness of (3.28) then follows from Theorem 1.1 in [14].

Remark 3.15 The well-posedness of (3.28) implies that

1S aeurt: @) + 1§l g1 + P2 < ClSll20)- (3.31)
It then follows from Remark 3.13, (3.28c¢), (3.28d) and (3.31) that

1
81 pives @) + IPIlHes @) = Clly 282 = Cllf 2@ (3.32)
for some a5 € (%, 1], where oy = 1 if 2 is convex.

Remark 3.16 We can write (3.28) concisely as

A((ca 67 E! P), ('ﬁ» mw, n, Q)) = )’_%(f, curl "/’)[LZ(Q)P (333)
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forall (¥, i, 1, q) € H(curl; Q) x ©° x [H}(Q)]3 x L(K2), where

A6, p), (. 11,0, 9)) = a(&, ¥) + b, 0) + (&, 1)+ (¥, ) 2q

F Y2 Mg — gE M — BE D2
_C("’ p) _C(§7 ‘])7 (334)

and we have

A((§7 93 87 p)s ('/,7 nw,n, 61)) = C(”C”H(curl:ﬂ) + |9|H1(Q°) + |£|H1(Q) + ||p||L2(Q))

X (191 aeurt:@) + 14l g1 ey + 101 @) + 191 20))-
(3.35)

3.3 Summary of the Hodge Decomposition Approach

Given f € L*(), we determine & through (3.21) and (3.22) if y = 0 and through (3.28)
if y > 0, and then we determine ¢ through (3.9). The solution of (1.1) is given by (3.1),
where ¢1, ..., ¢, and 11, .. ., T, are determined by (2.3) and (3.2) respectively. We can find
a numerical solution of (1.1) by solving each second order problem numerically.

The Hodge decomposition approach also yields information on the regularity of the solu-
tion u of (1.1). If 92 is smooth, then we can apply classical regularity results for elliptic
boundary value problems. This means the harmonic functions ¢, ..., ¢, are smooth, and
® € H(curl; Q) N Hy(div?; Q) c [HY(Q)]? for f € [L*(Q)]°. In the case where y = 0,
we then have & € [H3(2)]° by the regularity of the Stokes problem (cf. Remark 3.13),
which implies ¢ € [H>(2)]® by elliptic regularity (cf. Remark 3.8). Consequently we
have u € [H*(Q)]® by 3.1). If f € [H'(Q)]’, then @ € [H*(R)]® (cf. Remark 3.11),
£ c[H*Q)P, ¢ € [HO(2)]? and u € [H(22)]?. These observations are also valid when y
is positive.

On the other hand, if €2 is a polyhedral domain, then the regularity of ¢ from the elliptic
Maxwell boundary value problem in Remark 3.8 is limited. Indeed for a convex polyhedron
we have in general ¢ € [H2(S)]? (cf. [23]) and hence u € [H()]%, which is the same
regularity satisfied by any vector fields in E when Q is convex. Consequently we only
considered lower order finite element methods in Sect. 4.

4 Finite Element Methods
We will design finite element methods for the second order subproblems in the Hodge decom-

position approach that are mentioned at the beginning of Sect.3.3.
Let 75, be a simplicial triangulation of €2 such that

each cut ¥; (1 < i < m)is the union of the faces of 7;, and every tetrahedron in 7,

has a vertex interior to Q°. 4.1

4.1 Finite Element Method for (2.3)

Let &, C H'(Q) be the P; Lagrange finite element space associated with 7; and &, =
o, N H(; (€2). The finite element method for (2.3) is to find go{l, e go,’l’ € @y, such that
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/ gradg! - grad¢" dx =0 V" € &y, (4.2a)
Q
h
=0, 4.2b
9ilr, (4.2b)
andfor1 < j, k <n,
1 ifk=j
i, = R (4.2¢)
k 0 ifk # j
The approximations rlh, ey ‘c,f’ are then determined by the SPD system

n

1
> th(grad ol grad ¢}) 2 ) = ;(f, gradg)) 2 for 1<k<n. (43)
j=1

4.2 Finite Element Methods for the Approximation of ¢

First we introduce the following finite element spaces:

e V; C H(curl; Q) is the lowest order edge element space associated with 7, (cf. [35]).
e ®, C O is the P; Lagrange finite element subspace associated with 7; and @2 =
Oy N L(R).
o W, C [HOl (Q)]? is the P Lagrange vector finite element space associated with 7, and
WE=W,N[H(D]3.
e O CH ! (£2°) is the P; Lagrange finite element space associated with 7;, and Q2 =
01 N L3(Q).
Remark 4.1 In the case where 2 is simply connected, ®, = Q;, C H 1(€) is the standard
P Lagrange finite element space associated with 7;. In the case where €2 is not simply
connected, the functions in ®; can have a constant jump across the cuts Xy, ..., X,, and the
dimension of @, is the dimension of the standard P finite element space for H'!() plus
m, while the functions in Qj, can be discontinuous across the cuts and the dimension of Qy,

is the dimension of the standard P; finite element space for H ' () plus the total number of
vertices of 7 that belong to the cuts X1, ..., X,.

Remark 4.2 The space @2 is a subspace of Q2 (cf. Remark 3.6).

Remark 4.3 Note that g;a_(/leh belongs to V, for any 6), € @2.

The following approximation results for V', (cf. Theorem 5.41 and Remark 5.42 in [33])
are useful for the error analysis in Sect.5.

Lemmad.4 Letv € H*' (Q2) and curlv € H%(Q2) for s1, s2 € (%, 1]. Then we have

Jnf v = vallpeune) < CH™ O ([0l @) + lleurl v g @),
h

inf [leurl (v — vp) |l 2(q) < Ch*?|curl v||g= (q).
veVy,
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4.2.1 TheCasey =0

The finite element method for (3.21) is to find (wy, 65) € V), X @2 such that

a(ﬁ)h, ‘d/h)‘i‘b(]/fh,eh) = (f, curlwh)LZ(Q) V'ﬁh € Vh, (443.)
b(@n, un) =0 Yy € O (4.4b)

Remark 4.5 The stability of the bilinear form for the saddle point problem (4.4) has been
established in [1, Section 4.1, Page 854]. It was shown there that

by pn) (¥, grad pn) 12
vaevy IWllH@r: ) y,ev,  1¥nllHCur: )

> |unlmigey Y un € O, (45)

and there exists a positive constant C independent of & such that
Cl('/fh, 1/[},) = (curl '/,hv curl Wh)LZ(Q) > C”]ﬁh ”%'I(CUI‘I;Q) V"/fh S Kerhb, (46)
where Ker,b = {v;, € Vj, : (vy, g/l—‘;lH/Lh)Lz(Q) =0V pu, e ®2}.

