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Abstract
We design a finite element method for the quad-curl problem on three dimensional Lips-
chitz polyhedral domains with general topology that is based on the Hodge decomposition
for divergence-free vector fields. Error estimates and corroborating numerical results are
presented.

Keywords Quad-curl · Hodge decomposition · Finite elements · Polyhedral domain with
general topology

1 Introduction

Let � ⊂ R
3 be a bounded connected polyhedral domain with a Lipschitz boundary and the

space E be defined by

E = {v ∈ [L2(�)]3 : curl v ∈ [H1
0 (�)]3, div v = 0 and n × v = 0 on ∂�},

where n is the unit outer normal on ∂�.

Remark 1.1 Here and below we follow the standard notation for differential operators, func-
tion spaces and norms that can be found for example in [12, 22, 27].

The quad-curl problem is to find u ∈ E such that
(
curl (curl u), curl (curl v)

)
L2(�)

+ β(curl u, curl v)L2(�)

+ γ (u, v)L2(�) = ( f , v)L2(�) ∀ v ∈ E, (1.1)

where β, γ are nonnegative constants and f ∈ [L2(�)]3. We assume γ > 0 if ∂� is not
connected.
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The space E is a Hilbert space under the inner product

(v,w)E = (v,w)L2(�) + (curl v, curlw)H1(�) (1.2)

where (componentwise)

(v,w)H1(�) = (v,w)L2(�) + (grad v, gradw)L2(�) ∀ v,w ∈ H1(�),

and we have a norm equivalence (cf. Appendix A and [20])

‖curl (curl v)‖2L2(�)
+ β‖curl v‖2L2(�)

+ γ ‖v‖2L2(�)
≈ (v, v)E ∀ v ∈ E. (1.3)

It follows from (1.3) and the Riesz representation theorem that (1.1) has a unique solution.
Our goal is to solve (1.1) numerically through a Hodge decomposition of u.

The quad-curl problem appears in the Maxwell transmission eigenvalue problem (cf. [15,
16, 34, 38]) and mathematical models for magnetohydrodynamics with hyperresistivity (cf.
[5, 18, 36]). Numerical methods for (1.1) have been investigated in [17, 19–21, 26, 28, 37,
39, 41, 44, 46, 48] and methods for its analog on two dimensional domains can be found in
[13, 29, 42, 45, 47].

In this paper we treat the quad-curl problem on three dimensional domains with general
topology by extending the Hodge decomposition approach for two dimensional quad-curl
problems in [13]. The general topology of� leads to additional challenges in the construction
of the Hodge decomposition and corresponding finite element methods. Fortunately many
of the complications have been addressed in [1] and we are able to solve (1.1) by standard
simple finite elements and obtain error estimates solely based on the given � and f without
any assumed regularity on the solution u.

The rest of the paper is organized as follows. The Hodge decomposition of divergence-
free vector fields is presented in Sect. 2, followed by the reduction of (1.1) into second order
problems in Sect. 3. Finite element methods for these second order problems are introduced
in Sect. 4 with convergence analysis given in Sect. 5. Improved error estimates for the case
where f ∈ [H1(�)]3 are presented in Sect. 6, followed by numerical results in Sect. 7. We
end the paper with some concluding remarks in Sect. 8. The appendices contain the proofs
of some technical results.

Below we recall some notation that will be used throughout the paper.

• L2
0(�) is the space of functions v ∈ L2(�) that satisfy

∫

�

v dx = 0. (1.4)

• H(curl ;�) is the space of vector fields defined by

H(curl ;�) = {v ∈ [L2(�)]3 : curl v ∈ [L2(�)]3}
with ‖v‖H(curl ;�) = (‖v‖2

L2(�)
+ ‖curl v‖2

L2(�)

) 1
2 .

• H0(curl ;�) = {v ∈ H(curl ;�) : n× v = 0 on ∂�} is the subspace of vector fields
in H(curl ;�) with vanishing tangential components.

• H(curl 0;�) = {v ∈ H(curl ;�) : curl v = 0} is the space of irrotational vector fields
in H(curl ;�).

• H(div ;�) is the space of vector fields defined by

H(div ;�) = {v ∈ [L2(�)]3 : div v ∈ L2(�)}
with ‖v‖H(div ;�) = (‖v‖2

L2(�)
+ ‖div v‖2

L2(�)

) 1
2 .
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• H0(div ;�) is the subspace of H(div ;�) defined by

H0(div ;�) = {v ∈ H(div ;�) : n · v = 0 on ∂�}.
• H(div 0;�) = {v ∈ H(div ;�) : div v = 0} is the space of divergence-free vector fields

in H(div ;�).
• H0(div 0;�) = {v ∈ H0(div ;�) : div v = 0} is the space of divergence-free vector

fields in H0(div ;�).
• Given a vector field v = [v1, v2, v3]t ∈ [H1(�)]3, the matrix function Grad v is given

by

Grad v =
⎡

⎣
∂v1/∂x1 ∂v1/∂x2 ∂v1/∂x3
∂v2/∂x1 ∂v2/∂x2 ∂v2/∂x3
∂v3/∂x1 ∂v3/∂x2 ∂v3/∂x3

⎤

⎦

so that

(Grad v,Gradw)L2(�) =
∫

�

Grad v : Gradw dx

=
3∑

i=1

(grad vi , gradwi )L2(�) ∀ v,w ∈ [H1(�)]3

and ‖Grad v‖L2(�) = (Grad v,Grad v)
1
2
L2(�)

= |v|H1(�).

We end the introduction with a fundamental result on two subspaces of H(curl ;�) ∩
H(div ;�) (cf. [1, Proposition 3.7]).

Lemma 1.2 There exist two positive numbers αT and αN in ( 12 , 1] such that

‖v‖HαT (�) ≤ C
(‖v‖L2(�) + ‖curl v‖L2(�) + ‖div v‖L2(�)

)
(1.5)

for all v ∈ H(curl ;�) ∩ H0(div ;�),

‖v‖HαN (�) ≤ C
(‖v‖L2(�) + ‖curl v‖L2(�) + ‖div v‖L2(�)

)
(1.6)

for all v ∈ H0(curl ;�) ∩ H(div ;�). We can take αT = αN = 1 if � is convex.

Here and throughout the paper we useC to denote a generic positive constant independent
of the mesh sizes that can take different values at different occurrences.

2 Hodge Decomposition for Divergence-Free Vector Fields

The Hodge decomposition has to take into account the topology of the domain�, which may
be multiply connected and the boundary of � may have multiple components, i.e., the Betti
numbers β1 and β2 of � may be greater than 0.

More precisely we assume that � becomes simply connected after m cuts �1, . . . , �m

have been removed and that ∂� has n + 1 components �0, . . . , �n , where m = β1 and
n = β2. Each cut �i , which is the intersection of a plane with �, is simply connected and
the closures of �i are pairwise disjoint. The open subset � \ ( ⋃m

i=1 �i
)
of �, denoted by

�◦, is simply connected. We take �0 to be the outer component of ∂� and �1, . . . , �n to be
the inner components of ∂�.

As an illustration, the domain � in the center of Fig. 1 withm = 2 and n = 1 is generated
by removing two rectangular columns (shaded in blue) and a cube (shaded in brown) from the
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Fig. 1 Rectangular box (left), domain � (center), domain � with cuts (right)

rectangular box on the left of Fig. 1, where the boundary of the cube is the inner component
�1 of ∂�. The two cuts �1 and �2 (shaded in green) are depicted on the right of Fig. 1.

2.1 Vector Potentials

Wewill use the vector potentials for divergence-free vector fields in [1, Section 3] in the con-
struction of the Hodge decomposition and the finite element methods (cf. also [2, Section 3.5
and Section 3.6]).

Let the subspace PT of H(curl ;�) ∩ H0(div 0;�) be defined by

PT = {v ∈ H(curl ;�) ∩ H0(div
0;�) :

∫

�i

v · n�i
d S = 0 for 1 ≤ i ≤ m}, (2.1)

where n�i
is a unit normal of �i .

The following lemma is Theorem 3.12 in [1].

Lemma 2.1 The operator curl is a surjection from H(curl ;�) onto the space

DF = {v ∈ H(div 0;�) :
∫

� j

v · n� j
d S = 0 for 1 ≤ j ≤ n},

where n� j
(1 ≤ j ≤ n) is the unit outer normal on the inner component � j of ∂�, and the

restriction of the operator curl to PT is an isomorphism between PT and DF .

Remark 2.2 Since PT is a Hilbert space under the inner product

(v,w)H(curl ;�) = (v,w)L2(�) + (curl v, curlw)L2(�)

and curl is a bounded linear operator fromPT onto the closed subspace DF of [L2(�)]3, it
follows from the open mapping theorem that

‖v‖L2(�) ≤ C‖curl v‖L2(�) ∀ v ∈ PT .

HencePT is also a Hilbert space under the inner product (v,w)P T = (curl v, curlw)L2(�).

While the potentials in PT appear in the Hodge decomposition, another space of vector
potentials also plays a role in the construction of the finite elementmethods and their analysis.
Let the subspace PN of H0(curl ;�) ∩ H(div 0;�) be defined by

PN = {v ∈ H0(curl ;�) ∩ H(div 0;�) :
∫

� j

v · n� j
d S = 0 for 1 ≤ j ≤ n}. (2.2)

Remark 2.3 Note that PN is a subspace of DF .

The following lemma is Theorem 3.17 in [1].
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Lemma 2.4 The operator curl is a surjection from H0(curl ;�) onto the space

D0
F = {v ∈ H0(div

0;�) :
∫

�i

v · n�i
d S = 0 for 1 ≤ i ≤ m},

and the restriction of the operator curl to PN is an isomorphism between PN and D0
F .

2.2 Harmonic Functions'1, . . . , 'n

The harmonic functions ϕ1, . . . , ϕn ∈ H1(�) are defined by
∫

�

grad ϕ j · grad ϕ dx = 0 ∀ ϕ ∈ H1
0 (�), (2.3a)

ϕ j

∣
∣
∣
�0

= 0, (2.3b)

and for 1 ≤ j, k ≤ n,

ϕ j
∣
∣
�k

=
{
1 if k = j

0 if k 
= j
. (2.3c)

Remark 2.5 The harmonic functions ϕ1, . . . , ϕn belong to the Sobolev space H 1+αDir (�) for
some αDir ∈ (1/2, 1] by the elliptic regularity theory for polyhedral domains in [24, 32],
where αDir depends on the conic angles at the vertices of � and the dihedral angles of the
edges of �. We can take αDir to be 1 if � is convex.

Lemma 2.6 Given any v ∈ H(div 0;�), there exist unique constants c1, . . . , cn such that
w = v − ∑n

j=1 c jgrad ϕ j satisfies
∫

� j

w · n� j d S = 0 for 1 ≤ j ≤ n. (2.4)

Proof It suffices to show that the n × n matrix

M =

⎡

⎢⎢⎢⎢⎢
⎣

∫

�1

grad ϕ1 · n1dS . . .

