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Abstract

In American Sign Language (ASL), a prominent resource gap exists
for affective computing datasets. This manuscript explores prelimi-
nary findings from an ongoing multimodal ASL corpus collection
and analysis study, focusing on human-generated modalities (e.g.,
eye tracking, facial expression, head movement) and the expression
of frustration and confusion among deaf and hard of hearing study
participants. These affective states can be important for understand-
ing user experiences in human-computer interaction or for offering
system feedback towards enhancing Al-human collaboration. Ex-
panding a data collection methodology from prior work involving
English-speaking participants, this exploratory study seeks to dis-
cern characteristics associated with confused or frustrated affect
states in collected signed language interactions. Such insights have
the potential to facilitate the development of models capable of rec-
ognizing emotional expressions. Initial results reveal distinctions in
the characteristics of self-annotated instances of participant frustra-
tion and confusion, with certain features showing some divergence
between the two emotions.
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1 Introduction

Automatically inferring emotional states such as frustration in in-
teractions can enable Al-based systems to facilitate the analysis and
study of interactions between interlocutors. Affective computing
modeling can also help enhance and adjust a system’s interactions
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with users in Al-human teaming contexts, better adapt to enhance
user experiences, or even personalize such experiences [17]. There
is a substantial gap in American Sign Language (ASL) technolo-
gies capable of making such inferences, largely due to the lack of
emotional language corpora focused on signed languages [3].

In this study, we report on the early findings of an ongoing
multimodal ASL corpus collection and analysis study, focused on
studying the expression of frustration and confusion in task-based
ASL interactions. Work in this area has potential to contribute to
advancing the field of sign language technologies, enabling new
insights and resources for the study and modeling of emotional
expression in ASL interactions. It may contribute to the develop-
ment of more robust multimodal machine-learning models that can
enhance accessibility for deaf and hard of hearing users, including
students in online education. For example, identifying confusion
may help bridge communication barriers and facilitate effective
communication between instructors and students.

The study uses a multimodal data collection methodology from
prior work with task-based dialogue interactions [16]. In contrast
to the previous work, which involved English, the present study
focuses exclusively on task-based multimodal dialogues in ASL,
with participants who are deaf or hard of hearing. We investigate
parallels and distinctions related to confusion and frustration in
dialogues, in terms of their multimodal expressions.

ASL incorporates layers of meaning functions, including expres-
sive dimensions. For example, signing velocity and space, facial
expressions, body tilt, and mouthing may convey expressive and
grammatical or lexical/sentential meaning functions. By studying
expressions of frustration and confusion in signers, we can gain
insights towards developing models to recognize affect expressions,
including from non-manual signals. In the future, access to expres-
sive corpus data for training models may also benefit sign language
processing models that are robust to emotional variation.

2 Related Work

There is a body of research on multimodal language data involv-
ing speech and spoken interactions, including work that explores
emotional expressions [1]. In contrast, there is a need for affective
computing study centered on sign language in general and ASL
specifically. Previous work has pointed out challenges in computer
vision-centered sign language research, involving spatial coher-
ence and written transcription [18]. Prior insights indicate that
addressing this research gap requires collaborative research and
guidance from Deaf communities, a practice that has not always
been followed in the past [7, 18].

Sign Language Recognition (SLR) has been studied in terms of
isolated and continuous SLR. The former aims to identify isolated
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Figure 1: The participants’ age range so far, based on the current set of completed study sessions, was mostly between 18 to 29
years old. Three identified as Hispanic or Latino/a. The study is ongoing and these demographics are preliminary.

signs and tends to involve a limited pool of signs [5, 13] or letter
units [4, 10, 19]. Continuous SLR seeks to identify where signs
begin, continue, and end, and longer linguistic structures [6, 11, 12],
yet often resulting in lower performance and they requires large
datasets and resources, This highlights the need to create more
resources in ASL and other sign languages.

ASL grammar and expression also prominently rely on non-
manual cues, such as characteristics related to facial expressions
and body movements. Some studies on Sign Language Recognition
have successfully incorporated human-generated modalities with
an increase in accuracy to some degree [12]. However, other work
suggests that model speed might degrade with the inclusion of
human-generated modalities despite the increase in accuracy, as
their models generally perform faster with fewer landmarks [15], or
indicated a performance improvement when modeling did not use
facial information [14]. There is a need for studying the adequate
integration of non-manual signals into automated modeling for
sign language technologies.

3 Methodology
3.1 Participants

We report on our initial data collection, which exclusively involved
deaf or hard of hearing ASL users (n = 8). Following the existing
methodology [16], each participant in the study was assigned a
role of builder or instructor. Figure 1 shows some demographic
information about the participants at this early study stage. The ASL
background of the participants was as follows: 62.5% had American
Sign Language as their native language (L1), 25% were fluent in
American Sign Language as their second language (L2), and 12.5%
had conversational proficiency or were inexperienced in ASL, with
1 of the 4 paired groups being a mixture of L1 and L2 interactions.

Figure 2: The builder (left) receives instructions about what
to build from the instructor (right), who is in their own space
and connected through Zoom. The builder wears an eye-
tracker and their skeletal pose is tracked. The instructor’s
eye movements are also tracked using a non-wearable remote
eye-tracker. The instructor signs with their dominant hand,
while their non-dominant hand is connected to a hand-worn
Galvanic Skin Response sensor (not seen in the picture).

