2024 19th Annual System of Systems Engineering Conference (SoSE) | 979-8-3503-6591-7/24/$31.00 ©2024 IEEE | DOI: 10.1109/SOSE62659.2024.10620945

2024 19th Annual System of Systems Engineering Conference (SoSE)

Human Emotion Estimation through Physiological
Data with Neural Networks

3™ Ferat Sahin
Dept. Elect. & Microelectronic Eng.
Rochester Institute of Technology
Rochester, United States
feseee @rit.edu

27 Celal Savur
Dept. Elect. & Microelectronic Eng.
Rochester Institute of Technology
Rochester, United States
cs1323 @rit.edu

1% Jhair Gallardo
Department of Imaging Science
Rochester Institute of Technology
Rochester, United States
gg4099 @rit.edu

4™ Christopher Kanan
Department of Computer Science
University of Rochester
Rochester, United States
ckanan@cs.rochester.edu

Abstract—Effective collaboration between humans and robots
necessitates that the robotic partner can perceive, learn from,
and respond to the human’s psycho-physiological conditions.
This involves understanding the emotional states of the human
collaborator. To explore this, we collected subjective assessments -
specifically, feelings of surprise, anxiety, boredom, calmness, and
comfort — as well as physiological signals during a dynamic
human-robot interaction experiment. The experiment manip-
ulated the robot’s behavior to observe these responses. We
gathered data from this non-stationary setting and trained an
artificial neural network model to predict human emotion from
physiological data. We found that using several subjects’ data
to train a general model and then fine-tuning it on the subject
of interest performs better than training a model only using the
subject of interest data.

Index Terms—Human-robot collaboration, physiological sig-
nals, machine learning

I. INTRODUCTION

In a human-robot collaborative environment, it is important
that the robot has access to information about the current emo-
tional state of the human subject it is working with. A human
experiencing anxiety may behave differently compared to one
who is calm while collaborating with a robot. Having access to
such information can help the robot adapt its behavior, thereby
increasing its efficiency. This requires integrating robotics with
physiological computing, an interdisciplinary field that focuses
on inferring a person’s psycho-physiological state. Human-
computer interaction, brain-computer interaction, and affective
computing are part of physiological computing [1]. It can
enable robots to recognize, interpret, and dynamically change
their behavior based on a person’s psycho-physiological state.

According to NSF Research Statement for Cyber Human
Systems (2018-2019), “improve the intelligence of increasingly
autonomous systems that require varying levels of supervisory
control by the human; this includes a more symbiotic relation-
ship between human and machine through the development of
systems that can sense and learn the human’s cognitive and
physical states while possessing the ability to sense, learn, and
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Fig. 1: Overview of HRC experiment. A participant collects
parts from Table-A, Table-B, and Table-C, assembles them,
and then drops it onto Table-D.

adapt in their environments” [2]. Thus, to interactively ensure
trust and safety between the human and the robot, the robot
should sense a human’s cognitive and physical state, which
will help build trust.

In a human-robot interaction setup, a change in a robot’s
motion can affect the human physiological state. Experiments
such as [3] and [4] revealed that the robot’s trajectory affects
human skin conductivity. The literature review in [5] highlights
using the ‘psycho-physiological’ method to evaluate human
response and behavior during human-robot interaction.

In this research, we aim to evaluate different ways to train an
artificial neural network model to predict the human emotional
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state and compare their performance. We compare models
that are trained using several subjects, e.g., a general dataset,
models that are trained only on the data of the subject of
interest, and fine-tuned models that are trained on the general
dataset and then fine-tuned on the subject of interest.

II. RELATED WORK

We briefly review methods for estimating the psycho-
physiological state from physiological signals, ranging from
Electrocardiogram (ECG), Galvanic Skin Response (GSR),
Electroencephalography (EEG), Electromyography (EMG),
respiration rate (RSP), and Pupil dilation.

In [3], a method was presented to calculate the danger index
by using distance and relative velocity between a human and
a robot, and the inertia of the closest point to the human as
suggested in [6]. Then the real-time calculated danger index is
used to control the robot’s trajectory on a real robot. Similarly,
the same authors [7] tried to detect anxiety triggered by two
trajectory planners. Biological signals and subjective responses
were collected from subjects during the experiment. The result
of the subjective responses from the experiment showed that
the subjects felt less anxiety during a safe planner than the
classical planner. Moreover, the researcher found that the
corrugator EMG signal did not help to estimate arousal and va-
lence. However, they have found a strong positive correlation
between anxiety and speed, surprise and speed, and a negative
correlation between calm and speed. In subsequent extensions
of this work [8], [9], they showed that a Hidden Markov Model
(HMM) outperforms Fuzzy inference for estimating arousal
and valence from physiological signals.