∫

�1

grad ϕn · n1dS
...

. . .
...∫

�n

grad ϕ1 · nndS . . .

∫

�n

grad ϕn · nndS

⎤

⎥⎥⎥⎥⎥
⎦

is nonsingular.
Let [a1, . . . , an]t belong to the null space ofM and ϕ = ∑n

k=1 akϕk . Then

∫

� j

grad ϕ · n j dS =
n∑

k=1

( ∫

� j

grad ϕk · n j dS
)
ak = 0 for 1 ≤ j ≤ n

and we have
∫

�

grad ϕ · grad ϕ dx =
∫

∂�

(grad ϕ · n)ϕ dS =
n∑

j=1

a j

∫

� j

grad ϕ · n� j d S = 0

by (2.3a)–(2.3c) and integration by parts.
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Consequently ϕ is a constant that must be zero because ϕ = 0 on �0, and hence a1 =
· · · = an = 0 because ϕ1, . . . , ϕn are linearly independent by (2.3c). ��
Remark 2.7 The vector fields grad ϕ j belongs to E by construction. Furthermore, in view of
Lemma 2.1, (2.3b) and (2.3c) we have

(curlψ, grad ϕ j )L2(�) = 0 ∀ ψ ∈ PT .

Remark 2.8 The constants c1, . . . , cn in Lemma 2.6 are bounded bymax1≤ j≤n
∣
∣ ∫

� j
v ·n j dS

∣
∣

and hence by ‖v‖H(div ;�) = ‖v‖L2(�).

2.3 Hodge Decomposition for H(div 0; Ä)

Let v belong to H(div 0;�). It follows from Lemma 2.6 that there exist unique constants
c1, . . . , cn such that (2.4) is satisfied,wherew = v−∑n

j=1 c jgrad ϕ j belongs to H(div 0;�)

by (2.3a). We can then apply Lemma 2.1 to conclude that there exists a unique ψ ∈ PT such
that

w = curlψ,

or equivalently

v = curlψ +
n∑

j=1

c jgrad ϕ j , (2.5)

which is the Hodge decomposition of v.

3 Reduction of the Quad-Curl Problem

Let u ∈ E be the solution of (1.1) and

u = curlφ +
n∑

j=1

τ jgrad ϕ j (3.1)

be the Hodge decomposition of u. Our goal is to find u by finding φ and τ1, . . . , τn .

Remark 3.1 It follows from (2.3b), (2.3c) and (3.1) that n × curlφ = 0 on ∂�, which will
be posed as a natural boundary condition in Sect. 3.1.

In the case where n ≥ 1, the boundary of � is not connected and γ > 0 by assumption.
In view of Remark 2.7 and (3.1), we can take v = grad ϕk in (1.1) to obtain

n∑

j=1

τ j (grad ϕ j , grad ϕk)L2(�) = (u, grad ϕk)L2(�) = 1

γ
( f , grad ϕk)L2(�) (3.2)

for 1 ≤ k ≤ n. Therefore the coefficients τ1, . . . , τn are determined by the system (3.2),
which is symmetric positive definite by (2.3b).

Below we will show that φ ∈ PT is determined by several second order saddle point
problems. The following observation is useful.
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Lemma 3.2 The operator curl maps E into the space S defined by

S =
{
η ∈ [H1

0 (�)]3 ∩ H(div 0;�) :
∫

�i

η · n�i
d S = 0 for 1 ≤ i ≤ m

}
, (3.3)

which is the divergence-free subspace of

[H1
0 (�)]3� =

{
η ∈ [H1

0 (�)]3 :
∫

�i

η · n�i
d S = 0 for 1 ≤ i ≤ m

}
. (3.4)

Proof This is a direct consequence of Lemma 2.4 since E is a subspace of H0(curl ;�) ∩
H(div 0;�). ��
Remark 3.3 Note that S is a subspace of D0

F .

Remark 3.4 [H1
0 (�)]3� and S are Hilbert spaces under the inner product (·, ·)H1(�). In

the case where � is simply connected, [H1
0 (�)]3� = [H1

0 (�)]3 and S = [H1
0 (�)]3 ∩

H(div 0;�).

3.1 A Second Order Saddle Point Problem for�

Let ξ = curl u ∈ H1
0 (�). It follows from n×u = 0 on ∂�, Remark 2.7, (3.1) and integration

by parts that, for any ψ ∈ PT , we have

(curlφ, curlψ)L2(�) = (u, curlψ)L2(�) −
n∑

j=1

τ j (grad ϕi , curlψ)L2(�)

= (curl u,ψ)L2(�)

= (ξ ,ψ)L2(�). (3.5)

In view of Remark 2.2, φ ∈ PT is the unique solution of the well-posed problem (3.5)
and we have

‖φ‖H(curl ;�) ≤ C‖ξ‖L2(�). (3.6)

The integral constraints in the definition ofPT in (2.1) are inconvenient for the numerical
solution of (3.5). They can be removed through the reformulation of (3.5) as a saddle point
problem, for which we will need the subspace � of H1(�◦), where �◦ = � \ ⋃m

i=1 �i .
For any v ∈ H1(�◦), the jump [[v]]�i of v across the cut �i is well-defined by the trace

theorem, and

� = {v ∈ H1(�◦) : [[v]]�i = constant for 1 ≤ i ≤ m} (3.7)

is a closed subspace of H1(�◦). We will denote by g̃rad v the function in L2(�) that agrees
with grad v in �◦. The subspace � ∩ L2

0(�) of � is denoted by �0.
The following result is a simple consequence of integration by parts.

Lemma 3.5 A vector field v ∈ [L2(�)]3 satisfies
(v, g̃rad θ)L2(�) = 0 ∀ θ ∈ �0

if and only if v ∈ H0(div 0;�) and
∫

�i

v · n�i
d S = 0 for 1 ≤ i ≤ m. (3.8)
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Remark 3.6 Note that v ∈ H1(�◦) belongs to � if and only if g̃rad v ∈ H(curl 0;�) (cf.
[1, Lemma 3.11]).

Remark 3.7 In the case where � is simply connected, we have � = H1(�) and g̃rad v =
grad v for v ∈ �.

The saddle point problem for (3.5) is to find (φ, θ) ∈ H(curl ;�) × �0 such that

a(φ,ψ) + b(ψ, θ) = (ξ ,ψ)L2(�) ∀ ψ ∈ H(curl ;�), (3.9a)

b(φ, μ) = 0 ∀ μ ∈ �0, (3.9b)

where

a(η,ψ) = (curl η, curlψ)L2(�), (3.10)

b(φ, μ) = (φ, g̃radμ)L2(�). (3.11)

We will establish the well-posedness of (3.9) by the theory of saddle point problems in
[3, 14]. The inf-sup condition is satisfied because

sup
ψ∈H(curl ;�)

b(ψ, μ)

‖ψ‖H(curl ;�)

≥ (g̃radμ, g̃radμ)

‖g̃radμ‖H(curl ;�)

= ‖gradμ‖L2(�◦) ∀ μ ∈ �0

(3.12)

by Remark 3.6. Moreover it follows from Lemma 3.5 that

Ker b = {v ∈ H(curl ;�) : (v, g̃radμ)L2(�) = 0 ∀μ ∈ �0}
is precisely PT , and hence

a(ψ,ψ) = (curlψ, curlψ)L2(�) ≥ C‖ψ‖2H(curl ;�) (3.13)

by Remark 2.2. The well-posedness of the saddle point problem follows from (3.12) and
(3.13).

Next we show that the unique solution of (3.9) is given by (φ, 0) where φ is the solution
of (3.5). Indeed by taking ψ = g̃rad θ in (3.9a), we see that

(g̃rad θ, g̃rad θ)L2(�) = (ξ , g̃rad θ)L2(�) = (ξ , grad θ)L2(�◦) = 0

by Lemma 3.2 and Lemma 3.5, and hence θ ∈ �0 is the constant 0. Furthermore φ belongs
to Ker b = PT by (3.9b) and therefore (3.9a) implies that it is the solution of (3.5).

Remark 3.8 Since θ = 0, it follows from (3.9a) that φ ∈ PT ⊂ H(curl ;�) ∩ H0(div ;�)

satisfies the elliptic Maxwell boundary value problem

(curlφ, curlψ)L2(�) + (divφ, divψ)L2(�) = (ξ ,ψ)L2(�)

∀ ψ ∈ H(curl ;�) ∩ H0(div ;�)

that has been analyzed in [23].

Remark 3.9 The saddle point problemwas investigated in [31] for domains with trivial topol-
ogy.

We still need to determine the vector field ξ= curl u that appears on the right-hand side
of (3.9). Note that ξ belongs to S by Lemma 3.2.
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3.2 Second Order Saddle Point Problems for �

Let η belong to the spaceS defined in (3.3). According to Lemma 2.4, there exists a unique
vector potential ψ ∈ PN ⊂ H0(curl ;�) ∩ H(div 0;�) such that

curlψ = η, (3.14)

which implies in particular that ψ ∈ E.
It then follows from (1.1) and (3.14) that

(curl ξ , curl η)L2(�) = (curl (curl u), curl (curlψ))L2(�)

= (Q f ,ψ) − γ (u,ψ)L2(�) − β(ξ , η)L2(�), (3.15)

where Q is the orthogonal projection from [L2(�)]3 onto H(div 0;�).
On the other hand, by letting v in (1.1) be the gradient of the harmonic functionsϕ1, . . . , ϕn

from Sect. 2.2, we see that

0 =
∫

�

(Q f − γ u)grad ϕ j dx =
∫

� j

(Q f − γ u) · n� j d S for 1 ≤ j ≤ n.

Therefore Q f − γ u belongs to DF and there exists a unique ω ∈ PT such that

curlω = Q f − γ u (3.16)

by Lemma 2.1, which together with (3.14) and (3.15) implies

(curl ξ , curl η)L2(�)+β(ξ , η)L2(�)=(curlω,ψ)L2(�)=(ω, η)L2(�) ∀ η ∈ S . (3.17)

Since we have (cf. Lemma A.1)

(curl v, curlw)L2(�) = (Grad v,Gradw)L2(�) ∀ v,w ∈ [H1
0 (�)]3 ∩ H(div 0;�),

the problem (3.17) can be rewritten as

(Grad ξ ,Grad η)L2(�) + β(ξ , η)L2(�) = (ω, η)L2(�) ∀ η ∈ S . (3.18)

3.2.1 The Case � = 0

In this case (3.16) and (3.17) are decoupled. We can first determine ω ∈ PT by

(curlω, curlψ)L2(�) = (Q f , curlψ)L2(�) = ( f , curlψ)L2(�) ∀ ψ ∈ PT , (3.19)

which is a well-posed problem by Remark 2.2, and then ξ ∈ S is determined by (3.18),
which is also a well-posed problem on the closed subspace S of [H1

0 (�)]3 because of the
Poincaré inequality.

Remark 3.10 It follows from Remark 2.2 and (3.19) that

‖ω‖H(curl ;�) ≤ C‖curlω‖L2(�) ≤ C‖ f ‖L2(�). (3.20)

We can remove the inconvenient constraints in the definition of PT and S by reformu-
lating (3.18) and (3.19) as saddle point problems.