Remark 4.6 In view of Remark 3.6 and Remark 4.3, it is easy to see that 6, = 0 for the
solution of (4.4).

The discrete problem for (3.22) is then to find (§,,, pp) € WZ X Q2 such that

gEpmp) + BEp ) 2@ + ¢y pr) = (@p )12 Y1, € Wi, (4.7a)
cpqn) =0 Ve Q). (4.7b)

Remark 4.7 The bilinear form for the discrete saddle point problem (4.7) is stable because
there exists a positive constant C independent of & such that

div g,
NI - Clanlize Yan € 0. 4.8)
mew? Milai@

Under the assumption (4.1) on 7, the discrete inf-sup condition (4.8) can be established
by the macro-element techniques in [6] if we ensure that the faces of 7 on the cuts %;
(1 <i < m) only appear on the boundaries of the macro elements.

Remark 4.8 By introducing Lagrange multipliers to remove the constraints (1.4) and (3.8),
we can use the unconstrained space ®;, Wj, and Qj, in computing the solutions of (4.4) and
4.7).

Remark 4.9 In the case where 2 is simply connected and 8 = 0, the saddle point problem
(4.7)1s nothing but the Taylor-Hood finite element method (cf. [7, 40]) for the Stokes problem.

4.2.2 TheCasey >0

The finite element method for (3.28) is to find (¢, O, &, pn) € Vi % ®2 X Wﬁ X Qg such
that

A 6n & pr)s Wy w0y qn)) = y 2 (f, curl Ve (4.9)
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for all (¥, fn, Wps gn) € Vi x ©) x WE x QY where the bilinear form A(-, -) is defined
in (3.34).

Remark 4.10 The stability of the discrete saddle point problem (4.9) follows from (4.5), (4.6),
(4.8) and the discrete analog of (3.30) for ¥, € Ker,b and 5, € Keryc.

Remark 4.11 Using the equations

1 1
aCp V) oW, 00) +v2(. 812 =y 2(foeurlyy) ) Y, € Vi,
b un) =0 Y, €0,
—c(Epg) =0 Vi € 0},

that are part of (4.9), Remarks 3.6, 4.2, 4.3 and integration by parts, it is easy to check that
0, = 0 for the solution of (4.9).

Remark 4.12 The well-posedness of (4.9) implies that
1SnllH@ur:e) + 1Exl m1 @) + IPnllL2@) < Cllf 2@ (4.10)

Remark 4.13 Again, by introducing Lagrange multipliers to remove the constraints in (1.4)
and (3.8), we can use the unconstrained spaces ®;,, W, and Qj in computing the solution
of (4.9).

4.3 Finite Element Method for (3.9)

The finite element method for (3.9) is to find (¢, 6,) € V) x @2 such that

a(@p ¥p) +0(,, 00 =& V2 YV € Va, (4.11a)
b(p, ) =0 Vo, €, (4.11b)

where &;, € W} is the approximation of £ obtained in Sect.4.2.

Remark 4.14 The bilinear form for (4.11) is stable since it is identical to the bilinear form
for (4.4).

Remark 4.15 By introducing a Lagrange multiplier to remove the constraint (1.4), we can
use the unconstrained space ®, in computing the solution of (4.11).

4.4 Final Output

The final output of the finite element method based on the Hodge decomposition is the
approximation u;, of u given by

n
up, =curl¢g, + Z r;' grad go?. (4.12)
j=1

5 Convergence Analysis

We will analyze the finite element methods in Sect.4 one by one.
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5.1 Error Estimates for (p’1', cees (pg and 1’1’, v ’[ﬂ

It follows from (2.3a) and (4.2a) that
loj — 031 @) = /Qgrad (pj —¢}) - grad (p; — ¢!)dx
= f grad (p; — ¢) - grad (¢p; — Thp)dx Vo' € @,
Q

where ITj, is the nodal interpolation operator for ®;, and hence

o) _q)j'l'Hl(Q) <lpj —nrejlgiq) < Ch*Pir (5.1

by Remark 2.5 and a standard interpolation error estimate (cf. [12, 22]).
Since ¢; — <pj.' € HO1 () for 1 < j < n, we have

(grad ¢, grad ¢);2(q) — (grad gaﬁ-‘, grad @,?)LQ(Q)
= (grad¢; — grad ga//’ grad ‘/’Z)Lz(sz) + (grad ¢, grad ¢, — grad ‘/’Z)LZ(Q)
= (grad ¢; — grad ga?, grad go,i‘ —grad ¢r)2(q) (5.2)

by (2.3a).
It follows from (5.1) and (5.2) that

|(grad ¢, grad ¢1);2(q) — (grad ¢!, grad ¢) ;2 ()| < CA?Pr, (5.3)

i.e., the differences of the components of the matrices in (3.2) and (4.3) are O (h2eir).
Furthermore the estimate (5.1) implies

I(f.grad g 2(q) — (f . grad o) 20| < 1|2 lex — 9f L) < ChT, (5.4)

i.e., the differences of the components of the right-hand sides in (3.2) and (4.3) are O (h®Pir).
A perturbation argument based on (3.2), (4.3), (5.3) and (5.4) then yields the estimate (cf.
[8, Lemma 4.8])

tj = T}] < Ch*Pr || fll 12 for 1<j<n. (5.5)
5.2 Error Estimates for &,

We will treat the two cases y = 0 and y > 0 separately.