In [10], ECG, GSR, RPS, Skin Temperature, EEG, and Eye
tracking signals were used to estimate a human’s workload
and effort. During trials, subjects were asked to fill out the
NASA-TLX questionnaire. In [11], physiological signals were
used to detect ErrP from EEG signals, using both simulation
and actual robots. Their result suggests that brain-computer
interfaces could be used for continuous adaptation when no
explicit information about the goal exists. In [12], robot actions
were implicitly validated by using ErrPs derived from EEG
signals, resulting in a classification accuracy of 69.0% for
detecting an incorrect robot’s actions. Similarly, [13] used
EEG signals with error-related potential to fix the robot’s
mistake during the task. In their experiment, they used a Baxter
robot to make decisions based on EEG signals in real time. In
[14], they focused on hand-over tasks where a robot handed
an item to a human. They collected physiological signals and
showed that physiological responses vary between the robot’s
motions. In [15], ECG, EDA, and pupillometry signals, along
with subjective responses, were used to estimate the human
comfort index by using the circumplex model. They collected
data from multiple experiments, and the proposed model was
validated.

III. METODOLOGY

This work aims to determine a human’s emotional state
from their physiological data while working with a robot in a

2

TABLE I: List of Robot’s behaviors

Robot Algorithm
TriSSM-Vo

Description

A DSS algorithm taking into account both
the robot’s velocity and the human’s velocity.
UnClI metric provided to the TriSSM-Vo
algorithm to adjust cushioning distance and
directed speed.

A DSS algorithm taking into account

only the robot’s velocity, not the

human’s velocity.

UnCI metric provided to the TriSSM-Vr
algorithm to adjust cushioning distance and
directed speed

TriSSM-Vo-with-UnCI

TriSSM-Vr

TriSSM-Vr-with-UnCI

collaborative environment. To do this, we define a human-
robot collaborative setting where the human and the robot
must complete a task together. On each trial, we collect
physiological signals from the human and their corresponding
feedback about their current emotions. Using this approach, we
gathered a dataset with physiological signals and their corre-
sponding emotion scores. Then, we train a model that uses the
physiological signals as input and predicts the corresponding
emotion scores of a subject.

A. Dataset

The dataset used in this research was collected in a human-
robot collaboration task where the participant did an assembly
task and the robot provided a part for the assembly [16].
The data was collected from healthy college students (N=36).
The participants consisted of 24 male and 12 female subjects
(Mean Age= 28.28, SD= 7.93). The experiment consisted of
8 trials, and each trial consisted of multiple cycles. A cycle
is defined as a sequence of small tasks where a participant
collects parts from Table-A, Table-B, and Table-C, assembles
them, and then drops them onto Table-D, as shown in Fig. 1.
Specifically, the subject starts at Table-D, picks a component
from Table-A, then moves to Table-B where they pick up
the second component, and then crosses the robot workspace
to obtain the last component from Table-C. The subject then
assembles the three components and places the part on Table-
D. Finally, the subject answers the questionnaire on the Tablet.
The subject repeats this cycle for approximately six minutes.
The trials were randomized to reduce the order effect. In some
cases, the experiment took less than 6 minutes because the
URI10 robot was completing all the parts. Hence, the trial is
terminated either at the 6-minute limit or when no part is left
for the robot to pick up. Subjective responses of comfortability,
safety, surprise, anxiety, calmness, and boredom levels were
collected after each part was delivered to Table-D during each
trial and after each trial.

This experiment was designed to test the effect of the
dynamic speed and separation monitoring (DSS) [17] algo-
rithm and the Comfortability Index Estimation System (CIES)
model [16] on human emotion. Table I lists the UR-10 robot
behaviors. The TriSSM-Vo and TriSSM-Vr algorithms are
detailed in [18].