The saddle point problem for (3.19) is to find (ω, θ) ∈ H(curl ;�) × �0 such that

a(ω,ψ) + b(ψ, θ) = ( f , curlψ)L2(�) ∀ ψ ∈ H(curl ;�), (3.21a)

b(ω, μ) = 0 ∀ μ ∈ �0, (3.21b)
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where a(·, ·) and b(·, ·) are defined by (3.10) and (3.11).
We already saw that (3.21) is awell-posed problem inSect. 3.1. Let (ω, θ)be the solution of

(3.21).By takingψ = g̃rad θ in (3.21a)we see that (g̃rad θ, g̃rad θ)L2(�) = 0 byRemark 3.6
and hence θ = 0. Then we observe that Lemma 3.5 and (3.21b) imply ω ∈ Ker b = PT and
finally ω satisfies (3.19) because of (3.21a).

Remark 3.11 Since θ = 0, it follows from (3.21a) thatω ∈ PT ⊂ H(curl ;�)∩H0(div 0;�)

satisfies the elliptic Maxwell boundary value problem

(curlω, curlψ)L2(�) + (divω, divψ)L2(�) = ( f , curlψ)L2(�)

∀ ψ ∈ H(curl ;�) ∩ H0(div ;�)

that has been analyzed in [23].

The saddle point problem for (3.18) is to find (ξ , p) ∈ [H1
0 (�)]3� × L2

0(�) such that

g(ξ , η) + β(ξ , η)L2(�) + c(η, p) = (ω, η)L2(�) ∀ η ∈ [H1
0 (�)]3�, (3.22a)

c(ξ , q) = 0 ∀ q ∈ L2
0(�), (3.22b)

where

g(τ , η) = (Grad τ ,Grad η)L2(�), (3.23)

c(η, q) = −(div η, q)L2(�). (3.24)

This saddle point problem is well-posed because (cf. Appendix B)

sup
η∈[H1

0 (�)]3�

c(η, q)

|η|H1(�)

= sup
η∈[H1

0 (�)]3�

(div η, q)L2(�)

|η|H1(�)

≥ C‖q‖L2(�) ∀ q ∈ L2
0(�), (3.25)

and

g(η, η) + β(η, η)L2(�) ≥ |η|2H1(�)
∀ η ∈ Ker c = S .

Let (ξ , p) be the solution of (3.22). It follows from (3.22b) that ξ belongs to Ker c = S
and then (3.22a) implies ξ is the solution of (3.18).

Remark 3.12 It follows from the well-posedness of (3.22) that

‖ξ‖H1(�) + ‖p‖L2(�) ≤ C‖ω‖L2(�).

Remark 3.13 The saddle point problem (3.22) is the standard Stokes problem for incom-
pressible flows if β = 0 and � is simply connected. The regularity of Stokes problem in
[25] can be extended to (3.22) for a general � that is not necessarily simply connected (cf.
Appendix C), i.e., we have

‖ξ‖H1+αS (�) + ‖p‖HαS (�◦) ≤ C‖ω‖L2(�) ≤ C‖ f ‖L2(�) (3.26)

for some αS ∈ ( 12 , 1] determined by the geometry of �, and we can take αS to be 1 if � is
convex. (The last inequality in (3.26) follows from (3.20).)
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3.2.2 The Case � > 0

In this case the problem (3.19) is replaced by

(curlω, curlψ)L2(�) + γ (ξ ,ψ)L2(�) = ( f , curlψ)L2(�) ∀ ψ ∈ PT . (3.27)

The coupled problems (3.18) and (3.27) can be reformulated as the following saddle point
problem without the inconvenient constraints in the definition of S and PT .

Find (ζ , θ, ξ , p) ∈ H(curl ;�) × �0 × [H1
0 (�)]3� × L2

0(�) such that

a(ζ ,ψ) + b(ψ, θ) + γ
1
2 (ψ, ξ)L2(�) = γ − 1

2 ( f , curlψ)L2(�), (3.28a)

b(ζ , μ) = 0, (3.28b)

γ
1
2 (ζ , η)L2(�) − g(ξ , η) − β(ξ , η)L2(�) − c(η, p) = 0, (3.28c)

−c(ξ , q) = 0, (3.28d)

for all (ψ, μ, η, q) ∈ H(curl ;�) × �0 × [H1
0 (�)]3� × L2

0(�), where a(·, ·), b(·, ·), g(·, ·)
and c(·, ·) are defined by (3.10), (3.11), (3.23) and (3.24) respectively.
Remark 3.14 Using Lemma 3.5, Remark 3.6 and the arguments in Sect. 3.2.1, it is straightfor-
ward to check that if (ζ , θ, ξ , p) ∈ H(curl ;�) × �0 × [H1

0 (�)]3� × L2
0(�) satisfies (3.28),

then θ = 0 by (3.28a), ω = γ
1
2 ζ belongs to PT by (3.28b), ξ belongs to S by (3.28d), and

they satisfy (3.18) (resp., (3.27)) by (3.28c) (resp., (3.28a)). It only remains to show that the
saddle point problem (3.28) is well-posed.

In view of (3.12) and (3.25), it suffices to observe that the bilinear form

B
(
(ψ, η), (τ , ρ)

) = a(ψ, τ ) + γ
1
2 (η, τ )L2(�) + γ

1
2 (ψ, ρ)L2(�)

− g(η, ρ) − β(η, ρ)L2(�) (3.29)

induces an isomorphism between PT × S and (PT × S )′ because of the relation

B
(
(ψ, η), (ψ,−η)

) = a(ψ,ψ) + g(η, η) + β(η, η)L2(�)

≥ ‖curlψ‖2L2(�)
+ ‖Grad η‖2L2(�)

(3.30)

and Remark 2.2. The well-posedness of (3.28) then follows from Theorem 1.1 in [14].

Remark 3.15 The well-posedness of (3.28) implies that

‖ζ‖H(curl ;�) + ‖ξ‖H1(�) + ‖p‖L2(�) ≤ C‖ f ‖L2(�). (3.31)

It then follows from Remark 3.13, (3.28c), (3.28d) and (3.31) that

‖ξ‖H1+αS (�) + ‖p‖HαS (�◦) ≤ C‖γ 1
2 ζ‖L2(�) ≤ C‖ f ‖L2(�) (3.32)

for some αS ∈ ( 12 , 1], where αS = 1 if � is convex.

Remark 3.16 We can write (3.28) concisely as

A((ζ , θ, ξ , p), (ψ, μ, η, q)
) = γ − 1

2 ( f , curlψ)[L2(�)]3 (3.33)
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for all (ψ, μ, η, q) ∈ H(curl ;�) × �0 × [H1
0 (�)]3� × L2

0(�), where

A((ζ , θ, ξ , p), (ψ, μ, η, q)
) = a(ζ ,ψ) + b(ψ, θ) + b(ζ , μ) + γ

1
2 (ψ, ξ)L2(�)

+ γ
1
2 (ζ , η)L2(�) − g(ξ , η) − β(ξ , η)L2(�)

− c(η, p) − c(ξ , q), (3.34)

and we have

A((ζ , θ, ξ , p), (ψ, μ, η, q)
) ≤ C

(‖ζ‖H(curl ;�) + |θ |H1(�◦) + |ξ |H1(�) + ‖p‖L2(�)

)

× (‖ψ‖H(curl ;�) + |μ|H1(�◦) + |η|H1(�) + ‖q‖L2(�)

)
.

(3.35)

3.3 Summary of the Hodge Decomposition Approach

Given f ∈ L2(�), we determine ξ through (3.21) and (3.22) if γ = 0 and through (3.28)
if γ > 0, and then we determine φ through (3.9). The solution of (1.1) is given by (3.1),
where ϕ1, . . . , ϕn and τ1, . . . , τn are determined by (2.3) and (3.2) respectively. We can find
a numerical solution of (1.1) by solving each second order problem numerically.

The Hodge decomposition approach also yields information on the regularity of the solu-
tion u of (1.1). If ∂� is smooth, then we can apply classical regularity results for elliptic
boundary value problems. This means the harmonic functions ϕ1, . . . , ϕn are smooth, and
ω ∈ H(curl ;�) ∩ H0(div 0;�) ⊂ [H1(�)]3 for f ∈ [L2(�)]3. In the case where γ = 0,
we then have ξ ∈ [H3(�)]3 by the regularity of the Stokes problem (cf. Remark 3.13),
which implies φ ∈ [H5(�)]3 by elliptic regularity (cf. Remark 3.8). Consequently we
have u ∈ [H4(�)]3 by (3.1). If f ∈ [H1(�)]3, then ω ∈ [H2(�)]3 (cf. Remark 3.11),
ξ ∈ [H4(�)]3, φ ∈ [H6(�)]3 and u ∈ [H5(�)]3. These observations are also valid when γ

is positive.
On the other hand, if � is a polyhedral domain, then the regularity of φ from the elliptic

Maxwell boundary value problem in Remark 3.8 is limited. Indeed for a convex polyhedron
we have in general φ ∈ [H2(�)]3 (cf. [23]) and hence u ∈ [H1(�)]3, which is the same
regularity satisfied by any vector fields in E when � is convex. Consequently we only
considered lower order finite element methods in Sect. 4.

4 Finite Element Methods

Wewill design finite elementmethods for the second order subproblems in theHodge decom-
position approach that are mentioned at the beginning of Sect. 3.3.

Let Th be a simplicial triangulation of � such that

each cut�i (1 ≤ i ≤ m) is the union of the faces of Th and every tetrahedron in Th
has a vertex interior to�◦. (4.1)

4.1 Finite Element Method for (2.3)

Let 
h ⊂ H1(�) be the P1 Lagrange finite element space associated with Th and 
̊h =

h ∩ H1

0 (�). The finite element method for (2.3) is to find ϕh
1 , . . . , ϕh

n ∈ 
h such that
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∫

�

grad ϕh
j · grad ϕh dx = 0 ∀ ϕh ∈ 
̊h, (4.2a)

ϕh
j

∣
∣
∣
�0

= 0, (4.2b)

and for 1 ≤ j, k ≤ n,

ϕh
j

∣∣
�k

=
{
1 if k = j

0 if k 
= j
. (4.2c)

The approximations τ h1 , . . . , τ hn are then determined by the SPD system

n∑

j=1

τ hj (grad ϕh
j , grad ϕh

k )L2(�) = 1

γ
( f , grad ϕh

k )L2(�) for 1 ≤ k ≤ n. (4.3)

4.2 Finite Element Methods for the Approximation of �

First we introduce the following finite element spaces:

• V h ⊂ H(curl ;�) is the lowest order edge element space associated with Th (cf. [35]).
• �h ⊂ � is the P1 Lagrange finite element subspace associated with Th and �0

h =
�h ∩ L2

0(�).
• Wh ⊂ [H1

0 (�)]3 is the P2 Lagrange vector finite element space associated with Th and
W�

h = Wh ∩ [H1
0 (�)]3� .

