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Abstract 
In American Sign Language (ASL), a prominent resource gap exists 
for afective computing datasets. This manuscript explores prelimi-
nary fndings from an ongoing multimodal ASL corpus collection 
and analysis study, focusing on human-generated modalities (e.g., 
eye tracking, facial expression, head movement) and the expression 
of frustration and confusion among deaf and hard of hearing study 
participants. These afective states can be important for understand-
ing user experiences in human-computer interaction or for ofering 
system feedback towards enhancing AI-human collaboration. Ex-
panding a data collection methodology from prior work involving 
English-speaking participants, this exploratory study seeks to dis-
cern characteristics associated with confused or frustrated afect 
states in collected signed language interactions. Such insights have 
the potential to facilitate the development of models capable of rec-
ognizing emotional expressions. Initial results reveal distinctions in 
the characteristics of self-annotated instances of participant frustra-
tion and confusion, with certain features showing some divergence 
between the two emotions. 

CCS Concepts 
• Human-centered computing → Empirical studies in collab-
orative and social computing; Empirical studies in accessibil-
ity; Accessibility design and evaluation methods. 
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1 Introduction 
Automatically inferring emotional states such as frustration in in-
teractions can enable AI-based systems to facilitate the analysis and 
study of interactions between interlocutors. Afective computing 
modeling can also help enhance and adjust a system’s interactions 
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with users in AI-human teaming contexts, better adapt to enhance 
user experiences, or even personalize such experiences [17]. There 
is a substantial gap in American Sign Language (ASL) technolo-
gies capable of making such inferences, largely due to the lack of 
emotional language corpora focused on signed languages [3]. 

In this study, we report on the early fndings of an ongoing 
multimodal ASL corpus collection and analysis study, focused on 
studying the expression of frustration and confusion in task-based 
ASL interactions. Work in this area has potential to contribute to 
advancing the feld of sign language technologies, enabling new 
insights and resources for the study and modeling of emotional 
expression in ASL interactions. It may contribute to the develop-
ment of more robust multimodal machine-learning models that can 
enhance accessibility for deaf and hard of hearing users, including 
students in online education. For example, identifying confusion 
may help bridge communication barriers and facilitate efective 
communication between instructors and students. 

The study uses a multimodal data collection methodology from 
prior work with task-based dialogue interactions [16]. In contrast 
to the previous work, which involved English, the present study 
focuses exclusively on task-based multimodal dialogues in ASL, 
with participants who are deaf or hard of hearing. We investigate 
parallels and distinctions related to confusion and frustration in 
dialogues, in terms of their multimodal expressions. 

ASL incorporates layers of meaning functions, including expres-
sive dimensions. For example, signing velocity and space, facial 
expressions, body tilt, and mouthing may convey expressive and 
grammatical or lexical/sentential meaning functions. By studying 
expressions of frustration and confusion in signers, we can gain 
insights towards developing models to recognize afect expressions, 
including from non-manual signals. In the future, access to expres-
sive corpus data for training models may also beneft sign language 
processing models that are robust to emotional variation. 

2 Related Work 
There is a body of research on multimodal language data involv-
ing speech and spoken interactions, including work that explores 
emotional expressions [1]. In contrast, there is a need for afective 
computing study centered on sign language in general and ASL 
specifcally. Previous work has pointed out challenges in computer 
vision-centered sign language research, involving spatial coher-
ence and written transcription [18]. Prior insights indicate that 
addressing this research gap requires collaborative research and 
guidance from Deaf communities, a practice that has not always 
been followed in the past [7, 18]. 

Sign Language Recognition (SLR) has been studied in terms of 
isolated and continuous SLR. The former aims to identify isolated 
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Figure 1: The participants’ age range so far, based on the current set of completed study sessions, was mostly between 18 to 29 
years old. Three identifed as Hispanic or Latino/a. The study is ongoing and these demographics are preliminary. 

signs and tends to involve a limited pool of signs [5, 13] or letter 
units [4, 10, 19]. Continuous SLR seeks to identify where signs 
begin, continue, and end, and longer linguistic structures [6, 11, 12], 
yet often resulting in lower performance and they requires large 
datasets and resources, This highlights the need to create more 
resources in ASL and other sign languages. 