5.2.1 TheCasey =0
From the stability of the discrete saddle point problems (4.4), we have

lw — @nllHeurt: ) < C[ inf flo—¥;,llHEu + inf (16— Mhlle(Q)]
YLV wr €0y

=C winﬁ/ lo — ¥l H(curl:Q) (5.6)

h€Vh

since = 0.
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Remark 5.1 Under the assumption that f € [L2(£2)]?, we can only conclude from (3.20) and
(5.6) that

lo — @nllmeurt: @) < Cll@llbeur:o) < CIflL2@)- (5.7)
Moreover it follows from (3.21a) where 6 = 0 and (4.4a) where 6, = O that

(curl (@ — wy), curl ) =0 V¢,V (5.8)

LX(Q)
We will use the Galerkin orthogonality (5.8) to derive a duality estimate for ® — wj, that is
useful for the analysis of § — &,.

The proof of the following result is provided in Appendix D.

Lemma5.2 Let x € [H} ()13 and & € P, be defined by
(curlZ, curl ), 20) = (X. ¥) 2@y V¥ € P (5.9
Then curl £ belongs to Hy(curl; Q) N H(div?; Q) and we have
lleurd (curl )| 120y < Clixllaie)- (5.10)

Remark 5.3 Let x andj be as in Lemma 5.2. Then ¢ belongs to 22, C H(curl; Q) N
Ho(div?; ©) and curl ¢ belongs to Hy(curl; 2) N H (div 0. Q). It follows from Lemma 1.2
that

11l zer @) < CUIEN L2y + leurlE [ 12q)) < Clleurl |12y < Clix 12 (5-11)
by Remark 2.2 and (5.9), and, in view of (5.10),
||C'-“'1Z'||H“N(Q) = C(||Curlg||1,2(gz) + |lcurl (curlf)lle(Q)) = C”X”H'(Q)~ (5.12)

Our goal is to obtain an estimate for (& — wp, X)12(q) Where x € [HOl (Q)]i. is arbitrary.
Let ¢ € 2 be defined by (5 .~9).~In view of Lemma 3.5, we can rewrite (5.9) as the following
saddle point problem: Find (¢, 0) € H(curl; Q) x ©° such that

a@. ) +b@.0) = (x. V)2 V¥ € H(eurl; Q), (5.13a)
b(Z,n)=0. Vueol (5.13b)

Let (Eh, éh) e Vy x @2 be defined by

a@u. V) + bW 00) = (X Vi) 12q) VY, €V, (5.14a)
b pun) =0 Yue®). (5.14b)
‘We have
(curlZ, curl )2y = (X, ®) 120 (5.15)
by (5.9),
(curl ¢, curl ) 2.q) = (X. @n)12(q) (5.16)

by (4.4b) and (5.14a), and

(curl ¢, curl ) 2 + (@5, grad ) 2oy = (X, @1) 120 (5.17)
by (5.13a).
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It follows from (5.15)—(5.17) that
(@ — @n, X)12q) = (curl, curl®) 2 (g) — (X, 1) 12(q)
= (curl Z, curl (@ — wh))Lz(Q) + (curl Z, curl wp) 12 () — (X, @1) 120
= (curl ¢, curl (@ — 1)) 2, — (@4, gradf) 2 (q). (5.18)
In view of (5.8), we can estimate the first term on the right-hand side of (5.18) by
|(curl , curl (@ — wh))Lz(Q)| = |(curl ¢ — ¥, curl (@ — wh))Lz(Q)|
< lleurl ¢ — ¥l 2 llcurl (@ — @)l ;2) YU, € Vi
and hence
(curl . eurl (@ — @) 12| = [ int Tewrl @ 1)l 2 leurl @ — 0120
(5.19)
It follows from Lemma 1.2, Lemma 4.4, Remark 5.3 and (5.19) that
|(curl , curl (& — wh))Lz(Q)| < ChN| X | g1 (g llcurl (@ — p) [l 12y (5.20)

For the second term on the right-hand side of (5.18), we first note that Remark 3.6, (5.13a)
and integration by parts imply

(gl'ad M, gl'ad é)LZ(Qo) = (g/I:;lH;L, g/lj;ﬁé)LZ(Q) = (_dIV X M)LZ(QO) VI,L € @0,
(5.21)

which implies by elliptic regularity for the Neumann problem that
||9~||H1+aNeu(Qo) < C|div xll2(  for someane, € (1/2,1]. (5.22)
Remark 5.4 1f 2 is convex, then Q° = Q and we can take oy, to be 1.
In view of (3.21b) and (4.4b) we have, for any u; € @9,
—(op, g/l:a_aé)LZ(Q) = —(wp. ;mﬁ(é — Mh))Lz(Q) = (& — wp, g/l?élﬁ(é — Mh))Lz(Q)
and hence

|(whs grad é)LQ(Q)’ = [ ingo lgrad (6 — Mh)”LZ(Q):I lo —@nll2q)- (5.23)
M €O

It follows from (5.22), (5.23) and a standard interpolation error estimate for the Pj finite
element (cf. [12, 22]) that

| (@, grad 0) 2g)| < Ch™eu| X |l 11 gyl — @1l 2g)- (5.24)
Putting (5.18), (5.20) and (5.24) together, we arrive at the following result.
Lemma5.5 We have
(@ — @, X)2(0)| < CR™™ NN | x| 1 o) l|l@ — @l eurti) Y X € [Hg (D)3

(5.25)
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We are now ready to tackle the error estimates for &;,. The key is to introduce (& ns Pn) €
WZ x Q) defined by

8@y )+ BEL M) 2 + Oy Pr) = @, mp) 2 Y, € WE, (5.26a)
cEpan) =0 Yaque 0. (5.26b)

On one hand, the saddle point problem (5.26) is the finite element approximation of the
continuous saddle point problem (3.22) and hence we have

whEW,)I:

§—Eulmie = C(inf g —wilyio + inf Ip—ailize) 627
qne0l)
by the stability of the discrete problem. According to Remark 3.13, we have

81l gi+as @) + 1Pl Hes @0y < Cll@ll 2 (5.28)

for some a5 € (1/2, 1], where oy = 1 if Q2 is convex.
It follows from (5.27), (5.28) and standard interpolation error estimates (cf. [12, 22]) that

& — &l ) < ChS @l 12q)- (5.29)