• Qh ⊂ H1(�◦) is the P1 Lagrange finite element space associated with Th and Q0
h =

Qh ∩ L2
0(�).

Remark 4.1 In the case where � is simply connected, �h = Qh ⊂ H1(�) is the standard
P1 Lagrange finite element space associated with Th . In the case where � is not simply
connected, the functions in �h can have a constant jump across the cuts �1, . . . , �m and the
dimension of �h is the dimension of the standard P1 finite element space for H1(�) plus
m, while the functions in Qh can be discontinuous across the cuts and the dimension of Qh

is the dimension of the standard P1 finite element space for H1(�) plus the total number of
vertices of Th that belong to the cuts �1, . . . , �m .

Remark 4.2 The space �0
h is a subspace of Q0

h (cf. Remark 3.6).

Remark 4.3 Note that g̃rad θh belongs to V h for any θh ∈ �0
h .

The following approximation results for V h (cf. Theorem 5.41 and Remark 5.42 in [33])
are useful for the error analysis in Sect. 5.

Lemma 4.4 Let v ∈ Hs1(�) and curl v ∈ Hs2(�) for s1, s2 ∈ ( 12 , 1]. Then we have

inf
v∈V h

‖v − vh‖H(curl ;�) ≤ Chmin(s1,s2)
(‖v‖Hs1 (�) + ‖curl v‖Hs2 (�)

)
,

inf
v∈V h

‖curl (v − vh)‖L2(�) ≤ Chs2‖curl v‖Hs2 (�).
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4.2.1 The Case � = 0

The finite element method for (3.21) is to find (ωh, θh) ∈ V h × �0
h such that

a(ωh,ψh) + b(ψh, θh) = ( f , curlψh)L2(�) ∀ ψh ∈ V h, (4.4a)

b(ωh, μh) = 0 ∀ μh ∈ �0
h . (4.4b)

Remark 4.5 The stability of the bilinear form for the saddle point problem (4.4) has been
established in [1, Section 4.1, Page 854]. It was shown there that

sup
ψh∈V h

b(ψh, μh)

‖ψ‖H(curl ;�)

= sup
ψh∈V h

(ψh, g̃radμh)L2(�)

‖ψh‖H(curl ;�)

≥ |μh |H1(�◦) ∀ μh ∈ �0
h, (4.5)

and there exists a positive constant C independent of h such that

a(ψh,ψh) = (curlψh, curlψh)L2(�) ≥ C‖ψh‖2H(curl ;�) ∀ψh ∈ Kerhb, (4.6)

where Kerhb = {vh ∈ V h : (vh, g̃radμh)L2(�) = 0 ∀ μh ∈ �0
h}.

Remark 4.6 In view of Remark 3.6 and Remark 4.3, it is easy to see that θh = 0 for the
solution of (4.4).

The discrete problem for (3.22) is then to find (ξ h, ph) ∈ W�

h × Q0
h such that

g(ξ h, ηh) + β(ξh, ηh)L2(�) + c(ηh, ph) = (ωh, ηh)L2(�) ∀ ηh ∈ W�

h , (4.7a)

c(ξ h, qh) = 0 ∀ qh ∈ Q0
h . (4.7b)

Remark 4.7 The bilinear form for the discrete saddle point problem (4.7) is stable because
there exists a positive constant C independent of h such that

sup
ηh∈W�

h

(div ηh, qh)

|ηh |H1(�)

≥ C‖qh‖L2(�) ∀ qh ∈ Q0
h . (4.8)

Under the assumption (4.1) on Th , the discrete inf-sup condition (4.8) can be established
by the macro-element techniques in [6] if we ensure that the faces of Th on the cuts �i

(1 ≤ i ≤ m) only appear on the boundaries of the macro elements.

Remark 4.8 By introducing Lagrange multipliers to remove the constraints (1.4) and (3.8),
we can use the unconstrained space �h , Wh and Qh in computing the solutions of (4.4) and
(4.7).

Remark 4.9 In the case where � is simply connected and β = 0, the saddle point problem
(4.7) is nothing but theTaylor-Hoodfinite elementmethod (cf. [7, 40]) for the Stokes problem.

4.2.2 The Case � > 0

The finite element method for (3.28) is to find (ζ h, θh, ξh, ph) ∈ V h ×�0
h ×W�

h × Q0
h such

that

A
(
(ζ h, θh, ξ h, ph), (ψh, μh, ηh, qh)

) = γ − 1
2 ( f , curlψh)L2(�) (4.9)
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for all (ψh, μh, ηh, qh) ∈ V h × �0
h × W�

h × Q0
h , where the bilinear form A(·, ·) is defined

in (3.34).

Remark 4.10 The stability of the discrete saddle point problem (4.9) follows from (4.5), (4.6),
(4.8) and the discrete analog of (3.30) for ψh ∈ Kerhb and ηh ∈ Kerhc.

Remark 4.11 Using the equations

a(ζ h,ψh) + b(ψh, θh) + γ
1
2 (ψh, ξ h)L2(�) = γ − 1

2 ( f , curlψh)L2(�) ∀ ψh ∈ V h,

b(ζ h, μh) = 0 ∀ μh ∈ �0
h,

−c(ξ h, qh) = 0 ∀ qh ∈ Q0
h,

that are part of (4.9), Remarks 3.6, 4.2, 4.3 and integration by parts, it is easy to check that
θh = 0 for the solution of (4.9).

Remark 4.12 The well-posedness of (4.9) implies that

‖ζ h‖H(curl ;�) + ‖ξh‖H1(�) + ‖ph‖L2(�) ≤ C‖ f ‖L2(�). (4.10)

Remark 4.13 Again, by introducing Lagrange multipliers to remove the constraints in (1.4)
and (3.8), we can use the unconstrained spaces �h , Wh and Qh in computing the solution
of (4.9).

4.3 Finite Element Method for (3.9)

The finite element method for (3.9) is to find (φh, θh) ∈ V h × �0
h such that

a(φh,ψh) + b(ψh, θh) = (ξh,ψh)L2(�) ∀ ψh ∈ V h, (4.11a)

b(φh, μh) = 0 ∀ μh ∈ �0
h, (4.11b)

where ξh ∈ W�

h is the approximation of ξ obtained in Sect. 4.2.

Remark 4.14 The bilinear form for (4.11) is stable since it is identical to the bilinear form
for (4.4).

Remark 4.15 By introducing a Lagrange multiplier to remove the constraint (1.4), we can
use the unconstrained space �h in computing the solution of (4.11).

4.4 Final Output

The final output of the finite element method based on the Hodge decomposition is the
approximation uh of u given by

uh = curlφh +
n∑

j=1

τ hj grad ϕh
j . (4.12)

5 Convergence Analysis

We will analyze the finite element methods in Sect. 4 one by one.

123



80 Page 16 of 35 Journal of Scientific Computing (2024) 100 :80

5.1 Error Estimates for'h
1, . . . , 'h

n and �h1, . . . , �hn

It follows from (2.3a) and (4.2a) that

|ϕ j − ϕh
j |2H1(�)

=
∫

�

grad (ϕ j − ϕh
j ) · grad (ϕ j − ϕh

j )dx

=
∫

�

grad (ϕ j − ϕh
j ) · grad (ϕ j − �hϕ)dx ∀ ϕh ∈ 
h,

where �h is the nodal interpolation operator for 
h , and hence

|ϕ j − ϕh
j |H1(�) ≤ |ϕ j − �hϕ j |H1(�) ≤ ChαDir (5.1)

by Remark 2.5 and a standard interpolation error estimate (cf. [12, 22]).
Since ϕ j − ϕh

j ∈ H1
0 (�) for 1 ≤ j ≤ n, we have

(grad ϕ j , grad ϕk)L2(�) − (grad ϕh
j , grad ϕh

k )L2(�)

= (grad ϕ j − grad ϕh
j , grad ϕh

k )L2(�) + (grad ϕ j , grad ϕk − grad ϕh
k )L2(�)

= (grad ϕ j − grad ϕh
j , grad ϕh

k − grad ϕk)L2(�) (5.2)

by (2.3a).
It follows from (5.1) and (5.2) that

|(grad ϕ j , grad ϕk)L2(�) − (grad ϕh
j , grad ϕh

k )L2(�)| ≤ Ch2αDir , (5.3)

i.e., the differences of the components of the matrices in (3.2) and (4.3) are O(h2αDir ).
Furthermore the estimate (5.1) implies

|( f , grad ϕk)L2(�) − ( f , grad ϕh
k )L2(�)| ≤ ‖ f ‖L2(�)|ϕk − ϕh

k |H1(�) ≤ ChαDir , (5.4)

i.e., the differences of the components of the right-hand sides in (3.2) and (4.3) are O(hαDir ).
A perturbation argument based on (3.2), (4.3), (5.3) and (5.4) then yields the estimate (cf.

[8, Lemma 4.8])

|τ j − τ hj | ≤ ChαDir‖ f ‖L2(�) for 1 ≤ j ≤ n. (5.5)

5.2 Error Estimates for �h

We will treat the two cases γ = 0 and γ > 0 separately.

5.2.1 The Case � = 0

From the stability of the discrete saddle point problems (4.4), we have

‖ω − ωh‖H(curl ;�) ≤ C
[

inf
ψh∈V h

‖ω − ψh‖H(curl ;�) + inf
μh∈�0

h

‖θ − μh‖L2(�)

]

= C inf
ψh∈V h

‖ω − ψh‖H(curl ;�) (5.6)

since θ = 0.
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Remark 5.1 Under the assumption that f ∈ [L2(�)]3, we can only conclude from (3.20) and
(5.6) that

‖ω − ωh‖H(curl ;�) ≤ C‖ω‖H(curl ;�) ≤ C‖ f ‖L2(�). (5.7)

Moreover it follows from (3.21a) where θ = 0 and (4.4a) where θh = 0 that
(
curl (ω − ωh), curlψh

)
L2(�)

= 0 ∀ ψh ∈ V h . (5.8)

We will use the Galerkin orthogonality (5.8) to derive a duality estimate for ω − ωh that is
useful for the analysis of ξ − ξh .

The proof of the following result is provided in Appendix D.

Lemma 5.2 Let χ ∈ [H1
0 (�)]3� and ζ̃ ∈ PT be defined by

(curl ζ̃ , curlψ)L2(�) = (χ ,ψ)L2(�) ∀ ψ ∈ PT . (5.9)

Then curl ζ̃ belongs to H0(curl ;�) ∩ H(div 0;�) and we have

‖curl (curl ζ̃ )‖L2(�) ≤ C‖χ‖H1(�). (5.10)

Remark 5.3 Let χ and ζ̃ be as in Lemma 5.2. Then ζ̃ belongs to PT ⊂ H(curl ;�) ∩
H0(div 0;�) and curl ζ̃ belongs to H0(curl ;�) ∩ H(div 0;�). It follows from Lemma 1.2
that

‖ζ̃‖HαT (�) ≤ C(‖ζ̃‖L2(�) + ‖curl ζ̃‖L2(�)) ≤ C‖curl ζ̃‖L2(�) ≤ C‖χ‖L2(�) (5.11)

by Remark 2.2 and (5.9), and, in view of (5.10),

‖curl ζ̃‖HαN (�) ≤ C(‖curl ζ̃‖L2(�) + ‖curl (curl ζ̃ )‖L2(�)) ≤ C‖χ‖H1(�). (5.12)

Our goal is to obtain an estimate for (ω − ωh,χ)L2(�) where χ ∈ [H1
0 (�)]3� is arbitrary.