A custom Android app was developed for this experiment to
have better signal labeling. The app lets participants enter their
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TABLE II: Physiological metrics extracted from the ECG,

GSR, and Pupillometry signals
Type Metric Unit Description
Mean HR bpm/min Mean of Heart rate
Mean RR ms Mean of RR/IBI intervals
ECG | SDNN ms Standard deviation of RR/IBT intervals
The root-mean-square of the difference
RMSSD ms of consecutive RR/IBI intervals
Percentage of successive RR/IBI
PNN50 % imervalsgthat differ by more than 50 ms
Tonic Mean Micro-siemens | Mean of tonic component of GSR signal
Tonic Std. Micro-siemens | Standard deviation of tonic component of GSR
Phasic Mean Micro-si Mean of phasic component of GSR signal
GSR Phasic Std. Micro-siemens | Standard deviation of tonic component of GSR
Onset Rate onset/sec SCR onset rate per second
Peak Amp. Mean Micro-siemens | Mean of Peak amplitude (SCR)
Rise Time Mean ms Mean of rise time (SCR)
Recovery Time Mean | ms Mean of recovery time (SCR)
Pupil Pupil Mean pixel Mean of pupil size
Pupil Std. pixel Standard deviation of pupil size

subjective responses immediately after each part assembly
(cycle). Hence, this approach produced more subjective data
and a better idea of how the dependent variables changed
during the trials. The experiment was approved by the Human
Subject Research office at the Rochester Institute of Tech-
nology. Informed consent was obtained from each participant
before the experiment. Three sensors were used:

1) BioHarness is a wireless chest strap that allows the record-
ing of an ECG signal. In addition to the ECG, the device
provides respiration rate, heart rate, RR intervals, acceler-
ation (3 axes), and device information.
Shimmer3 GSR+ is a widely used device in research due to
its Bluetooth connectivity. The device provides one GSR
channel that measures the conductance of the skin and one
PPG channel that measures the amount of reflected light
(volumetric variations of blood circulation) from the vein
[19]. The sensor sampling rate was set to 128 Hertz (Hz).
During the experiment, we asked participants to minimize
their motion when using the hand on which the sensor was
placed. This was critical since the GSR signal is sensitive
to motion artifacts and cannot be removed from the signal.
3) Pupil labs headset is open-source hardware (eyeglasses)
that has three cameras, two of which look at the eyes
and one point to the subject’s perspective [20]. The eye
cameras operate at 120 frames per second (fps), and the
world camera records at 30 fps. This device is widely
used in research and provides various signals such as pupil
diameters, gaze location, and a real-time camera stream.
This research used the headset to collect pupil dilation and
gaze location.

2)

Sensors were calibrated for each subject independently. The
subjects started with a baseline recording where they sat in
front of the robot and were asked to relax for five minutes.
Those wearing glasses were asked to remove them for better
pupil signal quality. The pupil lab headset was connected
to a Samsung S8 smartphone with a Pupil Mobile app that
transmits data to a local machine. The Shimmer3 GSR+
connects via Bluetooth to a computer, and a custom application
[21] developed to acquire these signals was used to send data
using the Lab Stream Layer (LSL) protocol. The BioHarness
was connected over Bluetooth to a computer as well. All
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Fig. 2: Emotion scores variability for each testing subject
shown as standard deviation (Std. Dev.) measured on the
recorded emotion scores that have a range of [0, 2].

devices were synchronized using the LSL stream library
[22]. A modified version of the custom data collection app
that generates automated event markers (trial start/stop) and
manual event markers during data collection was used [23].

There are many ways to extract features from physiological
signals, such as time and frequency domain, power density,
morphological features, and so on. In this research, we ex-
tracted the most commonly used time and frequency features
from each physiological signal. The extracted features are
listed in Table II.

B. Data Split

We use the dataset described in Sec. III-A to perform
emotion estimation, which consists of training a model to
predict subject emotions from physiological inputs.

After cleaning up corrupted experiments (sensors failure and
large noise in the signals), the dataset has a total of 32 subjects.
We use 28 subjects as our general set, where we further split
it into training and validation sets with a random split of 80%
and 20%. This general set is used to train a general model on
a rich amount of data, where different subjects have different
responses to the human-robot collaboration experiment. In
this way, the model has a general knowledge of the emotion
estimation task. We use the remaining 4 subjects (12, 15, 25,
and 32) to test our models on each separately. We chose these
subjects because they represent a broad spectrum of variability
in their emotion score responses, ranging from high (subject
12), low (subject 15), mixed (subject 25), and medium (subject
32) variability, as shown in Fig 2. Subject 25 was the only one
who had coffee before the data collection experiment, possibly
explaining their mixed standard deviation distribution in their
emotions. We split each testing subject data into a training
and test set, where the training set corresponds to the first 5
trials, and the testing set corresponds to the remaining 3 trials.
We use the training set of the testing subject to fine-tune the
general model or train models specific to the testing subject.