On the other hand, (é n—&,. Ph— pn) € W,),: X Q2 is the finite element approximation
for the following saddle point problem: Find (§*, p*) € [H(} (Q)]; X L%(Q) such that

gE )+ BE" . M L2q) + O, p*) = (@ —op )20 Ve [Hi (L, (5.30a)
cE*,q9)=0 VgeL3(R).  (530b)

It then follows from Lemma 5.5 and the stability of (5.30) that

&) = Enlmne) < CIE 1m1 @) + I1P7 Il 12()

<C sup (@—onM2e/Inlpg
nelH} ()13

< CH™MMEN N |l — @ | curt; ) - (531)
Combining (3.20), (5.7), (5.29) and (5.31), we have

& — &l < 1€ —Eplmq) + 180 — Eplgi ) < CR™MONV- @) g1l 5 o
(5.32)

Note that
1€ = &1l 2 < CH**S |0l 12(q) (5.33)

by a standard duality argument. But there is no improvement for ||§ n — &nll2(q) under the
assumption that f € [L2(2)]? and we can only conclude from (5.32) and the Poincaré
inequality that

1§ — &1l 2y < CR™MEN- 0N @S)| £ 5 (5.34)
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5.2.2 TheCasey >0

Let x € [H] ()13 be arbitrary and (¢, 8, &, p) € H(curl; Q) x 0% x [H} ()13 x L3(Q)
be defined by

A(C.0.8.5), (. n. @) = (X. V)12 (5.39)

forall (¥, ju, 1, q) € H(eurl; Q) x 0% x [H} ()13 x L3 (£2), where the bilinear form A(-, -)
is defined in (3.34).
We have the following regularity result (cf. Appendix E):

121l er (@) + lleurl | ga ) + ||§||H1+aNeu(go) + 111l gr+es @) + 1P mes @0
= Clixllg1 - (5.36)

It follows from (3.33), (4.9) and (5.35) that
(X? ; - ;h)LZ(Q) = A((E’é’é’ l;)! (; - ;h’ 0 — 0/1’5 - gl/zv P — Ph))
=A@ =40 — i & —my. b — an)
(C_ch’e_ehsg_ghvp_ph))

forany (¥, tn. 0y, gn) € Vi X ®2 X Wf X Q%, and hence, in view of Remark 3.14, (3.31),
(3.35), Remark 4.11, (4.10) and (5.36),

|(x. ¢ — NV EIee))

< C hMin(@n aNe,as) lxl HY(Q)

(IIC = ¢pllH(curl; ) + & — §h|H1(Q) +llp— ph||L2(Q))
< Chmin(otN,aNeu,Ots)”X”HI(Q) 1122 (5.37)

where we have also used Lemma 4.4 and standard interpolation error estimates for Lagrange
finite elements.
In view of the equations

g& m+BE Mg +cn, p) = i, 2@ Vo e [HJ (D,  (5.38)
ct,q)=0 Vg e L3(S), (5.38b)

that come from (3.28), and the equations

1
g&n,mp) + BEn 1) 2 + cps pr) = v (&ps Mp) 12 Vo, €Wy, (539)
c&y.qn) =0 Yagne Q), (539b)

that come from (4.9), we can use (5.37) and the arguments in Sect. 5.2.1 to obtain the estimate
(5.32) and hence also (5.34) by the Poincaré inequality.
In summary we have the following result on the approximation of § = curlu by §,,.

Theorem 5.6 We have

leurlu — &, 12(q) < Cleurlu — &, g1 q) < CA™MEN NS | 15 o).
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5.3 Error Estimate for ¢,

Let ((ih, éh) eV, x 6)2 be defined by
a(q;hv Wh) + b('/’h, éh) - (E, ¢h)L2(Q) V]hh (S Vh, (5403.)
b(@y, tn) =0 Y, € 00, (5.40b)

On one hand, (J) W Gy) is a stable approximation of the solution (¢, 6) of the saddle point
problem (3.9) and therefore

¢ — bl eurt:2) < C inf ¢ — ¥yl Hcurt:2) (5.41)
WEV):

because 0 = 0.
Note that ¢ belongs to & C H(curl; Q) N Ho(div?; ) ¢ HYT(Q) and, according to
(3.5) and Lemma 5.2, we have

curl ¢ € Hy(curl; Q)N H(div?; ) and [curl (curl §)| 2y < Cli§llg1(q)- (542)
It follows from Lemma 1.2, (3.6), Lemma 4.4, (5.41) and (5.42) that
I — @il curt ;) < CA™MOTEN &y o, (5.43)

On the other hand, ((i&h —¢, 0, —0p,) is a stable finite element approximation for (¢*, 0*) €
H (curl; Q) x 00 defined by

a@*, ¥) + b, 0%) = (€ — &, ¥) 120 VY € H(eurl; ), (5.442)
b@*, n) =0 Vel (5.44b)

It follows from the stability of the finite element method, Theorem 5.6 and the well-posedness
of (5.44) that

s, — Dillrcurt:) < ClIE — Epll 2y < CA™PEN SN0 £l 15 00 (5.45)
Combining (3.31), (5.43) and (5.45), we have

16— @il reun:e) < 19 — @yl Heurt: o) + 195 — @yl Heurt )
< Chmin(aT,OtN,O(Neu,aS)”f”LZ(Q). (5.46)

5.4 Error Estimate for uj,

Putting (3.1), (5.1), (5.5) and (5.46) together, we have the following result on the approxi-
mation of u by uy,.

Theorem 5.7 The approximate solution uy, given by (4.12) satisfies

lu — upll 2y < Chmin(otT,OlN,O!Dir,OtNeu,Ots)||f||L2

()-
Remark 5.8 1t follows from Theorem 5.7 that in general
lu —unll2) < Ch¥ll fll L2

for some o € (%, 1] and o = 1 if  is convex.
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6 Improved Error Estimates for the Case where f € [H'(Q)]3

Under the assumption that f € [H L(Q)]?, we can improve some of the error estimates in
Sect. 5.
First of all the estimate (5.4) can be improved to

I(f. gradgi) 2y — (f . grad ¢) 2 o) = WiV £, ok — ) 120y
< flgolee — ol 2@ < Ch*r, (6.1)

where we have used the fact that ¢ — (p,’{’ € HOl (2) and the O (h2%ir) estimate for llox —
go,’j|| 12() that comes from (5.1) and a standard duality argument. Consequently we can
improve the estimate (5.5) to

I7j — Th < Ch*"|| f | 11 (- (6.2)
We can also improve the estimate (5.34) by examining the two cases y = 0and y > 0

separately.