ASL grammar and expression also prominently rely on non-
manual cues, such as characteristics related to facial expressions 
and body movements. Some studies on Sign Language Recognition 
have successfully incorporated human-generated modalities with 
an increase in accuracy to some degree [12]. However, other work 
suggests that model speed might degrade with the inclusion of 
human-generated modalities despite the increase in accuracy, as 
their models generally perform faster with fewer landmarks [15], or 
indicated a performance improvement when modeling did not use 
facial information [14]. There is a need for studying the adequate 
integration of non-manual signals into automated modeling for 
sign language technologies. 

3 Methodology 
3.1 Participants 
We report on our initial data collection, which exclusively involved 
deaf or hard of hearing ASL users (� = 8). Following the existing 
methodology [16], each participant in the study was assigned a 
role of builder or instructor. Figure 1 shows some demographic 
information about the participants at this early study stage. The ASL 
background of the participants was as follows: 62.5% had American 
Sign Language as their native language (L1), 25% were fuent in 
American Sign Language as their second language (L2), and 12.5% 
had conversational profciency or were inexperienced in ASL, with 
1 of the 4 paired groups being a mixture of L1 and L2 interactions. 

Figure 2: The builder (left) receives instructions about what 
to build from the instructor (right), who is in their own space 
and connected through Zoom. The builder wears an eye-
tracker and their skeletal pose is tracked. The instructor’s 
eye movements are also tracked using a non-wearable remote 
eye-tracker. The instructor signs with their dominant hand, 
while their non-dominant hand is connected to a hand-worn 
Galvanic Skin Response sensor (not seen in the picture). 

3.2 Materials and Procedure 
After roles (builder and instructor) were assigned, the paired partici-
pants collaborated in their individual space and communicated with 
each other through a Zoom video session, as shown in Figure 2. The 
instructor’s responsibility was to direct the builder in constructing 
a structure consisting of blocks and pieces by using an image which 
was visible only to them. Communication between the instructor 
and the builder occurred through sign language. The builder had 
full use of both hands to communicate, while the instructor was 
restricted to using only their dominant hand, and their other hand 
remained still with a worn Galvanic Skin Response (GSR) sensor. 
The builder’s task was to recreate the structure to the best of their 
ability based on the instructor’s directions. 
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3.3 Post-experimental Data Processing 
Each group session recorded time series sensor data both for the 
instructor and the builder. The sensors had disparate polling rates 
and diferent recording start times. To synchronize the signal across 
these modalities, a movie director clapboard was used to time the 
signal at the beginning and end of each task. This audiovisual signal 
was captured across all sensors and provided an anchor, a common 
starting point, from which all data points could be aligned. The 
timestamp of the clapboard signal was manually determined in 
post-data processing. The timestamp for each modality was then 
used to associate participant annotations with the sensor data for 
the beginning of each task. The Zoom video recording was also used 
to collect the participants’ self-annotated instances of frustration 
and confusion, both for the builder and the instructor. 

After the diferent modalities had been aligned, it was necessary 
to address the diferent sampling rates among the sensors. This 
involved sampling sensor data surrounding a specifed time window 
from annotations and then dividing the signals into time steps. 
Cubic spline interpolation was used for upsampling modalities 
with lower polling rates [9], including for the instructor’s facial 
action units and eye tracking data extracted using iMotions [8]. 
Downsampling averaging was used when the number of time steps 
was less than the number of samples collected within the specifed 
time window, for signals with high sampling rates, including the 
GSR sensor and the Freemocap skeletal pose recordings [2]. All 
signals were Z-score normalized per participant for comparisons 
in the diverse groups of subjects. 