C. Machine Learning Models

We use a Multi-Layer Perceptron (MLP), a type of neural
network, as our main model. We train the MLP to perform
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regression over the emotion scores using the features obtained

from physiological data as inputs (Table II). We followed [15]

where an MLP model was used for emotion estimation on

a different dataset using single-task learning. Unlike [15], we

use a multi-task learning approach where regression is done on

all emotions with a shared network and a multi-node output
layer. Multi-task learning often performs better than single-

task learning in neural networks [24].

We explore 6 different methods to perform emotion estima-
tion, described as follows:

« General model: We train the MLP network using the gen-
eral set. Then, we freeze the model. We generate predictions
for the testing subjects using the frozen model. No fine-
tuning is done on the testing subjects.

o Fine-tuned model: Similar to the general model, we train
the MLP network using the general set. Then, we fine-tune
the model using the available training set of the testing
subject.

o Subject-Specific model (S-specific): We train the MLP
network on the training set of the testing subject. The
general set is not used here.

« General Mean (Mean-G): It uses the target mean value of
the general set as its prediction. The MLP network is not
used here.

o Subject Mean (Mean-S): It uses the target mean value
of the available training set of the testing subject as its
prediction. The MLP network is not used here.

D. Training Details

We train a 3-layer MLP network, with 128 neurons in the
first layer, 64 neurons in the second, and 5 output neurons
corresponding to Surprise, Anxiety, Boredom, Calmness, and
Comfort. ReLU activations are used in the hidden layers and
dropout is used in them for regularization. The input to the
MLP is normalized using quantile information' to reduce the
impact of outliers. The 5 targets are normalized by making
their range [0, 1]. For the general set, the MLP is trained for
130 epochs using AdamW with a learning rate of 2e-3, weight
decay le-2, batch size 32, and Huber Loss. During fine-tuning,
we use a learning rate of le-3 and a weight decay of 3e-2.
Other hyperparameters are identical to general set training.

E. Evaluation

To evaluate model performance, we calculate the Root
Mean Squared Error (RMSE) and the Mean Absolute Error
(MAE) obtained by predicting the emotion scores on the
test set of each subject (the last 3 trials). If a model uses
the general set, we calculate the average performance over
different training-validation splits of the general set using 5-
fold cross-validation.

IV. RESULTS

We show the results obtained for subjects 12, 15, 25, and
32, where we compare the performance of all the 5 different

'We use the QuantileTransform function from scikit-learn with a uniform
distribution and 100 quantiles.

4

models mentioned in Section III-C. Tables III, IV, V, and VI
show RMSE and MAE values as mean=standard deviation
across the 5 folds of the general set, except for models that
do not use the general set.

Table III shows the results obtained for subject 12. For
RMSE, the Fine-tuned model performs best on anxiety and
comfort while being the second best for calmness. The General
model only achieves the best performance on surprise. This
shows that per-subject fine-tuning improves overall perfor-
mance. The S-specific model performs the best for Boredom,
while the Mean-S model has the best performance for Calm-
ness. The Mean-G is the second best for 3 emotions (surprise,
anxiety, and boredom) For MAE, the Mean-G model performs
the best overall.

Table IV shows the results obtained for subject 15. For
RMSE, the Mean-S model is the best, achieving the lowest
error for surprise, anxiety, boredom, and comfort. This is
expected since subject 15 has the lowest standard deviation
in their responses among the testing subjects, meaning that
using the mean of their training set has a low error. The
Fine-tuned model achieves the second-best performance by
matching Mean-S on surprise and comfort while achieving
the best performance on calmness. This suggests that even
with a low standard deviation, the Fine-tuned model can still
achieve competitive performance on subject 15. The General
model and the Mean-G model perform poorly on this subject,
showing that models using only the general set knowledge
won’t perform well on subjects with low standard deviation in
their targets, hence, fine-tuning is needed. A similar trend to
RSME is seen for MAE, where the Mean-S is the best model
while the Fine-tuned is the second best.

Table V shows the results obtained for subject 25. This
subject has a low standard deviation for surprise, anxiety,
calmness, and comfort. Incidentally, for RMSE, we notice that
Mean-S is the best model for those same emotions with low
standard deviation. This is the same phenomenon happening
in subject 15, where the mean of the testing subject yields
good prediction performance. However, for boredom, which
has a high standard deviation on subject 25, the model with
the lowest error is General. This is expected since using only
the mean of the training set of the testing subject is not a
good prediction value when the standard deviation is high for
a specific emotion. A similar trend to RSME is seen for MAE,
where the Mean-S is the best model.