6.1 TheCasey =0
We begin by improving the estimate (3.20).
Lemma 6.1 In the case where f € [HY()]?, we have
lleurl o gevir (@) < Cllfll g1 (- (6.3)
Proof Let p € HO1 (2) be defined by
(grad p, gradv) 2, = (div f,v) Vv e Hy(Q).

Then we have

f +gradp € Hdiv%; Q), (6.4)
o1l pi+epic @) < ClAIV fllz2(q)- (6.5)
According to Lemma 2.6 and Remark 2.8, there exist constants cy, .. ., ¢, such that
n
f [f—l—gradp—chgrad(pk]-nrde=O for 1<j<n, (6.6)
rj k=1
and
max |cx| < C| f + grad p|l 2(q)- (6.7)
1<k<n
Note that

(gradp, curl ¥) 2y =0 V¢ € H(curl; )
by integration by parts and hence, in view of Remark 2.7 and (3.19),

(curlw, curl ¢) ;2 ) = (f, curl ¢)

n
= (f+gradp — ch grad g, curly) 2y VY € Py,
k=1
(6.8)
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From Lemma 2.1 and (6.8) we have

n
curlw = f +gradp — Z c grad ¢ (6.9)
k=1

because f + grad p — Z?:l c;j grad ¢; belongs to Zr by (2.3a), (6.4) and (6.6).
The estimate (6.3) follows from Remark 2.5, (6.5), (6.7), and (6.9). ]

From Lemma 1.2, Lemma 4.4, (5.6) and Lemma 6.1 we have
@ — @nll feurt;) < CA™MCT DD £y o). (6.10)
We can then improve the estimate in (5.31) to
&) — Enlgi () < CR™MEN-oNeu)Fmin(@ravioy gy, o (6.11)
by exploiting (6.10). Consequently we have an improved L? error estimate
1§ = £4ll 2qy < ChmnCas RN N FmRET AR || £ ) o) (6.12)

through (5.33), (6.11) and the Poincaré inequality.
6.2 TheCasey >0

It follows from Lemma 3.5, (3.28a) and (3.28b) that ¢ € &7, satisfies

_1 1
(Curl;, curl 'l//)LZ(Q) =y 2 (f, curl '/,)LZ(Q) + (—)/2‘;', w)LZ(Q) V'l// € :@T,

and consequently

{=8+48 (6.13)
where ¢ € & is defined by
(curly, curl ) o) = (v 2 fcurl ¥) o) V¥ € P, (6.14)
and {, € Sy is defined by
1
(Curlc2, curl ¢)L2(Q) = (_]/75, ]/,)LQ(Q) Vl[t S @T. (615)

Note that (6.14) is just (3.19) with (w, f) replaced by (¢, y_%f). Therefore we can
apply Lemma 6.1 to obtain the estimate

lleurl &, || geic (@) < Clf Il a1(g)- (6.16)

Similarly (6.15) is just (5.9) with @&, x) replaced by (£,, —y 3 &). Hence we can conclude
from (3.31), Lemma 5.2, Remark 5.3 that

1820l e (@) + lleurl &5 [ gen (@) < CllElme) < ClflL2@)- (6.17)
From the stability of the discrete saddle point problem (4.9) we have
1€ = ¢hllHEeun:o) + 11§ —&nllmie + 1P — Prlli2g)
< ( inf | —vpllH(eurt; 2 + inf _[& —wy It + inf Ip—gn ||L2(Q)) (6.18)
thVh € 0

whE W/? qn€Qy
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(a) (b) () (d)

Fig. 2 Domains used for numerical tests: a unit cube, b Fichera chair, ¢ rectangular torus, and d hollowed
unit cube

because 6 = 0.
It then follows from Lemma 1.2, (3.32), Lemma 4.4, (6.16)—(6.18) and standard interpo-
lation error estimates for W, and Qy, that

18 = Spllbun;o) + 11§ = &pll g1 + 1P — Prll2@
< CHMNET AN DS fl 1y . (6.19)
In view of (6.19), the estimate (5.37) can be improved to
[ & = &) o] < CRMNEN e @ FmIn@T a0 |y || 1 o) | fll 111 (g (6:20)

We can then apply (6.20) and the arguments in Sect. 5.2 to conclude that

& — gh”LZ(Q) < Cpmin (2015,min(aN,othu,as)-i—min(otT,ouv,aDir,as)) ||f||H1(Q)~ 6.21)

Putting (6.12) and (6.21) together, we have the following result on the approximation of
& = curlu by &, that improves the L? error estimate in Theorem 5.6.

Theorem 6.2 In the case where f € [H' ()13, we have
leurlu — & ;2(q) < Ch?™nET -V -CDiaNen S) | £y o
Remark 6.3 1t follows from Theorem 6.2 that in general
leurlu — &4l 2@) < CA* (1 f 1 ()

for some o € (%, 1]. Moreover we have @ = 1 if Q is convex.

7 Numerical Results

We solved the quad-curl problem (1.1) for four examples on domains with different charac-
teristics (cf. Fig.2).

The initial triangulations on these domains are obtained by the following procedure. First
we create a uniform rectangular grid so that 92 and the cuts Xy, ..., ¥,, are unions of the
faces of this uniform grid, and then we triangularize each cube by using the center of the
cube as a common vertex of all the tetrahedrons as demonstrated by the figure on the left of
Fig. 3. This guarantees that the assumption (4.1) is satisfied, which implies the stability of the
Taylor-Hood method for the Stokes problem (cf. [6]). Finer meshes are generated using the
nested uniform refinement method presented in [4], where each coarse tetrahedral element is
broken into 8 fine elements in each refinement. The refinement process on a single element
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Fig. 3 Triangulation of a cube in the initial uniform grid (left); a coarse tetrahedral element (center); a
tetrahedral element after one refinement (right)

Table 1 Number of elements for the domains sketched in Fig.2

h Unit cube Fichera chair Rectangular torus Hollowed cube
1 12 - - -

1/2 96 84 - -

1/4 768 672 144 672

1/8 6144 5376 1152 5376

1/16 49,152 43,008 9216 43,008

1/32 393,216 344,064 73,728 344,064

1/64 3,145,728 2,752,512 589,824 2,752,512

is illustrated by the figures in the center and the left of Fig.3. The number of elements in
different levels of refinements are displayed in Table 1.
The computations were carried out in MATLAB.