Let ζ̃ ∈ PT be defined by (5.9). In view of Lemma 3.5, we can rewrite (5.9) as the following
saddle point problem: Find (ζ̃ , θ̃ ) ∈ H(curl ;�) × �0 such that

a(ζ̃ ,ψ) + b(ψ, θ̃ ) = (χ ,ψ)L2(�) ∀ ψ ∈ H(curl ;�), (5.13a)

b(ζ̃ , μ) = 0. ∀ μ ∈ �0. (5.13b)

Let (ζ̃ h, θ̃h) ∈ V h × �0
h be defined by

a(ζ̃ h,ψh) + b(ψh, θ̃h) = (χ ,ψh)L2(�) ∀ ψh ∈ V h, (5.14a)

b(ζ̃ h, μh) = 0 ∀ μ ∈ �0
h . (5.14b)

We have

(curl ζ̃ , curlω)L2(�) = (χ ,ω)L2(�) (5.15)

by (5.9),

(curl ζ̃ h, curlωh)L2(�) = (χ ,ωh)L2(�) (5.16)

by (4.4b) and (5.14a), and

(curl ζ̃ , curlωh)L2(�) + (ωh, g̃rad θ̃ )L2(�) = (χ ,ωh)L2(�) (5.17)

by (5.13a).
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It follows from (5.15)–(5.17) that

(ω − ωh,χ)L2(�) = (curl ζ̃ , curlω)L2(�) − (χ ,ωh)L2(�)

= (
curl ζ̃ , curl (ω − ωh)

)
L2(�)

+ (curl ζ̃ , curlωh)L2(�) − (χ ,ωh)L2(�)

= (
curl ζ̃ , curl (ω − ωh)

)
L2(�)

− (ωh, g̃rad θ̃ )L2(�). (5.18)

In view of (5.8), we can estimate the first term on the right-hand side of (5.18) by
∣
∣(curl ζ̃ , curl (ω − ωh)

)
L2(�)

∣
∣ = ∣

∣(curl (ζ̃ − ψh), curl (ω − ωh)
)
L2(�)

∣
∣

≤ ‖curl (ζ̃ − ψh)‖L2(�)‖curl (ω − ωh)‖L2(�) ∀ ψh ∈ V h

and hence
∣
∣(curl ζ̃ , curl (ω − ωh)

)
L2(�)

∣
∣ ≤

[
inf

ψh∈V h

‖curl (ζ̃ − ψh)‖L2(�)

]
‖curl (ω − ωh)‖L2(�).

(5.19)

It follows from Lemma 1.2, Lemma 4.4, Remark 5.3 and (5.19) that
∣∣(curl ζ̃ , curl (ω − ωh)

)
L2(�)

∣∣ ≤ ChαN ‖χ‖H1(�)‖curl (ω − ωh)‖L2(�). (5.20)

For the second term on the right-hand side of (5.18), we first note that Remark 3.6, (5.13a)
and integration by parts imply

(gradμ, grad θ̃ )L2(�◦) = (g̃radμ, g̃rad θ̃ )L2(�) = (−divχ , μ)L2(�◦) ∀ μ ∈ �0,

(5.21)

which implies by elliptic regularity for the Neumann problem that

‖θ̃‖H1+αNeu (�◦) ≤ C‖divχ‖L2(�) for someαNeu ∈ (1/2, 1]. (5.22)

Remark 5.4 If � is convex, then �◦ = � and we can take αNeu to be 1.

In view of (3.21b) and (4.4b) we have, for any μh ∈ �0
h ,

−(ωh, g̃rad θ̃ )L2(�) = −(
ωh, g̃rad (θ̃ − μh)

)
L2(�)

= (
ω − ωh, g̃rad (θ̃ − μh)

)
L2(�)

and hence
∣∣(ωh, g̃rad θ̃ )L2(�)

∣∣ ≤
[

inf
μh∈�0

h

‖g̃rad (θ̃ − μh)‖L2(�)

]
‖ω − ωh‖L2(�). (5.23)

It follows from (5.22), (5.23) and a standard interpolation error estimate for the P1 finite
element (cf. [12, 22]) that

∣∣(ωh, g̃rad θ̃ )L2(�)

∣∣ ≤ ChαNeu‖χ‖H1(�)‖ω − ωh‖L2(�). (5.24)

Putting (5.18), (5.20) and (5.24) together, we arrive at the following result.

Lemma 5.5 We have

|(ω − ωh,χ)L2(�)| ≤ Chmin(αN , αNeu)‖χ‖H1(�)‖ω − ωh‖H(curl ;�) ∀ χ ∈ [H1
0 (�)]3� .

(5.25)
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We are now ready to tackle the error estimates for ξ h . The key is to introduce (ξ̃h, p̃h) ∈
W�

h × Q0
h defined by

g(ξ̃h, ηh) + β(ξ̃h, ηh)L2(�) + c(ηh, p̃h) = (ω, ηh)L2(�) ∀ ηh ∈ W�
h , (5.26a)

c(ξ̃h, qh) = 0 ∀ qh ∈ Q0
h . (5.26b)

On one hand, the saddle point problem (5.26) is the finite element approximation of the
continuous saddle point problem (3.22) and hence we have

|ξ − ξ̃h |H1(�) ≤ C
(

inf
wh∈W�

h

|ξ − wh |H1(�) + inf
qh∈Q0

h

‖p − qh‖L2(�)

)
(5.27)

by the stability of the discrete problem. According to Remark 3.13, we have

‖ξ‖H1+αS (�) + ‖p‖HαS (�◦) ≤ C‖ω‖L2(�) (5.28)

for some αS ∈ (1/2, 1], where αS = 1 if � is convex.
It follows from (5.27), (5.28) and standard interpolation error estimates (cf. [12, 22]) that

|ξ − ξ̃h |H1(�) ≤ ChαS‖ω‖L2(�). (5.29)

On the other hand, (ξ̃ h − ξ h, p̃h − ph) ∈ W�
h × Q0

h is the finite element approximation
for the following saddle point problem: Find (ξ∗, p∗) ∈ [H1

0 (�)]3� × L2
0(�) such that

g(ξ∗, η) + β(ξ∗, η)L2(�) + c(η, p∗) = (ω − ωh, η)L2(�) ∀ η ∈ [H1
0 (�)]3�, (5.30a)

c(ξ∗, q) = 0 ∀ q ∈ L2
0(�). (5.30b)

It then follows from Lemma 5.5 and the stability of (5.30) that

|ξ̃h − ξh |H1(�) ≤ C
(|ξ∗|H1(�) + ‖p∗‖L2(�)

)

≤ C sup
η∈[H1

0 (�)]3�
(ω − ωh, η)L2(�)/‖η‖H1(�)

≤ Chmin(αN ,αNeu)‖ω − ωh‖H(curl ;�). (5.31)

Combining (3.20), (5.7), (5.29) and (5.31), we have

|ξ − ξ h |H1(�) ≤ |ξ − ξ̃h |H1(�) + |ξ̃h − ξh |H1(�) ≤ Chmin(αN ,αNeu,αS)‖ f ‖L2(�).

(5.32)

Note that

‖ξ − ξ̃h‖L2(�) ≤ Ch2αS‖ω‖L2(�) (5.33)

by a standard duality argument. But there is no improvement for ‖ξ̃h − ξh‖L2(�) under the
assumption that f ∈ [L2(�)]3 and we can only conclude from (5.32) and the Poincaré
inequality that

‖ξ − ξ h‖L2(�) ≤ Chmin(αN ,αNeu,αS)‖ f ‖L2(�). (5.34)
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5.2.2 The Case � > 0

Let χ ∈ [H1
0 (�)]3� be arbitrary and (ζ̃ , θ̃ , ξ̃ , p̃) ∈ H(curl ;�) × �0 × [H1

0 (�)]3� × L2
0(�)

be defined by

A
(
(ζ̃ , θ̃ , ξ̃ , p̃), (ψ, μ, η, q)

) = (χ ,ψ)L2(�) (5.35)

for all (ψ, μ, η, q) ∈ H(curl ;�)×�0×[H1
0 (�)]3� ×L2

0(�), where the bilinear formA(·, ·)
is defined in (3.34).

We have the following regularity result (cf. Appendix E):

‖ζ̃‖HαT (�) + ‖curl ζ̃‖HαN (�) + ‖θ̃‖H1+αNeu (�◦) + ‖ξ̃‖H1+αS (�) + ‖ p̃‖HαS (�◦)
≤ C‖χ‖H1(�). (5.36)

It follows from (3.33), (4.9) and (5.35) that

(χ , ζ − ζ h)L2(�) = A
(
(ζ̃ , θ̃ , ξ̃ , p̃), (ζ − ζ h, θ − θh, ξ − ξh, p − ph)

)

= A
(
(ζ̃ − ψh, θ̃ − μh, ξ̃ − ηh, p̃ − qh),

(ζ − ζ h, θ − θh, ξ − ξh, p − ph)
)

for any (ψh, μh, ηh, qh) ∈ V h ×�0
h ×W�

h ×Q0
h , and hence, in view of Remark 3.14, (3.31),

(3.35), Remark 4.11, (4.10) and (5.36),
∣∣(χ , ζ − ζ h)L2(�)

∣∣

≤ Chmin(αN ,αNeu,αS)‖χ‖H1(�)(‖ζ − ζ h‖H(curl ;�) + |ξ − ξh |H1(�) + ‖p − ph‖L2(�)

)

≤ Chmin(αN ,αNeu,αS)‖χ‖H1(�)‖ f ‖L2(�), (5.37)

where we have also used Lemma 4.4 and standard interpolation error estimates for Lagrange
finite elements.

In view of the equations

g(ξ , η) + β(ξ , η)L2(�) + c(η, p) = γ
1
2 (ζ , η)L2(�) ∀ η ∈ [H1

0 (�)]3�, (5.38a)

c(ξ , q) = 0 ∀ q ∈ L2
0(�), (5.38b)

that come from (3.28), and the equations

g(ξh, ηh) + β(ξh, ηh)L2(�) + c(ηh, ph) = γ
1
2 (ζ h, ηh)L2(�) ∀ ηh ∈ W�

h , (5.39a)

c(ξ h, qh) = 0 ∀ qh ∈ Q0
h, (5.39b)

that come from (4.9), we can use (5.37) and the arguments in Sect. 5.2.1 to obtain the estimate
(5.32) and hence also (5.34) by the Poincaré inequality.