Finally, Table VI shows the results obtained for subject 32,
which has medium variability in their emotion target values.
For RSME, we see that Mean-S is the best model, achieving
the lowest error for boredom, calmness, and comfort. Mean-
while, the S-specific model is the second-best, achieving the
lowest error for surprise and anxiety. This suggests that, for
subject 32, using the information of the subject itself suffices to
be able to predict their emotion scores. We argue this happens
because the variability of the emotion responses (standard
deviation of the targets) in subject 32 is not high enough,
making it easier to predict their targets using something as
simple as the mean of their responses. A similar trend to

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on June 18,2025 at 23:35:29 UTC from IEEE Xplore. Restrictions apply.

156



2024 19th Annual System of Systems Engineering Conference (SoSE)

TABLE III: Results for subject 12. Bold and underlined numbers indicate the best and second best performance respectively.

‘ RMSE MAE
Models | Surprise Anxiety  Boredom Calmness Comfort [ Surprise Anxiety = Boredom Calmness Comfort
General 0.250+0007 0.280+0005 0.345+0017 0.28640011 0.297+0.008 | 0.197 +0004 0.214+0004 0.283+£0017 0.230+0003 0.218+0.005
Fine-tuned | 0.27440026 0.258+0010 0.411+0006 0.28140010 0.279+0.019 | 0.22540018 0.211+0010 0.358+0008 0.227+0008 0.224+0.015
S-specific | 0.272 0.269 0.295 0.346 0.352 0.198 0.218 0.237 0.284 0.292
Mean-G 0.271+0001 0.266+0001 0.323+0002 0.282+0001 0.294+0.001 | 0.223+0001 0.198+0001 0.256-+0002 0.212+0000 0.214+0.000
Mean-S 0.277 0.276 0.353 0.277 0.287 0.233 0.208 0.292 0.215 0.229

TABLE IV: Results for subject 15. Bold and underlined numbers indicate the best and second best performance respectively.

‘ RMSE MAE
Models | Surprise Anxiety  Boredom Calmness Comfort | Surprise Anxiety Boredom Calmness Comfort
General 0.118+0.012 0.115+0002 0.437+0041 0.28640044 0.108+0.012 | 0.1134+0013 0.110+0003 0.429+0042 0.28140045 0.105+0.012
Fine-tuned | 0.057+0001 0.028+0001 0.039+0.008 0.045+0001 0.023+0001 | 0.035+0001 0.021+0001 0.03240000 0.038+0.001  0.009-+0.001
S-specific | 0.061 0.029 0.026 0.082 0.076 0.039 0.022 0.020 0.068 0.062
Mean-G 0.211+0002 0.173+0002 0.432+0002 0.208+0002 0.158+0.003 | 0.2064+0002 0.171+0002 0.431+0002 0.203+0002 0.156+0.003
Mean-S 0.057 0.027 0.024 0.046 0.023 0.034 0.020 0.019 0.038 0.008

TABLE V: Results for subject 25. Bold and underlined

numbers indicate the best and second best performance respectively.

‘ RMSE MAE
Models | Surprise Anxiety  Boredom Calmness Comfort | Surprise Anxiety = Boredom Calmness Comfort
General 0.134+0016 0.149+0007 0.502+0030 0.31940044 0.137+0.006 | 0.12940017 0.145+0008 0.499-+0031 0.31640043 0.134+0.006
Fine-tuned | 0.03140002 0.029+0001 0.562+0016 0.0334+0002 0.019+0.000 | 0.02440001 0.024+0001 0.538+0016 0.028+0002 0.015+0.001
S-specific | 0.027 0.025 0.537 0.065 0.080 0.021 0.021 0.502 0.052 0.063
Mean-G 0.226+0002 0.199+0002 0.512+0002 0.247 40002 0.151+0.003 | 0.224 40002 0.198+0002 0.511+0002 0.247 40002 0.1500.003
Mean-S 0.026 0.022 0.581 0.017 0.018 0.020 0.019 0.580 0.012 0.013

TABLE VI: Results for subject 32. Bold and underlined numbers indicate the best and second best performance respectively.