7.1 Unit Cube with Positive 8 and y

Convergence results for the coupled quad-curl problem solved on the unit cube (0, 1) are
presented for 4 = 1 to h = 1/64 with known vector potential

0
d(x)=| 4n sin? (7 x1) sin* (7w x2) sin (7w x3) cos(r x3)
—4m sin4(rrx1) sin? (x2) sin? (7t x3) cos(mxn)

and solution

—272 sin4(nx1 ) sinz(nxz) sin? (x3) (cos(2ﬂx2) —2cos(2m(xp — x3)) +cos(2mx3) +4 sin? (m(xp + X3)))
u (x) = 1672 sin3 (mxy) sin3 (mx2) sin? (x3) cos(mwxy) cos(mwxn)
1672 sin3(nx1) sin4(rrx2) sin3 (x3) cos(mxy) cos(mwxz)

The right-hand side f can be analytically computed. The coefficients are

7 3
,8_2 and )/_2. (7.1)
The problem is solved iteratively to a 103 relative residual using MINRES.
As seen in Table 2, the convergence rate of uy, in the L? norm is almost exactly O (h) once
h is sufficiently small, verifying Theorem 5.7 and Remark 5.8. Similarly, the convergence
rate of &;, in the L? norm is O (h?) once the asymptotic region of convergence is reached,
demonstrating Theorem 6.2 and Remark 6.3.
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Table 2 Convergence results on

the unit cube domain h llu — HLZ(Q) Rate 1§ = &n ”Lz(Q) Rate
12 1.74x10! - 1.44x 102 -
1/4 2.63x10! 059  2.05x10? 0.51
1/8 5.38x 100 229  4.35x10! 2.24
1716 2.61x10° 1.04 1.06x 10! 2.04
132 1.28x 100 1.03 2.66x100 1.99
1/64 636107 1.01 6.66x10! 2.00

Table 3 Convergence results on the Fichera chair domain

h len,i —uni-1llp2.q) Rate 18n,i = &ni—1ll2¢q) Rate
1/4 5.08x107° - 1.54x10~% -

1/8 2.90x107 0.81 3.10x107° 231
116 1.72x1073 0.75 8.41x1070 1.88
1/32 1.04x107° 0.73 3.17x107° 1.41
1/64 6.42x107° 0.70 1.32x107° 1.27

7.2 Fichera Chair with Positive Sandy = 0

Next, we examine the convergence on the Fichera chair domain, (0, 1)3 \[1/2, 1]3 (cf. figure
(b) in Fig.2). In order to test the effects of the nonconvex edges and corners, we avoid a
manufactured solution and just use a smooth right-hand side given by

sin x|
fx) =< |sinxy |, (7.2)
sin x3
with coefficients
7
B = 5 and y =0. (7.3)

The problem is solved iteratively to a 10~ relative residual using MINRES.

To estimate ||u —uy |1 2(q) and [|§ —&; || 12(q), the error is measured between the numerical
solutions on consecutive mesh refinements, [|up,; — wp i1l 2q) and 1§, ; —&,i—1ll12(q),
where i indicates the number of refinements from the coarsest mesh.

Since the domain is not convex, we expect ||uy,; — Up i1 ||L2(Q) to converge at a rate
greater than O(h'/?) but less than O(h), and [|&),; — &, _ll;2(q) to converge at a rate
greater than O(h) but less than O(h?). This is verified by the results in Table 3.

Remark 7.1 The results in Table 3 indicate that the dominant singularity is due to the non-
convex edges and the asymptotic convergence rate should be 2/3 for the approximation of u
and 4/3 for the approximation of curlu = &.
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Table 4 Convergence results for the rectangular torus

h lun,i —uni-1ll;2.q Rate 18n,i = &ni—1ll2¢q Rate
18 3.07x10~7 - 4.07x107° -

1/16 1.59%10~7 0.95 1.50x10~° 1.44
1/32 9.26x10~8 0.78 2.60x10~7 253
1/64 5.02x1078 0.88 7.60x10~8 1.77

Table 5 Convergence results for u, = curl ¢, and &), = curluy, on the hollowed cube

h lupi —wni-1ll2(q) Rate 1Eni —&ni-1ll2(q) Rate
1/8 2.66x1079 - 3.08x107 -

/16 1.80x1073 0.56 1.00x 1075 1.62
1/32 1.15x107° 0.65 3.56x1070 1.49

7.3 Rectangular Torus with Positive Bandy = 0

The same data in example 7.2 is used for the rectangular torus domain, ((0, 1) x (0, 1) x (0,
1/4))\ ([1/4,3/4] x [1/4,3/4] x [0, 1/4]) (cf. figure (c) in Fig.2). The solid rectangular
torus has Betti numbers f; = 1 and B8, = 0. To make the domain simply connected, we
introduce the cut {(x1, x2,x3) : X1 = &, x2,x3 € (0, §)} which is also a face of the initial
uniforrg rectangular grid. The problem is solved with MINRES to a relative residual tolerance
of 107°.

The numerical results in Table 4 are similar to the ones in Table 3, indicating that
Remark 7.1 is also applicable for this example.

7.4 Hollowed Cube with Positive 8 and y

For the final test, the domain is the hollowed cube (0, 1)3\(1 /4,3/ 4)3 (cf. figure (d) in Fig. 2),
which has Betti numbers 1 = 0 and B8, = 1. The solution u to the quad-curl problem now
admits a Hodge decomposition with a harmonic component. Since there is a single hole in
the domain, the numerical solution takes the form of,

up = curlqih + Then.

We use the right-hand side (7.2) with coefficients § and y given by (7.1), and the problem is
solved with MINRES to a relative residual tolerance of 107°.