3.2 Materials and Procedure

After roles (builder and instructor) were assigned, the paired partici-
pants collaborated in their individual space and communicated with
each other through a Zoom video session, as shown in Figure 2. The
instructor’s responsibility was to direct the builder in constructing
a structure consisting of blocks and pieces by using an image which
was visible only to them. Communication between the instructor
and the builder occurred through sign language. The builder had
full use of both hands to communicate, while the instructor was
restricted to using only their dominant hand, and their other hand
remained still with a worn Galvanic Skin Response (GSR) sensor.
The builder’s task was to recreate the structure to the best of their
ability based on the instructor’s directions.
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3.3 Post-experimental Data Processing

Each group session recorded time series sensor data both for the
instructor and the builder. The sensors had disparate polling rates
and different recording start times. To synchronize the signal across
these modalities, a movie director clapboard was used to time the
signal at the beginning and end of each task. This audiovisual signal
was captured across all sensors and provided an anchor, a common
starting point, from which all data points could be aligned. The
timestamp of the clapboard signal was manually determined in
post-data processing. The timestamp for each modality was then
used to associate participant annotations with the sensor data for
the beginning of each task. The Zoom video recording was also used
to collect the participants’ self-annotated instances of frustration
and confusion, both for the builder and the instructor.

After the different modalities had been aligned, it was necessary
to address the different sampling rates among the sensors. This
involved sampling sensor data surrounding a specified time window
from annotations and then dividing the signals into time steps.
Cubic spline interpolation was used for upsampling modalities
with lower polling rates [9], including for the instructor’s facial
action units and eye tracking data extracted using iMotions [8].
Downsampling averaging was used when the number of time steps
was less than the number of samples collected within the specified
time window, for signals with high sampling rates, including the
GSR sensor and the Freemocap skeletal pose recordings [2]. All
signals were Z-score normalized per participant for comparisons
in the diverse groups of subjects.

4 Results

After processing the data, we proceeded to perform analysis on
the sensor data surrounding the timestamps of the self-annotated
instances of frustration and confusion from the participants. The
annotation tool allowed participants to rate their emotion on a
discrete ordinal scale of four values: Not At All, Slightly, Very, and
Extremely. To convert the collected data into binary labels, we
combined the labeled instances of Very and Extremely to form the
positive class, and we used Not At All instances as the negative
class. These values were then used to calculate the M, ,,; metric
for features [16], shown in Table 1. These values were calculated
with the following equation:

Myank = (1)

tS tS
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where m_;r represented the average value for modality m at time step
t for the positive class, and m; represented the negative class. The
higher the value, the larger the difference was between the average
curves of time steps for the modality surrounding self-annotated
instances from participants. Moreover, Figure 3 illustrates the dif-
ference in the distribution of builder head velocities for frustration.

5 Discussion

A key finding of this exploratory study is that head velocity tends
to increase when participants indicated that they perceived them-
selves frustrated compared to when they were not frustrated. The
data indicate that incorporating signals such as head movement
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Table 1: Ranked instructor frustration and confusion features
by quantifying separation of the average curves between both
positive and negative classes. Bold features show a difference
in ranking between the two emotions (frustration or confu-
sion), suggesting that each emotion is expressed differently.
Certain features, such as Lip Corner Depressor, are perceived
to have an increased difference between positive and nega-
tive class instances when expressing confusion rather than
frustration.

Frustration: Features My ank
Saccade Duration 8.13
Brow Furrow 4.86
Lip Corner Depressor | 4.24
Fixation Duration 2.53
Gaze Velocity 2.40
Saccade Peak Velocity 2.22
Lid Tighten 2.16
Chin Raise 1.35
Fixation Dispersion 0.74
Confusion: Features M, ank
Lip Corner Depressor | 6.67
Brow Furrow 4.30
Fixation Dispersion 3.44
Fixation Duration 3.32
Lid Tighten 3.18
Saccade Peak Velocity 2.23
Saccade Duration 0.89
Chin Raise 0.82
Gaze Velocity 0.73

measures might support distinguishing emotional expressions. This
is evidenced by the spread of the data points shown in Figure 3.
Although there were more confusion annotations (n = 157) than
frustration annotations (n = 134), this early study confirms that
non-manual data seems important for emotion modeling in ASL
interactions. ASL integrates cues from facial expressions and body
movements to convey nuances, emphasis, and emotion, in addition
to other information. Frustration may stem from the recognition
that the signer’s message is not being understood by the recipient,
while confusion may arise from the signer’s difficulty in under-
standing the message being conveyed to them. The study suggests,
for instance, that there are important distinctions between states
of frustration and non-frustration, underscoring the need for more
advanced models to analyze emotional multimodal data further,
towards enhancing detection capabilities.

The limitations of this early study include a relatively small
sample size that predominantly involved a younger adult age group.
In addition, many participants were familiar with each other, which
could have reduced the likelihood of experiencing or expressing
frustration or confusion.

6 Conclusion

In conclusion, this study underscores the importance of considering
multimodal data when analyzing emotional sign language resources.
Additionally, collecting such resources can be useful for developing
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Figure 3: Frustration annotations from builders indicated a faster head movement velocity when their self-annotation marked
that they perceived they were frustrated, as shown by the distribution of instances above the baseline. Confusion annotations
for both positive and negative classes show head velocities clustered around the baseline, indicating a more stable movement
when the builder was confused.
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