In summary we have the following result on the approximation of ξ = curl u by ξ h .

Theorem 5.6 We have

‖curl u − ξh‖L2(�) ≤ C |curl u − ξh |H1(�) ≤ Chmin(αN ,αNeu,αS)‖ f ‖L2(�).
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5.3 Error Estimate for�h

Let (φ̃h, θ̃h) ∈ V h × �0
h be defined by

a(φ̃h,ψh) + b(ψh, θ̃h) = (ξ ,ψh)L2(�) ∀ ψh ∈ V h, (5.40a)

b(φ̃h, μh) = 0 ∀ μh ∈ �0
h . (5.40b)

On one hand, (φ̃h, θ̃h) is a stable approximation of the solution (φ, θ) of the saddle point
problem (3.9) and therefore

‖φ − φ̃h‖H(curl ;�) ≤ C inf
ψh∈V h

‖φ − ψh‖H(curl ;�) (5.41)

because θ = 0.
Note that φ belongs to PT ⊂ H(curl ;�) ∩ H0(div 0;�) ⊂ HαT (�) and, according to

(3.5) and Lemma 5.2, we have

curlφ ∈ H0(curl ;�) ∩ H(div 0;�) and ‖curl (curlφ)‖L2(�) ≤ C‖ξ‖H1(�). (5.42)

It follows from Lemma 1.2, (3.6), Lemma 4.4, (5.41) and (5.42) that

‖φ − φ̃h‖H(curl ;�) ≤ Chmin(αT ,αN )‖ξ‖H1(�). (5.43)

On the other hand, (φ̃h−φh, θ̃h−θh) is a stable finite element approximation for (φ∗, θ∗) ∈
H(curl ;�) × �0 defined by

a(φ∗,ψ) + b(ψ, θ∗) = (ξ − ξh,ψ)L2(�) ∀ ψ ∈ H(curl ;�), (5.44a)

b(φ∗, μ) = 0 ∀ μ ∈ �0. (5.44b)

It follows from the stability of the finite elementmethod, Theorem 5.6 and thewell-posedness
of (5.44) that

‖φ̃h − φh‖H(curl ;�) ≤ C‖ξ − ξh‖L2(�) ≤ Chmin(αN ,αNeu,αS)‖ f ‖L2(�). (5.45)

Combining (3.31), (5.43) and (5.45), we have

‖φ − φh‖H(curl ;�) ≤ ‖φ − φ̃h‖H(curl ;�) + ‖φ̃h − φh‖H(curl ;�)

≤ Chmin(αT ,αN ,αNeu,αS)‖ f ‖L2(�). (5.46)

5.4 Error Estimate for uh

Putting (3.1), (5.1), (5.5) and (5.46) together, we have the following result on the approxi-
mation of u by uh .

Theorem 5.7 The approximate solution uh given by (4.12) satisfies

‖u − uh‖L2(�) ≤ Chmin(αT ,αN ,αDir,αNeu,αS)‖ f ‖L2(�).

Remark 5.8 It follows from Theorem 5.7 that in general

‖u − uh‖L2(�) ≤ Chα‖ f ‖L2(�)

for some α ∈ ( 12 , 1] and α = 1 if � is convex.
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6 Improved Error Estimates for the Case where f ∈ [H1(Ä)]3

Under the assumption that f ∈ [H1(�)]3, we can improve some of the error estimates in
Sect. 5.

First of all the estimate (5.4) can be improved to

|( f , grad ϕk)L2(�) − ( f , grad ϕh
k )L2(�)| = |(div f , ϕk − ϕh

k )L2(�)|
≤ ‖ f ‖H1(�)‖ϕk − ϕh

k ‖L2(�) ≤ Ch2αDir , (6.1)

where we have used the fact that ϕk − ϕh
k ∈ H1

0 (�) and the O(h2αDir ) estimate for ‖ϕk −
ϕh
k ‖L2(�) that comes from (5.1) and a standard duality argument. Consequently we can

improve the estimate (5.5) to

|τ j − τ hj | ≤ Ch2αDir‖ f ‖H1(�). (6.2)

We can also improve the estimate (5.34) by examining the two cases γ = 0 and γ > 0
separately.

6.1 The Case � = 0

We begin by improving the estimate (3.20).

Lemma 6.1 In the case where f ∈ [H1(�)]3, we have
‖curlω‖HαDir (�) ≤ C‖ f ‖H1(�). (6.3)

Proof Let ρ ∈ H1
0 (�) be defined by

(grad ρ, grad v)L2(�) = (div f , v) ∀ v ∈ H1
0 (�).

Then we have

f + grad ρ ∈ H(div 0;�), (6.4)

‖ρ‖H1+αDir (�) ≤ C‖div f ‖L2(�). (6.5)

According to Lemma 2.6 and Remark 2.8, there exist constants c1, . . . , cn such that
∫

� j

[
f + grad ρ −

n∑

k=1

ck grad ϕk
] · n� j

d S = 0 for 1 ≤ j ≤ n, (6.6)

and

max
1≤k≤n

|ck | ≤ C‖ f + grad ρ‖L2(�). (6.7)

Note that

(grad ρ, curlψ)L2(�) = 0 ∀ ψ ∈ H(curl ;�)

by integration by parts and hence, in view of Remark 2.7 and (3.19),

(curlω, curlψ)L2(�) = ( f , curlψ)

= ( f + grad ρ −
n∑

k=1

ck grad ϕk, curlψ)L2(�) ∀ ψ ∈ PT .

(6.8)
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From Lemma 2.1 and (6.8) we have

curlω = f + grad ρ −
n∑

k=1

ck grad ϕk (6.9)

because f + grad ρ − ∑n
j=1 c j grad ϕ j belongs to DF by (2.3a), (6.4) and (6.6).

The estimate (6.3) follows from Remark 2.5, (6.5), (6.7), and (6.9). ��
From Lemma 1.2, Lemma 4.4, (5.6) and Lemma 6.1 we have

‖ω − ωh‖H(curl ;�) ≤ Chmin(αT ,αDir)‖ f ‖H1(�). (6.10)

We can then improve the estimate in (5.31) to

|ξ̃h − ξh |H1(�) ≤ Chmin(αN ,αNeu)+min(αT ,αDir)‖ f ‖H1(�) (6.11)

by exploiting (6.10). Consequently we have an improved L2 error estimate

‖ξ − ξh‖L2(�) ≤ Chmin(2αS ,min(αN ,αNeu)+min(αT ,αDir))‖ f ‖H1(�) (6.12)

through (5.33), (6.11) and the Poincaré inequality.

6.2 The Case � > 0

It follows from Lemma 3.5, (3.28a) and (3.28b) that ζ ∈ PT satisfies

(curl ζ , curlψ)L2(�) = γ − 1
2 ( f , curlψ)L2(�) + (−γ

1
2 ξ ,ψ)L2(�) ∀ ψ ∈ PT ,

and consequently

ζ = ζ 1 + ζ 2 (6.13)

where ζ 1 ∈ PT is defined by

(curl ζ 1, curlψ)L2(�) = (γ − 1
2 f , curlψ)L2(�) ∀ ψ ∈ PT , (6.14)

and ζ 2 ∈ PT is defined by

(curl ζ 2, curlψ)L2(�) = (−γ
1
2 ξ ,ψ)L2(�) ∀ ψ ∈ PT . (6.15)

Note that (6.14) is just (3.19) with (ω, f ) replaced by (ζ 1, γ
− 1

2 f ). Therefore we can
apply Lemma 6.1 to obtain the estimate

‖curl ζ 1‖HαDir (�) ≤ C‖ f ‖H1(�). (6.16)

Similarly (6.15) is just (5.9) with (ζ̃ , χ) replaced by (ζ 2,−γ
1
2 ξ). Hence we can conclude

from (3.31), Lemma 5.2, Remark 5.3 that

‖ζ 2‖HαT (�) + ‖curl ζ 2‖HαN (�) ≤ C‖ξ‖H1(�) ≤ C‖ f ‖L2(�). (6.17)

From the stability of the discrete saddle point problem (4.9) we have

‖ζ − ζ h‖H(curl ;�) + ‖ξ − ξh‖H1(�) + ‖p − ph‖L2(�)

≤ (
inf

vh∈V h
‖ζ − vh‖H(curl ;�) + inf

wh∈W�
h

‖ξ − wh‖H1(�) + inf
qh∈Q0

h

‖p − qh‖L2(�)

)
(6.18)
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(a) (b) (c) (d)

Fig. 2 Domains used for numerical tests: a unit cube, b Fichera chair, c rectangular torus, and d hollowed
unit cube

because θ = 0.
It then follows from Lemma 1.2, (3.32), Lemma 4.4, (6.16)–(6.18) and standard interpo-

lation error estimates for Wh and Qh that

‖ζ − ζ h‖H(curl ;�) + ‖ξ − ξh‖H1(�) + ‖p − ph‖L2(�)

≤ Chmin(αT ,αN ,αDir,αS)‖ f ‖H1(�). (6.19)

In view of (6.19), the estimate (5.37) can be improved to
∣∣(χ , ζ − ζ h)L2(�)

∣∣ ≤ Chmin(αN ,αNeu,αS)+min(αT ,αN ,αDir,αS)‖χ‖H1(�)‖ f ‖H1(�). (6.20)

We can then apply (6.20) and the arguments in Sect. 5.2 to conclude that

‖ξ − ξh‖L2(�) ≤ Chmin
(
2αS ,min(αN ,αNeu,αS)+min(αT ,αN ,αDir,αS)

)
‖ f ‖H1(�). (6.21)

Putting (6.12) and (6.21) together, we have the following result on the approximation of
ξ = curl u by ξh that improves the L2 error estimate in Theorem 5.6.

Theorem 6.2 In the case where f ∈ [H1(�)]3, we have
‖curl u − ξh‖L2(�) ≤ Ch2min(αT ,αN ,αDir,αNeu,αS)‖ f ‖H1(�).

Remark 6.3 It follows from Theorem 6.2 that in general

‖curl u − ξh‖L2(�) ≤ Ch2α‖ f ‖H1(�)

for some α ∈ ( 12 , 1]. Moreover we have α = 1 if � is convex.

7 Numerical Results

We solved the quad-curl problem (1.1) for four examples on domains with different charac-
teristics (cf. Fig. 2).

The initial triangulations on these domains are obtained by the following procedure. First
we create a uniform rectangular grid so that ∂� and the cuts �1, . . . , �m are unions of the
faces of this uniform grid, and then we triangularize each cube by using the center of the
cube as a common vertex of all the tetrahedrons as demonstrated by the figure on the left of
Fig. 3. This guarantees that the assumption (4.1) is satisfied, which implies the stability of the
Taylor-Hood method for the Stokes problem (cf. [6]). Finer meshes are generated using the
nested uniform refinement method presented in [4], where each coarse tetrahedral element is
broken into 8 fine elements in each refinement. The refinement process on a single element
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Fig. 3 Triangulation of a cube in the initial uniform grid (left); a coarse tetrahedral element (center); a
tetrahedral element after one refinement (right)

Table 1 Number of elements for the domains sketched in Fig. 2

h Unit cube Fichera chair Rectangular torus Hollowed cube

1 12 – – –

1/2 96 84 – –

1/4 768 672 144 672

1/8 6144 5376 1152 5376

1/16 49,152 43,008 9216 43,008

1/32 393,216 344,064 73,728 344,064

1/64 3,145,728 2,752,512 589,824 2,752,512

is illustrated by the figures in the center and the left of Fig. 3. The number of elements in
different levels of refinements are displayed in Table 1.