The results in Table 5 for the approximations of # and curlu = & are similar to the ones
in Table 3 and Table 4.

The results for the approximations of the harmonic function ¢ and the coefficient t are
presented in Table 6. The order of convergence for ¢ in | - |51 (q) is 2/3, which is due to the
edge singularity. The order of convergence for 7, is better than 4/3 stated in Sect.6.2. This
is likely due to the fact that the asymptotic region of convergence has not been reached at
h =1/64.
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Table 6 Convergence results for h

the harmonic problem on the |Pni = ¢n.i-1 ‘Hl (£2) Rate ITh.i = Th.i-1l Rate

hollowed cube 118 2.22x10° - 1.26x102 -
1716  1.29x10° 079 3.23x1073 1.97
132 7.90x10~! 070 7.01x10™% 221
1/64  5.10x107! 0.63  1.63x107% 2.10

8 Concluding Remarks

We have developed a numerical scheme based on the Hodge decomposition of divergence-
free vector fields for the quad-curl source problem posed on polyhedral domains with general
topology. Our approach only employs standard finite elements in H (grad ) and H (curl),
and it is also relevant for the quad-curl eigenvalue problem (cf. [21, 43]).

For simplicity we have used the P,—P; Taylor-Hood method for the Stokes problem
that appears in the Hodge decomposition approach. Since we are only concerned with the
approximation of the displacement, it may be advantageous to use a pressure robust mixed
finite element method for the Stokes problem (cf. [30]).

As in the two dimensional case (cf. [9-11]), one can also develop adaptive and fast solvers
for the individual saddle point problems that appear in the Hodge decomposition approach.

The result for the quad-curl source problem in this paper can be the basis of a Hodge
decomposition approach to the quad-curl eigenvalue problem.

Appendix A The Norm Equivalence (1.3)

We begin with a simple observation.
LemmaA.1 We have

leurl o)l 2y = [Vl Yo € [Hy (1 N Hdiv’; Q). (A.D)

Proof Letv, € [C2°(2)]? converge to vin [H'(2)]* asn — oo. It follows from integration
by parts that

2 _ 2 1 2
Ilel(Q) - ”Gradv”LZ(Q) - nll>nolo ”Grad vn”LZ(Q)

= lim (—Avy) - vydx
Q

n— oo

= nan;O [(curlv,, curlv,) ;2 ) + (div v,, divo,) 2]
= lleurl v]|75 g, + Idiv ol g,

2
= ||curl vlle(Q).

It is clear from the definition of (-, -)g in (1.2) and Lemma A.1 that

lleurd (curl v)|I7 g, + Blleurl vl13 o) + ¥ 19172, < max(l, B, y)(v, vz Vv € E.
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<

Fig. 4 (Left) the domain 2 together with the cuts ¥ (shaded in magenta) and X1, ¥, (shaded in green),
(Center) the top view of Q’f (shaded in pink) and (Right) the top view of Q; (shaded in brown)

In the other direction, we have, by Lemma A.1 and a Poincaré-Friedrichs inequality,
leurl v]|;2q) < Cileurlv|gi(g) = Cyllcurl (curlv)|2q) Vv eE (A2)

because curl v € [HO1 () N H{iv?; Q) for v € E.
In the case where y > 0, it follows from (A.1) and (A.2) that

(v, v)g < max(1+ CZ, 1/y)(leurl (curl )| g + ¥ [v]172,) Vv €E.
In the case where y = 0 and hence 9<2 is connected, we have (cf. [1, Corollary 3.19])
Ivlz2@) < Ghlleurlvll 2y Vv €eE,
which together with (A.1) and (A.2) implies

(v, ) < (14 C; + CCH[leurl (curl v) |7, Vv €E.

Appendix B The Inf-Sup Condition (3.25)

If m = 0 and 2 is simply connected, then [HO1 (Q)]i. = [HO1 (§))? and (3.25) is a standard
result (cf. [27, Page 24, Corollary 2.4]), which is equivalent to the statement (cf. [14, Theo-
rem 0.1]) that there exists a positive constant C such that for every ¢ € L%(Q) we can find
n e [HO] ()13 that satisfies

divg =q and [nlg1q) < Cllglir2q)-

In the case where m > 1, we can introduce an additional cut ¢ so that @ = Q| U Q»,
where the disjoint polyhedrons €21 and €2, are the open subsets of 2 separated by the cuts
30, ..., 2. Byextending 1 and €2, across ¥q for a small amount, we have two overlapping
open polyhedrons Q] and Q3 such that Q° C QF U Q3.

The situation is illustrated in Fig. 4. On the left we have Q which is obtained by removing
two rectangular columns (shaded in blue) from a rectangular box, together with the cuts
Y1, X5 (shaded in green) and ¢ (shaded in magenta). In the middle we have the top view
of Q7 (shaded in pink), and on the right we have the top view of Q3 (shaded in brown).

We can construct a continuous partition of unity ¢ and ¢, so that

>0 Q0 >0 Q0
{Zl _ 1 on {¢2 _ on and ¢1+¢2=1 on Q°.
1 =

onQ\ 25’ ¢ =1 onQ \ QF°
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Let x be a continuous function with compact support in Q] N €3 such that

/dezl.
Q

Given any g € L3(Q), we define g1, > € L*() by

q1 = ¢19 —x/ ¢1qgdx and g2 = ¢og —x/ $aqdx.
Q Q
Then we have
g=q1+q2 and |lq1l2@n + 9212y = CillgllL2g)- (B.1)

Note that

/qidxzo for i =1,2.
o

According to the standard result for Q] and Q3, there exist n; € [HOl (QT)]3 and 9, €
[Hg (23)]° such that

div n, =dqi in Q;k and |nl IHI(QT) < Cb”ql ”LZ(Q‘*) for i = 1, 2. (B2)
By extending 7, to be 0 on Q \ 7, we have a vector field in [H(} ()13, still denoted by 1>
such that div 5| = ¢g; in 2. Similarly, the trivial extension of 5, to €2, still denoted by 1,, is

a vector field in [HO1 (Q)]i. that satisfies div g, = g2 in Q.
In view of (B.1) and (B.2), we have the estimate

. 2
(div(ny + 12), 9) 2 - 41172 q)
I+l @ Tl + 2l @)
that implies (3.25).