‘ RMSE MAE
Models | Surprise Anxiety  Boredom Calmness Comfort | Surprise Anxiety Boredom Calmness Comfort
General 0.184+0019 0.226+0022 0.235+0020 0.23340015 0.141+0.009 | 0.1724+0021 0.212+0021 0.206+0030 0.223+0014 0.136+0.008
Fine-tuned | 0.141+000s 0.143+0004 0.153+0007 0.197+0013 0.108+0005 | 0.115+0.005 0.121+000s 0.12140006 0.170+0010 0.096-+0.005
S-specific | 0.110 0.122 0.150 0.214 0.163 0.082 0.095 0.116 0.184 0.141
Mean-G 0.180+0.002 0.176+0002 0.307+0002 0.21140002 0.131+0.003 | 0.1754+0002 0.165+0.002 0.288+0002 0.203+0002 0.128+0.003
Mean-S 0.121 0.139 0.132 0.163 0.102 0.107 0.123 0.100 0.155 0.098

RSME is seen for MAE, where the Mean-S is the best model,
S-specific model is the second-best, and the Fine-tuned is
competitive to both.

In summary, we found that when subjects have low emo-
tional variability, models that only depend on the current
subject data (S-Specific and Mean-S) yield better performance
than others. However, when the emotional variability is high,
models that leverage a general dataset (General, Fine-tuned,
and Mean-G) perform better. It is worth noticing that in all
cases the Fine-tuned model is competitive in performance
against the winning models, making it the best option when
the emotional variability of the current subject is not known.

A. Data efficiency

We explore how the models perform when the training data
from the testing subject is scarce. This can show which method
is more data-efficient in terms of how much training data is
needed from the testing subject to reach good performance.

Fig. 3 summarizes the result for the 4 testing subjects for
the Comfort emotion. The testing data of each subject does
not change, as this is still the last 3 trials of each subject.

We vary the number of trials available from the subject for
training (fine-tuning), going from only 1 trial to 5 trials. Across
the subjects, we can see that using more training data from
the subject improves performance for Fine-tuned, S-specific,
and Mean-S models since these models can leverage that data.
General and Mean-G models stay constant across the number
of trials because they do not use the training data from the
testing subject. The results for subjects 12 and 32 are shown
in Fig. 3a and Fig. 3d respectively. We can see that, while
General and S-specific models are competitive when 3 or
fewer training trials are available from the subject, eventually,
the Fine-tuned and S-mean models surpass them when more
training data from the subject is available. This shows that a
model that leverages data from the subject of interest performs
better when more data is available. Results for subjects 15 and
25 are shown in Fig. 3b and Fig. 3c respectively. We can see
that the General and Mean-G models are no longer competitive
since these 2 subjects have low variability for their targets. The
Mean-S model performs the best across the number of training
trials available, however, the Fine-tuned model matches the
Mean-S performance when more training trials are available.

5
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Fig. 3: Data efficiency experiment results for the Comfort emotion where the number of trials for fine-tuning varies. (a) Subject

12, (b) Subject 15, (c) Subject 25, and (d) Subject 32

Based on the results described above, we can conclude that
if the subject has high variability in their target scores, a
model only using the general set data will perform better when
training trials from the current subject are scarce. However,
with more training trials available from the subject, models
that leverage that data can perform better. If the variability
in the subject target scores is low, then models only using
the general set data perform poorly, as seen in subjects 25
and 32. In these cases, it is better to leverage any amount of
training data available from the subject. Finally, we see across
all subjects that the Fine-tuned model eventually surpasses all
other models (or it becomes competitive) when more data is
available from the subject.

V. DI1SCUSSION AND CONCLUSION

Effective human-robot collaboration hinges on a robot’s
ability to detect, learn from, and adapt to human psycho-
physiological states. In this study, we collected data from
a human-robot interaction to train a neural network for
predicting human emotions. We found that fine-tuning a
model pre-trained on general data yields the best results or
becomes competitive compared to other baselines. Simple
models, such as using the mean emotional response, are
effective when emotional variability is low. Additionally,

6

with more data available from the subject of interest,
models that leverage this data perform better than fixed
pre-trained general models. A key limitation of this study
is the use of a small neural network, which may restrict
performance. However, a larger network risks overfitting
due to limited data. Future work could explore deeper and
more complex networks (e.g. transformers) by collecting
more data. Additionally, collecting more data can increase
the number of testing subjects, potentially giving us more
insights into the generalization of the proposed models.
Another future direction is only fine-tuning portions of the
network, rather than all of its components [25], [26]. This can
reduce overfitting on the subject of interest. Finally, future
work could explore using self-supervised learning techniques
during pre-training instead of supervised learning, allowing
the model to learn from unlabeled collected data, potentially
creating features that generalize better to testing subjects
during fine-tuning [27].
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