4 Results 
After processing the data, we proceeded to perform analysis on 
the sensor data surrounding the timestamps of the self-annotated 
instances of frustration and confusion from the participants. The 
annotation tool allowed participants to rate their emotion on a 
discrete ordinal scale of four values: Not At All, Slightly, Very, and
Extremely. To convert the collected data into binary labels, we
combined the labeled instances of Very and Extremely to form the
positive class, and we used Not At All instances as the negative
class. These values were then used to calculate the ����� metric
for features [16], shown in Table 1. These values were calculated 
with the following equation: �� ����∑︁𝑡 ��� 𝑠 ∑︁𝑡� 𝑠 �

𝑀 = �� m+ − �−𝑟𝑎𝑛𝑘 �� 𝑡 m𝑡 �� (1)��
𝑡=1 𝑡=1

where m+    represented � the average value for modality � at time step
� for the positive class, and m− represented the negative class. � The
higher the value, the larger the diference was between the average 
curves of time steps for the modality surrounding self-annotated 
instances from participants. Moreover, Figure 3 illustrates the dif-
ference in the distribution of builder head velocities for frustration. 

5 Discussion 
A key fnding of this exploratory study is that head velocity tends 
to increase when participants indicated that they perceived them-
selves frustrated compared to when they were not frustrated. The 
data indicate that incorporating signals such as head movement 

Table 1: Ranked instructor frustration and confusion features 
by quantifying separation of the average curves between both 
positive and negative classes. Bold features show a diference 
in ranking between the two emotions (frustration or confu-
sion), suggesting that each emotion is expressed diferently. 
Certain features, such as Lip Corner Depressor, are perceived 
to have an increased diference between positive and nega-
tive class instances when expressing confusion rather than 
frustration. 

Frustration: Features ����� 
Saccade Duration 8.13 
Brow Furrow 4.86 
Lip Corner Depressor 4.24 
Fixation Duration 2.53 
Gaze Velocity 2.40 
Saccade Peak Velocity 2.22 
Lid Tighten 2.16 
Chin Raise 1.35 
Fixation Dispersion 0.74 
Confusion: Features ����� 
Lip Corner Depressor 6.67 
Brow Furrow 4.30 
Fixation Dispersion 3.44 
Fixation Duration 3.32 
Lid Tighten 3.18 
Saccade Peak Velocity 2.23 
Saccade Duration 0.89 
Chin Raise 0.82 
Gaze Velocity 0.73 

measures might support distinguishing emotional expressions. This 
is evidenced by the spread of the data points shown in Figure 3. 
Although there were more confusion annotations (� = 157) than 
frustration annotations (� = 134), this early study confrms that 
non-manual data seems important for emotion modeling in ASL 
interactions. ASL integrates cues from facial expressions and body 
movements to convey nuances, emphasis, and emotion, in addition 
to other information. Frustration may stem from the recognition 
that the signer’s message is not being understood by the recipient, 
while confusion may arise from the signer’s difculty in under-
standing the message being conveyed to them. The study suggests, 
for instance, that there are important distinctions between states 
of frustration and non-frustration, underscoring the need for more 
advanced models to analyze emotional multimodal data further, 
towards enhancing detection capabilities. 

The limitations of this early study include a relatively small 
sample size that predominantly involved a younger adult age group. 
In addition, many participants were familiar with each other, which 
could have reduced the likelihood of experiencing or expressing 
frustration or confusion. 

6 Conclusion 
In conclusion, this study underscores the importance of considering 
multimodal data when analyzing emotional sign language resources. 
Additionally, collecting such resources can be useful for developing 
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Figure 3: Frustration annotations from builders indicated a faster head movement velocity when their self-annotation marked 
that they perceived they were frustrated, as shown by the distribution of instances above the baseline. Confusion annotations 
for both positive and negative classes show head velocities clustered around the baseline, indicating a more stable movement 
when the builder was confused. 

robust sign language technologies. By focusing on the expressions 
of frustration and confusion, this study provides insight that can 
contribute to technical advances in afective computing, e.g., for 
improving user experiences for deaf and hard of hearing individuals. 

Although the current study is in progress, preliminary fndings 
indicate a wealth of potential information to explore. We will con-
tinue to collect data and include participants with diverse levels of 
sign language profciency and linguistic backgrounds to broaden 
representation in the collected dataset. We plan to study the ambi-
guity in how non-manual cues such as facial expressions convey 
emotions in addition to grammatical functions. 
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