The computations were carried out in MATLAB.

7.1 Unit Cube with Positiveˇ and �

Convergence results for the coupled quad-curl problem solved on the unit cube (0, 1)3 are
presented for h = 1 to h = 1/64 with known vector potential

φ(x) =
⎡

⎣
0

4π sin4(πx1) sin4(πx2) sin3(πx3) cos(πx3)
−4π sin4(πx1) sin3(πx2) sin4(πx3) cos(πx2)

⎤

⎦

and solution

u(x) =
[

−2π2 sin4(πx1) sin
2(πx2) sin

2(πx3)
(
cos(2πx2) − 2 cos(2π(x2 − x3)) + cos(2πx3) + 4 sin2(π(x2 + x3))

)

16π2 sin3(πx1) sin
3(πx2) sin

4(πx3) cos(πx1) cos(πx2)
16π2 sin3(πx1) sin

4(πx2) sin
3(πx3) cos(πx1) cos(πx3)

]

.

The right-hand side f can be analytically computed. The coefficients are

β = 7

2
and γ = 3

2
. (7.1)

The problem is solved iteratively to a 10−8 relative residual using MINRES.
As seen in Table 2, the convergence rate of uh in the L2 norm is almost exactly O(h) once

h is sufficiently small, verifying Theorem 5.7 and Remark 5.8. Similarly, the convergence
rate of ξh in the L2 norm is O(h2) once the asymptotic region of convergence is reached,
demonstrating Theorem 6.2 and Remark 6.3.

123



80 Page 26 of 35 Journal of Scientific Computing (2024) 100 :80

Table 2 Convergence results on
the unit cube domain

h ‖u − uh‖L2(�) Rate ‖ξ − ξh‖L2(�) Rate

1/2 1.74×101 – 1.44×102 –

1/4 2.63×101 0.59 2.05×102 0.51

1/8 5.38×100 2.29 4.35×101 2.24

1/16 2.61×100 1.04 1.06×101 2.04

1/32 1.28×100 1.03 2.66×100 1.99

1/64 6.36×10−1 1.01 6.66×10−1 2.00

Table 3 Convergence results on the Fichera chair domain

h ‖uh,i − uh,i−1‖L2(�) Rate ‖ξh,i − ξh,i−1‖L2(�) Rate

1/4 5.08×10−5 – 1.54×10−4 –

1/8 2.90×10−5 0.81 3.10×10−5 2.31

1/16 1.72×10−5 0.75 8.41×10−6 1.88

1/32 1.04×10−5 0.73 3.17×10−6 1.41

1/64 6.42×10−6 0.70 1.32×10−6 1.27

7.2 Fichera Chair with Positiveˇ and � = 0

Next, we examine the convergence on the Fichera chair domain, (0, 1)3 \ [1/2, 1]3 (cf. figure
(b) in Fig. 2). In order to test the effects of the nonconvex edges and corners, we avoid a
manufactured solution and just use a smooth right-hand side given by

f (x) = 1

2

⎡

⎣
sin x1
sin x2
sin x3

⎤

⎦ , (7.2)

with coefficients

β = 7

2
and γ = 0. (7.3)

The problem is solved iteratively to a 10−8 relative residual using MINRES.
To estimate ‖u−uh‖L2(�) and ‖ξ −ξh‖L2(�), the error is measured between the numerical

solutions on consecutive mesh refinements, ‖uh,i − uh,i−1‖L2(�) and ‖ξh,i − ξh,i−1‖L2(�),
where i indicates the number of refinements from the coarsest mesh.

Since the domain is not convex, we expect ‖uh,i − uh,i−1‖L2(�) to converge at a rate
greater than O(h1/2) but less than O(h), and ‖ξh,i − ξh,i−1‖L2(�) to converge at a rate
greater than O(h) but less than O(h2). This is verified by the results in Table 3.

Remark 7.1 The results in Table 3 indicate that the dominant singularity is due to the non-
convex edges and the asymptotic convergence rate should be 2/3 for the approximation of u
and 4/3 for the approximation of curl u = ξ .
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Table 4 Convergence results for the rectangular torus

h ‖uh,i − uh,i−1‖L2(�) Rate ‖ξh,i − ξh,i−1‖L2(�) Rate

1/8 3.07×10−7 – 4.07×10−6 –

1/16 1.59×10−7 0.95 1.50×10−6 1.44

1/32 9.26×10−8 0.78 2.60×10−7 2.53

1/64 5.02×10−8 0.88 7.60×10−8 1.77

Table 5 Convergence results for uh = curlφh and ξh = curl uh on the hollowed cube

h ‖uh,i − uh,i−1‖L2(�) Rate ‖ξh,i − ξh,i−1‖L2(�) Rate

1/8 2.66×10−5 – 3.08×10−5 –

1/16 1.80×10−5 0.56 1.00×10−5 1.62

1/32 1.15×10−5 0.65 3.56×10−6 1.49

7.3 Rectangular Torus with Positiveˇ and � = 0

The same data in example 7.2 is used for the rectangular torus domain, ((0, 1) × (0, 1) × (0,
1/4)) \ ([1/4, 3/4] × [1/4, 3/4] × [0, 1/4]) (cf. figure (c) in Fig. 2). The solid rectangular
torus has Betti numbers β1 = 1 and β2 = 0. To make the domain simply connected, we
introduce the cut {(x1, x2, x3) : x1 = 1

4 , x2, x3 ∈ (0, 1
4 )} which is also a face of the initial

uniform rectangular grid. The problem is solvedwithMINRES to a relative residual tolerance
of 10−6.

The numerical results in Table 4 are similar to the ones in Table 3, indicating that
Remark 7.1 is also applicable for this example.

7.4 Hollowed Cube with Positiveˇ and �

For the final test, the domain is the hollowed cube (0, 1)3\(1/4, 3/4)3 (cf. figure (d) in Fig. 2),
which has Betti numbers β1 = 0 and β2 = 1. The solution u to the quad-curl problem now
admits a Hodge decomposition with a harmonic component. Since there is a single hole in
the domain, the numerical solution takes the form of,

uh = curlφh + τhϕh .

We use the right-hand side (7.2) with coefficients β and γ given by (7.1), and the problem is
solved with MINRES to a relative residual tolerance of 10−6.

The results in Table 5 for the approximations of u and curl u = ξ are similar to the ones
in Table 3 and Table 4.

The results for the approximations of the harmonic function ϕ and the coefficient τ are
presented in Table 6. The order of convergence for ϕh in | · |H1(�) is 2/3, which is due to the
edge singularity. The order of convergence for τh is better than 4/3 stated in Sect. 6.2. This
is likely due to the fact that the asymptotic region of convergence has not been reached at
h = 1/64.
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Table 6 Convergence results for
the harmonic problem on the
hollowed cube

h |ϕh,i − ϕh,i−1|H1(�) Rate |τh,i − τh,i−1| Rate

1/8 2.22×100 – 1.26×10−2 –

1/16 1.29×100 0.79 3.23×10−3 1.97

1/32 7.90×10−1 0.70 7.01×10−4 2.21

1/64 5.10×10−1 0.63 1.63×10−4 2.10

8 Concluding Remarks

We have developed a numerical scheme based on the Hodge decomposition of divergence-
free vector fields for the quad-curl source problem posed on polyhedral domains with general
topology. Our approach only employs standard finite elements in H(grad ) and H(curl ),
and it is also relevant for the quad-curl eigenvalue problem (cf. [21, 43]).

For simplicity we have used the P2–P1 Taylor-Hood method for the Stokes problem
that appears in the Hodge decomposition approach. Since we are only concerned with the
approximation of the displacement, it may be advantageous to use a pressure robust mixed
finite element method for the Stokes problem (cf. [30]).

As in the two dimensional case (cf. [9–11]), one can also develop adaptive and fast solvers
for the individual saddle point problems that appear in the Hodge decomposition approach.

The result for the quad-curl source problem in this paper can be the basis of a Hodge
decomposition approach to the quad-curl eigenvalue problem.

Appendix A The Norm Equivalence (1.3)

We begin with a simple observation.

Lemma A.1 We have

‖curl v‖L2(�) = |v|H1(�) ∀ v ∈ [H1
0 (�)]3 ∩ H(div 0;�). (A.1)

Proof Let vn ∈ [C∞
c (�)]3 converge to v in [H1(�)]3 as n → ∞. It follows from integration

by parts that

|v|2H1(�)
= ‖Grad v‖2L2(�)

= lim
n→∞ ‖Grad vn‖2L2(�)

= lim
n→∞

∫

�

(−�vn) · vndx

= lim
n→∞

[
(curl vn, curl vn)L2(�) + (div vn, div vn)L2(�)

]

= ‖curl v‖2L2(�)
+ ‖div v‖2L2(�)

= ‖curl v‖2L2(�)
.

��

It is clear from the definition of (·, ·)E in (1.2) and Lemma A.1 that

‖curl (curl v)‖2L2(�)
+ β‖curl v‖2L2(�)

+ γ ‖v‖2L2(�)
≤ max(1, β, γ )(v, v)E ∀v ∈ E.
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Fig. 4 (Left) the domain � together with the cuts �0 (shaded in magenta) and �1, �2 (shaded in green),
(Center) the top view of �∗

1 (shaded in pink) and (Right) the top view of �∗
2 (shaded in brown)

In the other direction, we have, by Lemma A.1 and a Poincaré-Friedrichs inequality,

‖curl v‖L2(�) ≤ C�|curl v|H1(�) = C�‖curl (curl v)‖L2(�) ∀ v ∈ E (A.2)

because curl v ∈ [H1
0 (�)]3 ∩ H(div 0;�) for v ∈ E.

In the case where γ > 0, it follows from (A.1) and (A.2) that

(v, v)E ≤ max(1 + C2
� , 1/γ )

(‖curl (curl v)‖2L2(�)
+ γ ‖v‖2L2(�)

) ∀ v ∈ E.

In the case where γ = 0 and hence ∂� is connected, we have (cf. [1, Corollary 3.19])

‖v‖L2(�) ≤ C�‖curl v‖L2(�) ∀ v ∈ E,

which together with (A.1) and (A.2) implies

(v, v)E ≤ (1 + C2
� + C2

�C
2
� )‖curl (curl v)‖2L2(�)

∀ v ∈ E.