> (C:Cy) Mgl 2@

Appendix C The Generalized Stokes Problem (3.22)

First we note that & € [H(} (Q)]; for any collection of acceptable cuts £ = {X1, ..., X,;}
with the property that Q3 = Q\ U, =; is simply connected (cf. Remark 3.13 in [1]).
Therefore & satisfies (3.22) for any such X, where p = ps depends on X.

Let pi, ..., py be a C™ partition of unity for Q such that the diameter of the support
of py is sufficiently small for I < k < N. Then for each k we can choose a collection of
acceptable cuts X such that the support of py is disjoint from f)k,l, R f)k,m.

Lety € [Hy ()] be arbitrary. We have o € [Hy ()13, and it follows from integration
by parts and (3.22a) that

(Grad (pi§), Grad ")LZ(Q) = (&(grad p)" + prGrad §, Grad n) 2 (g,
= (Grad £, Grad (o)) 2, — (div (§(grad pi)"). 1) 2
— ((Grad §)grad p, ")LZ(Q)
= —B(E. pr) 120 + (div (oxn), sz)Lz(Q) + (@, o) 12
— (div (§(grad p)'). ) 12, — ((Grad &)grad pi. ) .
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and hence
(Grad (pi§), Grad ﬂ)Lz(Q) — (divy, PePE )2 = (6, M2 (C.1)
where

K = —Bpik + ps,grad o + pro — div (§(grad p)') — (Grad §)grad p; € [L* ()T

(C.2)
Letg € L(Z)(SZ) be arbitrary. From (3.22b) we have
— (div (), 2@y = (— (grad po) - £,4) g (C3)
where
— (grad py) - £ € HJ (). (C4)

It follows from (C.1)—(C.4) that (ox€, px px,) is the solution of a standard Stokes problem
analyzed in [25]. Consequently we have

lok& |l y1+es @) < C(”’C”LZ(Q) + |(grad px) - §|H1(Q)) < Cl@ll 2 ) (C.5)

where o5 € (%, 1] is determined by the geometry of €2 and the last inequality comes from
the well-posedness of (3.22) (cf. Remark 3.12). Since (C.5) is valid for every k, we conclude
that

EeH'T(Q) and (] y1sas gy < Cloll 2 (C.6)

Let X be any collection of acceptable cuts and n € [Cf"(Q;)]3 be arbitrary. Since n €
[H] ()13, we have, by (3.22a),

(diV n, pZ)LZ(Q"Z) = (diV n, Pz)LZ(Q)
= (Grad &, Grad U)LZ(Q) + B(E, ﬂ)L2(Q) — (o, ﬂ)LZ(Q)s
which together with (C.6) implies

px € H¥(Q3) and |Ipzllgesay) < Cll@llz2(q)- (&)

Appendix D Proof of Lemma 5.2
Let p € H'(Q) N L3(Q) be defined by

(grad p. grad 1) ;2(q) = (div . w2y Y € H'(Q) N L{(Q).
We have x + grad p € Ho(div%; €) and

lgrad pll g div.e) < Clldiv xllL2q)- (D.1)

According to Proposition 3.14 in [1], there exists a harmonic function z on Q2° such that
(i)n-gradz = 0on 0%, (ii) ny, - grad z is continuous across the cut 3; for 1 <i < m, (iii)
the jump of z over the cut %; is a constant for 1 <i < m, (iv)

/grad(p—kz)-n;dS:O for 1 <i<m,

Y
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and (v)
llgrad z||;2(q) < Cligrad pll 1 div;)- (D.2)

Then n = x + grad p + g/I:;lH z belongs to Hy(div?; ) and y satisfies the constraints in
(3.8). Therefore n belongs to @E and it follows from Lemma 2.4 that

n =curlw (D.3)

for a unique vector field w € 2.
Note that

(gradp, ¥),2) =0 = (gradz. ¥) 2y V¥ € P,
by integration by parts. Consequently we have
(curl ¢, curl ) 2q) = (X, ¥) 120
= (x +grad p +gradz, Ve
=¥
= (curlw, ¥);20) = (w,curl¥) ;2 V¥ € P,

which implies curl = w by Lemma 2.1 because w € 2, by Remark 2.3.
Finally we have

[lcurl (curlE)HLz(Q) = [leurlwll 2y = IMllL2) < CliX Iz (@)

by (D.1)-(D.3).

Appendix E Derivation of (5.36)

The explicit form of (5.35) is given by

a@. )+ bW 0) + I )2 = (X W) 120 (E.1a)

b(&, ) =0, (E.1b)

yIE M2 — @) — BE M 20 — e ) =0, (E-Lo)
—c(&,q) =0, (E.1d)

forall (¥, jt, 1, q) € H(eurl; Q) x ©° x [HH(Q)13 x L3(Q).
From the well-posedness of the saddle point problem (E.1) we have

111 & curt: ) + ”é”HI(QO) + ”é”Hl(Q) + P2 = Clixleg (E.2)

and it follows from (E.1a) and (E.1b) that
a@.¥) + bW, 0) = (X. ¥)12q) V¢ € H(curl; Q), (E.3a)
bE&, ) =0 Yue®°, (E.3b)

where y = x — y%.g
Since (E.3) is just (5.13) with x replaced by ¥, we deduce from Lemma 5.2 that curl ¢ €
Ho(curl; ) N H(div?; Q) and hence

11l mer @) + leurl || gan @) < ClX g1 < Clxlg g
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by Remark 5.3 and (E.2).

From (E.3a) we also have the following analog of (5.21):

(grad ., grad 0) 2oy = (—div X, )20y Y € O,

and hence, in view of (5.22) and (E.2),

”é”HH'aNeu @) = Clldiv X ll;2q) = CliXllg1)-
Observe that (E.1c) and (E.1d) imply

2@ m) + BE M2 +c, p) = 28 Mg Vi elH (@R,  (Eda)
ct.q)=0 Vg e LA(Q). (E.4b)

We conclude from the results in Appendix C and (E.2) that

~ ~ 1~
”E”HlJrOfS(Q) + Pl gesey = Clly 28l < Clixliz -
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