Appendix B The Inf-Sup Condition (3.25)

If m = 0 and � is simply connected, then [H1
0 (�)]3� = [H1

0 (�)]3 and (3.25) is a standard
result (cf. [27, Page 24, Corollary 2.4]), which is equivalent to the statement (cf. [14, Theo-
rem 0.1]) that there exists a positive constant C such that for every q ∈ L2

0(�) we can find
η ∈ [H1

0 (�)]3 that satisfies
div η = q and |η|H1(�) ≤ C‖q‖L2(�).

In the case where m ≥ 1, we can introduce an additional cut �0 so that �̄ = �̄1 ∪ �̄2,
where the disjoint polyhedrons �1 and �2 are the open subsets of � separated by the cuts
�0, . . . , �m . By extending�1 and�2 across�0 for a small amount, we have two overlapping
open polyhedrons �∗

1 and �∗
2 such that �◦ ⊂ �∗

1 ∪ �∗
2.

The situation is illustrated in Fig. 4. On the left we have � which is obtained by removing
two rectangular columns (shaded in blue) from a rectangular box, together with the cuts
�1, �2 (shaded in green) and �0 (shaded in magenta). In the middle we have the top view
of �∗

1 (shaded in pink), and on the right we have the top view of �∗
2 (shaded in brown).

We can construct a continuous partition of unity φ1 and φ2 so that
{

φ1 ≥ 0 on�0

φ1 = 1 on�1 \ �∗
2

,

{
φ2 ≥ 0 on�0

φ2 = 1 on�2 \ �∗
1

, and φ1 + φ2 = 1 on �◦.
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Let χ be a continuous function with compact support in �∗
1 ∩ �∗

2 such that
∫

�

χ dx = 1.

Given any q ∈ L2
0(�), we define q1, q2 ∈ L2(�) by

q1 = φ1q − χ

∫

�

φ1q dx and q2 = φ2q − χ

∫

�

φ2q dx .

Then we have

q = q1 + q2 and ‖q1‖L2(�∗
1)

+ ‖q2‖L2(�∗
2)

≤ C�‖q‖L2(�). (B.1)

Note that
∫

�∗
i

qi dx = 0 for i = 1, 2.

According to the standard result for �∗
1 and �∗

2, there exist η1 ∈ [H1
0 (�∗

1)]3 and η2 ∈
[H1

0 (�∗
2)]3 such that

div ηi = qi in�∗
i and |ηi |H1(�∗

i )
≤ C�‖qi‖L2(�∗

i )
for i = 1, 2. (B.2)

By extending η1 to be 0 on � \ �∗
1, we have a vector field in [H1

0 (�)]3� , still denoted by η1,
such that div η1 = q1 in �. Similarly, the trivial extension of η2 to �, still denoted by η2, is
a vector field in [H1

0 (�)]3� that satisfies div η2 = q2 in �.
In view of (B.1) and (B.2), we have the estimate

(div (η1 + η2), q)L2(�)

|η1 + η2|H1(�)

≥
‖q‖2

L2(�)

|η1|H1(�) + |η2|H1(�)

≥ (C�C�)
−1‖q‖L2(�)

that implies (3.25).

Appendix C The Generalized Stokes Problem (3.22)

First we note that ξ ∈ [H1
0 (�)]3� for any collection of acceptable cuts � = {�1, . . . , �m}

with the property that �◦
� = �\ ⋃m

i=1 �i is simply connected (cf. Remark 3.13 in [1]).
Therefore ξ satisfies (3.22) for any such �, where p = p� depends on �.

Let ρ1, . . . , ρN be a C∞ partition of unity for �̄ such that the diameter of the support
of ρk is sufficiently small for 1 ≤ k ≤ N . Then for each k we can choose a collection of
acceptable cuts �k such that the support of ρk is disjoint from �̄k,1, . . . , �̄k,m .

Let η ∈ [H1
0 (�)]3 be arbitrary. We have ρkη ∈ [H1

0 (�)]3�k
and it follows from integration

by parts and (3.22a) that

(
Grad (ρkξ),Grad η

)
L2(�)

= (
ξ(grad ρk)

t + ρkGrad ξ ,Grad η)L2(�)

= (Grad ξ ,Grad (ρkη)
)
L2(�)

− (
div (ξ(grad ρk)

t ), η
)
L2(�)

− (
(Grad ξ)grad ρk, η

)
L2(�)

= −β(ξ , ρkη)L2(�) + (
div (ρkη), p�k

)
L2(�)

+ (ω, ρkη)L2(�)

− (
div (ξ(grad ρk)

t ), η
)
L2(�)

− (
(Grad ξ)grad ρk, η

)
L2(�)

,
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and hence

(Grad (ρkξ),Grad η
)
L2(�)

− (div η, ρk p�k
)L2(�) = (κ, η)L2(�), (C.1)

where

κ = −βρkξ + p�k
grad ρk + ρkω − div

(
ξ(grad ρk)

t) − (Grad ξ)grad ρk ∈ [L2(�)]3.
(C.2)

Let q ∈ L2
0(�) be arbitrary. From (3.22b) we have

− (
div (ρkξ), q)L2(�) = (− (grad ρk) · ξ , q

)
L2(�)

, (C.3)

where

− (grad ρk) · ξ ∈ H1
0 (�). (C.4)

It follows from (C.1)–(C.4) that (ρkξ , ρk p�k
) is the solution of a standard Stokes problem

analyzed in [25]. Consequently we have

‖ρkξ‖H1+αS (�) ≤ C
(‖κ‖L2(�) + |(grad ρk) · ξ |H1(�)

) ≤ C‖ω‖L2(�), (C.5)

where αS ∈ ( 12 , 1] is determined by the geometry of � and the last inequality comes from
the well-posedness of (3.22) (cf. Remark 3.12). Since (C.5) is valid for every k, we conclude
that

ξ ∈ H 1+αS (�) and ‖ξ‖H1+αS (�) ≤ C‖ω‖L2(�). (C.6)

Let � be any collection of acceptable cuts and η ∈ [C∞
c (�◦

�)]3 be arbitrary. Since η ∈
[H1

0 (�)]3� , we have, by (3.22a),
(
div η, p�)L2(�◦

�) = (
div η, p�)L2(�)

= (Grad ξ ,Grad η)L2(�) + β(ξ , η)L2(�) − (ω, η)L2(�),

which together with (C.6) implies

p� ∈ HαS (�◦
�) and ‖p�‖HαS (�◦

�) ≤ C‖ω‖L2(�). (C.7)

Appendix D Proof of Lemma 5.2

Let ρ ∈ H1(�) ∩ L2
0(�) be defined by

(grad ρ, gradμ)L2(�) = (divχ , μ)L2(�) ∀ μ ∈ H1(�) ∩ L2
0(�).

We have χ + grad ρ ∈ H0(div 0;�) and

‖grad ρ‖H(div ;�) ≤ C‖divχ‖L2(�). (D.1)

According to Proposition 3.14 in [1], there exists a harmonic function z on �◦ such that
(i) n · grad z = 0 on ∂�, (ii) n�i · grad z is continuous across the cut �i for 1 ≤ i ≤ m, (iii)
the jump of z over the cut �i is a constant for 1 ≤ i ≤ m, (iv)

∫

�i

grad (ρ + z) · n�i d S = 0 for 1 ≤ i ≤ m,
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and (v)

‖g̃rad z‖L2(�) ≤ C‖grad ρ‖H(div ;�). (D.2)

Then η = χ + grad ρ + g̃rad z belongs to H0(div 0;�) and η satisfies the constraints in
(3.8). Therefore η belongs to D0

F and it follows from Lemma 2.4 that

η = curlw (D.3)

for a unique vector field w ∈ PN .
Note that

(grad ρ,ψ)L2(�) = 0 = (g̃rad z,ψ)L2(�) ∀ ψ ∈ PT

by integration by parts. Consequently we have

(curl ζ̃ , curlψ)L2(�) = (χ ,ψ)L2(�)

= (χ + grad ρ + g̃rad z,ψ)L2(�)

= (η,ψ)L2(�)

= (curlw,ψ)L2(�) = (w, curlψ)L2(�) ∀ ψ ∈ PT ,

which implies curl ζ̃ = w by Lemma 2.1 because w ∈ DF by Remark 2.3.
Finally we have

‖curl (curl ζ̃ )‖L2(�) = ‖curlw‖L2(�) = ‖η‖L2(�) ≤ C‖χ‖H1(�)

by (D.1)–(D.3).

Appendix E Derivation of (5.36)

The explicit form of (5.35) is given by

a(ζ̃ ,ψ) + b(ψ, θ̃ ) + γ
1
2 (ψ, ξ̃)L2(�) = (χ ,ψ)L2(�), (E.1a)

b(ζ̃ , μ) = 0, (E.1b)

γ
1
2 (ζ̃ , η)L2(�) − g(ξ̃ , η) − β(ξ̃ , η)L2(�) − c(η, p̃) = 0, (E.1c)

−c(ξ̃ , q) = 0, (E.1d)

for all (ψ, μ, η, q) ∈ H(curl ;�) × �0 × [H1
0 (�)]3� × L2

0(�).
From the well-posedness of the saddle point problem (E.1) we have

‖ζ̃‖H(curl ;�) + ‖θ̃‖H1(�◦) + ‖ξ̃‖H1(�) + ‖ p̃‖L2(�) ≤ C‖χ‖L2(�), (E.2)

and it follows from (E.1a) and (E.1b) that

a(ζ̃ ,ψ) + b(ψ, θ̃ ) = (χ̃ ,ψ)L2(�) ∀ ψ ∈ H(curl ;�), (E.3a)

b(ζ̃ , μ) = 0 ∀ μ ∈ �◦, (E.3b)

where χ̃ = χ − γ
1
2 ξ̃ .

Since (E.3) is just (5.13) with χ replaced by χ̃ , we deduce from Lemma 5.2 that curl ζ̃ ∈
H0(curl ;�) ∩ H(div 0;�) and hence

‖ζ̃‖HαT (�) + ‖curl ζ̃‖HαN (�) ≤ C‖χ̃‖H1(�) ≤ C‖χ‖H1(�).

123



Journal of Scientific Computing (2024) 100 :80 Page 33 of 35 80

by Remark 5.3 and (E.2).
From (E.3a) we also have the following analog of (5.21):

(gradμ, grad θ̃ )L2(�◦) = (−div χ̃ , μ)L2(�◦) ∀ μ ∈ �0,

and hence, in view of (5.22) and (E.2),

‖θ̃‖H1+αNeu (�◦) ≤ C‖div χ̃‖L2(�) ≤ C‖χ‖H1(�).

Observe that (E.1c) and (E.1d) imply

g(ξ̃ , η) + β(ξ̃ , η)L2(�) + c(η, p̃) = (γ
1
2 ζ̃ , η)L2(�) ∀ η ∈ [H1

0 (�)]3�, (E.4a)

c(ξ̃ , q) = 0 ∀ q ∈ L2
0(�). (E.4b)

We conclude from the results in Appendix C and (E.2) that

‖ξ̃‖H1+αS (�) + ‖ p̃‖HαS (�◦) ≤ C‖γ 1
2 ζ̃‖L2(�) ≤ C‖χ‖L2(�).
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